diff options
-rwxr-xr-x | configure | 20 | ||||
-rw-r--r-- | configure.ac | 2 | ||||
-rw-r--r-- | src/algebra/Makefile.am | 13 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 13 | ||||
-rw-r--r-- | src/algebra/aggcat.spad.pamphlet | 16 | ||||
-rw-r--r-- | src/algebra/catdef.spad.pamphlet | 20 | ||||
-rw-r--r-- | src/hyper/pages/releaseNotes.ht | 6 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2684 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5833 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 6 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 7941 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 19908 |
12 files changed, 18280 insertions, 18182 deletions
@@ -1,6 +1,6 @@ #! /bin/sh # Guess values for system-dependent variables and create Makefiles. -# Generated by GNU Autoconf 2.69 for OpenAxiom 1.5.0-2013-05-18. +# Generated by GNU Autoconf 2.69 for OpenAxiom 1.5.0-2013-05-19. # # Report bugs to <open-axiom-bugs@lists.sf.net>. # @@ -590,8 +590,8 @@ MAKEFLAGS= # Identity of this package. PACKAGE_NAME='OpenAxiom' PACKAGE_TARNAME='openaxiom' -PACKAGE_VERSION='1.5.0-2013-05-18' -PACKAGE_STRING='OpenAxiom 1.5.0-2013-05-18' +PACKAGE_VERSION='1.5.0-2013-05-19' +PACKAGE_STRING='OpenAxiom 1.5.0-2013-05-19' PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net' PACKAGE_URL='' @@ -1392,7 +1392,7 @@ if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF -\`configure' configures OpenAxiom 1.5.0-2013-05-18 to adapt to many kinds of systems. +\`configure' configures OpenAxiom 1.5.0-2013-05-19 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... @@ -1467,7 +1467,7 @@ fi if test -n "$ac_init_help"; then case $ac_init_help in - short | recursive ) echo "Configuration of OpenAxiom 1.5.0-2013-05-18:";; + short | recursive ) echo "Configuration of OpenAxiom 1.5.0-2013-05-19:";; esac cat <<\_ACEOF @@ -1584,7 +1584,7 @@ fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF -OpenAxiom configure 1.5.0-2013-05-18 +OpenAxiom configure 1.5.0-2013-05-19 generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. @@ -2585,7 +2585,7 @@ cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. -It was created by OpenAxiom $as_me 1.5.0-2013-05-18, which was +It was created by OpenAxiom $as_me 1.5.0-2013-05-19, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ @@ -3566,7 +3566,7 @@ fi # Define the identity of the package. PACKAGE='openaxiom' - VERSION='1.5.0-2013-05-18' + VERSION='1.5.0-2013-05-19' cat >>confdefs.h <<_ACEOF @@ -20403,7 +20403,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" -This file was extended by OpenAxiom $as_me 1.5.0-2013-05-18, which was +This file was extended by OpenAxiom $as_me 1.5.0-2013-05-19, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES @@ -20469,7 +20469,7 @@ _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ -OpenAxiom config.status 1.5.0-2013-05-18 +OpenAxiom config.status 1.5.0-2013-05-19 configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" diff --git a/configure.ac b/configure.ac index 66f289ef..34265cc3 100644 --- a/configure.ac +++ b/configure.ac @@ -33,7 +33,7 @@ dnl Makefiles for building OpenAxiom interpreter, compiler, libraries, and dnl auxiliary tools where appropriate. dnl -AC_INIT([OpenAxiom], [1.5.0-2013-05-18], +AC_INIT([OpenAxiom], [1.5.0-2013-05-19], [open-axiom-bugs@lists.sf.net]) dnl Most of the macros used in this configure.ac are defined in files diff --git a/src/algebra/Makefile.am b/src/algebra/Makefile.am index f2b02a34..4df8f821 100644 --- a/src/algebra/Makefile.am +++ b/src/algebra/Makefile.am @@ -129,6 +129,7 @@ SUFFIXES = .spad .$(FASLEXT) $(EXEEXT) .input .pamphlet .tex .dvi # Consequently, the dependencies listed here are at the categories # inheritance level; not necessarily at the use level. strap-0/UTYPE.$(FASLEXT): strap-0/TYPE.$(FASLEXT) +strap-0/FUNCTOR.$(FASLEXT): strap-0/TYPE.$(FASLEXT) strap-0/BASTYPE.$(FASLEXT): strap-0/TYPE.$(FASLEXT) strap-0/KOERCE.$(FASLEXT): strap-0/TYPE.$(FASLEXT) strap-0/KONVERT.$(FASLEXT): strap-0/TYPE.$(FASLEXT) @@ -312,7 +313,7 @@ strap-0/LNAGG.$(FASLEXT): strap-0/IXAGG.$(FASLEXT) \ strap-0/CLAGG.$(FASLEXT) strap-0/ETLAB.$(FASLEXT) strap-0/IXAGG.$(FASLEXT): strap-0/HOAGG.$(FASLEXT) \ strap-0/ELTAGG.$(FASLEXT) -strap-0/HOAGG.$(FASLEXT): strap-0/AGG.$(FASLEXT) \ +strap-0/HOAGG.$(FASLEXT): strap-0/AGG.$(FASLEXT) strap-0/FUNCTOR.$(FASLEXT) \ strap-0/KOERCE.$(FASLEXT) strap-0/BASTYPE.$(FASLEXT) \ strap-0/SETCAT.$(FASLEXT) strap-0/EVALAB.$(FASLEXT) strap-0/AGG.$(FASLEXT): strap-0/TYPE.$(FASLEXT) @@ -404,6 +405,7 @@ strap-0/PATTERN.$(FASLEXT): strap-0/SETCAT.$(FASLEXT) \ # the bootstrap process (stage 2). Those that were compiled at stage 0 # were (necessarily) incomplete. +strap-1/FUNCTOR.$(FASLEXT): strap-1/TYPE.$(FASLEXT) strap-1/BASTYPE.$(FASLEXT): strap-1/TYPE.$(FASLEXT) \ strap-0/BOOLEAN.$(FASLEXT) @@ -642,7 +644,7 @@ strap-1/LNAGG.$(FASLEXT): strap-1/IXAGG.$(FASLEXT) \ strap-1/IXAGG.$(FASLEXT): strap-1/HOAGG.$(FASLEXT) \ strap-1/ELTAGG.$(FASLEXT) -strap-1/HOAGG.$(FASLEXT): strap-1/AGG.$(FASLEXT) \ +strap-1/HOAGG.$(FASLEXT): strap-1/AGG.$(FASLEXT) strap-1/FUNCTOR.$(FASLEXT) \ strap-1/KOERCE.$(FASLEXT) strap-1/BASTYPE.$(FASLEXT) \ strap-1/SETCAT.$(FASLEXT) strap-1/EVALAB.$(FASLEXT) \ strap-0/EQ.$(FASLEXT) @@ -782,6 +784,7 @@ strap-1/SAOS.$(FASLEXT): strap-1/ORDSET.$(FASLEXT) \ # At this stage we recompile everything from stage 1, including # a few more domains. +strap-2/FUNCTOR.$(FASLEXT): strap-2/TYPE.$(FASLEXT) strap-2/KOERCE.$(FASLEXT): strap-2/TYPE.$(FASLEXT) strap-2/KONVERT.$(FASLEXT): strap-2/TYPE.$(FASLEXT) @@ -1011,7 +1014,7 @@ strap-2/LNAGG.$(FASLEXT): strap-2/IXAGG.$(FASLEXT) \ strap-2/CLAGG.$(FASLEXT) strap-2/ETLAB.$(FASLEXT) strap-2/IXAGG.$(FASLEXT): strap-2/HOAGG.$(FASLEXT) \ strap-2/ELTAGG.$(FASLEXT) -strap-2/HOAGG.$(FASLEXT): strap-2/AGG.$(FASLEXT) \ +strap-2/HOAGG.$(FASLEXT): strap-2/AGG.$(FASLEXT) strap-2/FUNCTOR.$(FASLEXT) \ strap-2/KOERCE.$(FASLEXT) strap-2/BASTYPE.$(FASLEXT) \ strap-2/SETCAT.$(FASLEXT) strap-2/EVALAB.$(FASLEXT) strap-2/SETAGG.$(FASLEXT): strap-2/CLAGG.$(FASLEXT) strap-2/SETCAT.$(FASLEXT) @@ -1462,6 +1465,8 @@ $(OUT)/SGPOP.$(FASLEXT): $(OUT)/SGPOPC.$(FASLEXT) $(OUT)/SETCAT.$(FASLEXT) \ $(OUT)/MONOPC.$(FASLEXT): $(OUT)/SGPOPC.$(FASLEXT) $(OUT)/FSAGG.$(FASLEXT): $(OUT)/FINAGG.$(FASLEXT) +$(OUT)/FUNCTOR.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/HOAGG.$(FASLEXT): $(OUT)/FUNCTOR.$(FASLEXT) $(OUT)/SMAGG.$(FASLEXT): $(OUT)/HOAGG.$(FASLEXT) $(OUT)/FINAGG.$(FASLEXT): $(OUT)/HOAGG.$(FASLEXT) $(OUT)/ELAGG.$(FASLEXT): $(OUT)/SMAGG.$(FASLEXT) @@ -1470,7 +1475,7 @@ oa_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ KRCFROM KVTFROM IEVALAB IEVALAB- EVALAB EVALAB- \ RETRACT RETRACT- SETCAT SETCAT- VOID SEGCAT \ - MSYSCMD FINITE FINITE- IDEMOPC OUT \ + MSYSCMD FINITE FINITE- IDEMOPC FUNCTOR OUT \ PRIMCAT PRINT PTRANFN SPFCAT TYPE UTYPE \ BMODULE SGPOPC BASTYPE BASTYPE- STEP LMODULE \ RMODULE ALGEBRA ALGEBRA- SGROUP SGROUP- ABELSG \ diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index e871747f..ad03d585 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -721,7 +721,7 @@ oa_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ KRCFROM KVTFROM IEVALAB IEVALAB- EVALAB EVALAB- \ RETRACT RETRACT- SETCAT SETCAT- VOID SEGCAT \ - MSYSCMD FINITE FINITE- IDEMOPC OUT \ + MSYSCMD FINITE FINITE- IDEMOPC FUNCTOR OUT \ PRIMCAT PRINT PTRANFN SPFCAT TYPE UTYPE \ BMODULE SGPOPC BASTYPE BASTYPE- STEP LMODULE \ RMODULE ALGEBRA ALGEBRA- SGROUP SGROUP- ABELSG \ @@ -1619,6 +1619,7 @@ uninstall-am: # Consequently, the dependencies listed here are at the categories # inheritance level; not necessarily at the use level. strap-0/UTYPE.$(FASLEXT): strap-0/TYPE.$(FASLEXT) +strap-0/FUNCTOR.$(FASLEXT): strap-0/TYPE.$(FASLEXT) strap-0/BASTYPE.$(FASLEXT): strap-0/TYPE.$(FASLEXT) strap-0/KOERCE.$(FASLEXT): strap-0/TYPE.$(FASLEXT) strap-0/KONVERT.$(FASLEXT): strap-0/TYPE.$(FASLEXT) @@ -1802,7 +1803,7 @@ strap-0/LNAGG.$(FASLEXT): strap-0/IXAGG.$(FASLEXT) \ strap-0/CLAGG.$(FASLEXT) strap-0/ETLAB.$(FASLEXT) strap-0/IXAGG.$(FASLEXT): strap-0/HOAGG.$(FASLEXT) \ strap-0/ELTAGG.$(FASLEXT) -strap-0/HOAGG.$(FASLEXT): strap-0/AGG.$(FASLEXT) \ +strap-0/HOAGG.$(FASLEXT): strap-0/AGG.$(FASLEXT) strap-0/FUNCTOR.$(FASLEXT) \ strap-0/KOERCE.$(FASLEXT) strap-0/BASTYPE.$(FASLEXT) \ strap-0/SETCAT.$(FASLEXT) strap-0/EVALAB.$(FASLEXT) strap-0/AGG.$(FASLEXT): strap-0/TYPE.$(FASLEXT) @@ -1894,6 +1895,7 @@ strap-0/PATTERN.$(FASLEXT): strap-0/SETCAT.$(FASLEXT) \ # the bootstrap process (stage 2). Those that were compiled at stage 0 # were (necessarily) incomplete. +strap-1/FUNCTOR.$(FASLEXT): strap-1/TYPE.$(FASLEXT) strap-1/BASTYPE.$(FASLEXT): strap-1/TYPE.$(FASLEXT) \ strap-0/BOOLEAN.$(FASLEXT) @@ -2132,7 +2134,7 @@ strap-1/LNAGG.$(FASLEXT): strap-1/IXAGG.$(FASLEXT) \ strap-1/IXAGG.$(FASLEXT): strap-1/HOAGG.$(FASLEXT) \ strap-1/ELTAGG.$(FASLEXT) -strap-1/HOAGG.$(FASLEXT): strap-1/AGG.$(FASLEXT) \ +strap-1/HOAGG.$(FASLEXT): strap-1/AGG.$(FASLEXT) strap-1/FUNCTOR.$(FASLEXT) \ strap-1/KOERCE.$(FASLEXT) strap-1/BASTYPE.$(FASLEXT) \ strap-1/SETCAT.$(FASLEXT) strap-1/EVALAB.$(FASLEXT) \ strap-0/EQ.$(FASLEXT) @@ -2272,6 +2274,7 @@ strap-1/SAOS.$(FASLEXT): strap-1/ORDSET.$(FASLEXT) \ # At this stage we recompile everything from stage 1, including # a few more domains. +strap-2/FUNCTOR.$(FASLEXT): strap-2/TYPE.$(FASLEXT) strap-2/KOERCE.$(FASLEXT): strap-2/TYPE.$(FASLEXT) strap-2/KONVERT.$(FASLEXT): strap-2/TYPE.$(FASLEXT) @@ -2498,7 +2501,7 @@ strap-2/LNAGG.$(FASLEXT): strap-2/IXAGG.$(FASLEXT) \ strap-2/CLAGG.$(FASLEXT) strap-2/ETLAB.$(FASLEXT) strap-2/IXAGG.$(FASLEXT): strap-2/HOAGG.$(FASLEXT) \ strap-2/ELTAGG.$(FASLEXT) -strap-2/HOAGG.$(FASLEXT): strap-2/AGG.$(FASLEXT) \ +strap-2/HOAGG.$(FASLEXT): strap-2/AGG.$(FASLEXT) strap-2/FUNCTOR.$(FASLEXT) \ strap-2/KOERCE.$(FASLEXT) strap-2/BASTYPE.$(FASLEXT) \ strap-2/SETCAT.$(FASLEXT) strap-2/EVALAB.$(FASLEXT) strap-2/SETAGG.$(FASLEXT): strap-2/CLAGG.$(FASLEXT) strap-2/SETCAT.$(FASLEXT) @@ -2802,6 +2805,8 @@ $(OUT)/SGPOP.$(FASLEXT): $(OUT)/SGPOPC.$(FASLEXT) $(OUT)/SETCAT.$(FASLEXT) \ $(OUT)/MONOPC.$(FASLEXT): $(OUT)/SGPOPC.$(FASLEXT) $(OUT)/FSAGG.$(FASLEXT): $(OUT)/FINAGG.$(FASLEXT) +$(OUT)/FUNCTOR.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/HOAGG.$(FASLEXT): $(OUT)/FUNCTOR.$(FASLEXT) $(OUT)/SMAGG.$(FASLEXT): $(OUT)/HOAGG.$(FASLEXT) $(OUT)/FINAGG.$(FASLEXT): $(OUT)/HOAGG.$(FASLEXT) $(OUT)/ELAGG.$(FASLEXT): $(OUT)/SMAGG.$(FASLEXT) diff --git a/src/algebra/aggcat.spad.pamphlet b/src/algebra/aggcat.spad.pamphlet index 3ff73675..df09311f 100644 --- a/src/algebra/aggcat.spad.pamphlet +++ b/src/algebra/aggcat.spad.pamphlet @@ -68,28 +68,26 @@ import CoercibleTo OutputForm import Evalable )abbrev category HOAGG HomogeneousAggregate ++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks +++ Further revision by Gabriel Dos Reis. ++ Date Created: August 87 through August 88 -++ Date Last Updated: April 1991, May 1995 +++ Date Last Updated: May 17, 2013. ++ Basic Operations: -++ Related Constructors: +++ Related Constructors: Aggregate, Functorial ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: -++ A homogeneous aggregate is an aggregate of elements all of the -++ same type. +++ A homogeneous aggregate is an aggregate of elements all of the +++ same type, and is functorial in stored elements.. ++ In the current system, all aggregates are homogeneous. ++ Two attributes characterize classes of aggregates. -HomogeneousAggregate(S:Type): Category == Aggregate with +HomogeneousAggregate(S:Type): Category == Join(Aggregate,Functorial S) with if S has CoercibleTo(OutputForm) then CoercibleTo(OutputForm) if S has BasicType then BasicType if S has SetCategory then SetCategory if S has SetCategory then if S has Evalable S then Evalable S - map : (S->S,%) -> % - ++ map(f,u) returns a copy of u with each element x replaced by f(x). - ++ For collections, \axiom{map(f,u) = [f(x) for x in u]}. add if S has Evalable S then eval(u:%,l:List Equation S):% == map(eval(#1,l),u) @@ -195,8 +193,6 @@ ShallowlyMutableAggregate(S: Type): Category == Exports where @ - - \section{category CLAGG Collection} <<category CLAGG Collection>>= diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet index 8261e7ea..f8c394ee 100644 --- a/src/algebra/catdef.spad.pamphlet +++ b/src/algebra/catdef.spad.pamphlet @@ -2196,6 +2196,25 @@ VectorSpace(S:Field): Category == Module(S) with (v:% / s:S):% == inv(s) * v @ + +\section{Functorial} + +<<category FUNCTOR Functorial>>= +)abbrev category FUNCTOR Functorial +++ Author: Gabriel Dos Reis +++ Date Created: May 19, 2013. +++ Date Last Modified: May 19, 2013. +++ Description: +++ This category describes the class of structural objects that +++ behave functorially in distinguished class of components. +Functorial(S: Type): Category == Type with + map: (S -> S, %) -> % + ++ \spad{map(f,x)} returns an object with similar shape and + ++ structure as \spad{x}, where all \spad{S}-items \spad{s} + ++ in \spad{x} have been replacement elementwise by \spad{f s}. +@ + + \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. @@ -2234,6 +2253,7 @@ VectorSpace(S:Field): Category == Module(S) with <<*>>= <<license>> +<<category FUNCTOR Functorial>> <<category BINOPC BinaryOperatorCategory>> <<domain BINOP BinaryOperation>> <<category IDEMOPC IdempotentOperatorCategory>> diff --git a/src/hyper/pages/releaseNotes.ht b/src/hyper/pages/releaseNotes.ht index 6317e508..da62f6e6 100644 --- a/src/hyper/pages/releaseNotes.ht +++ b/src/hyper/pages/releaseNotes.ht @@ -66,7 +66,11 @@ contains additions of new features and domains including: by the domain FiniteAggregate. The operation parts from HomogeneousAggregate was remved. It was - mostly redundant with members, and created opportunities for confusion. + mostly redundant with members, and created opportunities for + confusion. + + A new category, Functorial, has been added. All homogeneous + aggregates with element type S satisfy Functorial S. \endscroll \autobuttons diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 8970f6c6..c360ce6e 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(1968360 . 3578007597) +(1968382 . 3578010131) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the shallowly mutable property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3994 . T) (-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3990 . T) (-3995 . T) (-3989 . T)) +((-3995 . T) (-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3991 . T) (-3996 . T) (-3990 . T)) NIL (-30) ((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,10 +56,10 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3094) +(-32 R -3095) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-951 (-485))))) +((|HasCategory| |#1| (QUOTE (-952 (-486))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\"")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3094 UP UPUP -2616) +(-40 -3095 UP UPUP -2617) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3990 |has| (-350 |#2|) (-312)) (-3995 |has| (-350 |#2|) (-312)) (-3989 |has| (-350 |#2|) (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) -(-41 R -3094) +((-3991 |has| (-350 |#2|) (-312)) (-3996 |has| (-350 |#2|) (-312)) (-3990 |has| (-350 |#2|) (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092)))))) (|HasCategory| (-350 |#2|) (QUOTE (-582 (-486)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486)))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) +(-41 R -3095) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-258)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T)) -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) +((-3995 |has| |#1| (-497)) (-3993 . T) (-3992 . T)) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) NIL -((OR (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))) (-12 (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|)))))) +((OR (-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-758)))) (-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|))) (-12 (|HasCategory| $ (|%list| (QUOTE -1037) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-758)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1037) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|)))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) +((|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-486))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3994 . T)) +((-3995 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3094) +(-54 |Base| R -3095) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -163,7 +163,7 @@ NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -171,7 +171,7 @@ NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL @@ -179,7 +179,7 @@ NIL (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3999 "*") . T) (-3994 . T) (-3992 . T) (-3991 . T) (-3990 . T) (-3995 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3993 . T) (-3996 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3984 . T)) +(((-4000 "*") . T) (-3995 . T) (-3993 . T) (-3992 . T) (-3991 . T) (-3996 . T) (-3990 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3994 . T) (-3997 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3985 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3994 . T)) +((-3995 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -223,11 +223,11 @@ NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-3999 "*")))) +((|HasAttribute| |#1| (QUOTE (-4000 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}."))) NIL @@ -238,8 +238,8 @@ NIL NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -255,10 +255,10 @@ NIL (-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) NIL -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-1036 (-85)))) (|HasCategory| (-85) (QUOTE (-757)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1036 (-85))))) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1015)))) (|HasCategory| (-85) (QUOTE (-555 (-475)))) (|HasCategory| (-85) (QUOTE (-758))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-554 (-774)))) (|HasCategory| (-85) (QUOTE (-1015))) (-12 (|HasCategory| $ (QUOTE (-1037 (-85)))) (|HasCategory| (-85) (QUOTE (-758)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1037 (-85))))) (-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL (-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -280,22 +280,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-88 -3094 UP) +(-88 -3095 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1067))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-823))) (|HasCategory| (-89 |#1|) (QUOTE (-952 (-1092)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-475)))) (|HasCategory| (-89 |#1|) (QUOTE (-935))) (|HasCategory| (-89 |#1|) (QUOTE (-742))) (|HasCategory| (-89 |#1|) (QUOTE (-758))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-742))) (|HasCategory| (-89 |#1|) (QUOTE (-758)))) (|HasCategory| (-89 |#1|) (QUOTE (-952 (-486)))) (|HasCategory| (-89 |#1|) (QUOTE (-1068))) (|HasCategory| (-89 |#1|) (QUOTE (-798 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-798 (-486)))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-89 |#1|) (QUOTE (-582 (-486)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-813 (-1092)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1092)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-485))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-823)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) (-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|)))) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|)))) (-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -307,7 +307,7 @@ NIL (-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -327,11 +327,11 @@ NIL (-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL @@ -339,7 +339,7 @@ NIL (-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) NIL -((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1014))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014)))) (-12 (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| $ (QUOTE (-1036 (-101)))) (-12 (|HasCategory| $ (QUOTE (-1036 (-101)))) (|HasCategory| (-101) (QUOTE (-757))))) +((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-758)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1015))))) (|HasCategory| (-101) (QUOTE (-554 (-774)))) (|HasCategory| (-101) (QUOTE (-555 (-475)))) (OR (|HasCategory| (-101) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015)))) (|HasCategory| (-101) (QUOTE (-758))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1015))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1015)))) (-12 (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| $ (QUOTE (-1037 (-101)))) (-12 (|HasCategory| $ (QUOTE (-1037 (-101)))) (|HasCategory| (-101) (QUOTE (-758))))) (-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -358,13 +358,13 @@ NIL NIL (-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3999 "*") . T)) +(((-4000 "*") . T)) NIL -(-108 |minix| -2623 R) +(-108 |minix| -2624 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-109 |minix| -2623 S T$) +(-109 |minix| -2624 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -386,8 +386,8 @@ NIL NIL (-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3987 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-1014))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72))))) +((-3988 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (|HasCategory| (-117) (QUOTE (-555 (-475)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-554 (-774)))) (|HasCategory| (-117) (QUOTE (-1015))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72))))) (-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -402,7 +402,7 @@ NIL NIL (-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3994 . T)) +((-3995 . T)) NIL (-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -410,9 +410,9 @@ NIL NIL (-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3994 . T)) +((-3995 . T)) NIL -(-121 -3094 UP UPUP) +(-121 -3095 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -423,14 +423,14 @@ NIL (-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|)))) +((|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|)))) (-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3992 . T) (-3991 . T) (-3994 . T)) +((-3993 . T) (-3992 . T) (-3995 . T)) NIL (-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -452,7 +452,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-131 R -3094) +(-131 R -3095) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -483,10 +483,10 @@ NIL (-138 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496)))) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-917))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasAttribute| |#2| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-497)))) (-139 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3990 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3996 |has| |#1| (-6 -3996)) (-1377 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3997 |has| |#1| (-6 -3997)) (-1378 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-140 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -498,8 +498,8 @@ NIL NIL (-142 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3990 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3996 |has| |#1| (-6 -3996)) (-1377 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-12 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3996)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +((-3991 OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3997 |has| |#1| (-6 -3997)) (-1378 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (|HasCategory| |#1| (QUOTE (-813 (-1092))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-823))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3997)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-143 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-147) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -522,7 +522,7 @@ NIL NIL (-148 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-3999 "*") . T) (-3990 . T) (-3995 . T) (-3989 . T) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") . T) (-3991 . T) (-3996 . T) (-3990 . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-149) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -539,7 +539,7 @@ NIL (-152 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|)))) +((|HasCategory| (-859 |#2|) (|%list| (QUOTE -798) (|devaluate| |#1|)))) (-153 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -576,7 +576,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-162 R -3094) +(-162 R -3095) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -604,23 +604,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-169 -3094 UP UPUP R) +(-169 -3095 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-170 -3094 FP) +(-170 -3095 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-171) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) (-172) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-173 R -3094) +(-173 R -3095) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -635,18 +635,18 @@ NIL (-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-178 R -3094) +(-178 R -3095) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-179) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3772 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3773 . T) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-180) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -655,7 +655,7 @@ NIL (-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3999 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-497))) (|HasAttribute| |#1| (QUOTE (-4000 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) (-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -666,7 +666,7 @@ NIL NIL (-184 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3994 . T)) +((-3995 . T)) NIL (-185 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -678,7 +678,7 @@ NIL NIL (-187 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL (-188 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -690,7 +690,7 @@ NIL NIL (-190) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3994 . T)) +((-3995 . T)) NIL (-191) ((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation."))) @@ -708,19 +708,19 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-195 S -2623 R) +(-195 S -2624 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3994)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) -(-196 -2623 R) +((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasAttribute| |#3| (QUOTE -3995)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) +(-196 -2624 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) +((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) NIL -(-197 -2623 R) +(-197 -2624 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-198 -2623 A B) +((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3995)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-198 -2624 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -734,7 +734,7 @@ NIL NIL (-201) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3990 . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-202 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -743,19 +743,19 @@ NIL (-203 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (-204 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-205 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL (-206 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) (-207) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -770,19 +770,19 @@ NIL NIL (-210 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3994 OR (-2564 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3994)) (-2564 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3991 |has| |#4| (-962)) (-3992 |has| |#4| (-962))) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3994)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#4|)))) +((-3995 OR (-2565 (|has| |#4| (-963)) (|has| |#4| (-190))) (|has| |#4| (-6 -3995)) (-2565 (|has| |#4| (-963)) (|has| |#4| (-811 (-1092))))) (-3992 |has| |#4| (-963)) (-3993 |has| |#4| (-963))) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-719))) (OR (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-758)))) (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-486)))) (|HasCategory| |#4| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-486)))) (|HasCategory| |#4| (QUOTE (-963))))) (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-813 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-811 (-1092))))) (|HasCategory| |#4| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-963))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-486)))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1092)))) (|HasCategory| |#4| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasAttribute| |#4| (QUOTE -3995)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-963))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#4|)))) (-211 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3994 OR (-2564 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3994)) (-2564 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962))) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3994)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#3|)))) +((-3995 OR (-2565 (|has| |#3| (-963)) (|has| |#3| (-190))) (|has| |#3| (-6 -3995)) (-2565 (|has| |#3| (-963)) (|has| |#3| (-811 (-1092))))) (-3992 |has| |#3| (-963)) (-3993 |has| |#3| (-963))) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (OR (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758)))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (|HasCategory| |#3| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasAttribute| |#3| (QUOTE -3995)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-554 (-774)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#3|)))) (-212 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-190)))) (-213 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL (-214 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) @@ -827,15 +827,15 @@ NIL (-224 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189)))) +((|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-189)))) (-225 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-226 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#3| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#3| (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#3| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#3| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#3| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#3| (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-227 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -848,11 +848,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-230 R -3094) +(-230 R -3095) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-231 R -3094) +(-231 R -3095) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -875,7 +875,7 @@ NIL (-236 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72)))) +((|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72)))) (-237 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL @@ -899,14 +899,14 @@ NIL (-242 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#3|)))) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#3|)))) (-243 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-244 S R |Mod| -2038 -3520 |exactQuo|) +(-244 S R |Mod| -2039 -3521 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-245 S) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) @@ -914,7 +914,7 @@ NIL NIL (-246) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3990 . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-247) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -926,8 +926,8 @@ NIL NIL (-249 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3994 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-962)) (-3992 |has| |#1| (-962))) -((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664)))) +((-3995 OR (|has| |#1| (-963)) (|has| |#1| (-414))) (-3992 |has| |#1| (-963)) (-3993 |has| |#1| (-963))) +((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-665)))) (|HasCategory| |#1| (QUOTE (-414))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-414)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-665)))) (-250 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL @@ -935,7 +935,7 @@ NIL (-251 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) +((-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) (-252) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -943,16 +943,16 @@ NIL (-253 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) +((|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (-254) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-255 -3094 S) +(-255 -3095 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-256 E -3094) +(-256 E -3095) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -962,7 +962,7 @@ NIL NIL (-258) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-259 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -972,7 +972,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-261 -3094) +(-261 -3095) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -986,12 +986,12 @@ NIL NIL (-264 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-330)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-952 (-1092)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-475)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-935))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-742))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-758))) (OR (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-742))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-758)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-952 (-486)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-1068))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-798 (-330)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-798 (-486)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-582 (-486)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-813 (-1092)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1092)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-485))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) (-265 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3994 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) ((-3999 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-496)) (-3989 |has| |#1| (-496))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) +((-3995 OR (-12 (|has| |#1| (-497)) (OR (|has| |#1| (-963)) (|has| |#1| (-414)))) (|has| |#1| (-963)) (|has| |#1| (-414))) (-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) ((-4000 "*") |has| |#1| (-497)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-497)) (-3990 |has| |#1| (-497))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963))))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-486)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-486))))) (-266 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1000,7 +1000,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-268 R -3094) +(-268 R -3095) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1010,8 +1010,8 @@ NIL NIL (-270 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) (-271 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1022,8 +1022,8 @@ NIL NIL (-273 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3992 . T) (-3991 . T)) -((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-717)))) +((-3993 . T) (-3992 . T)) +((|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| (-486) (QUOTE (-718)))) (-274 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1031,26 +1031,26 @@ NIL (-275 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-695) (QUOTE (-717)))) +((|HasCategory| (-696) (QUOTE (-718)))) (-276 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146)))) +((|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146)))) (-277 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-278 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) -(-279 S -3094) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +(-279 S -3095) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-320)))) -(-280 -3094) +(-280 -3095) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-281 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) @@ -1060,7 +1060,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-283 -3094 UP UPUP R) +(-283 -3095 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1068,33 +1068,33 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-285 S -3094 UP UPUP R) +(-285 S -3095 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-286 -3094 UP UPUP R) +(-286 -3095 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL (-287 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-288 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-289 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) -(-290 S -3094 UP UPUP) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-320)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-320))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) +(-290 S -3095 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-312)))) -(-291 -3094 UP UPUP) +(-291 -3095 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3990 |has| (-350 |#2|) (-312)) (-3995 |has| (-350 |#2|) (-312)) (-3989 |has| (-350 |#2|) (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 |has| (-350 |#2|) (-312)) (-3996 |has| (-350 |#2|) (-312)) (-3990 |has| (-350 |#2|) (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) @@ -1102,15 +1102,15 @@ NIL NIL (-293 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-320)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-320))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) (-294 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-295 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-296 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) @@ -1126,43 +1126,43 @@ NIL NIL (-299) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-300 R UP -3094) +(-300 R UP -3095) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-301 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-320)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-320))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) (-302 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-303 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-304 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-305 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-306 -3094 GF) +(-306 -3095 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-307 -3094 FP FPP) +(-307 -3095 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-308 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-309 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) @@ -1170,7 +1170,7 @@ NIL NIL (-310 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3994 . T)) +((-3995 . T)) NIL (-311 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1178,7 +1178,7 @@ NIL NIL (-312) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-313 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) @@ -1191,10 +1191,10 @@ NIL (-315 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-496)))) +((|HasCategory| |#2| (QUOTE (-497)))) (-316 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T)) +((-3995 |has| |#1| (-497)) (-3993 . T) (-3992 . T)) NIL (-317 A S) ((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) @@ -1218,12 +1218,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312)))) (-322 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL (-323 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72)))) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72)))) (-324 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL @@ -1234,7 +1234,7 @@ NIL NIL (-326 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3993 . T) (-3992 . T)) NIL (-327 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1243,14 +1243,14 @@ NIL (-328 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-581 (-485))))) +((|HasCategory| |#2| (QUOTE (-582 (-486))))) (-329 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL (-330) ((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3980 . T) (-3988 . T) (-3772 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3981 . T) (-3989 . T) (-3773 . T) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-331 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1262,15 +1262,15 @@ NIL NIL (-333 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3992 . T) (-3991 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) +((-3993 . T) (-3992 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) (-334 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) ((|HasCategory| |#1| (QUOTE (-146)))) (-335 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL (-336 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1279,7 +1279,7 @@ NIL (-337 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) +((|HasCategory| |#1| (QUOTE (-758)))) (-338) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL @@ -1290,13 +1290,13 @@ NIL NIL (-340 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-341 -3094 UP UPUP R) +(-341 -3095 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-342 -3094 UP) +(-342 -3095 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1310,28 +1310,28 @@ NIL NIL (-345) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-346 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3980)) (|HasAttribute| |#1| (QUOTE -3988))) +((|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#1| (QUOTE -3989))) (-347) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3772 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3773 . T) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL (-348 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-456 (-1091) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1135))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392)))) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-457 (-1092) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-1136))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-393)))) (-349 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL (-350 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3984 -12 (|has| |#1| (-6 -3995)) (|has| |#1| (-392)) (|has| |#1| (-6 -3984))) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +((-3985 -12 (|has| |#1| (-6 -3996)) (|has| |#1| (-393)) (|has| |#1| (-6 -3985))) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-952 (-1092)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-485))) (-12 (|HasAttribute| |#1| (QUOTE -3985)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-351 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL @@ -1342,28 +1342,28 @@ NIL NIL (-353 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL (-354 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) +((|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-355 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-356 R -3094 UP A) +(-356 R -3095 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3994 . T)) +((-3995 . T)) NIL (-357 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-358 R -3094 UP A |ibasis|) +(-358 R -3095 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|)))) +((|HasCategory| |#4| (|%list| (QUOTE -952) (|devaluate| |#2|)))) (-359 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1374,7 +1374,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-312)))) (-361 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T)) +((-3995 |has| |#1| (-497)) (-3993 . T) (-3992 . T)) NIL (-362 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) @@ -1383,10 +1383,10 @@ NIL (-363 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) +((|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (-364 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3994 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) ((-3999 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-496)) (-3989 |has| |#1| (-496))) +((-3995 OR (|has| |#1| (-963)) (|has| |#1| (-414))) (-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) ((-4000 "*") |has| |#1| (-497)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-497)) (-3990 |has| |#1| (-497))) NIL (-365 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) @@ -1403,36 +1403,36 @@ NIL (-368 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320)))) +((|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320)))) (-369 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3987 . T)) +((-3988 . T)) NIL (-370 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-371 R -3094) +(-371 R -3095) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-372 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3984 -12 (|has| |#1| (-6 -3984)) (|has| |#2| (-6 -3984))) (-3991 . T) (-3992 . T) (-3994 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#2| (QUOTE -3984)))) -(-373 R -3094) +((-3985 -12 (|has| |#1| (-6 -3985)) (|has| |#2| (-6 -3985))) (-3992 . T) (-3993 . T) (-3995 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3985)) (|HasAttribute| |#2| (QUOTE -3985)))) +(-373 R -3095) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-374 R -3094) +(-374 R -3095) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-375 R -3094) +(-375 R -3095) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-376 R -3094) +(-376 R -3095) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1440,10 +1440,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-378 R -3094 UP) +(-378 R -3095 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-951 (-48))))) +((|HasCategory| |#2| (QUOTE (-952 (-48))))) (-379) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL @@ -1452,3325 +1452,3329 @@ NIL ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-381) +(-381 S) +((|constructor| (NIL "This category describes the class of structural objects that behave functorially in distinguished class of components.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,x)} returns an object with similar shape and structure as \\spad{x},{} where all \\spad{S}-items \\spad{s} in \\spad{x} have been replacement elementwise by \\spad{f s}."))) +NIL +NIL +(-382) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-382 UP) +(-383 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-383 R UP -3094) +(-384 R UP -3095) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-384 R UP) +(-385 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-385 R) +(-386 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL ((|HasCategory| |#1| (QUOTE (-347)))) -(-386) +(-387) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-387 |Dom| |Expon| |VarSet| |Dpol|) +(-388 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL ((|HasCategory| |#1| (QUOTE (-312)))) -(-388 |Dom| |Expon| |VarSet| |Dpol|) +(-389 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-389 |Dom| |Expon| |VarSet| |Dpol|) +(-390 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-390 |Dom| |Expon| |VarSet| |Dpol|) +(-391 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-391 S) +(-392 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-392) +(-393) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-393 R |n| |ls| |gamma|) +(-394 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3994 |has| (-350 (-858 |#1|)) (-496)) (-3992 . T) (-3991 . T)) -((|HasCategory| (-350 (-858 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-350 (-858 |#1|)) (QUOTE (-496)))) -(-394 |vl| R E) +((-3995 |has| (-350 (-859 |#1|)) (-497)) (-3993 . T) (-3992 . T)) +((|HasCategory| (-350 (-859 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| (-350 (-859 |#1|)) (QUOTE (-497)))) +(-395 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-395 R BP) +(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-396 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-396 OV E S R P) +(-397 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-397 E OV R P) +(-398 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-398 R) +(-399 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-399 R FE) +(-400 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-400 RP TP) +(-401 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-401 |vl| R IS E |ff| P) +(-402 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-402 E V R P Q) +(-403 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-403 R E |VarSet| P) +(-404 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-404 S R E) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) +(-405 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-405 R E) +(-406 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-406) +(-407) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-407) +(-408) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-408) +(-409) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-409 S R E) +(-410 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-410 R E) +(-411 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-411 |lv| -3094 R) +(-412 |lv| -3095 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-412 S) +(-413 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-413) +(-414) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-414 |Coef| |var| |cen|) +(-415 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) -(-415 |Key| |Entry| |Tbl| |dent|) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) +(-416 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-416 R E V P) +((-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-417 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-417) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) +(-418) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-418) +(-419) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-419 |Key| |Entry| |hashfn|) +(-420 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-420) +((-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-421) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-421 |vl| R) +(-422 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-422 -2623 S) +(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-423 -2624 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-423) +((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3995)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-424) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-424 S) +(-425 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-425 -3094 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-426 -3095 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-426 BP) +(-427 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-427) +(-428) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) -(-428 A S) -((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) +(-429 A S) +((|constructor| (NIL "\\indented{2}{A homogeneous aggregate is an aggregate of elements all of the} \\indented{2}{same type,{} and is functorial in stored elements..} In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) -(-429 S) -((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) +((|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) +(-430 S) +((|constructor| (NIL "\\indented{2}{A homogeneous aggregate is an aggregate of elements all of the} \\indented{2}{same type,{} and is functorial in stored elements..} In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates."))) NIL NIL -(-430 S) +(-431 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-431) +(-432) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-432 S) +(-433 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-433) +(-434) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-434 -3094 UP |AlExt| |AlPol|) +(-435 -3095 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-435) +(-436) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) -(-436 S |mn|) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-486))))) +(-437 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) -(-437 R |Row| |Col|) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +(-438 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-438 K R UP) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-439 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-439 R UP -3094) +(-440 R UP -3095) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-440 |mn|) +(-441 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) NIL -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-1036 (-85)))) (|HasCategory| (-85) (QUOTE (-757)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1036 (-85))))) -(-441 K R UP L) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1015)))) (|HasCategory| (-85) (QUOTE (-555 (-475)))) (|HasCategory| (-85) (QUOTE (-758))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-554 (-774)))) (|HasCategory| (-85) (QUOTE (-1015))) (-12 (|HasCategory| $ (QUOTE (-1037 (-85)))) (|HasCategory| (-85) (QUOTE (-758)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1037 (-85))))) +(-442 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-442) +(-443) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-443 R Q A B) +(-444 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-444 -3094 |Expon| |VarSet| |DPoly|) +(-445 -3095 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-554 (-1091))))) -(-445 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-555 (-1092))))) +(-446 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-446 T$) +(-447 T$) ((|constructor| (NIL "This is the category of all domains that implement idempotent operations."))) -(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3058 (|f| |x| |x|) |x|))) . T)) +(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3059 (|f| |x| |x|) |x|))) . T)) NIL -(-447) +(-448) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-448 A S) +(-449 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) -(-449 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-450 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) -(-450 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-451 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-451 A S) +(-452 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) -(-452 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-453 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) -(-453 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-454 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) -(-454 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-455 A S) ((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}."))) NIL NIL -(-455 S A B) +(-456 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-456 A B) +(-457 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-457 S E |un|) +(-458 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-717)))) -(-458 S |mn|) +((|HasCategory| |#2| (QUOTE (-718)))) +(-459 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) -(-459) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +(-460) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-460 |p| |n|) +(-461 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((OR (|HasCategory| (-518 |#1|) (QUOTE (-118))) (|HasCategory| (-518 |#1|) (QUOTE (-320)))) (|HasCategory| (-518 |#1|) (QUOTE (-120))) (|HasCategory| (-518 |#1|) (QUOTE (-320))) (|HasCategory| (-518 |#1|) (QUOTE (-118)))) -(-461 R |Row| |Col| M) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((OR (|HasCategory| (-519 |#1|) (QUOTE (-118))) (|HasCategory| (-519 |#1|) (QUOTE (-320)))) (|HasCategory| (-519 |#1|) (QUOTE (-120))) (|HasCategory| (-519 |#1|) (QUOTE (-320))) (|HasCategory| (-519 |#1|) (QUOTE (-118)))) +(-462 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -1036) (|devaluate| |#1|)))) -(-462 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasCategory| |#3| (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +(-463 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasCategory| |#7| (|%list| (QUOTE -1036) (|devaluate| |#5|)))) -(-463) +((|HasCategory| |#7| (|%list| (QUOTE -1037) (|devaluate| |#5|)))) +(-464) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-464) +(-465) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-465 S) +(-466 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-466) +(-467) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-467 GF) +(-468 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-468) +(-469) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-469 R) +(-470 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-470 |Varset|) +(-471 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-695) (QUOTE (-1014))))) -(-471 K -3094 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-696) (QUOTE (-1015))))) +(-472 K -3095 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-472) +(-473) NIL NIL NIL -(-473) +(-474) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-474) +(-475) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-475 R) +(-476 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-476 |Coef| UTS) +(-477 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-477 K -3094 |Par|) +(-478 K -3095 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-478 R BP |pMod| |nextMod|) +(-479 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-479 OV E R P) +(-480 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-480 K UP |Coef| UTS) +(-481 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-481 |Coef| UTS) +(-482 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-482 R UP) +(-483 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-483 S) +(-484 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-484) +(-485) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-485) +(-486) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3986 . T) (-3990 . T) (-3985 . T) (-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-486) +(-487) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-487) +(-488) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-488) +(-489) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-489) +(-490) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-490 |Key| |Entry| |addDom|) +(-491 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-491 R -3094) +((-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-492 R -3095) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-492 R0 -3094 UP UPUP R) +(-493 R0 -3095 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-493) +(-494) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-494 R) +(-495 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3772 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3773 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-495 S) +(-496 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-496) +(-497) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-497 R -3094) +(-498 R -3095) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-498 I) +(-499 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-499 R -3094 L) +(-500 R -3095 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|)))) -(-500) +((|HasCategory| |#3| (|%list| (QUOTE -602) (|devaluate| |#2|)))) +(-501) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-501 -3094 UP UPUP R) +(-502 -3095 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-502 -3094 UP) +(-503 -3095 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-503 R -3094 L) +(-504 R -3095 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|)))) -(-504 R -3094) +((|HasCategory| |#3| (|%list| (QUOTE -602) (|devaluate| |#2|)))) +(-505 R -3095) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570))))) -(-505 -3094 UP) +((-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-571))))) +(-506 -3095 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-506 S) +(-507 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-507 -3094) +(-508 -3095) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-508 R) +(-509 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3772 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3773 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-509) +(-510) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-510 R -3094) +(-511 R -3095) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496)))) -(-511 -3094 UP) +((-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-497)))) +(-512 -3095 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-512 R -3094) +(-513 R -3095) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-513) +(-514) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-514) +(-515) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-515) +(-516) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-516) +(-517) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-517 |p| |unBalanced?|) +(-518 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-518 |p|) +(-519 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320)))) -(-519) +(-520) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-520 -3094) +(-521 -3095) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3992 . T) (-3991 . T)) -((|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-951 (-1091))))) -(-521 E -3094) +((-3993 . T) (-3992 . T)) +((|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-952 (-1092))))) +(-522 E -3095) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-522 R -3094) +(-523 R -3095) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-523) +(-524) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-524 I) +(-525 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-525 GF) +(-526 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-526 R) +(-527 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-120)))) -(-527) +(-528) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-528 R E V P TS) +(-529 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-529) +(-530) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-530 E V R P) +(-531 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-531 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485)))))) (-532 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (|HasCategory| (-486) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486)))))) +(-533 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-3999 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-496)))) -(-533) +(((-4000 "*") |has| |#1| (-497)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-497)))) +(-534) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-534 A B) +(-535 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-535 A B C) +(-536 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-536 R -3094 FG) +(-537 R -3095 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-537 S) +(-538 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-538 S |Index| |Entry|) +(-539 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-72)))) -(-539 |Index| |Entry|) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-72)))) +(-540 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-540) +(-541) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-541 R A) +(-542 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3994 OR (-2564 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3992 . T) (-3991 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-542) +((-3995 OR (-2565 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) (-3993 . T) (-3992 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-543) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-543) +(-544) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-544) +(-545) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-545) +(-546) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-546) +(-547) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-547) +(-548) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-548 |Entry|) +(-549 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))))) -(-549 S |Key| |Entry|) +((-12 (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3863 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1075) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3863 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3863 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))))) +(-550 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-550 |Key| |Entry|) +(-551 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-551 S) +(-552 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485)))))) -(-552 R S) +((|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486)))))) +(-553 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-553 S) +(-554 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-554 S) +(-555 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-555 -3094 UP) +(-556 -3095 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-556 S) +(-557 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-557) +(-558) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-558 S) +(-559 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-559 A R S) +(-560 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-756)))) -(-560 S R) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-757)))) +(-561 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-561 R) +(-562 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3994 . T)) +((-3995 . T)) NIL -(-562 R -3094) +(-563 R -3095) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-563 R UP) +(-564 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3990 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) -(-564 R E V P TS ST) +((-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3991 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) +(-565 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-565 OV E Z P) +(-566 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-566) +(-567) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-567 |VarSet| R |Order|) +(-568 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-568 R |ls|) +(-569 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-569 R -3094) +(-570 R -3095) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-570) +(-571) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-571 |lv| -3094) +(-572 |lv| -3095) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-572) +(-573) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-318 (-51)))) (|HasCategory| (-51) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1036 (-51))))) -(-573 R A) +((-12 (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-554 (-774)))) (|HasCategory| (-51) (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-555 (-475)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1075) (QUOTE (-758))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-51) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015))) (-12 (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-318 (-51)))) (|HasCategory| (-51) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1037 (-51))))) +(-574 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3994 OR (-2564 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3992 . T) (-3991 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-574 S R) +((-3995 OR (-2565 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) (-3993 . T) (-3992 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-575 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-575 R) +(-576 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3993 . T) (-3992 . T)) NIL -(-576 R FE) +(-577 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-577 R) +(-578 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-578 |vars|) +(-579 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-579 S R) +(-580 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2562 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) -(-580 K B) +((-2563 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) +(-581 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3992 . T) (-3991 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-578 |#2|) (QUOTE (-1014))))) -(-581 R) +((-3993 . T) (-3992 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-579 |#2|) (QUOTE (-1015))))) +(-582 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-582 K B) +(-583 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-583 S) +(-584 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-584 S) +(-585 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) -(-585 A B) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +(-586 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-586 A B) +(-587 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-587 A B C) +(-588 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-588 T$) +(-589 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-589 S) +(-590 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-590 S) +(-591 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) -(-591 R) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) +(-592 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-592 S E |un|) +(-593 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-593 A S) +(-594 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-594 S) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-595 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-595 M R S) +(-596 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3992 . T) (-3991 . T)) -((|HasCategory| |#1| (QUOTE (-715)))) -(-596 R -3094 L) +((-3993 . T) (-3992 . T)) +((|HasCategory| |#1| (QUOTE (-716)))) +(-597 R -3095 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-597 A -2494) +(-598 A -2495) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-598 A) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) +(-599 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-599 A M) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) +(-600 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-600 S A) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) +(-601 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-601 A) +(-602 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-602 -3094 UP) +(-603 -3095 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-603 A L) +(-604 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-604 S) +(-605 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-605) +(-606) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-606 R) +(-607 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-607 |VarSet| R) +(-608 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3993 . T) (-3992 . T)) ((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146)))) -(-608 A S) +(-609 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-609 S) +(-610 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-610 -3094 |Row| |Col| M) +(-611 -3095 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-611 -3094) +(-612 -3095) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-612 R E OV P) +(-613 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-613 |n| R) +(-614 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3994 . T) (-3991 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3999 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3999 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-614) +((-3995 . T) (-3992 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4000 #1="*"))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-497))) (OR (|HasAttribute| |#2| (QUOTE (-4000 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-615) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-615 |VarSet|) +(-616 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-616 A S) +(-617 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-617 S) +(-618 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-618) +(-619) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-619 |VarSet|) +(-620 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-620 A) +(-621 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-621 A C) +(-622 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-622 A B C) +(-623 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-623) +(-624) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-624 A) +(-625 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-625 A C) +(-626 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-626 A B C) +(-627 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-627 S R |Row| |Col|) +(-628 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) NIL -((|HasAttribute| |#2| (QUOTE (-3999 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496)))) -(-628 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4000 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-497)))) +(-629 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) NIL NIL -(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-630 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-630 R |Row| |Col| M) +(-631 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496)))) -(-631 R) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-497)))) +(-632 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3999 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-632 R) +((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-497))) (|HasAttribute| |#1| (QUOTE (-4000 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-633 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-633 T$) +(-634 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-634 R Q) +(-635 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-635 S) +(-636 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) NIL NIL -(-636 U) +(-637 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-637) +(-638) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-638 OV E -3094 PG) +(-639 OV E -3095 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-639 R) +(-640 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-640 S D1 D2 I) +(-641 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-641 S) +(-642 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-642 S) +(-643 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-643 S T$) +(-644 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-644 S -2671 I) +(-645 S -2672 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-645 E OV R P) +(-646 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-646 R) +(-647 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-647 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-648 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-648) +(-649) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-649 R |Mod| -2038 -3520 |exactQuo|) +(-650 R |Mod| -2039 -3521 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-650 R P) +(-651 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-651 IS E |ff|) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-652 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-652 R M) +(-653 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T)) +((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-653 R |Mod| -2038 -3520 |exactQuo|) +(-654 R |Mod| -2039 -3521 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3994 . T)) +((-3995 . T)) NIL -(-654 S R) +(-655 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-655 R) +(-656 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-656 -3094) +(-657 -3095) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-657 S) +(-658 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-658) +(-659) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-659 S) +(-660 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-660) +(-661) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-661 S R UP) +(-662 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320)))) -(-662 R UP) +(-663 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3990 |has| |#1| (-312)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 |has| |#1| (-312)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-663 S) +(-664 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-664) +(-665) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-665 T$) +(-666 T$) ((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3058 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-666 T$) +(-667 T$) ((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3058 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-667 -3094 UP) +(-668 -3095 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-668 |VarSet| E1 E2 R S PR PS) +(-669 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-670 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-670 E OV R PPR) +(-671 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-671 |vl| R) +(-672 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-672 E OV R PRF) +(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-673 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-673 E OV R P) +(-674 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-674 R S M) +(-675 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-675 R M) +(-676 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757)))) -(-676 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|unique| (((|List| |#1|) $) "\\spad{unique ms} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{members}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3987 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) +((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-758)))) (-677 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|unique| (((|List| |#1|) $) "\\spad{unique ms} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{members}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-3988 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) +(-678 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3987 . T)) +((-3988 . T)) NIL -(-678) +(-679) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-679 S) +(-680 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-680 |Coef| |Var|) +(-681 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL -(-681 OV E R P) +(-682 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-682 E OV R P) +(-683 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-683 S R) +(-684 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-684 R) +(-685 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-685 S) +(-686 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-686) +(-687) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-687 S) +(-688 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-688) +(-689) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-689 |Par|) +(-690 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-690 -3094) +(-691 -3095) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-691 P -3094) +(-692 P -3095) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-692 T$) +(-693 T$) NIL NIL NIL -(-693 UP -3094) +(-694 UP -3095) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-694 R) +(-695 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-695) +(-696) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-3999 "*") . T)) +(((-4000 "*") . T)) NIL -(-696 R -3094) +(-697 R -3095) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-697) +(-698) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-698 S) +(-699 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-699 R |PolR| E |PolE|) +(-700 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-700 R E V P TS) +(-701 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-701 -3094 |ExtF| |SUEx| |ExtP| |n|) +(-702 -3095 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-702 BP E OV R P) +(-703 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-703 |Par|) +(-704 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-704 R |VarSet|) +(-705 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2562 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-705 R) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-1092))))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-1092))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-2563 (|HasCategory| |#1| (QUOTE (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-906 (-486))))))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-706 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-706 R S) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-707 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-707 R) +(-708 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) -(-708 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) +(-709 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) NIL NIL -(-709 S) +(-710 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-146)))) -(-710) +((-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-146)))) +(-711) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-711) +(-712) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-712) +(-713) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-713 |Curve|) +(-714 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-714 S) +(-715 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-716 S) +(-717 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-717) +(-718) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-718) +(-719) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-719) +(-720) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-720 S R) +(-721 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320)))) -(-721 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320)))) +(-722 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-722) +(-723) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-723 R) +(-724 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) -(-724 OR R OS S) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-350 (-486)))))) (OR (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) +(-725 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-725 R -3094 L) +(-726 R -3095 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-726 R -3094) +(-727 R -3095) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-727 R -3094) +(-728 R -3095) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-728 -3094 UP UPUP R) +(-729 -3095 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-729 -3094 UP L LQ) +(-730 -3095 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-730 -3094 UP L LQ) +(-731 -3095 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-731 -3094 UP) +(-732 -3095 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-732 -3094 L UP A LO) +(-733 -3095 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-733 -3094 UP) +(-734 -3095 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-734 -3094 LO) +(-735 -3095 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-735 -3094 LODO) +(-736 -3095 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-736 -2623 S |f|) +(-737 -2624 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-737 R) +((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3995)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-738 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-738 |Kernels| R |var|) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-740 (-1092)) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-740 (-1092)) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-740 (-1092)) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-740 (-1092)) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-740 (-1092)) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-739 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-3999 "*") |has| |#2| (-312)) (-3990 |has| |#2| (-312)) (-3995 |has| |#2| (-312)) (-3989 |has| |#2| (-312)) (-3994 . T) (-3992 . T) (-3991 . T)) +(((-4000 "*") |has| |#2| (-312)) (-3991 |has| |#2| (-312)) (-3996 |has| |#2| (-312)) (-3990 |has| |#2| (-312)) (-3995 . T) (-3993 . T) (-3992 . T)) ((|HasCategory| |#2| (QUOTE (-312)))) -(-739 S) +(-740 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-740 S) +(-741 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-741) +((|HasCategory| |#1| (QUOTE (-758)))) +(-742) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-742 P R) +(-743 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) -(-743 S) +(-744 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3987 . T)) +((-3988 . T)) NIL -(-744 R) +(-745 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3994 |has| |#1| (-756))) -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484)))) -(-745 R S) +((-3995 |has| |#1| (-757))) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-485)))) +(-746 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-746 R) +(-747 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T)) +((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-747 A S) +(-748 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-748 S) +(-749 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-751 R) +(-752 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3994 |has| |#1| (-756))) -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484)))) -(-752 R S) +((-3995 |has| |#1| (-757))) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-485)))) +(-753 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-754 -2623 S) +(-755 -2624 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3994 . T)) +((-3995 . T)) NIL -(-757) +(-758) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-758 T$ |f|) +(-759 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-553 (-773))))) -(-759 S) +((|HasCategory| |#1| (QUOTE (-554 (-774))))) +(-760 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-761 S R) +(-762 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146)))) -(-762 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146)))) +(-763 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-763 R C) +(-764 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) -(-764 R |sigma| -3246) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) +(-765 R |sigma| -3247) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-765 |x| R |sigma| -3246) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) +(-766 |x| R |sigma| -3247) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312)))) -(-766 R) +((-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-312)))) +(-767 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) -(-767) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) +(-768) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-769) +(-770) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-770 S) +(-771 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-771) +(-772) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-772) +(-773) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-773) +(-774) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-774 |VariableList|) +(-775 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-775) +(-776) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-776 R |vl| |wl| |wtlevel|) +(-777 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T)) +((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-777 R PS UP) +(-778 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-778 R |x| |pt|) +(-779 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-779 |p|) +(-780 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-780 |p|) +(-781 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-781 |p|) +(-782 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1067))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-258))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))))) -(-782 |p| PADIC) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-780 |#1|) (QUOTE (-823))) (|HasCategory| (-780 |#1|) (QUOTE (-952 (-1092)))) (|HasCategory| (-780 |#1|) (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-120))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-475)))) (|HasCategory| (-780 |#1|) (QUOTE (-935))) (|HasCategory| (-780 |#1|) (QUOTE (-742))) (|HasCategory| (-780 |#1|) (QUOTE (-758))) (OR (|HasCategory| (-780 |#1|) (QUOTE (-742))) (|HasCategory| (-780 |#1|) (QUOTE (-758)))) (|HasCategory| (-780 |#1|) (QUOTE (-952 (-486)))) (|HasCategory| (-780 |#1|) (QUOTE (-1068))) (|HasCategory| (-780 |#1|) (QUOTE (-798 (-330)))) (|HasCategory| (-780 |#1|) (QUOTE (-798 (-486)))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-780 |#1|) (QUOTE (-582 (-486)))) (|HasCategory| (-780 |#1|) (QUOTE (-189))) (|HasCategory| (-780 |#1|) (QUOTE (-813 (-1092)))) (|HasCategory| (-780 |#1|) (QUOTE (-190))) (|HasCategory| (-780 |#1|) (QUOTE (-811 (-1092)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -780) (|devaluate| |#1|)) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (QUOTE (-258))) (|HasCategory| (-780 |#1|) (QUOTE (-485))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-823)))) (|HasCategory| (-780 |#1|) (QUOTE (-118))))) +(-783 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-783 S T$) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-952 (-1092)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-485))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-784 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))) -(-784) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774)))))) +(-785) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-785) +(-786) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-787 CF1 CF2) +(-788 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-788 |ComponentFunction|) +(-789 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-789 CF1 CF2) +(-790 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-790 |ComponentFunction|) +(-791 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-791) +(-792) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-792 CF1 CF2) +(-793 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-793 |ComponentFunction|) +(-794 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-794) +(-795) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-795 R) +(-796 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-796 R S L) +(-797 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-797 S) +(-798 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-798 |Base| |Subject| |Pat|) +(-799 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2562 (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-2562 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2562 (|HasCategory| |#2| (QUOTE (-951 (-1091)))))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) -(-799 R S) +((-12 (-2563 (|HasCategory| |#2| (QUOTE (-952 (-1092))))) (-2563 (|HasCategory| |#2| (QUOTE (-963))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (-2563 (|HasCategory| |#2| (QUOTE (-952 (-1092)))))) (|HasCategory| |#2| (QUOTE (-952 (-1092))))) +(-800 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-800 R A B) +(-801 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-801 R) +(-802 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-802 R -2671) +(-803 R -2672) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-803 R S) +(-804 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-804 |VarSet|) +(-805 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-805 UP R) +(-806 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-806 A T$ S) +(-807 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-807 T$ S) +(-808 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-808 UP -3094) +(-809 UP -3095) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-809 R S) +(-810 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-810 S) +(-811 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3994 . T)) +((-3995 . T)) NIL -(-811 A S) +(-812 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-812 S) +(-813 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-813 S) +(-814 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) -(-814 S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +(-815 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3994 . T)) -((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) -(-815 |n| R) +((-3995 . T)) +((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-758)))) +(-816 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-816 S) +(-817 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3994 . T)) +((-3995 . T)) NIL -(-817 S) +(-818 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-818 |p|) +(-819 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) ((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320)))) -(-819 R E |VarSet| S) +(-820 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-820 R S) +(-821 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-821 S) +(-822 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-118)))) -(-822) +(-823) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-823 R0 -3094 UP UPUP R) +(-824 R0 -3095 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-824 UP UPUP R) +(-825 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-825 UP UPUP) +(-826 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-826 R) +(-827 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-827 R) +(-828 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-828 E OV R P) +(-829 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-829) +(-830) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-830 -3094) +(-831 -3095) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-831) +(-832) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-3999 "*") . T)) +(((-4000 "*") . T)) NIL -(-832 R) +(-833 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-833) +(-834) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-834 |xx| -3094) +(-835 |xx| -3095) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-835 -3094 P) +(-836 -3095 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-836 R |Var| |Expon| GR) +(-837 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-837) +(-838) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-838 S) +(-839 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-839) +(-840) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-840) +(-841) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-841) +(-842) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-842 R -3094) +(-843 R -3095) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-843 S A B) +(-844 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-844 S R -3094) +(-845 S R -3095) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-845 I) +(-846 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-846 S E) +(-847 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-847 S R L) +(-848 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-848 S E V R P) +(-849 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|)))) -(-849 -2671) +((|HasCategory| |#3| (|%list| (QUOTE -798) (|devaluate| |#1|)))) +(-850 -2672) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-850 R -3094 -2671) +(-851 R -3095 -2672) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-851 S R Q) +(-852 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-852 S) +(-853 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-853 S R P) +(-854 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-854) +(-855) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-855 R) +(-856 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) -(-856 |lv| R) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +(-857 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-857 |TheField| |ThePols|) +(-858 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-858 R) +((|HasCategory| |#1| (QUOTE (-757)))) +(-859 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1091) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1091) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1091) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-859 R S) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-1092) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-1092) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-1092) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-1092) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-1092) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-860 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-860 |x| R) +(-861 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-861 S R E |VarSet|) +(-862 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) -(-862 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| |#4| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| |#4| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#4| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) +(-863 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL -(-863 E V R P -3094) +(-864 E V R P -3095) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-864 E |Vars| R P S) +(-865 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-865 E V R P -3094) +(-866 E V R P -3095) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-392)))) -(-866) +((|HasCategory| |#3| (QUOTE (-393)))) +(-867) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-868 R E) +(-869 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3995))) -(-869 R L) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3996))) +(-870 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-870 S) +(-871 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) -(-871 A B) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +(-872 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-872) +(-873) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-873 -3094) +(-874 -3095) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-874 I) +(-875 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-875) +(-876) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-876 A B) +(-877 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3994 -12 (|has| |#2| (-413)) (|has| |#1| (-413)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) -(-877) +((-3995 -12 (|has| |#2| (-414)) (|has| |#1| (-414)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-758))))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-414)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-414)))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-414)))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665))))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-758))))) +(-878) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-878 T$) +(-879 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-879 T$) +(-880 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-880 S T$) +(-881 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-881) +(-882) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-882 S) +(-883 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) NIL NIL -(-883 R |polR|) +(-884 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-392)))) -(-884) +((|HasCategory| |#1| (QUOTE (-393)))) +(-885) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-885) +(-886) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-886 S |Coef| |Expon| |Var|) +(-887 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-887 |Coef| |Expon| |Var|) +(-888 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-888) +(-889) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-889 S R E |VarSet| P) +(-890 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-496)))) -(-890 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-497)))) +(-891 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL NIL -(-891 R E V P) +(-892 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-392)))) -(-892 K) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-393)))) +(-893 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-893 |VarSet| E RC P) +(-894 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-894 R) +(-895 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) NIL NIL -(-895 R1 R2) +(-896 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-896 R) +(-897 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-897 K) +(-898 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-898 R E OV PPR) +(-899 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-899 K R UP -3094) +(-900 K R UP -3095) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-900 R |Var| |Expon| |Dpoly|) +(-901 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258))))) -(-901 |vl| |nv|) +(-902 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-902 R E V P TS) +(-903 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-903) +(-904) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-904 A S) +(-905 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067)))) -(-905 S) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-952 (-1092)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1068)))) +(-906 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-906 A B R S) +(-907 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-907 |n| K) +(-908 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-908) +(-909) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-909 S) +(-910 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) NIL NIL -(-910 R) +(-911 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3990 |has| |#1| (-246)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484)))) -(-911 S R) +((-3991 |has| |#1| (-246)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-485)))) +(-912 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-246)))) -(-912 R) +((|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-246)))) +(-913 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3990 |has| |#1| (-246)) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 |has| |#1| (-246)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-913 QR R QS S) +(-914 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-914 S) +(-915 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-915 S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-916 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-916) +(-917) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-917 -3094 UP UPUP |radicnd| |n|) +(-918 -3095 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3990 |has| (-350 |#2|) (-312)) (-3995 |has| (-350 |#2|) (-312)) (-3989 |has| (-350 |#2|) (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) -(-918 |bb|) +((-3991 |has| (-350 |#2|) (-312)) (-3996 |has| (-350 |#2|) (-312)) (-3990 |has| (-350 |#2|) (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092)))))) (|HasCategory| (-350 |#2|) (QUOTE (-582 (-486)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486)))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) +(-919 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) -(-919) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) +(-920) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-920) +(-921) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-921 RP) +(-922 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-922 S) +(-923 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-923 A S) +(-924 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-72)))) -(-924 S) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-72)))) +(-925 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-925 S) +(-926 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-926) +(-927) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3990 . T) (-3995 . T) (-3989 . T) (-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3994 . T)) +((-3991 . T) (-3996 . T) (-3990 . T) (-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3995 . T)) NIL -(-927 R -3094) +(-928 R -3095) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-928 R -3094) +(-929 R -3095) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-929 -3094 UP) +(-930 -3095 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-930 -3094 UP) +(-931 -3095 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-931 S) +(-932 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-932 F1 UP UPUP R F2) +(-933 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-933) +(-934) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-934) +(-935) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-935 |Pol|) +(-936 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-936 |Pol|) +(-937 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-937) +(-938) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-938 |TheField|) +(-939 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3990 . T) (-3995 . T) (-3989 . T) (-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3994 . T)) -((OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) -(-939 -3094 L) +((-3991 . T) (-3996 . T) (-3990 . T) (-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3995 . T)) +((OR (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| (-350 (-486)) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| (-350 (-486)) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-350 (-486)) (QUOTE (-952 (-486))))) +(-940 -3095 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-940 S) +(-941 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-941 R E V P) +(-942 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-942) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) +(-943) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-943 R) +(-944 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-3999 "*")))) -(-944 R) +((|HasAttribute| |#1| (QUOTE (-4000 "*")))) +(-945 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258)))) -(-945 S) +(-946 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-946 S) +(-947 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-947 S) +(-948 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-948 -3094 |Expon| |VarSet| |FPol| |LFPol|) +(-949 -3095 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-949) +(-950) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-950 A S) +(-951 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-951 S) +(-952 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-952 Q R) +(-953 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-953 R) +(-954 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-954) +(-955) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-955 UP) +(-956 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-956 R) +(-957 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-957 T$) +(-958 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-958 T$) +(-959 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-959 R |ls|) +(-960 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) NIL -((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-320))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) -(-960) +((-12 (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-1015))) (|HasCategory| (-705 |#1| (-775 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|)))))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-555 (-475)))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| (-775 |#2|) (QUOTE (-320))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|))))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|)))))) +(-961) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-961 S) +(-962 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-962) +(-963) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3994 . T)) +((-3995 . T)) NIL -(-963 |xx| -3094) +(-964 |xx| -3095) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-964 S) +(-965 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-965 S |m| |n| R |Row| |Col|) +(-966 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) NIL -((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146)))) -(-966 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-497))) (|HasCategory| |#4| (QUOTE (-146)))) +(-967 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-967 |m| |n| R) +(-968 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3992 . T) (-3991 . T)) -((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773))))) -(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3993 . T) (-3992 . T)) +((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-497))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-554 (-774))))) +(-969 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-969 R) +(-970 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-970 S) +(-971 S) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-971) +(-972) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-972 S T$) +(-973 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1014)))) -(-973 S) +((|HasCategory| |#1| (QUOTE (-1015)))) +(-974 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-974) +(-975) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-975 |TheField| |ThePolDom|) +(-976 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-976) +(-977) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3986 . T) (-3990 . T) (-3985 . T) (-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-977 S R E V) +(-978 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1091))))) -(-978 R E V) +((|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-38 (-486)))) (|HasCategory| |#2| (QUOTE (-906 (-486)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-555 (-1092))))) +(-979 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL -(-979) +(-980) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-980 S |TheField| |ThePols|) +(-981 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-981 |TheField| |ThePols|) +(-982 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-982 R E V P TS) +(-983 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-983 S R E V P) +(-984 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-984 R E V P) +(-985 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-985 R E V P TS) +(-986 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-986) +(-987) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-987) +(-988) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-988 |Base| R -3094) +(-989 |Base| R -3095) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-989 |f|) +(-990 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-990 |Base| R -3094) +(-991 |Base| R -3095) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-991 R |ls|) +(-992 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-992 R UP M) +(-993 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3990 |has| |#1| (-312)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) -(-993 UP SAE UPA) +((-3991 |has| |#1| (-312)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))))) +(-994 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-994 UP SAE UPA) +(-995 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-995) +(-996) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-996) +(-997) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-997 S) +(-998 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-998) +(-999) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-999 R) +(-1000 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1000 R) +(-1001 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1001 S) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-1002 (-1092)) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-1002 (-1092)) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-1002 (-1092)) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-1002 (-1092)) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-1002 (-1092)) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1002 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1002 S) +(-1003 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014)))) -(-1003 R S) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1015)))) +(-1004 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-1004) +((|HasCategory| |#1| (QUOTE (-757)))) +(-1005) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1005 S) +(-1006 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1002 |#1|) (QUOTE (-1014)))) -(-1006 R S) +((|HasCategory| (-1003 |#1|) (QUOTE (-1015)))) +(-1007 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1007 S) +(-1008 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1008 S L) +(-1009 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1009) +(-1010) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1010 S) +(-1011 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the members function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3987 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) -(-1011 A S) +((-3988 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) +(-1012 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1012 S) +(-1013 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3987 . T)) +((-3988 . T)) NIL -(-1013 S) +(-1014 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1014) +(-1015) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1015 |m| |n|) +(-1016 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1016) +(-1017) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1017 |Str| |Sym| |Int| |Flt| |Expr|) +(-1018 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1018 |Str| |Sym| |Int| |Flt| |Expr|) +(-1019 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1019 R E V P TS) +(-1020 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1020 R E V P TS) +(-1021 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1021 R E V P) +(-1022 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1022) +(-1023) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1023 T$) +(-1024 T$) ((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative."))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1024 T$) +(-1025 T$) ((|constructor| (NIL "This is the category of all domains that implement semigroup operations"))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1025 S) +(-1026 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1026) +(-1027) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1027 |dimtot| |dim1| S) +(-1028 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)) (-3994 |has| |#3| (-6 -3994))) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3994)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#3|)))) -(-1028 R |x|) +((-3992 |has| |#3| (-963)) (-3993 |has| |#3| (-963)) (-3995 |has| |#3| (-6 -3995))) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-774)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (OR (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758)))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (|HasCategory| |#3| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasAttribute| |#3| (QUOTE -3995)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#3|)))) +(-1029 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-392)))) -(-1029) +((|HasCategory| |#1| (QUOTE (-393)))) +(-1030) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1030) +(-1031) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1031 R -3094) +(-1032 R -3095) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1032 R) +(-1033 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1033) +(-1034) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1034) +(-1035) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3986 . T) (-3990 . T) (-3985 . T) (-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1035 S) +(-1036 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) NIL NIL -(-1036 S) +(-1037 S) ((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}"))) NIL NIL -(-1037 S |ndim| R |Row| |Col|) +(-1038 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3999 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) -(-1038 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-4000 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) +(-1039 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1039 R |Row| |Col| M) +(-1040 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1040 R |VarSet|) +(-1041 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1041 |Coef| |Var| SMP) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1042 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1042 R E V P) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1043 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) NIL NIL -(-1043 UP -3094) +(-1044 UP -3095) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1044 R) +(-1045 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1045 R) +(-1046 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1046 R) +(-1047 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1047 S A) +(-1048 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-1048 R) +((|HasCategory| |#1| (QUOTE (-758)))) +(-1049 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1049 R) +(-1050 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1050) +(-1051) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1053) +(-1054) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1054) +(-1055) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1055 V C) +(-1056 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1056 V C) +(-1057 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) NIL -((-12 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|))))) -(-1057 |ndim| R) +((-12 (|HasCategory| (-1056 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1015)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1015))) (OR (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1015)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-554 (-774)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|%list| (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|))))) +(-1058 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3994 . T) (-3986 |has| |#2| (-6 (-3999 "*"))) (-3991 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3999 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3999 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1058 S) +((-3995 . T) (-3987 |has| |#2| (-6 (-4000 "*"))) (-3992 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4000 #1="*"))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-4000 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-1059 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1059) +(-1060) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1060 R E V P TS) +(-1061 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1061 R E V P) +(-1062 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-1062) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) +(-1063) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1063 S) +(-1064 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1064 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1065 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1065 S) +(-1066 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1066 |Key| |Ent| |dent|) +(-1067 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-1067) +((-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-1068) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1068) +(-1069) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1069 |Coef|) +(-1070 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1070 S) +(-1071 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) -(-1071 S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +(-1072 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1072 A B) +(-1073 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1073 A B C) +(-1074 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1074) +(-1075) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) NIL -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1014))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| $ (QUOTE (-1036 (-117)))) (-12 (|HasCategory| $ (QUOTE (-1036 (-117)))) (|HasCategory| (-117) (QUOTE (-757))))) -(-1075 |Entry|) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-758)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (|HasCategory| (-117) (QUOTE (-554 (-774)))) (|HasCategory| (-117) (QUOTE (-555 (-475)))) (OR (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| (-117) (QUOTE (-758))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1015))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| $ (QUOTE (-1037 (-117)))) (-12 (|HasCategory| $ (QUOTE (-1037 (-117)))) (|HasCategory| (-117) (QUOTE (-758))))) +(-1076 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) -(-1076 A) +((-12 (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3863 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1075) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3863 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3863 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +(-1077 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) -(-1077 |Coef|) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) +(-1078 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1078 |Coef|) +(-1079 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1079 R UP) +(-1080 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-258)))) -(-1080 |n| R) +(-1081 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1081 S1 S2) +(-1082 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1082) +(-1083) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1083 |Coef| |var| |cen|) +(-1084 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3999 "*") OR (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3990 OR (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1084 R -3094) +(((-4000 "*") OR (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-742))) (|has| |#1| (-146)) (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-823)))) (-3991 OR (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-742))) (|has| |#1| (-497)) (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (|HasCategory| (-486) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-555 (-475))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-758))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-798 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-758)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1085 R -3095) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1085 R) +(-1086 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1086 R) +(-1087 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1087 R S) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1088 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1088 E OV R P) +(-1089 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1089 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-1090 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) +(-1091 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) -(-1091) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|)))) (|HasCategory| (-696) (QUOTE (-1027))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) +(-1092) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1092 R) +(-1093 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1093 R) +(-1094 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3995))) -(-1094) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| (-886) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3996))) +(-1095) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1095) +(-1096) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1096) +(-1097) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1097 N) +(-1098 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1098 N) +(-1099 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1099) +(-1100) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1100 R) +(-1101 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1101) +(-1102) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1102 S) +(-1103 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1103 |Key| |Entry|) +(-1104 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) NIL -((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-1104 S) +((-12 (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3863) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-1105 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1105 S) +(-1106 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1106 R) +(-1107 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1107 S |Key| |Entry|) +(-1108 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) NIL NIL -(-1108 |Key| |Entry|) +(-1109 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) NIL NIL -(-1109 |Key| |Entry|) +(-1110 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1110) +(-1111) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1111 S) +(-1112 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1112) +(-1113) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1113 R) +(-1114 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1114) +(-1115) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1115 S) +(-1116 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1116) +(-1117) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1117 S) +(-1118 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) -(-1118 S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +(-1119 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1119) +(-1120) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1120 R -3094) +(-1121 R -3095) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1121 R |Row| |Col| M) +(-1122 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1122 R -3094) +(-1123 R -3095) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|))))) -(-1123 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -555) (|%list| (QUOTE -802) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -798) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -555) (|%list| (QUOTE -802) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -798) (|devaluate| |#1|))))) +(-1124 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1124 S R E V P) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1125 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-320)))) -(-1125 R E V P) +(-1126 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL NIL -(-1126 |Curve|) +(-1127 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1127) +(-1128) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1128 S) +(-1129 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) -(-1129 -3094) +((|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774))))) +(-1130 -3095) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1130) +(-1131) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1131) +(-1132) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1132 S) +(-1133 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-1133) +((|HasCategory| |#1| (QUOTE (-758)))) +(-1134) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1134 S) +(-1135 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1135) +(-1136) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1136) +(-1137) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1137) +(-1138) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1138) +(-1139) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1139) +(-1140) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1140 |Coef| |var| |cen|) +(-1141 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3999 "*") OR (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3990 OR (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1141 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4000 "*") OR (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-742))) (|has| |#1| (-146)) (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-823)))) (-3991 OR (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-742))) (|has| |#1| (-497)) (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (|HasCategory| (-486) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-555 (-475))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-758))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-798 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-758)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1142 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1142 |Coef|) +(-1143 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1143 S |Coef| UTS) +(-1144 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-1144 |Coef| UTS) +(-1145 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1145 |Coef| UTS) +(-1146 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) -(-1146 ZP) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-486) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-798 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1147 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1147 S) +(-1148 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014)))) -(-1148 R S) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1015)))) +(-1149 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-1149 |x| R) +((|HasCategory| |#1| (QUOTE (-757)))) +(-1150 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3993 |has| |#2| (-312)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-1150 |x| R |y| S) +(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3994 |has| |#2| (-312)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1151 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1151 R Q UP) +(-1152 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1152 R UP) +(-1153 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1153 R UP) +(-1154 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1154 R U) +(-1155 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1155 S R) +(-1156 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1067)))) -(-1156 R) +((|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1068)))) +(-1157 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL -(-1157 R PR S PS) +(-1158 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1158 S |Coef| |Expon|) +(-1159 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#2|) (QUOTE (-1091)))))) -(-1159 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#2|) (QUOTE (-1092)))))) +(-1160 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1160 RC P) +(-1161 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1161 |Coef| |var| |cen|) +(-1162 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) -(-1162 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) +(-1163 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1163 |Coef|) +(-1164 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1164 S |Coef| ULS) +(-1165 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1165 |Coef| ULS) +(-1166 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1166 |Coef| ULS) +(-1167 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) -(-1167 R FE |var| |cen|) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) +(-1168 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-3999 "*") |has| (-1161 |#2| |#3| |#4|) (-146)) (-3990 |has| (-1161 |#2| |#3| |#4|) (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-496)))) -(-1168 A S) +(((-4000 "*") |has| (-1162 |#2| |#3| |#4|) (-146)) (-3991 |has| (-1162 |#2| |#3| |#4|) (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-486))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-486))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-952 (-350 (-486)))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-952 (-486)))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-393))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-497)))) +(-1169 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|)))) -(-1169 S) +((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +(-1170 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1170 |Coef| |var| |cen|) +(-1171 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) -(-1171 |Coef1| |Coef2| UTS1 UTS2) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|)))) (|HasCategory| (-696) (QUOTE (-1027))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasSignature| |#1| (|%list| (QUOTE -3949) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) +(-1172 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1172 S |Coef|) +(-1173 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasSignature| |#2| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312)))) -(-1173 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-486)))) (|HasCategory| |#2| (QUOTE (-873))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasSignature| |#2| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1092))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312)))) +(-1174 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1174 |Coef| UTS) +(-1175 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1175 -3094 UP L UTS) +(-1176 -3095 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-496)))) -(-1176) +((|HasCategory| |#1| (QUOTE (-497)))) +(-1177) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1177 |sym|) +(-1178 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1178 S R) +(-1179 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1179 R) +((|HasCategory| |#2| (QUOTE (-917))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1180 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL NIL -(-1180 R) +(-1181 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))) -(-1181 A B) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +(-1182 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1182) +(-1183) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1183) +(-1184) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1184) +(-1185) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1185) +(-1186) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1186) +(-1187) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1187 A S) +(-1188 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1188 S) +(-1189 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3992 . T) (-3991 . T)) +((-3993 . T) (-3992 . T)) NIL -(-1189 R) +(-1190 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1190 K R UP -3094) +(-1191 K R UP -3095) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1191) +(-1192) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1192) +(-1193) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1193 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1194 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T)) +((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1194 R E V P) +(-1195 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-1195 R) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) +(-1196 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3991 . T) (-3992 . T) (-3994 . T)) +((-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1196 |vl| R) +(-1197 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3994 . T) (-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3990))) -(-1197 R |VarSet| XPOLY) +((-3995 . T) (-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3991))) +(-1198 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1198 S -3094) +(-1199 S -3095) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) -(-1199 -3094) +(-1200 -3095) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL -(-1200 |vl| R) +(-1201 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T)) +((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL -(-1201 |VarSet| R) +(-1202 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-350 (-485))))) (|HasAttribute| |#2| (QUOTE -3990))) -(-1202 R) +((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-656 (-350 (-486))))) (|HasAttribute| |#2| (QUOTE -3991))) +(-1203 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3990 |has| |#1| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3990))) -(-1203 |vl| R) +((-3991 |has| |#1| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3991))) +(-1204 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T)) +((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) NIL -(-1204 R E) +(-1205 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3994 . T) (-3995 |has| |#1| (-6 -3995)) (-3990 |has| |#1| (-6 -3990)) (-3992 . T) (-3991 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3990))) -(-1205 |VarSet| R) +((-3995 . T) (-3996 |has| |#1| (-6 -3996)) (-3991 |has| |#1| (-6 -3991)) (-3993 . T) (-3992 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasAttribute| |#1| (QUOTE -3991))) +(-1206 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3990))) -(-1206) +((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3991))) +(-1207) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1207 A) +(-1208 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1208 R |ls| |ls2|) +(-1209 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1209 R) +(-1210 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1210 |p|) +(-1211 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T)) +(((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) NIL NIL NIL @@ -4788,4 +4792,4 @@ NIL NIL NIL NIL -((-3 NIL 1968340 1968345 1968350 1968355) (-2 NIL 1968320 1968325 1968330 1968335) (-1 NIL 1968300 1968305 1968310 1968315) (0 NIL 1968280 1968285 1968290 1968295) (-1210 "ZMOD.spad" 1968089 1968102 1968218 1968275) (-1209 "ZLINDEP.spad" 1967187 1967198 1968079 1968084) (-1208 "ZDSOLVE.spad" 1957148 1957170 1967177 1967182) (-1207 "YSTREAM.spad" 1956643 1956654 1957138 1957143) (-1206 "YDIAGRAM.spad" 1956277 1956286 1956633 1956638) (-1205 "XRPOLY.spad" 1955497 1955517 1956133 1956202) (-1204 "XPR.spad" 1953292 1953305 1955215 1955314) (-1203 "XPOLYC.spad" 1952611 1952627 1953218 1953287) (-1202 "XPOLY.spad" 1952166 1952177 1952467 1952536) (-1201 "XPBWPOLY.spad" 1950637 1950657 1951972 1952041) (-1200 "XFALG.spad" 1947685 1947701 1950563 1950632) (-1199 "XF.spad" 1946148 1946163 1947587 1947680) (-1198 "XF.spad" 1944591 1944608 1946032 1946037) (-1197 "XEXPPKG.spad" 1943850 1943876 1944581 1944586) (-1196 "XDPOLY.spad" 1943464 1943480 1943706 1943775) (-1195 "XALG.spad" 1943132 1943143 1943420 1943459) (-1194 "WUTSET.spad" 1938996 1939013 1942627 1942632) (-1193 "WP.spad" 1938203 1938247 1938854 1938921) (-1192 "WHILEAST.spad" 1938001 1938010 1938193 1938198) (-1191 "WHEREAST.spad" 1937672 1937681 1937991 1937996) (-1190 "WFFINTBS.spad" 1935335 1935357 1937662 1937667) (-1189 "WEIER.spad" 1933557 1933568 1935325 1935330) (-1188 "VSPACE.spad" 1933230 1933241 1933525 1933552) (-1187 "VSPACE.spad" 1932923 1932936 1933220 1933225) (-1186 "VOID.spad" 1932600 1932609 1932913 1932918) (-1185 "VIEWDEF.spad" 1927801 1927810 1932590 1932595) (-1184 "VIEW3D.spad" 1911762 1911771 1927791 1927796) (-1183 "VIEW2D.spad" 1899661 1899670 1911752 1911757) (-1182 "VIEW.spad" 1897381 1897390 1899651 1899656) (-1181 "VECTOR2.spad" 1896020 1896033 1897371 1897376) (-1180 "VECTOR.spad" 1894436 1894447 1894687 1894692) (-1179 "VECTCAT.spad" 1892370 1892381 1894426 1894431) (-1178 "VECTCAT.spad" 1890091 1890104 1892149 1892154) (-1177 "VARIABLE.spad" 1889871 1889886 1890081 1890086) (-1176 "UTYPE.spad" 1889515 1889524 1889861 1889866) (-1175 "UTSODETL.spad" 1888810 1888834 1889471 1889476) (-1174 "UTSODE.spad" 1887026 1887046 1888800 1888805) (-1173 "UTSCAT.spad" 1884505 1884521 1886924 1887021) (-1172 "UTSCAT.spad" 1881652 1881670 1884073 1884078) (-1171 "UTS2.spad" 1881247 1881282 1881642 1881647) (-1170 "UTS.spad" 1876259 1876287 1879779 1879876) (-1169 "URAGG.spad" 1870980 1870991 1876249 1876254) (-1168 "URAGG.spad" 1865637 1865650 1870908 1870913) (-1167 "UPXSSING.spad" 1863405 1863431 1864841 1864974) (-1166 "UPXSCONS.spad" 1861223 1861243 1861596 1861745) (-1165 "UPXSCCA.spad" 1859794 1859814 1861069 1861218) (-1164 "UPXSCCA.spad" 1858507 1858529 1859784 1859789) (-1163 "UPXSCAT.spad" 1857096 1857112 1858353 1858502) (-1162 "UPXS2.spad" 1856639 1856692 1857086 1857091) (-1161 "UPXS.spad" 1853994 1854022 1854830 1854979) (-1160 "UPSQFREE.spad" 1852409 1852423 1853984 1853989) (-1159 "UPSCAT.spad" 1850204 1850228 1852307 1852404) (-1158 "UPSCAT.spad" 1847700 1847726 1849805 1849810) (-1157 "UPOLYC2.spad" 1847171 1847190 1847690 1847695) (-1156 "UPOLYC.spad" 1842251 1842262 1847013 1847166) (-1155 "UPOLYC.spad" 1837249 1837262 1842013 1842018) (-1154 "UPMP.spad" 1836181 1836194 1837239 1837244) (-1153 "UPDIVP.spad" 1835746 1835760 1836171 1836176) (-1152 "UPDECOMP.spad" 1834007 1834021 1835736 1835741) (-1151 "UPCDEN.spad" 1833224 1833240 1833997 1834002) (-1150 "UP2.spad" 1832588 1832609 1833214 1833219) (-1149 "UP.spad" 1830058 1830073 1830445 1830598) (-1148 "UNISEG2.spad" 1829555 1829568 1830014 1830019) (-1147 "UNISEG.spad" 1828908 1828919 1829474 1829479) (-1146 "UNIFACT.spad" 1828011 1828023 1828898 1828903) (-1145 "ULSCONS.spad" 1821857 1821877 1822227 1822376) (-1144 "ULSCCAT.spad" 1819594 1819614 1821703 1821852) (-1143 "ULSCCAT.spad" 1817439 1817461 1819550 1819555) (-1142 "ULSCAT.spad" 1815679 1815695 1817285 1817434) (-1141 "ULS2.spad" 1815193 1815246 1815669 1815674) (-1140 "ULS.spad" 1807226 1807254 1808171 1808594) (-1139 "UINT8.spad" 1807103 1807112 1807216 1807221) (-1138 "UINT64.spad" 1806979 1806988 1807093 1807098) (-1137 "UINT32.spad" 1806855 1806864 1806969 1806974) (-1136 "UINT16.spad" 1806731 1806740 1806845 1806850) (-1135 "UFD.spad" 1805796 1805805 1806657 1806726) (-1134 "UFD.spad" 1804923 1804934 1805786 1805791) (-1133 "UDVO.spad" 1803804 1803813 1804913 1804918) (-1132 "UDPO.spad" 1801385 1801396 1803760 1803765) (-1131 "TYPEAST.spad" 1801304 1801313 1801375 1801380) (-1130 "TYPE.spad" 1801236 1801245 1801294 1801299) (-1129 "TWOFACT.spad" 1799888 1799903 1801226 1801231) (-1128 "TUPLE.spad" 1799395 1799406 1799800 1799805) (-1127 "TUBETOOL.spad" 1796262 1796271 1799385 1799390) (-1126 "TUBE.spad" 1794909 1794926 1796252 1796257) (-1125 "TSETCAT.spad" 1783002 1783019 1794899 1794904) (-1124 "TSETCAT.spad" 1771059 1771078 1782958 1782963) (-1123 "TS.spad" 1769687 1769703 1770653 1770750) (-1122 "TRMANIP.spad" 1764051 1764068 1769375 1769380) (-1121 "TRIMAT.spad" 1763014 1763039 1764041 1764046) (-1120 "TRIGMNIP.spad" 1761541 1761558 1763004 1763009) (-1119 "TRIGCAT.spad" 1761053 1761062 1761531 1761536) (-1118 "TRIGCAT.spad" 1760563 1760574 1761043 1761048) (-1117 "TREE.spad" 1759164 1759175 1760196 1760201) (-1116 "TRANFUN.spad" 1759003 1759012 1759154 1759159) (-1115 "TRANFUN.spad" 1758840 1758851 1758993 1758998) (-1114 "TOPSP.spad" 1758514 1758523 1758830 1758835) (-1113 "TOOLSIGN.spad" 1758177 1758188 1758504 1758509) (-1112 "TEXTFILE.spad" 1756738 1756747 1758167 1758172) (-1111 "TEX1.spad" 1756294 1756305 1756728 1756733) (-1110 "TEX.spad" 1753488 1753497 1756284 1756289) (-1109 "TBCMPPK.spad" 1751589 1751612 1753478 1753483) (-1108 "TBAGG.spad" 1750854 1750877 1751579 1751584) (-1107 "TBAGG.spad" 1750117 1750142 1750844 1750849) (-1106 "TANEXP.spad" 1749525 1749536 1750107 1750112) (-1105 "TALGOP.spad" 1749249 1749260 1749515 1749520) (-1104 "TABLEAU.spad" 1748730 1748741 1749239 1749244) (-1103 "TABLE.spad" 1746440 1746463 1746710 1746715) (-1102 "TABLBUMP.spad" 1743219 1743230 1746430 1746435) (-1101 "SYSTEM.spad" 1742447 1742456 1743209 1743214) (-1100 "SYSSOLP.spad" 1739930 1739941 1742437 1742442) (-1099 "SYSPTR.spad" 1739829 1739838 1739920 1739925) (-1098 "SYSNNI.spad" 1739052 1739063 1739819 1739824) (-1097 "SYSINT.spad" 1738456 1738467 1739042 1739047) (-1096 "SYNTAX.spad" 1734790 1734799 1738446 1738451) (-1095 "SYMTAB.spad" 1732858 1732867 1734780 1734785) (-1094 "SYMS.spad" 1728887 1728896 1732848 1732853) (-1093 "SYMPOLY.spad" 1728020 1728031 1728102 1728229) (-1092 "SYMFUNC.spad" 1727521 1727532 1728010 1728015) (-1091 "SYMBOL.spad" 1725016 1725025 1727511 1727516) (-1090 "SUTS.spad" 1722129 1722157 1723548 1723645) (-1089 "SUPXS.spad" 1719471 1719499 1720320 1720469) (-1088 "SUPFRACF.spad" 1718576 1718594 1719461 1719466) (-1087 "SUP2.spad" 1717968 1717981 1718566 1718571) (-1086 "SUP.spad" 1715052 1715063 1715825 1715978) (-1085 "SUMRF.spad" 1714026 1714037 1715042 1715047) (-1084 "SUMFS.spad" 1713655 1713672 1714016 1714021) (-1083 "SULS.spad" 1705675 1705703 1706633 1707056) (-1082 "syntax.spad" 1705444 1705453 1705665 1705670) (-1081 "SUCH.spad" 1705134 1705149 1705434 1705439) (-1080 "SUBSPACE.spad" 1697265 1697280 1705124 1705129) (-1079 "SUBRESP.spad" 1696435 1696449 1697221 1697226) (-1078 "STTFNC.spad" 1692903 1692919 1696425 1696430) (-1077 "STTF.spad" 1689002 1689018 1692893 1692898) (-1076 "STTAYLOR.spad" 1681679 1681690 1688909 1688914) (-1075 "STRTBL.spad" 1679552 1679569 1679701 1679706) (-1074 "STRING.spad" 1678193 1678202 1678578 1678583) (-1073 "STREAM3.spad" 1677766 1677781 1678183 1678188) (-1072 "STREAM2.spad" 1676894 1676907 1677756 1677761) (-1071 "STREAM1.spad" 1676600 1676611 1676884 1676889) (-1070 "STREAM.spad" 1673560 1673571 1676051 1676056) (-1069 "STINPROD.spad" 1672496 1672512 1673550 1673555) (-1068 "STEPAST.spad" 1671730 1671739 1672486 1672491) (-1067 "STEP.spad" 1671047 1671056 1671720 1671725) (-1066 "STBL.spad" 1668860 1668888 1669027 1669032) (-1065 "STAGG.spad" 1667559 1667570 1668850 1668855) (-1064 "STAGG.spad" 1666256 1666269 1667549 1667554) (-1063 "STACK.spad" 1665700 1665711 1665950 1665955) (-1062 "SRING.spad" 1665460 1665469 1665690 1665695) (-1061 "SREGSET.spad" 1663053 1663070 1664955 1664960) (-1060 "SRDCMPK.spad" 1661630 1661650 1663043 1663048) (-1059 "SRAGG.spad" 1656835 1656844 1661620 1661625) (-1058 "SRAGG.spad" 1652038 1652049 1656825 1656830) (-1057 "SQMATRIX.spad" 1649727 1649745 1650643 1650718) (-1056 "SPLTREE.spad" 1644387 1644400 1649183 1649188) (-1055 "SPLNODE.spad" 1641007 1641020 1644377 1644382) (-1054 "SPFCAT.spad" 1639816 1639825 1640997 1641002) (-1053 "SPECOUT.spad" 1638368 1638377 1639806 1639811) (-1052 "SPADXPT.spad" 1630459 1630468 1638358 1638363) (-1051 "spad-parser.spad" 1629924 1629933 1630449 1630454) (-1050 "SPADAST.spad" 1629625 1629634 1629914 1629919) (-1049 "SPACEC.spad" 1613840 1613851 1629615 1629620) (-1048 "SPACE3.spad" 1613616 1613627 1613830 1613835) (-1047 "SORTPAK.spad" 1613165 1613178 1613572 1613577) (-1046 "SOLVETRA.spad" 1610928 1610939 1613155 1613160) (-1045 "SOLVESER.spad" 1609384 1609395 1610918 1610923) (-1044 "SOLVERAD.spad" 1605410 1605421 1609374 1609379) (-1043 "SOLVEFOR.spad" 1603872 1603890 1605400 1605405) (-1042 "SNTSCAT.spad" 1603494 1603511 1603862 1603867) (-1041 "SMTS.spad" 1601811 1601837 1603088 1603185) (-1040 "SMP.spad" 1599619 1599639 1600009 1600136) (-1039 "SMITH.spad" 1598464 1598489 1599609 1599614) (-1038 "SMATCAT.spad" 1596594 1596624 1598420 1598459) (-1037 "SMATCAT.spad" 1594644 1594676 1596472 1596477) (-1036 "aggcat.spad" 1594330 1594341 1594634 1594639) (-1035 "SKAGG.spad" 1593321 1593332 1594320 1594325) (-1034 "SINT.spad" 1592620 1592629 1593187 1593316) (-1033 "SIMPAN.spad" 1592348 1592357 1592610 1592615) (-1032 "SIGNRF.spad" 1591473 1591484 1592338 1592343) (-1031 "SIGNEF.spad" 1590759 1590776 1591463 1591468) (-1030 "syntax.spad" 1590176 1590185 1590749 1590754) (-1029 "SIG.spad" 1589538 1589547 1590166 1590171) (-1028 "SHP.spad" 1587482 1587497 1589494 1589499) (-1027 "SHDP.spad" 1576825 1576852 1577342 1577427) (-1026 "SGROUP.spad" 1576433 1576442 1576815 1576820) (-1025 "SGROUP.spad" 1576039 1576050 1576423 1576428) (-1024 "catdef.spad" 1575749 1575761 1575860 1576034) (-1023 "catdef.spad" 1575305 1575317 1575570 1575744) (-1022 "SGCF.spad" 1568444 1568453 1575295 1575300) (-1021 "SFRTCAT.spad" 1567412 1567429 1568434 1568439) (-1020 "SFRGCD.spad" 1566475 1566495 1567402 1567407) (-1019 "SFQCMPK.spad" 1561288 1561308 1566465 1566470) (-1018 "SEXOF.spad" 1561131 1561171 1561278 1561283) (-1017 "SEXCAT.spad" 1558959 1558999 1561121 1561126) (-1016 "SEX.spad" 1558851 1558860 1558949 1558954) (-1015 "SETMN.spad" 1557311 1557328 1558841 1558846) (-1014 "SETCAT.spad" 1556796 1556805 1557301 1557306) (-1013 "SETCAT.spad" 1556279 1556290 1556786 1556791) (-1012 "SETAGG.spad" 1552828 1552839 1556259 1556274) (-1011 "SETAGG.spad" 1549385 1549398 1552818 1552823) (-1010 "SET.spad" 1547555 1547566 1548654 1548669) (-1009 "syntax.spad" 1547258 1547267 1547545 1547550) (-1008 "SEGXCAT.spad" 1546414 1546427 1547248 1547253) (-1007 "SEGCAT.spad" 1545339 1545350 1546404 1546409) (-1006 "SEGBIND2.spad" 1545037 1545050 1545329 1545334) (-1005 "SEGBIND.spad" 1544795 1544806 1544984 1544989) (-1004 "SEGAST.spad" 1544525 1544534 1544785 1544790) (-1003 "SEG2.spad" 1543960 1543973 1544481 1544486) (-1002 "SEG.spad" 1543773 1543784 1543879 1543884) (-1001 "SDVAR.spad" 1543049 1543060 1543763 1543768) (-1000 "SDPOL.spad" 1540741 1540752 1541032 1541159) (-999 "SCPKG.spad" 1538831 1538841 1540731 1540736) (-998 "SCOPE.spad" 1538009 1538017 1538821 1538826) (-997 "SCACHE.spad" 1536706 1536716 1537999 1538004) (-996 "SASTCAT.spad" 1536616 1536624 1536696 1536701) (-995 "SAOS.spad" 1536489 1536497 1536606 1536611) (-994 "SAERFFC.spad" 1536203 1536222 1536479 1536484) (-993 "SAEFACT.spad" 1535905 1535924 1536193 1536198) (-992 "SAE.spad" 1533556 1533571 1534166 1534301) (-991 "RURPK.spad" 1531216 1531231 1533546 1533551) (-990 "RULESET.spad" 1530670 1530693 1531206 1531211) (-989 "RULECOLD.spad" 1530523 1530535 1530660 1530665) (-988 "RULE.spad" 1528772 1528795 1530513 1530518) (-987 "RTVALUE.spad" 1528508 1528516 1528762 1528767) (-986 "syntax.spad" 1528226 1528234 1528498 1528503) (-985 "RSETGCD.spad" 1524669 1524688 1528216 1528221) (-984 "RSETCAT.spad" 1514660 1514676 1524659 1524664) (-983 "RSETCAT.spad" 1504649 1504667 1514650 1514655) (-982 "RSDCMPK.spad" 1503150 1503169 1504639 1504644) (-981 "RRCC.spad" 1501535 1501564 1503140 1503145) (-980 "RRCC.spad" 1499918 1499949 1501525 1501530) (-979 "RPTAST.spad" 1499621 1499629 1499908 1499913) (-978 "RPOLCAT.spad" 1479126 1479140 1499489 1499616) (-977 "RPOLCAT.spad" 1458424 1458440 1478789 1478794) (-976 "ROMAN.spad" 1457753 1457761 1458290 1458419) (-975 "ROIRC.spad" 1456834 1456865 1457743 1457748) (-974 "RNS.spad" 1455811 1455819 1456736 1456829) (-973 "RNS.spad" 1454874 1454884 1455801 1455806) (-972 "RNGBIND.spad" 1454035 1454048 1454829 1454834) (-971 "RNG.spad" 1453644 1453652 1454025 1454030) (-970 "RNG.spad" 1453251 1453261 1453634 1453639) (-969 "RMODULE.spad" 1453033 1453043 1453241 1453246) (-968 "RMCAT2.spad" 1452454 1452510 1453023 1453028) (-967 "RMATRIX.spad" 1451276 1451294 1451618 1451645) (-966 "RMATCAT.spad" 1446926 1446956 1451244 1451271) (-965 "RMATCAT.spad" 1442454 1442486 1446774 1446779) (-964 "RLINSET.spad" 1442159 1442169 1442444 1442449) (-963 "RINTERP.spad" 1442048 1442067 1442149 1442154) (-962 "RING.spad" 1441519 1441527 1442028 1442043) (-961 "RING.spad" 1440998 1441008 1441509 1441514) (-960 "RIDIST.spad" 1440391 1440399 1440988 1440993) (-959 "RGCHAIN.spad" 1438658 1438673 1439551 1439556) (-958 "RGBCSPC.spad" 1438448 1438459 1438648 1438653) (-957 "RGBCMDL.spad" 1438011 1438022 1438438 1438443) (-956 "RFFACTOR.spad" 1437474 1437484 1438001 1438006) (-955 "RFFACT.spad" 1437210 1437221 1437464 1437469) (-954 "RFDIST.spad" 1436207 1436215 1437200 1437205) (-953 "RF.spad" 1433882 1433892 1436197 1436202) (-952 "RETSOL.spad" 1433302 1433314 1433872 1433877) (-951 "RETRACT.spad" 1432731 1432741 1433292 1433297) (-950 "RETRACT.spad" 1432158 1432170 1432721 1432726) (-949 "RETAST.spad" 1431971 1431979 1432148 1432153) (-948 "RESRING.spad" 1431319 1431365 1431909 1431966) (-947 "RESLATC.spad" 1430644 1430654 1431309 1431314) (-946 "REPSQ.spad" 1430376 1430386 1430634 1430639) (-945 "REPDB.spad" 1430084 1430094 1430366 1430371) (-944 "REP2.spad" 1419799 1419809 1429926 1429931) (-943 "REP1.spad" 1414020 1414030 1419749 1419754) (-942 "REP.spad" 1411575 1411583 1414010 1414015) (-941 "REGSET.spad" 1409262 1409278 1411070 1411075) (-940 "REF.spad" 1408781 1408791 1409252 1409257) (-939 "REDORDER.spad" 1407988 1408004 1408771 1408776) (-938 "RECLOS.spad" 1406885 1406904 1407588 1407681) (-937 "REALSOLV.spad" 1406026 1406034 1406875 1406880) (-936 "REAL0Q.spad" 1403325 1403339 1406016 1406021) (-935 "REAL0.spad" 1400170 1400184 1403315 1403320) (-934 "REAL.spad" 1400043 1400051 1400160 1400165) (-933 "RDUCEAST.spad" 1399765 1399773 1400033 1400038) (-932 "RDIV.spad" 1399421 1399445 1399755 1399760) (-931 "RDIST.spad" 1398989 1398999 1399411 1399416) (-930 "RDETRS.spad" 1397854 1397871 1398979 1398984) (-929 "RDETR.spad" 1395994 1396011 1397844 1397849) (-928 "RDEEFS.spad" 1395094 1395110 1395984 1395989) (-927 "RDEEF.spad" 1394105 1394121 1395084 1395089) (-926 "RCFIELD.spad" 1391324 1391332 1394007 1394100) (-925 "RCFIELD.spad" 1388629 1388639 1391314 1391319) (-924 "RCAGG.spad" 1386566 1386576 1388619 1388624) (-923 "RCAGG.spad" 1384404 1384416 1386459 1386464) (-922 "RATRET.spad" 1383765 1383775 1384394 1384399) (-921 "RATFACT.spad" 1383458 1383469 1383755 1383760) (-920 "RANDSRC.spad" 1382778 1382786 1383448 1383453) (-919 "RADUTIL.spad" 1382535 1382543 1382768 1382773) (-918 "RADIX.spad" 1379580 1379593 1381125 1381218) (-917 "RADFF.spad" 1377497 1377533 1377615 1377771) (-916 "RADCAT.spad" 1377093 1377101 1377487 1377492) (-915 "RADCAT.spad" 1376687 1376697 1377083 1377088) (-914 "QUEUE.spad" 1376123 1376133 1376381 1376386) (-913 "QUATCT2.spad" 1375744 1375762 1376113 1376118) (-912 "QUATCAT.spad" 1373915 1373925 1375674 1375739) (-911 "QUATCAT.spad" 1371851 1371863 1373612 1373617) (-910 "QUAT.spad" 1370458 1370468 1370800 1370865) (-909 "QUAGG.spad" 1369314 1369324 1370448 1370453) (-908 "QQUTAST.spad" 1369083 1369091 1369304 1369309) (-907 "QFORM.spad" 1368702 1368716 1369073 1369078) (-906 "QFCAT2.spad" 1368395 1368411 1368692 1368697) (-905 "QFCAT.spad" 1367098 1367108 1368297 1368390) (-904 "QFCAT.spad" 1365434 1365446 1366635 1366640) (-903 "QEQUAT.spad" 1364993 1365001 1365424 1365429) (-902 "QCMPACK.spad" 1359908 1359927 1364983 1364988) (-901 "QALGSET2.spad" 1357904 1357922 1359898 1359903) (-900 "QALGSET.spad" 1354009 1354041 1357818 1357823) (-899 "PWFFINTB.spad" 1351425 1351446 1353999 1354004) (-898 "PUSHVAR.spad" 1350764 1350783 1351415 1351420) (-897 "PTRANFN.spad" 1346900 1346910 1350754 1350759) (-896 "PTPACK.spad" 1343988 1343998 1346890 1346895) (-895 "PTFUNC2.spad" 1343811 1343825 1343978 1343983) (-894 "PTCAT.spad" 1343088 1343098 1343801 1343806) (-893 "PSQFR.spad" 1342403 1342427 1343078 1343083) (-892 "PSEUDLIN.spad" 1341289 1341299 1342393 1342398) (-891 "PSETPK.spad" 1327994 1328010 1341167 1341172) (-890 "PSETCAT.spad" 1322404 1322427 1327984 1327989) (-889 "PSETCAT.spad" 1316778 1316803 1322360 1322365) (-888 "PSCURVE.spad" 1315777 1315785 1316768 1316773) (-887 "PSCAT.spad" 1314560 1314589 1315675 1315772) (-886 "PSCAT.spad" 1313433 1313464 1314550 1314555) (-885 "PRTITION.spad" 1312131 1312139 1313423 1313428) (-884 "PRTDAST.spad" 1311850 1311858 1312121 1312126) (-883 "PRS.spad" 1301468 1301485 1311806 1311811) (-882 "PRQAGG.spad" 1300925 1300935 1301458 1301463) (-881 "PROPLOG.spad" 1300529 1300537 1300915 1300920) (-880 "PROPFUN2.spad" 1300152 1300165 1300519 1300524) (-879 "PROPFUN1.spad" 1299558 1299569 1300142 1300147) (-878 "PROPFRML.spad" 1298126 1298137 1299548 1299553) (-877 "PROPERTY.spad" 1297622 1297630 1298116 1298121) (-876 "PRODUCT.spad" 1295319 1295331 1295603 1295658) (-875 "PRINT.spad" 1295071 1295079 1295309 1295314) (-874 "PRIMES.spad" 1293332 1293342 1295061 1295066) (-873 "PRIMELT.spad" 1291453 1291467 1293322 1293327) (-872 "PRIMCAT.spad" 1291096 1291104 1291443 1291448) (-871 "PRIMARR2.spad" 1289863 1289875 1291086 1291091) (-870 "PRIMARR.spad" 1288615 1288625 1288785 1288790) (-869 "PREASSOC.spad" 1287997 1288009 1288605 1288610) (-868 "PR.spad" 1286515 1286527 1287214 1287341) (-867 "PPCURVE.spad" 1285652 1285660 1286505 1286510) (-866 "PORTNUM.spad" 1285443 1285451 1285642 1285647) (-865 "POLYROOT.spad" 1284292 1284314 1285399 1285404) (-864 "POLYLIFT.spad" 1283557 1283580 1284282 1284287) (-863 "POLYCATQ.spad" 1281683 1281705 1283547 1283552) (-862 "POLYCAT.spad" 1275185 1275206 1281551 1281678) (-861 "POLYCAT.spad" 1268207 1268230 1274575 1274580) (-860 "POLY2UP.spad" 1267659 1267673 1268197 1268202) (-859 "POLY2.spad" 1267256 1267268 1267649 1267654) (-858 "POLY.spad" 1264924 1264934 1265439 1265566) (-857 "POLUTIL.spad" 1263889 1263918 1264880 1264885) (-856 "POLTOPOL.spad" 1262637 1262652 1263879 1263884) (-855 "POINT.spad" 1261217 1261227 1261304 1261309) (-854 "PNTHEORY.spad" 1257919 1257927 1261207 1261212) (-853 "PMTOOLS.spad" 1256694 1256708 1257909 1257914) (-852 "PMSYM.spad" 1256243 1256253 1256684 1256689) (-851 "PMQFCAT.spad" 1255834 1255848 1256233 1256238) (-850 "PMPREDFS.spad" 1255296 1255318 1255824 1255829) (-849 "PMPRED.spad" 1254783 1254797 1255286 1255291) (-848 "PMPLCAT.spad" 1253860 1253878 1254712 1254717) (-847 "PMLSAGG.spad" 1253445 1253459 1253850 1253855) (-846 "PMKERNEL.spad" 1253024 1253036 1253435 1253440) (-845 "PMINS.spad" 1252604 1252614 1253014 1253019) (-844 "PMFS.spad" 1252181 1252199 1252594 1252599) (-843 "PMDOWN.spad" 1251471 1251485 1252171 1252176) (-842 "PMASSFS.spad" 1250446 1250462 1251461 1251466) (-841 "PMASS.spad" 1249464 1249472 1250436 1250441) (-840 "PLOTTOOL.spad" 1249244 1249252 1249454 1249459) (-839 "PLOT3D.spad" 1245708 1245716 1249234 1249239) (-838 "PLOT1.spad" 1244881 1244891 1245698 1245703) (-837 "PLOT.spad" 1239804 1239812 1244871 1244876) (-836 "PLEQN.spad" 1227206 1227233 1239794 1239799) (-835 "PINTERPA.spad" 1226990 1227006 1227196 1227201) (-834 "PINTERP.spad" 1226612 1226631 1226980 1226985) (-833 "PID.spad" 1225586 1225594 1226538 1226607) (-832 "PICOERCE.spad" 1225243 1225253 1225576 1225581) (-831 "PI.spad" 1224860 1224868 1225217 1225238) (-830 "PGROEB.spad" 1223469 1223483 1224850 1224855) (-829 "PGE.spad" 1215142 1215150 1223459 1223464) (-828 "PGCD.spad" 1214096 1214113 1215132 1215137) (-827 "PFRPAC.spad" 1213245 1213255 1214086 1214091) (-826 "PFR.spad" 1209948 1209958 1213147 1213240) (-825 "PFOTOOLS.spad" 1209206 1209222 1209938 1209943) (-824 "PFOQ.spad" 1208576 1208594 1209196 1209201) (-823 "PFO.spad" 1207995 1208022 1208566 1208571) (-822 "PFECAT.spad" 1205705 1205713 1207921 1207990) (-821 "PFECAT.spad" 1203443 1203453 1205661 1205666) (-820 "PFBRU.spad" 1201331 1201343 1203433 1203438) (-819 "PFBR.spad" 1198891 1198914 1201321 1201326) (-818 "PF.spad" 1198465 1198477 1198696 1198789) (-817 "PERMGRP.spad" 1193235 1193245 1198455 1198460) (-816 "PERMCAT.spad" 1191896 1191906 1193215 1193230) (-815 "PERMAN.spad" 1190452 1190466 1191886 1191891) (-814 "PERM.spad" 1186262 1186272 1190285 1190300) (-813 "PENDTREE.spad" 1185615 1185625 1185895 1185900) (-812 "PDSPC.spad" 1184428 1184438 1185605 1185610) (-811 "PDSPC.spad" 1183239 1183251 1184418 1184423) (-810 "PDRING.spad" 1183081 1183091 1183219 1183234) (-809 "PDMOD.spad" 1182897 1182909 1183049 1183076) (-808 "PDECOMP.spad" 1182367 1182384 1182887 1182892) (-807 "PDDOM.spad" 1181805 1181818 1182357 1182362) (-806 "PDDOM.spad" 1181241 1181256 1181795 1181800) (-805 "PCOMP.spad" 1181094 1181107 1181231 1181236) (-804 "PBWLB.spad" 1179692 1179709 1181084 1181089) (-803 "PATTERN2.spad" 1179430 1179442 1179682 1179687) (-802 "PATTERN1.spad" 1177774 1177790 1179420 1179425) (-801 "PATTERN.spad" 1172349 1172359 1177764 1177769) (-800 "PATRES2.spad" 1172021 1172035 1172339 1172344) (-799 "PATRES.spad" 1169604 1169616 1172011 1172016) (-798 "PATMATCH.spad" 1167845 1167876 1169356 1169361) (-797 "PATMAB.spad" 1167274 1167284 1167835 1167840) (-796 "PATLRES.spad" 1166360 1166374 1167264 1167269) (-795 "PATAB.spad" 1166124 1166134 1166350 1166355) (-794 "PARTPERM.spad" 1164180 1164188 1166114 1166119) (-793 "PARSURF.spad" 1163614 1163642 1164170 1164175) (-792 "PARSU2.spad" 1163411 1163427 1163604 1163609) (-791 "script-parser.spad" 1162931 1162939 1163401 1163406) (-790 "PARSCURV.spad" 1162365 1162393 1162921 1162926) (-789 "PARSC2.spad" 1162156 1162172 1162355 1162360) (-788 "PARPCURV.spad" 1161618 1161646 1162146 1162151) (-787 "PARPC2.spad" 1161409 1161425 1161608 1161613) (-786 "PARAMAST.spad" 1160537 1160545 1161399 1161404) (-785 "PAN2EXPR.spad" 1159949 1159957 1160527 1160532) (-784 "PALETTE.spad" 1159063 1159071 1159939 1159944) (-783 "PAIR.spad" 1158137 1158150 1158706 1158711) (-782 "PADICRC.spad" 1155542 1155560 1156705 1156798) (-781 "PADICRAT.spad" 1153602 1153614 1153815 1153908) (-780 "PADICCT.spad" 1152151 1152163 1153528 1153597) (-779 "PADIC.spad" 1151854 1151866 1152077 1152146) (-778 "PADEPAC.spad" 1150543 1150562 1151844 1151849) (-777 "PADE.spad" 1149295 1149311 1150533 1150538) (-776 "OWP.spad" 1148543 1148573 1149153 1149220) (-775 "OVERSET.spad" 1148116 1148124 1148533 1148538) (-774 "OVAR.spad" 1147897 1147920 1148106 1148111) (-773 "OUTFORM.spad" 1137305 1137313 1147887 1147892) (-772 "OUTBFILE.spad" 1136739 1136747 1137295 1137300) (-771 "OUTBCON.spad" 1135809 1135817 1136729 1136734) (-770 "OUTBCON.spad" 1134877 1134887 1135799 1135804) (-769 "OUT.spad" 1133995 1134003 1134867 1134872) (-768 "OSI.spad" 1133470 1133478 1133985 1133990) (-767 "OSGROUP.spad" 1133388 1133396 1133460 1133465) (-766 "ORTHPOL.spad" 1131899 1131909 1133331 1133336) (-765 "OREUP.spad" 1131393 1131421 1131620 1131659) (-764 "ORESUP.spad" 1130735 1130759 1131114 1131153) (-763 "OREPCTO.spad" 1128624 1128636 1130655 1130660) (-762 "OREPCAT.spad" 1122811 1122821 1128580 1128619) (-761 "OREPCAT.spad" 1116888 1116900 1122659 1122664) (-760 "ORDTYPE.spad" 1116125 1116133 1116878 1116883) (-759 "ORDTYPE.spad" 1115360 1115370 1116115 1116120) (-758 "ORDSTRCT.spad" 1115146 1115161 1115309 1115314) (-757 "ORDSET.spad" 1114846 1114854 1115136 1115141) (-756 "ORDRING.spad" 1114663 1114671 1114826 1114841) (-755 "ORDMON.spad" 1114518 1114526 1114653 1114658) (-754 "ORDFUNS.spad" 1113650 1113666 1114508 1114513) (-753 "ORDFIN.spad" 1113470 1113478 1113640 1113645) (-752 "ORDCOMP2.spad" 1112763 1112775 1113460 1113465) (-751 "ORDCOMP.spad" 1111289 1111299 1112371 1112400) (-750 "OPSIG.spad" 1110951 1110959 1111279 1111284) (-749 "OPQUERY.spad" 1110532 1110540 1110941 1110946) (-748 "OPERCAT.spad" 1109998 1110008 1110522 1110527) (-747 "OPERCAT.spad" 1109462 1109474 1109988 1109993) (-746 "OP.spad" 1109204 1109214 1109284 1109351) (-745 "ONECOMP2.spad" 1108628 1108640 1109194 1109199) (-744 "ONECOMP.spad" 1107434 1107444 1108236 1108265) (-743 "OMSAGG.spad" 1107246 1107256 1107414 1107429) (-742 "OMLO.spad" 1106679 1106691 1107132 1107171) (-741 "OINTDOM.spad" 1106442 1106450 1106605 1106674) (-740 "OFMONOID.spad" 1104581 1104591 1106398 1106403) (-739 "ODVAR.spad" 1103842 1103852 1104571 1104576) (-738 "ODR.spad" 1103486 1103512 1103654 1103803) (-737 "ODPOL.spad" 1101134 1101144 1101474 1101601) (-736 "ODP.spad" 1090621 1090641 1090994 1091079) (-735 "ODETOOLS.spad" 1089270 1089289 1090611 1090616) (-734 "ODESYS.spad" 1086964 1086981 1089260 1089265) (-733 "ODERTRIC.spad" 1082997 1083014 1086921 1086926) (-732 "ODERED.spad" 1082396 1082420 1082987 1082992) (-731 "ODERAT.spad" 1080029 1080046 1082386 1082391) (-730 "ODEPRRIC.spad" 1077122 1077144 1080019 1080024) (-729 "ODEPRIM.spad" 1074520 1074542 1077112 1077117) (-728 "ODEPAL.spad" 1073906 1073930 1074510 1074515) (-727 "ODEINT.spad" 1073341 1073357 1073896 1073901) (-726 "ODEEF.spad" 1068836 1068852 1073331 1073336) (-725 "ODECONST.spad" 1068381 1068399 1068826 1068831) (-724 "OCTCT2.spad" 1068022 1068040 1068371 1068376) (-723 "OCT.spad" 1066337 1066347 1067051 1067090) (-722 "OCAMON.spad" 1066185 1066193 1066327 1066332) (-721 "OC.spad" 1063981 1063991 1066141 1066180) (-720 "OC.spad" 1061516 1061528 1063678 1063683) (-719 "OASGP.spad" 1061331 1061339 1061506 1061511) (-718 "OAMONS.spad" 1060853 1060861 1061321 1061326) (-717 "OAMON.spad" 1060611 1060619 1060843 1060848) (-716 "OAMON.spad" 1060367 1060377 1060601 1060606) (-715 "OAGROUP.spad" 1059905 1059913 1060357 1060362) (-714 "OAGROUP.spad" 1059441 1059451 1059895 1059900) (-713 "NUMTUBE.spad" 1059032 1059048 1059431 1059436) (-712 "NUMQUAD.spad" 1047008 1047016 1059022 1059027) (-711 "NUMODE.spad" 1038360 1038368 1046998 1047003) (-710 "NUMFMT.spad" 1037200 1037208 1038350 1038355) (-709 "NUMERIC.spad" 1029315 1029325 1037006 1037011) (-708 "NTSCAT.spad" 1027845 1027861 1029305 1029310) (-707 "NTPOLFN.spad" 1027422 1027432 1027788 1027793) (-706 "NSUP2.spad" 1026814 1026826 1027412 1027417) (-705 "NSUP.spad" 1020251 1020261 1024671 1024824) (-704 "NSMP.spad" 1017163 1017182 1017455 1017582) (-703 "NREP.spad" 1015565 1015579 1017153 1017158) (-702 "NPCOEF.spad" 1014811 1014831 1015555 1015560) (-701 "NORMRETR.spad" 1014409 1014448 1014801 1014806) (-700 "NORMPK.spad" 1012351 1012370 1014399 1014404) (-699 "NORMMA.spad" 1012039 1012065 1012341 1012346) (-698 "NONE1.spad" 1011715 1011725 1012029 1012034) (-697 "NONE.spad" 1011456 1011464 1011705 1011710) (-696 "NODE1.spad" 1010943 1010959 1011446 1011451) (-695 "NNI.spad" 1009838 1009846 1010917 1010938) (-694 "NLINSOL.spad" 1008464 1008474 1009828 1009833) (-693 "NFINTBAS.spad" 1006024 1006041 1008454 1008459) (-692 "NETCLT.spad" 1005998 1006009 1006014 1006019) (-691 "NCODIV.spad" 1004222 1004238 1005988 1005993) (-690 "NCNTFRAC.spad" 1003864 1003878 1004212 1004217) (-689 "NCEP.spad" 1002030 1002044 1003854 1003859) (-688 "NASRING.spad" 1001634 1001642 1002020 1002025) (-687 "NASRING.spad" 1001236 1001246 1001624 1001629) (-686 "NARNG.spad" 1000636 1000644 1001226 1001231) (-685 "NARNG.spad" 1000034 1000044 1000626 1000631) (-684 "NAALG.spad" 999599 999609 1000002 1000029) (-683 "NAALG.spad" 999184 999196 999589 999594) (-682 "MULTSQFR.spad" 996142 996159 999174 999179) (-681 "MULTFACT.spad" 995525 995542 996132 996137) (-680 "MTSCAT.spad" 993619 993640 995423 995520) (-679 "MTHING.spad" 993278 993288 993609 993614) (-678 "MSYSCMD.spad" 992712 992720 993268 993273) (-677 "MSETAGG.spad" 992569 992579 992692 992707) (-676 "MSET.spad" 990379 990389 992126 992141) (-675 "MRING.spad" 987356 987368 990087 990154) (-674 "MRF2.spad" 986918 986932 987346 987351) (-673 "MRATFAC.spad" 986464 986481 986908 986913) (-672 "MPRFF.spad" 984504 984523 986454 986459) (-671 "MPOLY.spad" 982308 982323 982667 982794) (-670 "MPCPF.spad" 981572 981591 982298 982303) (-669 "MPC3.spad" 981389 981429 981562 981567) (-668 "MPC2.spad" 981043 981076 981379 981384) (-667 "MONOTOOL.spad" 979394 979411 981033 981038) (-666 "catdef.spad" 978827 978838 979048 979389) (-665 "catdef.spad" 978225 978236 978481 978822) (-664 "MONOID.spad" 977546 977554 978215 978220) (-663 "MONOID.spad" 976865 976875 977536 977541) (-662 "MONOGEN.spad" 975613 975626 976725 976860) (-661 "MONOGEN.spad" 974383 974398 975497 975502) (-660 "MONADWU.spad" 972463 972471 974373 974378) (-659 "MONADWU.spad" 970541 970551 972453 972458) (-658 "MONAD.spad" 969701 969709 970531 970536) (-657 "MONAD.spad" 968859 968869 969691 969696) (-656 "MOEBIUS.spad" 967595 967609 968839 968854) (-655 "MODULE.spad" 967465 967475 967563 967590) (-654 "MODULE.spad" 967355 967367 967455 967460) (-653 "MODRING.spad" 966690 966729 967335 967350) (-652 "MODOP.spad" 965347 965359 966512 966579) (-651 "MODMONOM.spad" 965078 965096 965337 965342) (-650 "MODMON.spad" 962148 962160 962863 963016) (-649 "MODFIELD.spad" 961510 961549 962050 962143) (-648 "MMLFORM.spad" 960370 960378 961500 961505) (-647 "MMAP.spad" 960112 960146 960360 960365) (-646 "MLO.spad" 958571 958581 960068 960107) (-645 "MLIFT.spad" 957183 957200 958561 958566) (-644 "MKUCFUNC.spad" 956718 956736 957173 957178) (-643 "MKRECORD.spad" 956306 956319 956708 956713) (-642 "MKFUNC.spad" 955713 955723 956296 956301) (-641 "MKFLCFN.spad" 954681 954691 955703 955708) (-640 "MKBCFUNC.spad" 954176 954194 954671 954676) (-639 "MHROWRED.spad" 952687 952697 954166 954171) (-638 "MFINFACT.spad" 952087 952109 952677 952682) (-637 "MESH.spad" 949882 949890 952077 952082) (-636 "MDDFACT.spad" 948101 948111 949872 949877) (-635 "MDAGG.spad" 947402 947412 948091 948096) (-634 "MCDEN.spad" 946612 946624 947392 947397) (-633 "MAYBE.spad" 945912 945923 946602 946607) (-632 "MATSTOR.spad" 943228 943238 945902 945907) (-631 "MATRIX.spad" 942029 942039 942513 942518) (-630 "MATLIN.spad" 939397 939421 941913 941918) (-629 "MATCAT2.spad" 938679 938727 939387 939392) (-628 "MATCAT.spad" 930397 930419 938669 938674) (-627 "MATCAT.spad" 921965 921989 930239 930244) (-626 "MAPPKG3.spad" 920880 920894 921955 921960) (-625 "MAPPKG2.spad" 920218 920230 920870 920875) (-624 "MAPPKG1.spad" 919046 919056 920208 920213) (-623 "MAPPAST.spad" 918385 918393 919036 919041) (-622 "MAPHACK3.spad" 918197 918211 918375 918380) (-621 "MAPHACK2.spad" 917966 917978 918187 918192) (-620 "MAPHACK1.spad" 917610 917620 917956 917961) (-619 "MAGMA.spad" 915416 915433 917600 917605) (-618 "MACROAST.spad" 915011 915019 915406 915411) (-617 "LZSTAGG.spad" 912265 912275 915001 915006) (-616 "LZSTAGG.spad" 909517 909529 912255 912260) (-615 "LWORD.spad" 906262 906279 909507 909512) (-614 "LSTAST.spad" 906046 906054 906252 906257) (-613 "LSQM.spad" 904336 904350 904730 904769) (-612 "LSPP.spad" 903871 903888 904326 904331) (-611 "LSMP1.spad" 901714 901728 903861 903866) (-610 "LSMP.spad" 900571 900599 901704 901709) (-609 "LSAGG.spad" 900262 900272 900561 900566) (-608 "LSAGG.spad" 899951 899963 900252 900257) (-607 "LPOLY.spad" 898913 898932 899807 899876) (-606 "LPEFRAC.spad" 898184 898194 898903 898908) (-605 "LOGIC.spad" 897786 897794 898174 898179) (-604 "LOGIC.spad" 897386 897396 897776 897781) (-603 "LODOOPS.spad" 896316 896328 897376 897381) (-602 "LODOF.spad" 895362 895379 896273 896278) (-601 "LODOCAT.spad" 894028 894038 895318 895357) (-600 "LODOCAT.spad" 892692 892704 893984 893989) (-599 "LODO2.spad" 892006 892018 892413 892452) (-598 "LODO1.spad" 891447 891457 891727 891766) (-597 "LODO.spad" 890872 890888 891168 891207) (-596 "LODEEF.spad" 889674 889692 890862 890867) (-595 "LO.spad" 889075 889089 889608 889635) (-594 "LNAGG.spad" 885262 885272 889065 889070) (-593 "LNAGG.spad" 881385 881397 885190 885195) (-592 "LMOPS.spad" 878153 878170 881375 881380) (-591 "LMODULE.spad" 877937 877947 878143 878148) (-590 "LMDICT.spad" 877179 877189 877427 877432) (-589 "LLINSET.spad" 876886 876896 877169 877174) (-588 "LITERAL.spad" 876792 876803 876876 876881) (-587 "LIST3.spad" 876103 876117 876782 876787) (-586 "LIST2MAP.spad" 873030 873042 876093 876098) (-585 "LIST2.spad" 871732 871744 873020 873025) (-584 "LIST.spad" 869311 869321 870654 870659) (-583 "LINSET.spad" 869090 869100 869301 869306) (-582 "LINFORM.spad" 868553 868565 869058 869085) (-581 "LINEXP.spad" 867296 867306 868543 868548) (-580 "LINELT.spad" 866667 866679 867179 867206) (-579 "LINDEP.spad" 865516 865528 866579 866584) (-578 "LINBASIS.spad" 865152 865167 865506 865511) (-577 "LIMITRF.spad" 863099 863109 865142 865147) (-576 "LIMITPS.spad" 862009 862022 863089 863094) (-575 "LIECAT.spad" 861493 861503 861935 862004) (-574 "LIECAT.spad" 861005 861017 861449 861454) (-573 "LIE.spad" 859009 859021 860283 860425) (-572 "LIB.spad" 856832 856840 857278 857283) (-571 "LGROBP.spad" 854185 854204 856822 856827) (-570 "LFCAT.spad" 853244 853252 854175 854180) (-569 "LF.spad" 852199 852215 853234 853239) (-568 "LEXTRIPK.spad" 847822 847837 852189 852194) (-567 "LEXP.spad" 845841 845868 847802 847817) (-566 "LETAST.spad" 845540 845548 845831 845836) (-565 "LEADCDET.spad" 843946 843963 845530 845535) (-564 "LAZM3PK.spad" 842690 842712 843936 843941) (-563 "LAUPOL.spad" 841357 841370 842257 842326) (-562 "LAPLACE.spad" 840940 840956 841347 841352) (-561 "LALG.spad" 840716 840726 840920 840935) (-560 "LALG.spad" 840500 840512 840706 840711) (-559 "LA.spad" 839940 839954 840422 840461) (-558 "KVTFROM.spad" 839683 839693 839930 839935) (-557 "KTVLOGIC.spad" 839227 839235 839673 839678) (-556 "KRCFROM.spad" 838973 838983 839217 839222) (-555 "KOVACIC.spad" 837704 837721 838963 838968) (-554 "KONVERT.spad" 837426 837436 837694 837699) (-553 "KOERCE.spad" 837163 837173 837416 837421) (-552 "KERNEL2.spad" 836866 836878 837153 837158) (-551 "KERNEL.spad" 835586 835596 836715 836720) (-550 "KDAGG.spad" 834705 834727 835576 835581) (-549 "KDAGG.spad" 833822 833846 834695 834700) (-548 "KAFILE.spad" 832198 832214 832433 832438) (-547 "JVMOP.spad" 832111 832119 832188 832193) (-546 "JVMMDACC.spad" 831165 831173 832101 832106) (-545 "JVMFDACC.spad" 830481 830489 831155 831160) (-544 "JVMCSTTG.spad" 829210 829218 830471 830476) (-543 "JVMCFACC.spad" 828656 828664 829200 829205) (-542 "JVMBCODE.spad" 828567 828575 828646 828651) (-541 "JORDAN.spad" 826384 826396 827845 827987) (-540 "JOINAST.spad" 826086 826094 826374 826379) (-539 "IXAGG.spad" 824219 824243 826076 826081) (-538 "IXAGG.spad" 822154 822180 824013 824018) (-537 "ITUPLE.spad" 821330 821340 822144 822149) (-536 "ITRIGMNP.spad" 820177 820196 821320 821325) (-535 "ITFUN3.spad" 819683 819697 820167 820172) (-534 "ITFUN2.spad" 819427 819439 819673 819678) (-533 "ITFORM.spad" 818782 818790 819417 819422) (-532 "ITAYLOR.spad" 816776 816791 818646 818743) (-531 "ISUPS.spad" 809225 809240 815762 815859) (-530 "ISUMP.spad" 808726 808742 809215 809220) (-529 "ISAST.spad" 808445 808453 808716 808721) (-528 "IRURPK.spad" 807162 807181 808435 808440) (-527 "IRSN.spad" 805166 805174 807152 807157) (-526 "IRRF2F.spad" 803659 803669 805122 805127) (-525 "IRREDFFX.spad" 803260 803271 803649 803654) (-524 "IROOT.spad" 801599 801609 803250 803255) (-523 "IRFORM.spad" 800923 800931 801589 801594) (-522 "IR2F.spad" 800137 800153 800913 800918) (-521 "IR2.spad" 799165 799181 800127 800132) (-520 "IR.spad" 797001 797015 799047 799074) (-519 "IPRNTPK.spad" 796761 796769 796991 796996) (-518 "IPF.spad" 796326 796338 796566 796659) (-517 "IPADIC.spad" 796095 796121 796252 796321) (-516 "IP4ADDR.spad" 795652 795660 796085 796090) (-515 "IOMODE.spad" 795174 795182 795642 795647) (-514 "IOBFILE.spad" 794559 794567 795164 795169) (-513 "IOBCON.spad" 794424 794432 794549 794554) (-512 "INVLAPLA.spad" 794073 794089 794414 794419) (-511 "INTTR.spad" 787467 787484 794063 794068) (-510 "INTTOOLS.spad" 785275 785291 787094 787099) (-509 "INTSLPE.spad" 784603 784611 785265 785270) (-508 "INTRVL.spad" 784169 784179 784517 784598) (-507 "INTRF.spad" 782601 782615 784159 784164) (-506 "INTRET.spad" 782033 782043 782591 782596) (-505 "INTRAT.spad" 780768 780785 782023 782028) (-504 "INTPM.spad" 779231 779247 780489 780494) (-503 "INTPAF.spad" 777107 777125 779160 779165) (-502 "INTHERTR.spad" 776381 776398 777097 777102) (-501 "INTHERAL.spad" 776051 776075 776371 776376) (-500 "INTHEORY.spad" 772490 772498 776041 776046) (-499 "INTG0.spad" 766254 766272 772419 772424) (-498 "INTFACT.spad" 765321 765331 766244 766249) (-497 "INTEF.spad" 763732 763748 765311 765316) (-496 "INTDOM.spad" 762355 762363 763658 763727) (-495 "INTDOM.spad" 761040 761050 762345 762350) (-494 "INTCAT.spad" 759307 759317 760954 761035) (-493 "INTBIT.spad" 758814 758822 759297 759302) (-492 "INTALG.spad" 758002 758029 758804 758809) (-491 "INTAF.spad" 757502 757518 757992 757997) (-490 "INTABL.spad" 755319 755350 755482 755487) (-489 "INT8.spad" 755199 755207 755309 755314) (-488 "INT64.spad" 755078 755086 755189 755194) (-487 "INT32.spad" 754957 754965 755068 755073) (-486 "INT16.spad" 754836 754844 754947 754952) (-485 "INT.spad" 754362 754370 754702 754831) (-484 "INS.spad" 751865 751873 754264 754357) (-483 "INS.spad" 749454 749464 751855 751860) (-482 "INPSIGN.spad" 748924 748937 749444 749449) (-481 "INPRODPF.spad" 748020 748039 748914 748919) (-480 "INPRODFF.spad" 747108 747132 748010 748015) (-479 "INNMFACT.spad" 746083 746100 747098 747103) (-478 "INMODGCD.spad" 745587 745617 746073 746078) (-477 "INFSP.spad" 743884 743906 745577 745582) (-476 "INFPROD0.spad" 742964 742983 743874 743879) (-475 "INFORM1.spad" 742589 742599 742954 742959) (-474 "INFORM.spad" 739800 739808 742579 742584) (-473 "INFINITY.spad" 739352 739360 739790 739795) (-472 "INETCLTS.spad" 739329 739337 739342 739347) (-471 "INEP.spad" 737875 737897 739319 739324) (-470 "INDE.spad" 737524 737541 737785 737790) (-469 "INCRMAPS.spad" 736961 736971 737514 737519) (-468 "INBFILE.spad" 736057 736065 736951 736956) (-467 "INBFF.spad" 731907 731918 736047 736052) (-466 "INBCON.spad" 730173 730181 731897 731902) (-465 "INBCON.spad" 728437 728447 730163 730168) (-464 "INAST.spad" 728098 728106 728427 728432) (-463 "IMPTAST.spad" 727806 727814 728088 728093) (-462 "IMATQF.spad" 726872 726916 727734 727739) (-461 "IMATLIN.spad" 725465 725489 726800 726805) (-460 "IFF.spad" 724878 724894 725149 725242) (-459 "IFAST.spad" 724492 724500 724868 724873) (-458 "IFARRAY.spad" 721716 721731 723414 723419) (-457 "IFAMON.spad" 721578 721595 721672 721677) (-456 "IEVALAB.spad" 720991 721003 721568 721573) (-455 "IEVALAB.spad" 720402 720416 720981 720986) (-454 "indexedp.spad" 719958 719970 720392 720397) (-453 "IDPOAMS.spad" 719636 719648 719870 719875) (-452 "IDPOAM.spad" 719278 719290 719548 719553) (-451 "IDPO.spad" 718692 718704 719190 719195) (-450 "IDPC.spad" 717407 717419 718682 718687) (-449 "IDPAM.spad" 717074 717086 717319 717324) (-448 "IDPAG.spad" 716743 716755 716986 716991) (-447 "IDENT.spad" 716395 716403 716733 716738) (-446 "catdef.spad" 716166 716177 716278 716390) (-445 "IDECOMP.spad" 713405 713423 716156 716161) (-444 "IDEAL.spad" 708367 708406 713353 713358) (-443 "ICDEN.spad" 707580 707596 708357 708362) (-442 "ICARD.spad" 706973 706981 707570 707575) (-441 "IBPTOOLS.spad" 705580 705597 706963 706968) (-440 "boolean.spad" 704872 704885 705005 705010) (-439 "IBATOOL.spad" 701857 701876 704862 704867) (-438 "IBACHIN.spad" 700364 700379 701847 701852) (-437 "array2.spad" 699871 699893 700058 700063) (-436 "IARRAY1.spad" 698647 698662 698793 698798) (-435 "IAN.spad" 697029 697037 698478 698571) (-434 "IALGFACT.spad" 696640 696673 697019 697024) (-433 "HYPCAT.spad" 696064 696072 696630 696635) (-432 "HYPCAT.spad" 695486 695496 696054 696059) (-431 "HOSTNAME.spad" 695302 695310 695476 695481) (-430 "HOMOTOP.spad" 695045 695055 695292 695297) (-429 "HOAGG.spad" 694561 694571 695035 695040) (-428 "HOAGG.spad" 693899 693911 694375 694380) (-427 "HEXADEC.spad" 692124 692132 692489 692582) (-426 "HEUGCD.spad" 691215 691226 692114 692119) (-425 "HELLFDIV.spad" 690821 690845 691205 691210) (-424 "HEAP.spad" 690300 690310 690515 690520) (-423 "HEADAST.spad" 689841 689849 690290 690295) (-422 "HDP.spad" 679324 679340 679701 679786) (-421 "HDMP.spad" 676871 676886 677487 677614) (-420 "HB.spad" 675146 675154 676861 676866) (-419 "HASHTBL.spad" 672915 672946 673126 673131) (-418 "HASAST.spad" 672631 672639 672905 672910) (-417 "HACKPI.spad" 672122 672130 672533 672626) (-416 "GTSET.spad" 670910 670926 671617 671622) (-415 "GSTBL.spad" 668716 668751 668890 668895) (-414 "GSERIES.spad" 666088 666115 666907 667056) (-413 "GROUP.spad" 665361 665369 666068 666083) (-412 "GROUP.spad" 664642 664652 665351 665356) (-411 "GROEBSOL.spad" 663136 663157 664632 664637) (-410 "GRMOD.spad" 661717 661729 663126 663131) (-409 "GRMOD.spad" 660296 660310 661707 661712) (-408 "GRIMAGE.spad" 653209 653217 660286 660291) (-407 "GRDEF.spad" 651588 651596 653199 653204) (-406 "GRAY.spad" 650059 650067 651578 651583) (-405 "GRALG.spad" 649154 649166 650049 650054) (-404 "GRALG.spad" 648247 648261 649144 649149) (-403 "GPOLSET.spad" 647566 647589 647778 647783) (-402 "GOSPER.spad" 646843 646861 647556 647561) (-401 "GMODPOL.spad" 645991 646018 646811 646838) (-400 "GHENSEL.spad" 645074 645088 645981 645986) (-399 "GENUPS.spad" 641367 641380 645064 645069) (-398 "GENUFACT.spad" 640944 640954 641357 641362) (-397 "GENPGCD.spad" 640546 640563 640934 640939) (-396 "GENMFACT.spad" 639998 640017 640536 640541) (-395 "GENEEZ.spad" 637957 637970 639988 639993) (-394 "GDMP.spad" 635346 635363 636120 636247) (-393 "GCNAALG.spad" 629269 629296 635140 635207) (-392 "GCDDOM.spad" 628461 628469 629195 629264) (-391 "GCDDOM.spad" 627715 627725 628451 628456) (-390 "GBINTERN.spad" 623735 623773 627705 627710) (-389 "GBF.spad" 619518 619556 623725 623730) (-388 "GBEUCLID.spad" 617400 617438 619508 619513) (-387 "GB.spad" 614926 614964 617356 617361) (-386 "GAUSSFAC.spad" 614239 614247 614916 614921) (-385 "GALUTIL.spad" 612565 612575 614195 614200) (-384 "GALPOLYU.spad" 611019 611032 612555 612560) (-383 "GALFACTU.spad" 609232 609251 611009 611014) (-382 "GALFACT.spad" 599445 599456 609222 609227) (-381 "FUNDESC.spad" 599123 599131 599435 599440) (-380 "FUNCTION.spad" 598972 598984 599113 599118) (-379 "FT.spad" 597272 597280 598962 598967) (-378 "FSUPFACT.spad" 596186 596205 597222 597227) (-377 "FST.spad" 594272 594280 596176 596181) (-376 "FSRED.spad" 593752 593768 594262 594267) (-375 "FSPRMELT.spad" 592618 592634 593709 593714) (-374 "FSPECF.spad" 590709 590725 592608 592613) (-373 "FSINT.spad" 590369 590385 590699 590704) (-372 "FSERIES.spad" 589560 589572 590189 590288) (-371 "FSCINT.spad" 588877 588893 589550 589555) (-370 "FSAGG2.spad" 587612 587628 588867 588872) (-369 "FSAGG.spad" 586753 586763 587592 587607) (-368 "FSAGG.spad" 585832 585844 586673 586678) (-367 "FS2UPS.spad" 580347 580381 585822 585827) (-366 "FS2EXPXP.spad" 579488 579511 580337 580342) (-365 "FS2.spad" 579143 579159 579478 579483) (-364 "FS.spad" 573415 573425 578922 579138) (-363 "FS.spad" 567489 567501 572998 573003) (-362 "FRUTIL.spad" 566443 566453 567479 567484) (-361 "FRNAALG.spad" 561720 561730 566385 566438) (-360 "FRNAALG.spad" 557009 557021 561676 561681) (-359 "FRNAAF2.spad" 556457 556475 556999 557004) (-358 "FRMOD.spad" 555865 555895 556386 556391) (-357 "FRIDEAL2.spad" 555469 555501 555855 555860) (-356 "FRIDEAL.spad" 554694 554715 555449 555464) (-355 "FRETRCT.spad" 554213 554223 554684 554689) (-354 "FRETRCT.spad" 553639 553651 554112 554117) (-353 "FRAMALG.spad" 552019 552032 553595 553634) (-352 "FRAMALG.spad" 550431 550446 552009 552014) (-351 "FRAC2.spad" 550036 550048 550421 550426) (-350 "FRAC.spad" 548023 548033 548410 548583) (-349 "FR2.spad" 547359 547371 548013 548018) (-348 "FR.spad" 541147 541157 546420 546489) (-347 "FPS.spad" 537986 537994 541037 541142) (-346 "FPS.spad" 534853 534863 537906 537911) (-345 "FPC.spad" 533899 533907 534755 534848) (-344 "FPC.spad" 533031 533041 533889 533894) (-343 "FPATMAB.spad" 532793 532803 533021 533026) (-342 "FPARFRAC.spad" 531635 531652 532783 532788) (-341 "FORDER.spad" 531326 531350 531625 531630) (-340 "FNLA.spad" 530750 530772 531294 531321) (-339 "FNCAT.spad" 529345 529353 530740 530745) (-338 "FNAME.spad" 529237 529245 529335 529340) (-337 "FMONOID.spad" 528918 528928 529193 529198) (-336 "FMONCAT.spad" 526087 526097 528908 528913) (-335 "FMCAT.spad" 523763 523781 526055 526082) (-334 "FM1.spad" 523128 523140 523697 523724) (-333 "FM.spad" 522743 522755 522982 523009) (-332 "FLOATRP.spad" 520486 520500 522733 522738) (-331 "FLOATCP.spad" 517925 517939 520476 520481) (-330 "FLOAT.spad" 515016 515024 517791 517920) (-329 "FLINEXP.spad" 514738 514748 515006 515011) (-328 "FLINEXP.spad" 514417 514429 514687 514692) (-327 "FLASORT.spad" 513743 513755 514407 514412) (-326 "FLALG.spad" 511413 511432 513669 513738) (-325 "FLAGG2.spad" 510130 510146 511403 511408) (-324 "FLAGG.spad" 507206 507216 510120 510125) (-323 "FLAGG.spad" 504147 504159 507063 507068) (-322 "FINRALG.spad" 502232 502245 504103 504142) (-321 "FINRALG.spad" 500243 500258 502116 502121) (-320 "FINITE.spad" 499395 499403 500233 500238) (-319 "FINITE.spad" 498545 498555 499385 499390) (-318 "aggcat.spad" 495475 495485 498535 498540) (-317 "FINAGG.spad" 492370 492382 495432 495437) (-316 "FINAALG.spad" 481555 481565 492312 492365) (-315 "FINAALG.spad" 470752 470764 481511 481516) (-314 "FILECAT.spad" 469286 469303 470742 470747) (-313 "FILE.spad" 468869 468879 469276 469281) (-312 "FIELD.spad" 468275 468283 468771 468864) (-311 "FIELD.spad" 467767 467777 468265 468270) (-310 "FGROUP.spad" 466430 466440 467747 467762) (-309 "FGLMICPK.spad" 465225 465240 466420 466425) (-308 "FFX.spad" 464611 464626 464944 465037) (-307 "FFSLPE.spad" 464122 464143 464601 464606) (-306 "FFPOLY2.spad" 463182 463199 464112 464117) (-305 "FFPOLY.spad" 454524 454535 463172 463177) (-304 "FFP.spad" 453932 453952 454243 454336) (-303 "FFNBX.spad" 452455 452475 453651 453744) (-302 "FFNBP.spad" 450979 450996 452174 452267) (-301 "FFNB.spad" 449447 449468 450663 450756) (-300 "FFINTBAS.spad" 446961 446980 449437 449442) (-299 "FFIELDC.spad" 444546 444554 446863 446956) (-298 "FFIELDC.spad" 442217 442227 444536 444541) (-297 "FFHOM.spad" 440989 441006 442207 442212) (-296 "FFF.spad" 438432 438443 440979 440984) (-295 "FFCGX.spad" 437290 437310 438151 438244) (-294 "FFCGP.spad" 436190 436210 437009 437102) (-293 "FFCG.spad" 434985 435006 435874 435967) (-292 "FFCAT2.spad" 434732 434772 434975 434980) (-291 "FFCAT.spad" 427897 427919 434571 434727) (-290 "FFCAT.spad" 421141 421165 427817 427822) (-289 "FF.spad" 420592 420608 420825 420918) (-288 "FEVALAB.spad" 420300 420310 420582 420587) (-287 "FEVALAB.spad" 419784 419796 420068 420073) (-286 "FDIVCAT.spad" 417880 417904 419774 419779) (-285 "FDIVCAT.spad" 415974 416000 417870 417875) (-284 "FDIV2.spad" 415630 415670 415964 415969) (-283 "FDIV.spad" 415088 415112 415620 415625) (-282 "FCTRDATA.spad" 414096 414104 415078 415083) (-281 "FCOMP.spad" 413475 413485 414086 414091) (-280 "FAXF.spad" 406510 406524 413377 413470) (-279 "FAXF.spad" 399597 399613 406466 406471) (-278 "FARRAY.spad" 397486 397496 398519 398524) (-277 "FAMR.spad" 395630 395642 397384 397481) (-276 "FAMR.spad" 393758 393772 395514 395519) (-275 "FAMONOID.spad" 393442 393452 393712 393717) (-274 "FAMONC.spad" 391762 391774 393432 393437) (-273 "FAGROUP.spad" 391402 391412 391658 391685) (-272 "FACUTIL.spad" 389614 389631 391392 391397) (-271 "FACTFUNC.spad" 388816 388826 389604 389609) (-270 "EXPUPXS.spad" 385708 385731 387007 387156) (-269 "EXPRTUBE.spad" 382996 383004 385698 385703) (-268 "EXPRODE.spad" 380164 380180 382986 382991) (-267 "EXPR2UPS.spad" 376286 376299 380154 380159) (-266 "EXPR2.spad" 375991 376003 376276 376281) (-265 "EXPR.spad" 371636 371646 372350 372637) (-264 "EXPEXPAN.spad" 368581 368606 369213 369306) (-263 "EXITAST.spad" 368317 368325 368571 368576) (-262 "EXIT.spad" 367988 367996 368307 368312) (-261 "EVALCYC.spad" 367448 367462 367978 367983) (-260 "EVALAB.spad" 367028 367038 367438 367443) (-259 "EVALAB.spad" 366606 366618 367018 367023) (-258 "EUCDOM.spad" 364196 364204 366532 366601) (-257 "EUCDOM.spad" 361848 361858 364186 364191) (-256 "ES2.spad" 361361 361377 361838 361843) (-255 "ES1.spad" 360931 360947 361351 361356) (-254 "ES.spad" 353802 353810 360921 360926) (-253 "ES.spad" 346594 346604 353715 353720) (-252 "ERROR.spad" 343921 343929 346584 346589) (-251 "EQTBL.spad" 341692 341714 341901 341906) (-250 "EQ2.spad" 341410 341422 341682 341687) (-249 "EQ.spad" 336316 336326 339111 339217) (-248 "EP.spad" 332642 332652 336306 336311) (-247 "ENV.spad" 331320 331328 332632 332637) (-246 "ENTIRER.spad" 330988 330996 331264 331315) (-245 "ENTIRER.spad" 330700 330710 330978 330983) (-244 "EMR.spad" 329988 330029 330626 330695) (-243 "ELTAGG.spad" 328242 328261 329978 329983) (-242 "ELTAGG.spad" 326432 326453 328170 328175) (-241 "ELTAB.spad" 325907 325920 326422 326427) (-240 "ELFUTS.spad" 325342 325361 325897 325902) (-239 "ELEMFUN.spad" 325031 325039 325332 325337) (-238 "ELEMFUN.spad" 324718 324728 325021 325026) (-237 "ELAGG.spad" 322699 322709 324708 324713) (-236 "ELAGG.spad" 320609 320621 322620 322625) (-235 "ELABOR.spad" 319955 319963 320599 320604) (-234 "ELABEXPR.spad" 318887 318895 319945 319950) (-233 "EFUPXS.spad" 315663 315693 318843 318848) (-232 "EFULS.spad" 312499 312522 315619 315624) (-231 "EFSTRUC.spad" 310514 310530 312489 312494) (-230 "EF.spad" 305290 305306 310504 310509) (-229 "EAB.spad" 303590 303598 305280 305285) (-228 "DVARCAT.spad" 300596 300606 303580 303585) (-227 "DVARCAT.spad" 297600 297612 300586 300591) (-226 "DSMP.spad" 295333 295347 295638 295765) (-225 "DSEXT.spad" 294635 294645 295323 295328) (-224 "DSEXT.spad" 293857 293869 294547 294552) (-223 "DROPT1.spad" 293522 293532 293847 293852) (-222 "DROPT0.spad" 288387 288395 293512 293517) (-221 "DROPT.spad" 282346 282354 288377 288382) (-220 "DRAWPT.spad" 280519 280527 282336 282341) (-219 "DRAWHACK.spad" 279827 279837 280509 280514) (-218 "DRAWCX.spad" 277305 277313 279817 279822) (-217 "DRAWCURV.spad" 276852 276867 277295 277300) (-216 "DRAWCFUN.spad" 266384 266392 276842 276847) (-215 "DRAW.spad" 259260 259273 266374 266379) (-214 "DQAGG.spad" 257460 257470 259250 259255) (-213 "DPOLCAT.spad" 252817 252833 257328 257455) (-212 "DPOLCAT.spad" 248260 248278 252773 252778) (-211 "DPMO.spad" 240813 240829 240951 241145) (-210 "DPMM.spad" 233379 233397 233504 233698) (-209 "DOMTMPLT.spad" 233150 233158 233369 233374) (-208 "DOMCTOR.spad" 232905 232913 233140 233145) (-207 "DOMAIN.spad" 232016 232024 232895 232900) (-206 "DMP.spad" 229609 229624 230179 230306) (-205 "DMEXT.spad" 229476 229486 229577 229604) (-204 "DLP.spad" 228836 228846 229466 229471) (-203 "DLIST.spad" 227154 227164 227758 227763) (-202 "DLAGG.spad" 225571 225581 227144 227149) (-201 "DIVRING.spad" 225113 225121 225515 225566) (-200 "DIVRING.spad" 224699 224709 225103 225108) (-199 "DISPLAY.spad" 222889 222897 224689 224694) (-198 "DIRPROD2.spad" 221707 221725 222879 222884) (-197 "DIRPROD.spad" 210927 210943 211567 211652) (-196 "DIRPCAT.spad" 210222 210238 210837 210922) (-195 "DIRPCAT.spad" 209131 209149 209748 209753) (-194 "DIOSP.spad" 207956 207964 209121 209126) (-193 "DIOPS.spad" 206962 206972 207946 207951) (-192 "DIOPS.spad" 205905 205917 206891 206896) (-191 "catdef.spad" 205763 205771 205895 205900) (-190 "DIFRING.spad" 205601 205609 205743 205758) (-189 "DIFFSPC.spad" 205180 205188 205591 205596) (-188 "DIFFSPC.spad" 204757 204767 205170 205175) (-187 "DIFFMOD.spad" 204246 204256 204725 204752) (-186 "DIFFDOM.spad" 203411 203422 204236 204241) (-185 "DIFFDOM.spad" 202574 202587 203401 203406) (-184 "DIFEXT.spad" 202393 202403 202554 202569) (-183 "DIAGG.spad" 202033 202043 202383 202388) (-182 "DIAGG.spad" 201671 201683 202023 202028) (-181 "DHMATRIX.spad" 200070 200080 201215 201220) (-180 "DFSFUN.spad" 193710 193718 200060 200065) (-179 "DFLOAT.spad" 190317 190325 193600 193705) (-178 "DFINTTLS.spad" 188548 188564 190307 190312) (-177 "DERHAM.spad" 186462 186494 188528 188543) (-176 "DEQUEUE.spad" 185873 185883 186156 186161) (-175 "DEGRED.spad" 185490 185504 185863 185868) (-174 "DEFINTRF.spad" 183072 183082 185480 185485) (-173 "DEFINTEF.spad" 181610 181626 183062 183067) (-172 "DEFAST.spad" 180994 181002 181600 181605) (-171 "DECIMAL.spad" 179223 179231 179584 179677) (-170 "DDFACT.spad" 177044 177061 179213 179218) (-169 "DBLRESP.spad" 176644 176668 177034 177039) (-168 "DBASIS.spad" 176270 176285 176634 176639) (-167 "DBASE.spad" 174934 174944 176260 176265) (-166 "DATAARY.spad" 174420 174433 174924 174929) (-165 "CYCLOTOM.spad" 173926 173934 174410 174415) (-164 "CYCLES.spad" 170712 170720 173916 173921) (-163 "CVMP.spad" 170129 170139 170702 170707) (-162 "CTRIGMNP.spad" 168629 168645 170119 170124) (-161 "CTORKIND.spad" 168232 168240 168619 168624) (-160 "CTORCAT.spad" 167473 167481 168222 168227) (-159 "CTORCAT.spad" 166712 166722 167463 167468) (-158 "CTORCALL.spad" 166301 166311 166702 166707) (-157 "CTOR.spad" 165992 166000 166291 166296) (-156 "CSTTOOLS.spad" 165237 165250 165982 165987) (-155 "CRFP.spad" 159009 159022 165227 165232) (-154 "CRCEAST.spad" 158729 158737 158999 159004) (-153 "CRAPACK.spad" 157796 157806 158719 158724) (-152 "CPMATCH.spad" 157297 157312 157718 157723) (-151 "CPIMA.spad" 157002 157021 157287 157292) (-150 "COORDSYS.spad" 152011 152021 156992 156997) (-149 "CONTOUR.spad" 151438 151446 152001 152006) (-148 "CONTFRAC.spad" 147188 147198 151340 151433) (-147 "CONDUIT.spad" 146946 146954 147178 147183) (-146 "COMRING.spad" 146620 146628 146884 146941) (-145 "COMPPROP.spad" 146138 146146 146610 146615) (-144 "COMPLPAT.spad" 145905 145920 146128 146133) (-143 "COMPLEX2.spad" 145620 145632 145895 145900) (-142 "COMPLEX.spad" 141326 141336 141570 141828) (-141 "COMPILER.spad" 140875 140883 141316 141321) (-140 "COMPFACT.spad" 140477 140491 140865 140870) (-139 "COMPCAT.spad" 138552 138562 140214 140472) (-138 "COMPCAT.spad" 136368 136380 138032 138037) (-137 "COMMUPC.spad" 136116 136134 136358 136363) (-136 "COMMONOP.spad" 135649 135657 136106 136111) (-135 "COMMAAST.spad" 135412 135420 135639 135644) (-134 "COMM.spad" 135223 135231 135402 135407) (-133 "COMBOPC.spad" 134146 134154 135213 135218) (-132 "COMBINAT.spad" 132913 132923 134136 134141) (-131 "COMBF.spad" 130335 130351 132903 132908) (-130 "COLOR.spad" 129172 129180 130325 130330) (-129 "COLONAST.spad" 128838 128846 129162 129167) (-128 "CMPLXRT.spad" 128549 128566 128828 128833) (-127 "CLLCTAST.spad" 128211 128219 128539 128544) (-126 "CLIP.spad" 124319 124327 128201 128206) (-125 "CLIF.spad" 122974 122990 124275 124314) (-124 "CLAGG.spad" 120966 120976 122964 122969) (-123 "CLAGG.spad" 118817 118829 120817 120822) (-122 "CINTSLPE.spad" 118172 118185 118807 118812) (-121 "CHVAR.spad" 116310 116332 118162 118167) (-120 "CHARZ.spad" 116225 116233 116290 116305) (-119 "CHARPOL.spad" 115751 115761 116215 116220) (-118 "CHARNZ.spad" 115513 115521 115731 115746) (-117 "CHAR.spad" 112881 112889 115503 115508) (-116 "CFCAT.spad" 112209 112217 112871 112876) (-115 "CDEN.spad" 111429 111443 112199 112204) (-114 "CCLASS.spad" 109510 109518 110772 110787) (-113 "CATEGORY.spad" 108584 108592 109500 109505) (-112 "CATCTOR.spad" 108475 108483 108574 108579) (-111 "CATAST.spad" 108101 108109 108465 108470) (-110 "CASEAST.spad" 107815 107823 108091 108096) (-109 "CARTEN2.spad" 107205 107232 107805 107810) (-108 "CARTEN.spad" 102957 102981 107195 107200) (-107 "CARD.spad" 100252 100260 102931 102952) (-106 "CAPSLAST.spad" 100034 100042 100242 100247) (-105 "CACHSET.spad" 99658 99666 100024 100029) (-104 "CABMON.spad" 99213 99221 99648 99653) (-103 "BYTEORD.spad" 98888 98896 99203 99208) (-102 "BYTEBUF.spad" 96708 96716 97914 97919) (-101 "BYTE.spad" 96183 96191 96698 96703) (-100 "BTREE.spad" 95282 95292 95816 95821) (-99 "BTOURN.spad" 94314 94323 94915 94920) (-98 "BTCAT.spad" 93894 93903 94304 94309) (-97 "BTCAT.spad" 93472 93483 93884 93889) (-96 "BTAGG.spad" 92961 92968 93462 93467) (-95 "BTAGG.spad" 92448 92457 92951 92956) (-94 "BSTREE.spad" 91216 91225 92081 92086) (-93 "BRILL.spad" 89422 89432 91206 91211) (-92 "BRAGG.spad" 88379 88388 89412 89417) (-91 "BRAGG.spad" 87272 87283 88307 88312) (-90 "BPADICRT.spad" 85332 85343 85578 85671) (-89 "BPADIC.spad" 85005 85016 85258 85327) (-88 "BOUNDZRO.spad" 84662 84678 84995 85000) (-87 "BOP1.spad" 82121 82130 84652 84657) (-86 "BOP.spad" 77264 77271 82111 82116) (-85 "BOOLEAN.spad" 76813 76820 77254 77259) (-84 "BOOLE.spad" 76464 76471 76803 76808) (-83 "BOOLE.spad" 76113 76122 76454 76459) (-82 "BMODULE.spad" 75826 75837 76081 76108) (-81 "BITS.spad" 75037 75044 75251 75256) (-80 "catdef.spad" 74920 74930 75027 75032) (-79 "catdef.spad" 74671 74681 74910 74915) (-78 "BINDING.spad" 74093 74100 74661 74666) (-77 "BINARY.spad" 72328 72335 72683 72776) (-76 "BGAGG.spad" 71658 71667 72318 72323) (-75 "BGAGG.spad" 70986 70997 71648 71653) (-74 "BEZOUT.spad" 70127 70153 70936 70941) (-73 "BBTREE.spad" 67031 67040 69760 69765) (-72 "BASTYPE.spad" 66531 66538 67021 67026) (-71 "BASTYPE.spad" 66029 66038 66521 66526) (-70 "BALFACT.spad" 65489 65501 66019 66024) (-69 "AUTOMOR.spad" 64940 64949 65469 65484) (-68 "ATTREG.spad" 62072 62079 64716 64935) (-67 "ATTRAST.spad" 61789 61796 62062 62067) (-66 "ATRIG.spad" 61259 61266 61779 61784) (-65 "ATRIG.spad" 60727 60736 61249 61254) (-64 "ASTCAT.spad" 60631 60638 60717 60722) (-63 "ASTCAT.spad" 60533 60542 60621 60626) (-62 "ASTACK.spad" 59959 59968 60227 60232) (-61 "ASSOCEQ.spad" 58793 58804 59915 59920) (-60 "ARRAY2.spad" 58338 58347 58487 58492) (-59 "ARRAY12.spad" 57051 57062 58328 58333) (-58 "ARRAY1.spad" 55627 55636 55973 55978) (-57 "ARR2CAT.spad" 51689 51710 55617 55622) (-56 "ARR2CAT.spad" 47749 47772 51679 51684) (-55 "ARITY.spad" 47121 47128 47739 47744) (-54 "APPRULE.spad" 46405 46427 47111 47116) (-53 "APPLYORE.spad" 46024 46037 46395 46400) (-52 "ANY1.spad" 45095 45104 46014 46019) (-51 "ANY.spad" 43946 43953 45085 45090) (-50 "ANTISYM.spad" 42391 42407 43926 43941) (-49 "ANON.spad" 42100 42107 42381 42386) (-48 "AN.spad" 40568 40575 41931 42024) (-47 "AMR.spad" 38753 38764 40466 40563) (-46 "AMR.spad" 36801 36814 38516 38521) (-45 "ALIST.spad" 33046 33067 33396 33401) (-44 "ALGSC.spad" 32181 32207 32918 32971) (-43 "ALGPKG.spad" 27964 27975 32137 32142) (-42 "ALGMFACT.spad" 27157 27171 27954 27959) (-41 "ALGMANIP.spad" 24658 24673 27001 27006) (-40 "ALGFF.spad" 22476 22503 22693 22849) (-39 "ALGFACT.spad" 21595 21605 22466 22471) (-38 "ALGEBRA.spad" 21428 21437 21551 21590) (-37 "ALGEBRA.spad" 21293 21304 21418 21423) (-36 "ALAGG.spad" 20831 20852 21283 21288) (-35 "AHYP.spad" 20212 20219 20821 20826) (-34 "AGG.spad" 19119 19126 20202 20207) (-33 "AGG.spad" 18024 18033 19109 19114) (-32 "AF.spad" 16469 16484 17973 17978) (-31 "ADDAST.spad" 16155 16162 16459 16464) (-30 "ACPLOT.spad" 15032 15039 16145 16150) (-29 "ACFS.spad" 12889 12898 14934 15027) (-28 "ACFS.spad" 10832 10843 12879 12884) (-27 "ACF.spad" 7586 7593 10734 10827) (-26 "ACF.spad" 4426 4435 7576 7581) (-25 "ABELSG.spad" 3967 3974 4416 4421) (-24 "ABELSG.spad" 3506 3515 3957 3962) (-23 "ABELMON.spad" 2934 2941 3496 3501) (-22 "ABELMON.spad" 2360 2369 2924 2929) (-21 "ABELGRP.spad" 2025 2032 2350 2355) (-20 "ABELGRP.spad" 1688 1697 2015 2020) (-19 "A1AGG.spad" 860 869 1678 1683) (-18 "A1AGG.spad" 30 41 850 855))
\ No newline at end of file +((-3 NIL 1968362 1968367 1968372 1968377) (-2 NIL 1968342 1968347 1968352 1968357) (-1 NIL 1968322 1968327 1968332 1968337) (0 NIL 1968302 1968307 1968312 1968317) (-1211 "ZMOD.spad" 1968111 1968124 1968240 1968297) (-1210 "ZLINDEP.spad" 1967209 1967220 1968101 1968106) (-1209 "ZDSOLVE.spad" 1957170 1957192 1967199 1967204) (-1208 "YSTREAM.spad" 1956665 1956676 1957160 1957165) (-1207 "YDIAGRAM.spad" 1956299 1956308 1956655 1956660) (-1206 "XRPOLY.spad" 1955519 1955539 1956155 1956224) (-1205 "XPR.spad" 1953314 1953327 1955237 1955336) (-1204 "XPOLYC.spad" 1952633 1952649 1953240 1953309) (-1203 "XPOLY.spad" 1952188 1952199 1952489 1952558) (-1202 "XPBWPOLY.spad" 1950659 1950679 1951994 1952063) (-1201 "XFALG.spad" 1947707 1947723 1950585 1950654) (-1200 "XF.spad" 1946170 1946185 1947609 1947702) (-1199 "XF.spad" 1944613 1944630 1946054 1946059) (-1198 "XEXPPKG.spad" 1943872 1943898 1944603 1944608) (-1197 "XDPOLY.spad" 1943486 1943502 1943728 1943797) (-1196 "XALG.spad" 1943154 1943165 1943442 1943481) (-1195 "WUTSET.spad" 1939018 1939035 1942649 1942654) (-1194 "WP.spad" 1938225 1938269 1938876 1938943) (-1193 "WHILEAST.spad" 1938023 1938032 1938215 1938220) (-1192 "WHEREAST.spad" 1937694 1937703 1938013 1938018) (-1191 "WFFINTBS.spad" 1935357 1935379 1937684 1937689) (-1190 "WEIER.spad" 1933579 1933590 1935347 1935352) (-1189 "VSPACE.spad" 1933252 1933263 1933547 1933574) (-1188 "VSPACE.spad" 1932945 1932958 1933242 1933247) (-1187 "VOID.spad" 1932622 1932631 1932935 1932940) (-1186 "VIEWDEF.spad" 1927823 1927832 1932612 1932617) (-1185 "VIEW3D.spad" 1911784 1911793 1927813 1927818) (-1184 "VIEW2D.spad" 1899683 1899692 1911774 1911779) (-1183 "VIEW.spad" 1897403 1897412 1899673 1899678) (-1182 "VECTOR2.spad" 1896042 1896055 1897393 1897398) (-1181 "VECTOR.spad" 1894458 1894469 1894709 1894714) (-1180 "VECTCAT.spad" 1892392 1892403 1894448 1894453) (-1179 "VECTCAT.spad" 1890113 1890126 1892171 1892176) (-1178 "VARIABLE.spad" 1889893 1889908 1890103 1890108) (-1177 "UTYPE.spad" 1889537 1889546 1889883 1889888) (-1176 "UTSODETL.spad" 1888832 1888856 1889493 1889498) (-1175 "UTSODE.spad" 1887048 1887068 1888822 1888827) (-1174 "UTSCAT.spad" 1884527 1884543 1886946 1887043) (-1173 "UTSCAT.spad" 1881674 1881692 1884095 1884100) (-1172 "UTS2.spad" 1881269 1881304 1881664 1881669) (-1171 "UTS.spad" 1876281 1876309 1879801 1879898) (-1170 "URAGG.spad" 1871002 1871013 1876271 1876276) (-1169 "URAGG.spad" 1865659 1865672 1870930 1870935) (-1168 "UPXSSING.spad" 1863427 1863453 1864863 1864996) (-1167 "UPXSCONS.spad" 1861245 1861265 1861618 1861767) (-1166 "UPXSCCA.spad" 1859816 1859836 1861091 1861240) (-1165 "UPXSCCA.spad" 1858529 1858551 1859806 1859811) (-1164 "UPXSCAT.spad" 1857118 1857134 1858375 1858524) (-1163 "UPXS2.spad" 1856661 1856714 1857108 1857113) (-1162 "UPXS.spad" 1854016 1854044 1854852 1855001) (-1161 "UPSQFREE.spad" 1852431 1852445 1854006 1854011) (-1160 "UPSCAT.spad" 1850226 1850250 1852329 1852426) (-1159 "UPSCAT.spad" 1847722 1847748 1849827 1849832) (-1158 "UPOLYC2.spad" 1847193 1847212 1847712 1847717) (-1157 "UPOLYC.spad" 1842273 1842284 1847035 1847188) (-1156 "UPOLYC.spad" 1837271 1837284 1842035 1842040) (-1155 "UPMP.spad" 1836203 1836216 1837261 1837266) (-1154 "UPDIVP.spad" 1835768 1835782 1836193 1836198) (-1153 "UPDECOMP.spad" 1834029 1834043 1835758 1835763) (-1152 "UPCDEN.spad" 1833246 1833262 1834019 1834024) (-1151 "UP2.spad" 1832610 1832631 1833236 1833241) (-1150 "UP.spad" 1830080 1830095 1830467 1830620) (-1149 "UNISEG2.spad" 1829577 1829590 1830036 1830041) (-1148 "UNISEG.spad" 1828930 1828941 1829496 1829501) (-1147 "UNIFACT.spad" 1828033 1828045 1828920 1828925) (-1146 "ULSCONS.spad" 1821879 1821899 1822249 1822398) (-1145 "ULSCCAT.spad" 1819616 1819636 1821725 1821874) (-1144 "ULSCCAT.spad" 1817461 1817483 1819572 1819577) (-1143 "ULSCAT.spad" 1815701 1815717 1817307 1817456) (-1142 "ULS2.spad" 1815215 1815268 1815691 1815696) (-1141 "ULS.spad" 1807248 1807276 1808193 1808616) (-1140 "UINT8.spad" 1807125 1807134 1807238 1807243) (-1139 "UINT64.spad" 1807001 1807010 1807115 1807120) (-1138 "UINT32.spad" 1806877 1806886 1806991 1806996) (-1137 "UINT16.spad" 1806753 1806762 1806867 1806872) (-1136 "UFD.spad" 1805818 1805827 1806679 1806748) (-1135 "UFD.spad" 1804945 1804956 1805808 1805813) (-1134 "UDVO.spad" 1803826 1803835 1804935 1804940) (-1133 "UDPO.spad" 1801407 1801418 1803782 1803787) (-1132 "TYPEAST.spad" 1801326 1801335 1801397 1801402) (-1131 "TYPE.spad" 1801258 1801267 1801316 1801321) (-1130 "TWOFACT.spad" 1799910 1799925 1801248 1801253) (-1129 "TUPLE.spad" 1799417 1799428 1799822 1799827) (-1128 "TUBETOOL.spad" 1796284 1796293 1799407 1799412) (-1127 "TUBE.spad" 1794931 1794948 1796274 1796279) (-1126 "TSETCAT.spad" 1783024 1783041 1794921 1794926) (-1125 "TSETCAT.spad" 1771081 1771100 1782980 1782985) (-1124 "TS.spad" 1769709 1769725 1770675 1770772) (-1123 "TRMANIP.spad" 1764073 1764090 1769397 1769402) (-1122 "TRIMAT.spad" 1763036 1763061 1764063 1764068) (-1121 "TRIGMNIP.spad" 1761563 1761580 1763026 1763031) (-1120 "TRIGCAT.spad" 1761075 1761084 1761553 1761558) (-1119 "TRIGCAT.spad" 1760585 1760596 1761065 1761070) (-1118 "TREE.spad" 1759186 1759197 1760218 1760223) (-1117 "TRANFUN.spad" 1759025 1759034 1759176 1759181) (-1116 "TRANFUN.spad" 1758862 1758873 1759015 1759020) (-1115 "TOPSP.spad" 1758536 1758545 1758852 1758857) (-1114 "TOOLSIGN.spad" 1758199 1758210 1758526 1758531) (-1113 "TEXTFILE.spad" 1756760 1756769 1758189 1758194) (-1112 "TEX1.spad" 1756316 1756327 1756750 1756755) (-1111 "TEX.spad" 1753510 1753519 1756306 1756311) (-1110 "TBCMPPK.spad" 1751611 1751634 1753500 1753505) (-1109 "TBAGG.spad" 1750876 1750899 1751601 1751606) (-1108 "TBAGG.spad" 1750139 1750164 1750866 1750871) (-1107 "TANEXP.spad" 1749547 1749558 1750129 1750134) (-1106 "TALGOP.spad" 1749271 1749282 1749537 1749542) (-1105 "TABLEAU.spad" 1748752 1748763 1749261 1749266) (-1104 "TABLE.spad" 1746462 1746485 1746732 1746737) (-1103 "TABLBUMP.spad" 1743241 1743252 1746452 1746457) (-1102 "SYSTEM.spad" 1742469 1742478 1743231 1743236) (-1101 "SYSSOLP.spad" 1739952 1739963 1742459 1742464) (-1100 "SYSPTR.spad" 1739851 1739860 1739942 1739947) (-1099 "SYSNNI.spad" 1739074 1739085 1739841 1739846) (-1098 "SYSINT.spad" 1738478 1738489 1739064 1739069) (-1097 "SYNTAX.spad" 1734812 1734821 1738468 1738473) (-1096 "SYMTAB.spad" 1732880 1732889 1734802 1734807) (-1095 "SYMS.spad" 1728909 1728918 1732870 1732875) (-1094 "SYMPOLY.spad" 1728042 1728053 1728124 1728251) (-1093 "SYMFUNC.spad" 1727543 1727554 1728032 1728037) (-1092 "SYMBOL.spad" 1725038 1725047 1727533 1727538) (-1091 "SUTS.spad" 1722151 1722179 1723570 1723667) (-1090 "SUPXS.spad" 1719493 1719521 1720342 1720491) (-1089 "SUPFRACF.spad" 1718598 1718616 1719483 1719488) (-1088 "SUP2.spad" 1717990 1718003 1718588 1718593) (-1087 "SUP.spad" 1715074 1715085 1715847 1716000) (-1086 "SUMRF.spad" 1714048 1714059 1715064 1715069) (-1085 "SUMFS.spad" 1713677 1713694 1714038 1714043) (-1084 "SULS.spad" 1705697 1705725 1706655 1707078) (-1083 "syntax.spad" 1705466 1705475 1705687 1705692) (-1082 "SUCH.spad" 1705156 1705171 1705456 1705461) (-1081 "SUBSPACE.spad" 1697287 1697302 1705146 1705151) (-1080 "SUBRESP.spad" 1696457 1696471 1697243 1697248) (-1079 "STTFNC.spad" 1692925 1692941 1696447 1696452) (-1078 "STTF.spad" 1689024 1689040 1692915 1692920) (-1077 "STTAYLOR.spad" 1681701 1681712 1688931 1688936) (-1076 "STRTBL.spad" 1679574 1679591 1679723 1679728) (-1075 "STRING.spad" 1678215 1678224 1678600 1678605) (-1074 "STREAM3.spad" 1677788 1677803 1678205 1678210) (-1073 "STREAM2.spad" 1676916 1676929 1677778 1677783) (-1072 "STREAM1.spad" 1676622 1676633 1676906 1676911) (-1071 "STREAM.spad" 1673582 1673593 1676073 1676078) (-1070 "STINPROD.spad" 1672518 1672534 1673572 1673577) (-1069 "STEPAST.spad" 1671752 1671761 1672508 1672513) (-1068 "STEP.spad" 1671069 1671078 1671742 1671747) (-1067 "STBL.spad" 1668882 1668910 1669049 1669054) (-1066 "STAGG.spad" 1667581 1667592 1668872 1668877) (-1065 "STAGG.spad" 1666278 1666291 1667571 1667576) (-1064 "STACK.spad" 1665722 1665733 1665972 1665977) (-1063 "SRING.spad" 1665482 1665491 1665712 1665717) (-1062 "SREGSET.spad" 1663075 1663092 1664977 1664982) (-1061 "SRDCMPK.spad" 1661652 1661672 1663065 1663070) (-1060 "SRAGG.spad" 1656857 1656866 1661642 1661647) (-1059 "SRAGG.spad" 1652060 1652071 1656847 1656852) (-1058 "SQMATRIX.spad" 1649749 1649767 1650665 1650740) (-1057 "SPLTREE.spad" 1644409 1644422 1649205 1649210) (-1056 "SPLNODE.spad" 1641029 1641042 1644399 1644404) (-1055 "SPFCAT.spad" 1639838 1639847 1641019 1641024) (-1054 "SPECOUT.spad" 1638390 1638399 1639828 1639833) (-1053 "SPADXPT.spad" 1630481 1630490 1638380 1638385) (-1052 "spad-parser.spad" 1629946 1629955 1630471 1630476) (-1051 "SPADAST.spad" 1629647 1629656 1629936 1629941) (-1050 "SPACEC.spad" 1613862 1613873 1629637 1629642) (-1049 "SPACE3.spad" 1613638 1613649 1613852 1613857) (-1048 "SORTPAK.spad" 1613187 1613200 1613594 1613599) (-1047 "SOLVETRA.spad" 1610950 1610961 1613177 1613182) (-1046 "SOLVESER.spad" 1609406 1609417 1610940 1610945) (-1045 "SOLVERAD.spad" 1605432 1605443 1609396 1609401) (-1044 "SOLVEFOR.spad" 1603894 1603912 1605422 1605427) (-1043 "SNTSCAT.spad" 1603516 1603533 1603884 1603889) (-1042 "SMTS.spad" 1601833 1601859 1603110 1603207) (-1041 "SMP.spad" 1599641 1599661 1600031 1600158) (-1040 "SMITH.spad" 1598486 1598511 1599631 1599636) (-1039 "SMATCAT.spad" 1596616 1596646 1598442 1598481) (-1038 "SMATCAT.spad" 1594666 1594698 1596494 1596499) (-1037 "aggcat.spad" 1594352 1594363 1594656 1594661) (-1036 "SKAGG.spad" 1593343 1593354 1594342 1594347) (-1035 "SINT.spad" 1592642 1592651 1593209 1593338) (-1034 "SIMPAN.spad" 1592370 1592379 1592632 1592637) (-1033 "SIGNRF.spad" 1591495 1591506 1592360 1592365) (-1032 "SIGNEF.spad" 1590781 1590798 1591485 1591490) (-1031 "syntax.spad" 1590198 1590207 1590771 1590776) (-1030 "SIG.spad" 1589560 1589569 1590188 1590193) (-1029 "SHP.spad" 1587504 1587519 1589516 1589521) (-1028 "SHDP.spad" 1576847 1576874 1577364 1577449) (-1027 "SGROUP.spad" 1576455 1576464 1576837 1576842) (-1026 "SGROUP.spad" 1576061 1576072 1576445 1576450) (-1025 "catdef.spad" 1575771 1575783 1575882 1576056) (-1024 "catdef.spad" 1575327 1575339 1575592 1575766) (-1023 "SGCF.spad" 1568466 1568475 1575317 1575322) (-1022 "SFRTCAT.spad" 1567434 1567451 1568456 1568461) (-1021 "SFRGCD.spad" 1566497 1566517 1567424 1567429) (-1020 "SFQCMPK.spad" 1561310 1561330 1566487 1566492) (-1019 "SEXOF.spad" 1561153 1561193 1561300 1561305) (-1018 "SEXCAT.spad" 1558981 1559021 1561143 1561148) (-1017 "SEX.spad" 1558873 1558882 1558971 1558976) (-1016 "SETMN.spad" 1557333 1557350 1558863 1558868) (-1015 "SETCAT.spad" 1556818 1556827 1557323 1557328) (-1014 "SETCAT.spad" 1556301 1556312 1556808 1556813) (-1013 "SETAGG.spad" 1552850 1552861 1556281 1556296) (-1012 "SETAGG.spad" 1549407 1549420 1552840 1552845) (-1011 "SET.spad" 1547577 1547588 1548676 1548691) (-1010 "syntax.spad" 1547280 1547289 1547567 1547572) (-1009 "SEGXCAT.spad" 1546436 1546449 1547270 1547275) (-1008 "SEGCAT.spad" 1545361 1545372 1546426 1546431) (-1007 "SEGBIND2.spad" 1545059 1545072 1545351 1545356) (-1006 "SEGBIND.spad" 1544817 1544828 1545006 1545011) (-1005 "SEGAST.spad" 1544547 1544556 1544807 1544812) (-1004 "SEG2.spad" 1543982 1543995 1544503 1544508) (-1003 "SEG.spad" 1543795 1543806 1543901 1543906) (-1002 "SDVAR.spad" 1543071 1543082 1543785 1543790) (-1001 "SDPOL.spad" 1540763 1540774 1541054 1541181) (-1000 "SCPKG.spad" 1538852 1538863 1540753 1540758) (-999 "SCOPE.spad" 1538030 1538038 1538842 1538847) (-998 "SCACHE.spad" 1536727 1536737 1538020 1538025) (-997 "SASTCAT.spad" 1536637 1536645 1536717 1536722) (-996 "SAOS.spad" 1536510 1536518 1536627 1536632) (-995 "SAERFFC.spad" 1536224 1536243 1536500 1536505) (-994 "SAEFACT.spad" 1535926 1535945 1536214 1536219) (-993 "SAE.spad" 1533577 1533592 1534187 1534322) (-992 "RURPK.spad" 1531237 1531252 1533567 1533572) (-991 "RULESET.spad" 1530691 1530714 1531227 1531232) (-990 "RULECOLD.spad" 1530544 1530556 1530681 1530686) (-989 "RULE.spad" 1528793 1528816 1530534 1530539) (-988 "RTVALUE.spad" 1528529 1528537 1528783 1528788) (-987 "syntax.spad" 1528247 1528255 1528519 1528524) (-986 "RSETGCD.spad" 1524690 1524709 1528237 1528242) (-985 "RSETCAT.spad" 1514681 1514697 1524680 1524685) (-984 "RSETCAT.spad" 1504670 1504688 1514671 1514676) (-983 "RSDCMPK.spad" 1503171 1503190 1504660 1504665) (-982 "RRCC.spad" 1501556 1501585 1503161 1503166) (-981 "RRCC.spad" 1499939 1499970 1501546 1501551) (-980 "RPTAST.spad" 1499642 1499650 1499929 1499934) (-979 "RPOLCAT.spad" 1479147 1479161 1499510 1499637) (-978 "RPOLCAT.spad" 1458445 1458461 1478810 1478815) (-977 "ROMAN.spad" 1457774 1457782 1458311 1458440) (-976 "ROIRC.spad" 1456855 1456886 1457764 1457769) (-975 "RNS.spad" 1455832 1455840 1456757 1456850) (-974 "RNS.spad" 1454895 1454905 1455822 1455827) (-973 "RNGBIND.spad" 1454056 1454069 1454850 1454855) (-972 "RNG.spad" 1453665 1453673 1454046 1454051) (-971 "RNG.spad" 1453272 1453282 1453655 1453660) (-970 "RMODULE.spad" 1453054 1453064 1453262 1453267) (-969 "RMCAT2.spad" 1452475 1452531 1453044 1453049) (-968 "RMATRIX.spad" 1451297 1451315 1451639 1451666) (-967 "RMATCAT.spad" 1446947 1446977 1451265 1451292) (-966 "RMATCAT.spad" 1442475 1442507 1446795 1446800) (-965 "RLINSET.spad" 1442180 1442190 1442465 1442470) (-964 "RINTERP.spad" 1442069 1442088 1442170 1442175) (-963 "RING.spad" 1441540 1441548 1442049 1442064) (-962 "RING.spad" 1441019 1441029 1441530 1441535) (-961 "RIDIST.spad" 1440412 1440420 1441009 1441014) (-960 "RGCHAIN.spad" 1438679 1438694 1439572 1439577) (-959 "RGBCSPC.spad" 1438469 1438480 1438669 1438674) (-958 "RGBCMDL.spad" 1438032 1438043 1438459 1438464) (-957 "RFFACTOR.spad" 1437495 1437505 1438022 1438027) (-956 "RFFACT.spad" 1437231 1437242 1437485 1437490) (-955 "RFDIST.spad" 1436228 1436236 1437221 1437226) (-954 "RF.spad" 1433903 1433913 1436218 1436223) (-953 "RETSOL.spad" 1433323 1433335 1433893 1433898) (-952 "RETRACT.spad" 1432752 1432762 1433313 1433318) (-951 "RETRACT.spad" 1432179 1432191 1432742 1432747) (-950 "RETAST.spad" 1431992 1432000 1432169 1432174) (-949 "RESRING.spad" 1431340 1431386 1431930 1431987) (-948 "RESLATC.spad" 1430665 1430675 1431330 1431335) (-947 "REPSQ.spad" 1430397 1430407 1430655 1430660) (-946 "REPDB.spad" 1430105 1430115 1430387 1430392) (-945 "REP2.spad" 1419820 1419830 1429947 1429952) (-944 "REP1.spad" 1414041 1414051 1419770 1419775) (-943 "REP.spad" 1411596 1411604 1414031 1414036) (-942 "REGSET.spad" 1409283 1409299 1411091 1411096) (-941 "REF.spad" 1408802 1408812 1409273 1409278) (-940 "REDORDER.spad" 1408009 1408025 1408792 1408797) (-939 "RECLOS.spad" 1406906 1406925 1407609 1407702) (-938 "REALSOLV.spad" 1406047 1406055 1406896 1406901) (-937 "REAL0Q.spad" 1403346 1403360 1406037 1406042) (-936 "REAL0.spad" 1400191 1400205 1403336 1403341) (-935 "REAL.spad" 1400064 1400072 1400181 1400186) (-934 "RDUCEAST.spad" 1399786 1399794 1400054 1400059) (-933 "RDIV.spad" 1399442 1399466 1399776 1399781) (-932 "RDIST.spad" 1399010 1399020 1399432 1399437) (-931 "RDETRS.spad" 1397875 1397892 1399000 1399005) (-930 "RDETR.spad" 1396015 1396032 1397865 1397870) (-929 "RDEEFS.spad" 1395115 1395131 1396005 1396010) (-928 "RDEEF.spad" 1394126 1394142 1395105 1395110) (-927 "RCFIELD.spad" 1391345 1391353 1394028 1394121) (-926 "RCFIELD.spad" 1388650 1388660 1391335 1391340) (-925 "RCAGG.spad" 1386587 1386597 1388640 1388645) (-924 "RCAGG.spad" 1384425 1384437 1386480 1386485) (-923 "RATRET.spad" 1383786 1383796 1384415 1384420) (-922 "RATFACT.spad" 1383479 1383490 1383776 1383781) (-921 "RANDSRC.spad" 1382799 1382807 1383469 1383474) (-920 "RADUTIL.spad" 1382556 1382564 1382789 1382794) (-919 "RADIX.spad" 1379601 1379614 1381146 1381239) (-918 "RADFF.spad" 1377518 1377554 1377636 1377792) (-917 "RADCAT.spad" 1377114 1377122 1377508 1377513) (-916 "RADCAT.spad" 1376708 1376718 1377104 1377109) (-915 "QUEUE.spad" 1376144 1376154 1376402 1376407) (-914 "QUATCT2.spad" 1375765 1375783 1376134 1376139) (-913 "QUATCAT.spad" 1373936 1373946 1375695 1375760) (-912 "QUATCAT.spad" 1371872 1371884 1373633 1373638) (-911 "QUAT.spad" 1370479 1370489 1370821 1370886) (-910 "QUAGG.spad" 1369335 1369345 1370469 1370474) (-909 "QQUTAST.spad" 1369104 1369112 1369325 1369330) (-908 "QFORM.spad" 1368723 1368737 1369094 1369099) (-907 "QFCAT2.spad" 1368416 1368432 1368713 1368718) (-906 "QFCAT.spad" 1367119 1367129 1368318 1368411) (-905 "QFCAT.spad" 1365455 1365467 1366656 1366661) (-904 "QEQUAT.spad" 1365014 1365022 1365445 1365450) (-903 "QCMPACK.spad" 1359929 1359948 1365004 1365009) (-902 "QALGSET2.spad" 1357925 1357943 1359919 1359924) (-901 "QALGSET.spad" 1354030 1354062 1357839 1357844) (-900 "PWFFINTB.spad" 1351446 1351467 1354020 1354025) (-899 "PUSHVAR.spad" 1350785 1350804 1351436 1351441) (-898 "PTRANFN.spad" 1346921 1346931 1350775 1350780) (-897 "PTPACK.spad" 1344009 1344019 1346911 1346916) (-896 "PTFUNC2.spad" 1343832 1343846 1343999 1344004) (-895 "PTCAT.spad" 1343109 1343119 1343822 1343827) (-894 "PSQFR.spad" 1342424 1342448 1343099 1343104) (-893 "PSEUDLIN.spad" 1341310 1341320 1342414 1342419) (-892 "PSETPK.spad" 1328015 1328031 1341188 1341193) (-891 "PSETCAT.spad" 1322425 1322448 1328005 1328010) (-890 "PSETCAT.spad" 1316799 1316824 1322381 1322386) (-889 "PSCURVE.spad" 1315798 1315806 1316789 1316794) (-888 "PSCAT.spad" 1314581 1314610 1315696 1315793) (-887 "PSCAT.spad" 1313454 1313485 1314571 1314576) (-886 "PRTITION.spad" 1312152 1312160 1313444 1313449) (-885 "PRTDAST.spad" 1311871 1311879 1312142 1312147) (-884 "PRS.spad" 1301489 1301506 1311827 1311832) (-883 "PRQAGG.spad" 1300946 1300956 1301479 1301484) (-882 "PROPLOG.spad" 1300550 1300558 1300936 1300941) (-881 "PROPFUN2.spad" 1300173 1300186 1300540 1300545) (-880 "PROPFUN1.spad" 1299579 1299590 1300163 1300168) (-879 "PROPFRML.spad" 1298147 1298158 1299569 1299574) (-878 "PROPERTY.spad" 1297643 1297651 1298137 1298142) (-877 "PRODUCT.spad" 1295340 1295352 1295624 1295679) (-876 "PRINT.spad" 1295092 1295100 1295330 1295335) (-875 "PRIMES.spad" 1293353 1293363 1295082 1295087) (-874 "PRIMELT.spad" 1291474 1291488 1293343 1293348) (-873 "PRIMCAT.spad" 1291117 1291125 1291464 1291469) (-872 "PRIMARR2.spad" 1289884 1289896 1291107 1291112) (-871 "PRIMARR.spad" 1288636 1288646 1288806 1288811) (-870 "PREASSOC.spad" 1288018 1288030 1288626 1288631) (-869 "PR.spad" 1286536 1286548 1287235 1287362) (-868 "PPCURVE.spad" 1285673 1285681 1286526 1286531) (-867 "PORTNUM.spad" 1285464 1285472 1285663 1285668) (-866 "POLYROOT.spad" 1284313 1284335 1285420 1285425) (-865 "POLYLIFT.spad" 1283578 1283601 1284303 1284308) (-864 "POLYCATQ.spad" 1281704 1281726 1283568 1283573) (-863 "POLYCAT.spad" 1275206 1275227 1281572 1281699) (-862 "POLYCAT.spad" 1268228 1268251 1274596 1274601) (-861 "POLY2UP.spad" 1267680 1267694 1268218 1268223) (-860 "POLY2.spad" 1267277 1267289 1267670 1267675) (-859 "POLY.spad" 1264945 1264955 1265460 1265587) (-858 "POLUTIL.spad" 1263910 1263939 1264901 1264906) (-857 "POLTOPOL.spad" 1262658 1262673 1263900 1263905) (-856 "POINT.spad" 1261238 1261248 1261325 1261330) (-855 "PNTHEORY.spad" 1257940 1257948 1261228 1261233) (-854 "PMTOOLS.spad" 1256715 1256729 1257930 1257935) (-853 "PMSYM.spad" 1256264 1256274 1256705 1256710) (-852 "PMQFCAT.spad" 1255855 1255869 1256254 1256259) (-851 "PMPREDFS.spad" 1255317 1255339 1255845 1255850) (-850 "PMPRED.spad" 1254804 1254818 1255307 1255312) (-849 "PMPLCAT.spad" 1253881 1253899 1254733 1254738) (-848 "PMLSAGG.spad" 1253466 1253480 1253871 1253876) (-847 "PMKERNEL.spad" 1253045 1253057 1253456 1253461) (-846 "PMINS.spad" 1252625 1252635 1253035 1253040) (-845 "PMFS.spad" 1252202 1252220 1252615 1252620) (-844 "PMDOWN.spad" 1251492 1251506 1252192 1252197) (-843 "PMASSFS.spad" 1250467 1250483 1251482 1251487) (-842 "PMASS.spad" 1249485 1249493 1250457 1250462) (-841 "PLOTTOOL.spad" 1249265 1249273 1249475 1249480) (-840 "PLOT3D.spad" 1245729 1245737 1249255 1249260) (-839 "PLOT1.spad" 1244902 1244912 1245719 1245724) (-838 "PLOT.spad" 1239825 1239833 1244892 1244897) (-837 "PLEQN.spad" 1227227 1227254 1239815 1239820) (-836 "PINTERPA.spad" 1227011 1227027 1227217 1227222) (-835 "PINTERP.spad" 1226633 1226652 1227001 1227006) (-834 "PID.spad" 1225607 1225615 1226559 1226628) (-833 "PICOERCE.spad" 1225264 1225274 1225597 1225602) (-832 "PI.spad" 1224881 1224889 1225238 1225259) (-831 "PGROEB.spad" 1223490 1223504 1224871 1224876) (-830 "PGE.spad" 1215163 1215171 1223480 1223485) (-829 "PGCD.spad" 1214117 1214134 1215153 1215158) (-828 "PFRPAC.spad" 1213266 1213276 1214107 1214112) (-827 "PFR.spad" 1209969 1209979 1213168 1213261) (-826 "PFOTOOLS.spad" 1209227 1209243 1209959 1209964) (-825 "PFOQ.spad" 1208597 1208615 1209217 1209222) (-824 "PFO.spad" 1208016 1208043 1208587 1208592) (-823 "PFECAT.spad" 1205726 1205734 1207942 1208011) (-822 "PFECAT.spad" 1203464 1203474 1205682 1205687) (-821 "PFBRU.spad" 1201352 1201364 1203454 1203459) (-820 "PFBR.spad" 1198912 1198935 1201342 1201347) (-819 "PF.spad" 1198486 1198498 1198717 1198810) (-818 "PERMGRP.spad" 1193256 1193266 1198476 1198481) (-817 "PERMCAT.spad" 1191917 1191927 1193236 1193251) (-816 "PERMAN.spad" 1190473 1190487 1191907 1191912) (-815 "PERM.spad" 1186283 1186293 1190306 1190321) (-814 "PENDTREE.spad" 1185636 1185646 1185916 1185921) (-813 "PDSPC.spad" 1184449 1184459 1185626 1185631) (-812 "PDSPC.spad" 1183260 1183272 1184439 1184444) (-811 "PDRING.spad" 1183102 1183112 1183240 1183255) (-810 "PDMOD.spad" 1182918 1182930 1183070 1183097) (-809 "PDECOMP.spad" 1182388 1182405 1182908 1182913) (-808 "PDDOM.spad" 1181826 1181839 1182378 1182383) (-807 "PDDOM.spad" 1181262 1181277 1181816 1181821) (-806 "PCOMP.spad" 1181115 1181128 1181252 1181257) (-805 "PBWLB.spad" 1179713 1179730 1181105 1181110) (-804 "PATTERN2.spad" 1179451 1179463 1179703 1179708) (-803 "PATTERN1.spad" 1177795 1177811 1179441 1179446) (-802 "PATTERN.spad" 1172370 1172380 1177785 1177790) (-801 "PATRES2.spad" 1172042 1172056 1172360 1172365) (-800 "PATRES.spad" 1169625 1169637 1172032 1172037) (-799 "PATMATCH.spad" 1167866 1167897 1169377 1169382) (-798 "PATMAB.spad" 1167295 1167305 1167856 1167861) (-797 "PATLRES.spad" 1166381 1166395 1167285 1167290) (-796 "PATAB.spad" 1166145 1166155 1166371 1166376) (-795 "PARTPERM.spad" 1164201 1164209 1166135 1166140) (-794 "PARSURF.spad" 1163635 1163663 1164191 1164196) (-793 "PARSU2.spad" 1163432 1163448 1163625 1163630) (-792 "script-parser.spad" 1162952 1162960 1163422 1163427) (-791 "PARSCURV.spad" 1162386 1162414 1162942 1162947) (-790 "PARSC2.spad" 1162177 1162193 1162376 1162381) (-789 "PARPCURV.spad" 1161639 1161667 1162167 1162172) (-788 "PARPC2.spad" 1161430 1161446 1161629 1161634) (-787 "PARAMAST.spad" 1160558 1160566 1161420 1161425) (-786 "PAN2EXPR.spad" 1159970 1159978 1160548 1160553) (-785 "PALETTE.spad" 1159084 1159092 1159960 1159965) (-784 "PAIR.spad" 1158158 1158171 1158727 1158732) (-783 "PADICRC.spad" 1155563 1155581 1156726 1156819) (-782 "PADICRAT.spad" 1153623 1153635 1153836 1153929) (-781 "PADICCT.spad" 1152172 1152184 1153549 1153618) (-780 "PADIC.spad" 1151875 1151887 1152098 1152167) (-779 "PADEPAC.spad" 1150564 1150583 1151865 1151870) (-778 "PADE.spad" 1149316 1149332 1150554 1150559) (-777 "OWP.spad" 1148564 1148594 1149174 1149241) (-776 "OVERSET.spad" 1148137 1148145 1148554 1148559) (-775 "OVAR.spad" 1147918 1147941 1148127 1148132) (-774 "OUTFORM.spad" 1137326 1137334 1147908 1147913) (-773 "OUTBFILE.spad" 1136760 1136768 1137316 1137321) (-772 "OUTBCON.spad" 1135830 1135838 1136750 1136755) (-771 "OUTBCON.spad" 1134898 1134908 1135820 1135825) (-770 "OUT.spad" 1134016 1134024 1134888 1134893) (-769 "OSI.spad" 1133491 1133499 1134006 1134011) (-768 "OSGROUP.spad" 1133409 1133417 1133481 1133486) (-767 "ORTHPOL.spad" 1131920 1131930 1133352 1133357) (-766 "OREUP.spad" 1131414 1131442 1131641 1131680) (-765 "ORESUP.spad" 1130756 1130780 1131135 1131174) (-764 "OREPCTO.spad" 1128645 1128657 1130676 1130681) (-763 "OREPCAT.spad" 1122832 1122842 1128601 1128640) (-762 "OREPCAT.spad" 1116909 1116921 1122680 1122685) (-761 "ORDTYPE.spad" 1116146 1116154 1116899 1116904) (-760 "ORDTYPE.spad" 1115381 1115391 1116136 1116141) (-759 "ORDSTRCT.spad" 1115167 1115182 1115330 1115335) (-758 "ORDSET.spad" 1114867 1114875 1115157 1115162) (-757 "ORDRING.spad" 1114684 1114692 1114847 1114862) (-756 "ORDMON.spad" 1114539 1114547 1114674 1114679) (-755 "ORDFUNS.spad" 1113671 1113687 1114529 1114534) (-754 "ORDFIN.spad" 1113491 1113499 1113661 1113666) (-753 "ORDCOMP2.spad" 1112784 1112796 1113481 1113486) (-752 "ORDCOMP.spad" 1111310 1111320 1112392 1112421) (-751 "OPSIG.spad" 1110972 1110980 1111300 1111305) (-750 "OPQUERY.spad" 1110553 1110561 1110962 1110967) (-749 "OPERCAT.spad" 1110019 1110029 1110543 1110548) (-748 "OPERCAT.spad" 1109483 1109495 1110009 1110014) (-747 "OP.spad" 1109225 1109235 1109305 1109372) (-746 "ONECOMP2.spad" 1108649 1108661 1109215 1109220) (-745 "ONECOMP.spad" 1107455 1107465 1108257 1108286) (-744 "OMSAGG.spad" 1107267 1107277 1107435 1107450) (-743 "OMLO.spad" 1106700 1106712 1107153 1107192) (-742 "OINTDOM.spad" 1106463 1106471 1106626 1106695) (-741 "OFMONOID.spad" 1104602 1104612 1106419 1106424) (-740 "ODVAR.spad" 1103863 1103873 1104592 1104597) (-739 "ODR.spad" 1103507 1103533 1103675 1103824) (-738 "ODPOL.spad" 1101155 1101165 1101495 1101622) (-737 "ODP.spad" 1090642 1090662 1091015 1091100) (-736 "ODETOOLS.spad" 1089291 1089310 1090632 1090637) (-735 "ODESYS.spad" 1086985 1087002 1089281 1089286) (-734 "ODERTRIC.spad" 1083018 1083035 1086942 1086947) (-733 "ODERED.spad" 1082417 1082441 1083008 1083013) (-732 "ODERAT.spad" 1080050 1080067 1082407 1082412) (-731 "ODEPRRIC.spad" 1077143 1077165 1080040 1080045) (-730 "ODEPRIM.spad" 1074541 1074563 1077133 1077138) (-729 "ODEPAL.spad" 1073927 1073951 1074531 1074536) (-728 "ODEINT.spad" 1073362 1073378 1073917 1073922) (-727 "ODEEF.spad" 1068857 1068873 1073352 1073357) (-726 "ODECONST.spad" 1068402 1068420 1068847 1068852) (-725 "OCTCT2.spad" 1068043 1068061 1068392 1068397) (-724 "OCT.spad" 1066358 1066368 1067072 1067111) (-723 "OCAMON.spad" 1066206 1066214 1066348 1066353) (-722 "OC.spad" 1064002 1064012 1066162 1066201) (-721 "OC.spad" 1061537 1061549 1063699 1063704) (-720 "OASGP.spad" 1061352 1061360 1061527 1061532) (-719 "OAMONS.spad" 1060874 1060882 1061342 1061347) (-718 "OAMON.spad" 1060632 1060640 1060864 1060869) (-717 "OAMON.spad" 1060388 1060398 1060622 1060627) (-716 "OAGROUP.spad" 1059926 1059934 1060378 1060383) (-715 "OAGROUP.spad" 1059462 1059472 1059916 1059921) (-714 "NUMTUBE.spad" 1059053 1059069 1059452 1059457) (-713 "NUMQUAD.spad" 1047029 1047037 1059043 1059048) (-712 "NUMODE.spad" 1038381 1038389 1047019 1047024) (-711 "NUMFMT.spad" 1037221 1037229 1038371 1038376) (-710 "NUMERIC.spad" 1029336 1029346 1037027 1037032) (-709 "NTSCAT.spad" 1027866 1027882 1029326 1029331) (-708 "NTPOLFN.spad" 1027443 1027453 1027809 1027814) (-707 "NSUP2.spad" 1026835 1026847 1027433 1027438) (-706 "NSUP.spad" 1020272 1020282 1024692 1024845) (-705 "NSMP.spad" 1017184 1017203 1017476 1017603) (-704 "NREP.spad" 1015586 1015600 1017174 1017179) (-703 "NPCOEF.spad" 1014832 1014852 1015576 1015581) (-702 "NORMRETR.spad" 1014430 1014469 1014822 1014827) (-701 "NORMPK.spad" 1012372 1012391 1014420 1014425) (-700 "NORMMA.spad" 1012060 1012086 1012362 1012367) (-699 "NONE1.spad" 1011736 1011746 1012050 1012055) (-698 "NONE.spad" 1011477 1011485 1011726 1011731) (-697 "NODE1.spad" 1010964 1010980 1011467 1011472) (-696 "NNI.spad" 1009859 1009867 1010938 1010959) (-695 "NLINSOL.spad" 1008485 1008495 1009849 1009854) (-694 "NFINTBAS.spad" 1006045 1006062 1008475 1008480) (-693 "NETCLT.spad" 1006019 1006030 1006035 1006040) (-692 "NCODIV.spad" 1004243 1004259 1006009 1006014) (-691 "NCNTFRAC.spad" 1003885 1003899 1004233 1004238) (-690 "NCEP.spad" 1002051 1002065 1003875 1003880) (-689 "NASRING.spad" 1001655 1001663 1002041 1002046) (-688 "NASRING.spad" 1001257 1001267 1001645 1001650) (-687 "NARNG.spad" 1000657 1000665 1001247 1001252) (-686 "NARNG.spad" 1000055 1000065 1000647 1000652) (-685 "NAALG.spad" 999620 999630 1000023 1000050) (-684 "NAALG.spad" 999205 999217 999610 999615) (-683 "MULTSQFR.spad" 996163 996180 999195 999200) (-682 "MULTFACT.spad" 995546 995563 996153 996158) (-681 "MTSCAT.spad" 993640 993661 995444 995541) (-680 "MTHING.spad" 993299 993309 993630 993635) (-679 "MSYSCMD.spad" 992733 992741 993289 993294) (-678 "MSETAGG.spad" 992590 992600 992713 992728) (-677 "MSET.spad" 990400 990410 992147 992162) (-676 "MRING.spad" 987377 987389 990108 990175) (-675 "MRF2.spad" 986939 986953 987367 987372) (-674 "MRATFAC.spad" 986485 986502 986929 986934) (-673 "MPRFF.spad" 984525 984544 986475 986480) (-672 "MPOLY.spad" 982329 982344 982688 982815) (-671 "MPCPF.spad" 981593 981612 982319 982324) (-670 "MPC3.spad" 981410 981450 981583 981588) (-669 "MPC2.spad" 981064 981097 981400 981405) (-668 "MONOTOOL.spad" 979415 979432 981054 981059) (-667 "catdef.spad" 978848 978859 979069 979410) (-666 "catdef.spad" 978246 978257 978502 978843) (-665 "MONOID.spad" 977567 977575 978236 978241) (-664 "MONOID.spad" 976886 976896 977557 977562) (-663 "MONOGEN.spad" 975634 975647 976746 976881) (-662 "MONOGEN.spad" 974404 974419 975518 975523) (-661 "MONADWU.spad" 972484 972492 974394 974399) (-660 "MONADWU.spad" 970562 970572 972474 972479) (-659 "MONAD.spad" 969722 969730 970552 970557) (-658 "MONAD.spad" 968880 968890 969712 969717) (-657 "MOEBIUS.spad" 967616 967630 968860 968875) (-656 "MODULE.spad" 967486 967496 967584 967611) (-655 "MODULE.spad" 967376 967388 967476 967481) (-654 "MODRING.spad" 966711 966750 967356 967371) (-653 "MODOP.spad" 965368 965380 966533 966600) (-652 "MODMONOM.spad" 965099 965117 965358 965363) (-651 "MODMON.spad" 962169 962181 962884 963037) (-650 "MODFIELD.spad" 961531 961570 962071 962164) (-649 "MMLFORM.spad" 960391 960399 961521 961526) (-648 "MMAP.spad" 960133 960167 960381 960386) (-647 "MLO.spad" 958592 958602 960089 960128) (-646 "MLIFT.spad" 957204 957221 958582 958587) (-645 "MKUCFUNC.spad" 956739 956757 957194 957199) (-644 "MKRECORD.spad" 956327 956340 956729 956734) (-643 "MKFUNC.spad" 955734 955744 956317 956322) (-642 "MKFLCFN.spad" 954702 954712 955724 955729) (-641 "MKBCFUNC.spad" 954197 954215 954692 954697) (-640 "MHROWRED.spad" 952708 952718 954187 954192) (-639 "MFINFACT.spad" 952108 952130 952698 952703) (-638 "MESH.spad" 949903 949911 952098 952103) (-637 "MDDFACT.spad" 948122 948132 949893 949898) (-636 "MDAGG.spad" 947423 947433 948112 948117) (-635 "MCDEN.spad" 946633 946645 947413 947418) (-634 "MAYBE.spad" 945933 945944 946623 946628) (-633 "MATSTOR.spad" 943249 943259 945923 945928) (-632 "MATRIX.spad" 942050 942060 942534 942539) (-631 "MATLIN.spad" 939418 939442 941934 941939) (-630 "MATCAT2.spad" 938700 938748 939408 939413) (-629 "MATCAT.spad" 930418 930440 938690 938695) (-628 "MATCAT.spad" 921986 922010 930260 930265) (-627 "MAPPKG3.spad" 920901 920915 921976 921981) (-626 "MAPPKG2.spad" 920239 920251 920891 920896) (-625 "MAPPKG1.spad" 919067 919077 920229 920234) (-624 "MAPPAST.spad" 918406 918414 919057 919062) (-623 "MAPHACK3.spad" 918218 918232 918396 918401) (-622 "MAPHACK2.spad" 917987 917999 918208 918213) (-621 "MAPHACK1.spad" 917631 917641 917977 917982) (-620 "MAGMA.spad" 915437 915454 917621 917626) (-619 "MACROAST.spad" 915032 915040 915427 915432) (-618 "LZSTAGG.spad" 912286 912296 915022 915027) (-617 "LZSTAGG.spad" 909538 909550 912276 912281) (-616 "LWORD.spad" 906283 906300 909528 909533) (-615 "LSTAST.spad" 906067 906075 906273 906278) (-614 "LSQM.spad" 904357 904371 904751 904790) (-613 "LSPP.spad" 903892 903909 904347 904352) (-612 "LSMP1.spad" 901735 901749 903882 903887) (-611 "LSMP.spad" 900592 900620 901725 901730) (-610 "LSAGG.spad" 900283 900293 900582 900587) (-609 "LSAGG.spad" 899972 899984 900273 900278) (-608 "LPOLY.spad" 898934 898953 899828 899897) (-607 "LPEFRAC.spad" 898205 898215 898924 898929) (-606 "LOGIC.spad" 897807 897815 898195 898200) (-605 "LOGIC.spad" 897407 897417 897797 897802) (-604 "LODOOPS.spad" 896337 896349 897397 897402) (-603 "LODOF.spad" 895383 895400 896294 896299) (-602 "LODOCAT.spad" 894049 894059 895339 895378) (-601 "LODOCAT.spad" 892713 892725 894005 894010) (-600 "LODO2.spad" 892027 892039 892434 892473) (-599 "LODO1.spad" 891468 891478 891748 891787) (-598 "LODO.spad" 890893 890909 891189 891228) (-597 "LODEEF.spad" 889695 889713 890883 890888) (-596 "LO.spad" 889096 889110 889629 889656) (-595 "LNAGG.spad" 885283 885293 889086 889091) (-594 "LNAGG.spad" 881406 881418 885211 885216) (-593 "LMOPS.spad" 878174 878191 881396 881401) (-592 "LMODULE.spad" 877958 877968 878164 878169) (-591 "LMDICT.spad" 877200 877210 877448 877453) (-590 "LLINSET.spad" 876907 876917 877190 877195) (-589 "LITERAL.spad" 876813 876824 876897 876902) (-588 "LIST3.spad" 876124 876138 876803 876808) (-587 "LIST2MAP.spad" 873051 873063 876114 876119) (-586 "LIST2.spad" 871753 871765 873041 873046) (-585 "LIST.spad" 869332 869342 870675 870680) (-584 "LINSET.spad" 869111 869121 869322 869327) (-583 "LINFORM.spad" 868574 868586 869079 869106) (-582 "LINEXP.spad" 867317 867327 868564 868569) (-581 "LINELT.spad" 866688 866700 867200 867227) (-580 "LINDEP.spad" 865537 865549 866600 866605) (-579 "LINBASIS.spad" 865173 865188 865527 865532) (-578 "LIMITRF.spad" 863120 863130 865163 865168) (-577 "LIMITPS.spad" 862030 862043 863110 863115) (-576 "LIECAT.spad" 861514 861524 861956 862025) (-575 "LIECAT.spad" 861026 861038 861470 861475) (-574 "LIE.spad" 859030 859042 860304 860446) (-573 "LIB.spad" 856853 856861 857299 857304) (-572 "LGROBP.spad" 854206 854225 856843 856848) (-571 "LFCAT.spad" 853265 853273 854196 854201) (-570 "LF.spad" 852220 852236 853255 853260) (-569 "LEXTRIPK.spad" 847843 847858 852210 852215) (-568 "LEXP.spad" 845862 845889 847823 847838) (-567 "LETAST.spad" 845561 845569 845852 845857) (-566 "LEADCDET.spad" 843967 843984 845551 845556) (-565 "LAZM3PK.spad" 842711 842733 843957 843962) (-564 "LAUPOL.spad" 841378 841391 842278 842347) (-563 "LAPLACE.spad" 840961 840977 841368 841373) (-562 "LALG.spad" 840737 840747 840941 840956) (-561 "LALG.spad" 840521 840533 840727 840732) (-560 "LA.spad" 839961 839975 840443 840482) (-559 "KVTFROM.spad" 839704 839714 839951 839956) (-558 "KTVLOGIC.spad" 839248 839256 839694 839699) (-557 "KRCFROM.spad" 838994 839004 839238 839243) (-556 "KOVACIC.spad" 837725 837742 838984 838989) (-555 "KONVERT.spad" 837447 837457 837715 837720) (-554 "KOERCE.spad" 837184 837194 837437 837442) (-553 "KERNEL2.spad" 836887 836899 837174 837179) (-552 "KERNEL.spad" 835607 835617 836736 836741) (-551 "KDAGG.spad" 834726 834748 835597 835602) (-550 "KDAGG.spad" 833843 833867 834716 834721) (-549 "KAFILE.spad" 832219 832235 832454 832459) (-548 "JVMOP.spad" 832132 832140 832209 832214) (-547 "JVMMDACC.spad" 831186 831194 832122 832127) (-546 "JVMFDACC.spad" 830502 830510 831176 831181) (-545 "JVMCSTTG.spad" 829231 829239 830492 830497) (-544 "JVMCFACC.spad" 828677 828685 829221 829226) (-543 "JVMBCODE.spad" 828588 828596 828667 828672) (-542 "JORDAN.spad" 826405 826417 827866 828008) (-541 "JOINAST.spad" 826107 826115 826395 826400) (-540 "IXAGG.spad" 824240 824264 826097 826102) (-539 "IXAGG.spad" 822175 822201 824034 824039) (-538 "ITUPLE.spad" 821351 821361 822165 822170) (-537 "ITRIGMNP.spad" 820198 820217 821341 821346) (-536 "ITFUN3.spad" 819704 819718 820188 820193) (-535 "ITFUN2.spad" 819448 819460 819694 819699) (-534 "ITFORM.spad" 818803 818811 819438 819443) (-533 "ITAYLOR.spad" 816797 816812 818667 818764) (-532 "ISUPS.spad" 809246 809261 815783 815880) (-531 "ISUMP.spad" 808747 808763 809236 809241) (-530 "ISAST.spad" 808466 808474 808737 808742) (-529 "IRURPK.spad" 807183 807202 808456 808461) (-528 "IRSN.spad" 805187 805195 807173 807178) (-527 "IRRF2F.spad" 803680 803690 805143 805148) (-526 "IRREDFFX.spad" 803281 803292 803670 803675) (-525 "IROOT.spad" 801620 801630 803271 803276) (-524 "IRFORM.spad" 800944 800952 801610 801615) (-523 "IR2F.spad" 800158 800174 800934 800939) (-522 "IR2.spad" 799186 799202 800148 800153) (-521 "IR.spad" 797022 797036 799068 799095) (-520 "IPRNTPK.spad" 796782 796790 797012 797017) (-519 "IPF.spad" 796347 796359 796587 796680) (-518 "IPADIC.spad" 796116 796142 796273 796342) (-517 "IP4ADDR.spad" 795673 795681 796106 796111) (-516 "IOMODE.spad" 795195 795203 795663 795668) (-515 "IOBFILE.spad" 794580 794588 795185 795190) (-514 "IOBCON.spad" 794445 794453 794570 794575) (-513 "INVLAPLA.spad" 794094 794110 794435 794440) (-512 "INTTR.spad" 787488 787505 794084 794089) (-511 "INTTOOLS.spad" 785296 785312 787115 787120) (-510 "INTSLPE.spad" 784624 784632 785286 785291) (-509 "INTRVL.spad" 784190 784200 784538 784619) (-508 "INTRF.spad" 782622 782636 784180 784185) (-507 "INTRET.spad" 782054 782064 782612 782617) (-506 "INTRAT.spad" 780789 780806 782044 782049) (-505 "INTPM.spad" 779252 779268 780510 780515) (-504 "INTPAF.spad" 777128 777146 779181 779186) (-503 "INTHERTR.spad" 776402 776419 777118 777123) (-502 "INTHERAL.spad" 776072 776096 776392 776397) (-501 "INTHEORY.spad" 772511 772519 776062 776067) (-500 "INTG0.spad" 766275 766293 772440 772445) (-499 "INTFACT.spad" 765342 765352 766265 766270) (-498 "INTEF.spad" 763753 763769 765332 765337) (-497 "INTDOM.spad" 762376 762384 763679 763748) (-496 "INTDOM.spad" 761061 761071 762366 762371) (-495 "INTCAT.spad" 759328 759338 760975 761056) (-494 "INTBIT.spad" 758835 758843 759318 759323) (-493 "INTALG.spad" 758023 758050 758825 758830) (-492 "INTAF.spad" 757523 757539 758013 758018) (-491 "INTABL.spad" 755340 755371 755503 755508) (-490 "INT8.spad" 755220 755228 755330 755335) (-489 "INT64.spad" 755099 755107 755210 755215) (-488 "INT32.spad" 754978 754986 755089 755094) (-487 "INT16.spad" 754857 754865 754968 754973) (-486 "INT.spad" 754383 754391 754723 754852) (-485 "INS.spad" 751886 751894 754285 754378) (-484 "INS.spad" 749475 749485 751876 751881) (-483 "INPSIGN.spad" 748945 748958 749465 749470) (-482 "INPRODPF.spad" 748041 748060 748935 748940) (-481 "INPRODFF.spad" 747129 747153 748031 748036) (-480 "INNMFACT.spad" 746104 746121 747119 747124) (-479 "INMODGCD.spad" 745608 745638 746094 746099) (-478 "INFSP.spad" 743905 743927 745598 745603) (-477 "INFPROD0.spad" 742985 743004 743895 743900) (-476 "INFORM1.spad" 742610 742620 742975 742980) (-475 "INFORM.spad" 739821 739829 742600 742605) (-474 "INFINITY.spad" 739373 739381 739811 739816) (-473 "INETCLTS.spad" 739350 739358 739363 739368) (-472 "INEP.spad" 737896 737918 739340 739345) (-471 "INDE.spad" 737545 737562 737806 737811) (-470 "INCRMAPS.spad" 736982 736992 737535 737540) (-469 "INBFILE.spad" 736078 736086 736972 736977) (-468 "INBFF.spad" 731928 731939 736068 736073) (-467 "INBCON.spad" 730194 730202 731918 731923) (-466 "INBCON.spad" 728458 728468 730184 730189) (-465 "INAST.spad" 728119 728127 728448 728453) (-464 "IMPTAST.spad" 727827 727835 728109 728114) (-463 "IMATQF.spad" 726893 726937 727755 727760) (-462 "IMATLIN.spad" 725486 725510 726821 726826) (-461 "IFF.spad" 724899 724915 725170 725263) (-460 "IFAST.spad" 724513 724521 724889 724894) (-459 "IFARRAY.spad" 721737 721752 723435 723440) (-458 "IFAMON.spad" 721599 721616 721693 721698) (-457 "IEVALAB.spad" 721012 721024 721589 721594) (-456 "IEVALAB.spad" 720423 720437 721002 721007) (-455 "indexedp.spad" 719979 719991 720413 720418) (-454 "IDPOAMS.spad" 719657 719669 719891 719896) (-453 "IDPOAM.spad" 719299 719311 719569 719574) (-452 "IDPO.spad" 718713 718725 719211 719216) (-451 "IDPC.spad" 717428 717440 718703 718708) (-450 "IDPAM.spad" 717095 717107 717340 717345) (-449 "IDPAG.spad" 716764 716776 717007 717012) (-448 "IDENT.spad" 716416 716424 716754 716759) (-447 "catdef.spad" 716187 716198 716299 716411) (-446 "IDECOMP.spad" 713426 713444 716177 716182) (-445 "IDEAL.spad" 708388 708427 713374 713379) (-444 "ICDEN.spad" 707601 707617 708378 708383) (-443 "ICARD.spad" 706994 707002 707591 707596) (-442 "IBPTOOLS.spad" 705601 705618 706984 706989) (-441 "boolean.spad" 704893 704906 705026 705031) (-440 "IBATOOL.spad" 701878 701897 704883 704888) (-439 "IBACHIN.spad" 700385 700400 701868 701873) (-438 "array2.spad" 699892 699914 700079 700084) (-437 "IARRAY1.spad" 698668 698683 698814 698819) (-436 "IAN.spad" 697050 697058 698499 698592) (-435 "IALGFACT.spad" 696661 696694 697040 697045) (-434 "HYPCAT.spad" 696085 696093 696651 696656) (-433 "HYPCAT.spad" 695507 695517 696075 696080) (-432 "HOSTNAME.spad" 695323 695331 695497 695502) (-431 "HOMOTOP.spad" 695066 695076 695313 695318) (-430 "HOAGG.spad" 694766 694776 695056 695061) (-429 "HOAGG.spad" 694288 694300 694580 694585) (-428 "HEXADEC.spad" 692513 692521 692878 692971) (-427 "HEUGCD.spad" 691604 691615 692503 692508) (-426 "HELLFDIV.spad" 691210 691234 691594 691599) (-425 "HEAP.spad" 690689 690699 690904 690909) (-424 "HEADAST.spad" 690230 690238 690679 690684) (-423 "HDP.spad" 679713 679729 680090 680175) (-422 "HDMP.spad" 677260 677275 677876 678003) (-421 "HB.spad" 675535 675543 677250 677255) (-420 "HASHTBL.spad" 673304 673335 673515 673520) (-419 "HASAST.spad" 673020 673028 673294 673299) (-418 "HACKPI.spad" 672511 672519 672922 673015) (-417 "GTSET.spad" 671299 671315 672006 672011) (-416 "GSTBL.spad" 669105 669140 669279 669284) (-415 "GSERIES.spad" 666477 666504 667296 667445) (-414 "GROUP.spad" 665750 665758 666457 666472) (-413 "GROUP.spad" 665031 665041 665740 665745) (-412 "GROEBSOL.spad" 663525 663546 665021 665026) (-411 "GRMOD.spad" 662106 662118 663515 663520) (-410 "GRMOD.spad" 660685 660699 662096 662101) (-409 "GRIMAGE.spad" 653598 653606 660675 660680) (-408 "GRDEF.spad" 651977 651985 653588 653593) (-407 "GRAY.spad" 650448 650456 651967 651972) (-406 "GRALG.spad" 649543 649555 650438 650443) (-405 "GRALG.spad" 648636 648650 649533 649538) (-404 "GPOLSET.spad" 647955 647978 648167 648172) (-403 "GOSPER.spad" 647232 647250 647945 647950) (-402 "GMODPOL.spad" 646380 646407 647200 647227) (-401 "GHENSEL.spad" 645463 645477 646370 646375) (-400 "GENUPS.spad" 641756 641769 645453 645458) (-399 "GENUFACT.spad" 641333 641343 641746 641751) (-398 "GENPGCD.spad" 640935 640952 641323 641328) (-397 "GENMFACT.spad" 640387 640406 640925 640930) (-396 "GENEEZ.spad" 638346 638359 640377 640382) (-395 "GDMP.spad" 635735 635752 636509 636636) (-394 "GCNAALG.spad" 629658 629685 635529 635596) (-393 "GCDDOM.spad" 628850 628858 629584 629653) (-392 "GCDDOM.spad" 628104 628114 628840 628845) (-391 "GBINTERN.spad" 624124 624162 628094 628099) (-390 "GBF.spad" 619907 619945 624114 624119) (-389 "GBEUCLID.spad" 617789 617827 619897 619902) (-388 "GB.spad" 615315 615353 617745 617750) (-387 "GAUSSFAC.spad" 614628 614636 615305 615310) (-386 "GALUTIL.spad" 612954 612964 614584 614589) (-385 "GALPOLYU.spad" 611408 611421 612944 612949) (-384 "GALFACTU.spad" 609621 609640 611398 611403) (-383 "GALFACT.spad" 599834 599845 609611 609616) (-382 "FUNDESC.spad" 599512 599520 599824 599829) (-381 "catdef.spad" 599123 599133 599502 599507) (-380 "FUNCTION.spad" 598972 598984 599113 599118) (-379 "FT.spad" 597272 597280 598962 598967) (-378 "FSUPFACT.spad" 596186 596205 597222 597227) (-377 "FST.spad" 594272 594280 596176 596181) (-376 "FSRED.spad" 593752 593768 594262 594267) (-375 "FSPRMELT.spad" 592618 592634 593709 593714) (-374 "FSPECF.spad" 590709 590725 592608 592613) (-373 "FSINT.spad" 590369 590385 590699 590704) (-372 "FSERIES.spad" 589560 589572 590189 590288) (-371 "FSCINT.spad" 588877 588893 589550 589555) (-370 "FSAGG2.spad" 587612 587628 588867 588872) (-369 "FSAGG.spad" 586753 586763 587592 587607) (-368 "FSAGG.spad" 585832 585844 586673 586678) (-367 "FS2UPS.spad" 580347 580381 585822 585827) (-366 "FS2EXPXP.spad" 579488 579511 580337 580342) (-365 "FS2.spad" 579143 579159 579478 579483) (-364 "FS.spad" 573415 573425 578922 579138) (-363 "FS.spad" 567489 567501 572998 573003) (-362 "FRUTIL.spad" 566443 566453 567479 567484) (-361 "FRNAALG.spad" 561720 561730 566385 566438) (-360 "FRNAALG.spad" 557009 557021 561676 561681) (-359 "FRNAAF2.spad" 556457 556475 556999 557004) (-358 "FRMOD.spad" 555865 555895 556386 556391) (-357 "FRIDEAL2.spad" 555469 555501 555855 555860) (-356 "FRIDEAL.spad" 554694 554715 555449 555464) (-355 "FRETRCT.spad" 554213 554223 554684 554689) (-354 "FRETRCT.spad" 553639 553651 554112 554117) (-353 "FRAMALG.spad" 552019 552032 553595 553634) (-352 "FRAMALG.spad" 550431 550446 552009 552014) (-351 "FRAC2.spad" 550036 550048 550421 550426) (-350 "FRAC.spad" 548023 548033 548410 548583) (-349 "FR2.spad" 547359 547371 548013 548018) (-348 "FR.spad" 541147 541157 546420 546489) (-347 "FPS.spad" 537986 537994 541037 541142) (-346 "FPS.spad" 534853 534863 537906 537911) (-345 "FPC.spad" 533899 533907 534755 534848) (-344 "FPC.spad" 533031 533041 533889 533894) (-343 "FPATMAB.spad" 532793 532803 533021 533026) (-342 "FPARFRAC.spad" 531635 531652 532783 532788) (-341 "FORDER.spad" 531326 531350 531625 531630) (-340 "FNLA.spad" 530750 530772 531294 531321) (-339 "FNCAT.spad" 529345 529353 530740 530745) (-338 "FNAME.spad" 529237 529245 529335 529340) (-337 "FMONOID.spad" 528918 528928 529193 529198) (-336 "FMONCAT.spad" 526087 526097 528908 528913) (-335 "FMCAT.spad" 523763 523781 526055 526082) (-334 "FM1.spad" 523128 523140 523697 523724) (-333 "FM.spad" 522743 522755 522982 523009) (-332 "FLOATRP.spad" 520486 520500 522733 522738) (-331 "FLOATCP.spad" 517925 517939 520476 520481) (-330 "FLOAT.spad" 515016 515024 517791 517920) (-329 "FLINEXP.spad" 514738 514748 515006 515011) (-328 "FLINEXP.spad" 514417 514429 514687 514692) (-327 "FLASORT.spad" 513743 513755 514407 514412) (-326 "FLALG.spad" 511413 511432 513669 513738) (-325 "FLAGG2.spad" 510130 510146 511403 511408) (-324 "FLAGG.spad" 507206 507216 510120 510125) (-323 "FLAGG.spad" 504147 504159 507063 507068) (-322 "FINRALG.spad" 502232 502245 504103 504142) (-321 "FINRALG.spad" 500243 500258 502116 502121) (-320 "FINITE.spad" 499395 499403 500233 500238) (-319 "FINITE.spad" 498545 498555 499385 499390) (-318 "aggcat.spad" 495475 495485 498535 498540) (-317 "FINAGG.spad" 492370 492382 495432 495437) (-316 "FINAALG.spad" 481555 481565 492312 492365) (-315 "FINAALG.spad" 470752 470764 481511 481516) (-314 "FILECAT.spad" 469286 469303 470742 470747) (-313 "FILE.spad" 468869 468879 469276 469281) (-312 "FIELD.spad" 468275 468283 468771 468864) (-311 "FIELD.spad" 467767 467777 468265 468270) (-310 "FGROUP.spad" 466430 466440 467747 467762) (-309 "FGLMICPK.spad" 465225 465240 466420 466425) (-308 "FFX.spad" 464611 464626 464944 465037) (-307 "FFSLPE.spad" 464122 464143 464601 464606) (-306 "FFPOLY2.spad" 463182 463199 464112 464117) (-305 "FFPOLY.spad" 454524 454535 463172 463177) (-304 "FFP.spad" 453932 453952 454243 454336) (-303 "FFNBX.spad" 452455 452475 453651 453744) (-302 "FFNBP.spad" 450979 450996 452174 452267) (-301 "FFNB.spad" 449447 449468 450663 450756) (-300 "FFINTBAS.spad" 446961 446980 449437 449442) (-299 "FFIELDC.spad" 444546 444554 446863 446956) (-298 "FFIELDC.spad" 442217 442227 444536 444541) (-297 "FFHOM.spad" 440989 441006 442207 442212) (-296 "FFF.spad" 438432 438443 440979 440984) (-295 "FFCGX.spad" 437290 437310 438151 438244) (-294 "FFCGP.spad" 436190 436210 437009 437102) (-293 "FFCG.spad" 434985 435006 435874 435967) (-292 "FFCAT2.spad" 434732 434772 434975 434980) (-291 "FFCAT.spad" 427897 427919 434571 434727) (-290 "FFCAT.spad" 421141 421165 427817 427822) (-289 "FF.spad" 420592 420608 420825 420918) (-288 "FEVALAB.spad" 420300 420310 420582 420587) (-287 "FEVALAB.spad" 419784 419796 420068 420073) (-286 "FDIVCAT.spad" 417880 417904 419774 419779) (-285 "FDIVCAT.spad" 415974 416000 417870 417875) (-284 "FDIV2.spad" 415630 415670 415964 415969) (-283 "FDIV.spad" 415088 415112 415620 415625) (-282 "FCTRDATA.spad" 414096 414104 415078 415083) (-281 "FCOMP.spad" 413475 413485 414086 414091) (-280 "FAXF.spad" 406510 406524 413377 413470) (-279 "FAXF.spad" 399597 399613 406466 406471) (-278 "FARRAY.spad" 397486 397496 398519 398524) (-277 "FAMR.spad" 395630 395642 397384 397481) (-276 "FAMR.spad" 393758 393772 395514 395519) (-275 "FAMONOID.spad" 393442 393452 393712 393717) (-274 "FAMONC.spad" 391762 391774 393432 393437) (-273 "FAGROUP.spad" 391402 391412 391658 391685) (-272 "FACUTIL.spad" 389614 389631 391392 391397) (-271 "FACTFUNC.spad" 388816 388826 389604 389609) (-270 "EXPUPXS.spad" 385708 385731 387007 387156) (-269 "EXPRTUBE.spad" 382996 383004 385698 385703) (-268 "EXPRODE.spad" 380164 380180 382986 382991) (-267 "EXPR2UPS.spad" 376286 376299 380154 380159) (-266 "EXPR2.spad" 375991 376003 376276 376281) (-265 "EXPR.spad" 371636 371646 372350 372637) (-264 "EXPEXPAN.spad" 368581 368606 369213 369306) (-263 "EXITAST.spad" 368317 368325 368571 368576) (-262 "EXIT.spad" 367988 367996 368307 368312) (-261 "EVALCYC.spad" 367448 367462 367978 367983) (-260 "EVALAB.spad" 367028 367038 367438 367443) (-259 "EVALAB.spad" 366606 366618 367018 367023) (-258 "EUCDOM.spad" 364196 364204 366532 366601) (-257 "EUCDOM.spad" 361848 361858 364186 364191) (-256 "ES2.spad" 361361 361377 361838 361843) (-255 "ES1.spad" 360931 360947 361351 361356) (-254 "ES.spad" 353802 353810 360921 360926) (-253 "ES.spad" 346594 346604 353715 353720) (-252 "ERROR.spad" 343921 343929 346584 346589) (-251 "EQTBL.spad" 341692 341714 341901 341906) (-250 "EQ2.spad" 341410 341422 341682 341687) (-249 "EQ.spad" 336316 336326 339111 339217) (-248 "EP.spad" 332642 332652 336306 336311) (-247 "ENV.spad" 331320 331328 332632 332637) (-246 "ENTIRER.spad" 330988 330996 331264 331315) (-245 "ENTIRER.spad" 330700 330710 330978 330983) (-244 "EMR.spad" 329988 330029 330626 330695) (-243 "ELTAGG.spad" 328242 328261 329978 329983) (-242 "ELTAGG.spad" 326432 326453 328170 328175) (-241 "ELTAB.spad" 325907 325920 326422 326427) (-240 "ELFUTS.spad" 325342 325361 325897 325902) (-239 "ELEMFUN.spad" 325031 325039 325332 325337) (-238 "ELEMFUN.spad" 324718 324728 325021 325026) (-237 "ELAGG.spad" 322699 322709 324708 324713) (-236 "ELAGG.spad" 320609 320621 322620 322625) (-235 "ELABOR.spad" 319955 319963 320599 320604) (-234 "ELABEXPR.spad" 318887 318895 319945 319950) (-233 "EFUPXS.spad" 315663 315693 318843 318848) (-232 "EFULS.spad" 312499 312522 315619 315624) (-231 "EFSTRUC.spad" 310514 310530 312489 312494) (-230 "EF.spad" 305290 305306 310504 310509) (-229 "EAB.spad" 303590 303598 305280 305285) (-228 "DVARCAT.spad" 300596 300606 303580 303585) (-227 "DVARCAT.spad" 297600 297612 300586 300591) (-226 "DSMP.spad" 295333 295347 295638 295765) (-225 "DSEXT.spad" 294635 294645 295323 295328) (-224 "DSEXT.spad" 293857 293869 294547 294552) (-223 "DROPT1.spad" 293522 293532 293847 293852) (-222 "DROPT0.spad" 288387 288395 293512 293517) (-221 "DROPT.spad" 282346 282354 288377 288382) (-220 "DRAWPT.spad" 280519 280527 282336 282341) (-219 "DRAWHACK.spad" 279827 279837 280509 280514) (-218 "DRAWCX.spad" 277305 277313 279817 279822) (-217 "DRAWCURV.spad" 276852 276867 277295 277300) (-216 "DRAWCFUN.spad" 266384 266392 276842 276847) (-215 "DRAW.spad" 259260 259273 266374 266379) (-214 "DQAGG.spad" 257460 257470 259250 259255) (-213 "DPOLCAT.spad" 252817 252833 257328 257455) (-212 "DPOLCAT.spad" 248260 248278 252773 252778) (-211 "DPMO.spad" 240813 240829 240951 241145) (-210 "DPMM.spad" 233379 233397 233504 233698) (-209 "DOMTMPLT.spad" 233150 233158 233369 233374) (-208 "DOMCTOR.spad" 232905 232913 233140 233145) (-207 "DOMAIN.spad" 232016 232024 232895 232900) (-206 "DMP.spad" 229609 229624 230179 230306) (-205 "DMEXT.spad" 229476 229486 229577 229604) (-204 "DLP.spad" 228836 228846 229466 229471) (-203 "DLIST.spad" 227154 227164 227758 227763) (-202 "DLAGG.spad" 225571 225581 227144 227149) (-201 "DIVRING.spad" 225113 225121 225515 225566) (-200 "DIVRING.spad" 224699 224709 225103 225108) (-199 "DISPLAY.spad" 222889 222897 224689 224694) (-198 "DIRPROD2.spad" 221707 221725 222879 222884) (-197 "DIRPROD.spad" 210927 210943 211567 211652) (-196 "DIRPCAT.spad" 210222 210238 210837 210922) (-195 "DIRPCAT.spad" 209131 209149 209748 209753) (-194 "DIOSP.spad" 207956 207964 209121 209126) (-193 "DIOPS.spad" 206962 206972 207946 207951) (-192 "DIOPS.spad" 205905 205917 206891 206896) (-191 "catdef.spad" 205763 205771 205895 205900) (-190 "DIFRING.spad" 205601 205609 205743 205758) (-189 "DIFFSPC.spad" 205180 205188 205591 205596) (-188 "DIFFSPC.spad" 204757 204767 205170 205175) (-187 "DIFFMOD.spad" 204246 204256 204725 204752) (-186 "DIFFDOM.spad" 203411 203422 204236 204241) (-185 "DIFFDOM.spad" 202574 202587 203401 203406) (-184 "DIFEXT.spad" 202393 202403 202554 202569) (-183 "DIAGG.spad" 202033 202043 202383 202388) (-182 "DIAGG.spad" 201671 201683 202023 202028) (-181 "DHMATRIX.spad" 200070 200080 201215 201220) (-180 "DFSFUN.spad" 193710 193718 200060 200065) (-179 "DFLOAT.spad" 190317 190325 193600 193705) (-178 "DFINTTLS.spad" 188548 188564 190307 190312) (-177 "DERHAM.spad" 186462 186494 188528 188543) (-176 "DEQUEUE.spad" 185873 185883 186156 186161) (-175 "DEGRED.spad" 185490 185504 185863 185868) (-174 "DEFINTRF.spad" 183072 183082 185480 185485) (-173 "DEFINTEF.spad" 181610 181626 183062 183067) (-172 "DEFAST.spad" 180994 181002 181600 181605) (-171 "DECIMAL.spad" 179223 179231 179584 179677) (-170 "DDFACT.spad" 177044 177061 179213 179218) (-169 "DBLRESP.spad" 176644 176668 177034 177039) (-168 "DBASIS.spad" 176270 176285 176634 176639) (-167 "DBASE.spad" 174934 174944 176260 176265) (-166 "DATAARY.spad" 174420 174433 174924 174929) (-165 "CYCLOTOM.spad" 173926 173934 174410 174415) (-164 "CYCLES.spad" 170712 170720 173916 173921) (-163 "CVMP.spad" 170129 170139 170702 170707) (-162 "CTRIGMNP.spad" 168629 168645 170119 170124) (-161 "CTORKIND.spad" 168232 168240 168619 168624) (-160 "CTORCAT.spad" 167473 167481 168222 168227) (-159 "CTORCAT.spad" 166712 166722 167463 167468) (-158 "CTORCALL.spad" 166301 166311 166702 166707) (-157 "CTOR.spad" 165992 166000 166291 166296) (-156 "CSTTOOLS.spad" 165237 165250 165982 165987) (-155 "CRFP.spad" 159009 159022 165227 165232) (-154 "CRCEAST.spad" 158729 158737 158999 159004) (-153 "CRAPACK.spad" 157796 157806 158719 158724) (-152 "CPMATCH.spad" 157297 157312 157718 157723) (-151 "CPIMA.spad" 157002 157021 157287 157292) (-150 "COORDSYS.spad" 152011 152021 156992 156997) (-149 "CONTOUR.spad" 151438 151446 152001 152006) (-148 "CONTFRAC.spad" 147188 147198 151340 151433) (-147 "CONDUIT.spad" 146946 146954 147178 147183) (-146 "COMRING.spad" 146620 146628 146884 146941) (-145 "COMPPROP.spad" 146138 146146 146610 146615) (-144 "COMPLPAT.spad" 145905 145920 146128 146133) (-143 "COMPLEX2.spad" 145620 145632 145895 145900) (-142 "COMPLEX.spad" 141326 141336 141570 141828) (-141 "COMPILER.spad" 140875 140883 141316 141321) (-140 "COMPFACT.spad" 140477 140491 140865 140870) (-139 "COMPCAT.spad" 138552 138562 140214 140472) (-138 "COMPCAT.spad" 136368 136380 138032 138037) (-137 "COMMUPC.spad" 136116 136134 136358 136363) (-136 "COMMONOP.spad" 135649 135657 136106 136111) (-135 "COMMAAST.spad" 135412 135420 135639 135644) (-134 "COMM.spad" 135223 135231 135402 135407) (-133 "COMBOPC.spad" 134146 134154 135213 135218) (-132 "COMBINAT.spad" 132913 132923 134136 134141) (-131 "COMBF.spad" 130335 130351 132903 132908) (-130 "COLOR.spad" 129172 129180 130325 130330) (-129 "COLONAST.spad" 128838 128846 129162 129167) (-128 "CMPLXRT.spad" 128549 128566 128828 128833) (-127 "CLLCTAST.spad" 128211 128219 128539 128544) (-126 "CLIP.spad" 124319 124327 128201 128206) (-125 "CLIF.spad" 122974 122990 124275 124314) (-124 "CLAGG.spad" 120966 120976 122964 122969) (-123 "CLAGG.spad" 118817 118829 120817 120822) (-122 "CINTSLPE.spad" 118172 118185 118807 118812) (-121 "CHVAR.spad" 116310 116332 118162 118167) (-120 "CHARZ.spad" 116225 116233 116290 116305) (-119 "CHARPOL.spad" 115751 115761 116215 116220) (-118 "CHARNZ.spad" 115513 115521 115731 115746) (-117 "CHAR.spad" 112881 112889 115503 115508) (-116 "CFCAT.spad" 112209 112217 112871 112876) (-115 "CDEN.spad" 111429 111443 112199 112204) (-114 "CCLASS.spad" 109510 109518 110772 110787) (-113 "CATEGORY.spad" 108584 108592 109500 109505) (-112 "CATCTOR.spad" 108475 108483 108574 108579) (-111 "CATAST.spad" 108101 108109 108465 108470) (-110 "CASEAST.spad" 107815 107823 108091 108096) (-109 "CARTEN2.spad" 107205 107232 107805 107810) (-108 "CARTEN.spad" 102957 102981 107195 107200) (-107 "CARD.spad" 100252 100260 102931 102952) (-106 "CAPSLAST.spad" 100034 100042 100242 100247) (-105 "CACHSET.spad" 99658 99666 100024 100029) (-104 "CABMON.spad" 99213 99221 99648 99653) (-103 "BYTEORD.spad" 98888 98896 99203 99208) (-102 "BYTEBUF.spad" 96708 96716 97914 97919) (-101 "BYTE.spad" 96183 96191 96698 96703) (-100 "BTREE.spad" 95282 95292 95816 95821) (-99 "BTOURN.spad" 94314 94323 94915 94920) (-98 "BTCAT.spad" 93894 93903 94304 94309) (-97 "BTCAT.spad" 93472 93483 93884 93889) (-96 "BTAGG.spad" 92961 92968 93462 93467) (-95 "BTAGG.spad" 92448 92457 92951 92956) (-94 "BSTREE.spad" 91216 91225 92081 92086) (-93 "BRILL.spad" 89422 89432 91206 91211) (-92 "BRAGG.spad" 88379 88388 89412 89417) (-91 "BRAGG.spad" 87272 87283 88307 88312) (-90 "BPADICRT.spad" 85332 85343 85578 85671) (-89 "BPADIC.spad" 85005 85016 85258 85327) (-88 "BOUNDZRO.spad" 84662 84678 84995 85000) (-87 "BOP1.spad" 82121 82130 84652 84657) (-86 "BOP.spad" 77264 77271 82111 82116) (-85 "BOOLEAN.spad" 76813 76820 77254 77259) (-84 "BOOLE.spad" 76464 76471 76803 76808) (-83 "BOOLE.spad" 76113 76122 76454 76459) (-82 "BMODULE.spad" 75826 75837 76081 76108) (-81 "BITS.spad" 75037 75044 75251 75256) (-80 "catdef.spad" 74920 74930 75027 75032) (-79 "catdef.spad" 74671 74681 74910 74915) (-78 "BINDING.spad" 74093 74100 74661 74666) (-77 "BINARY.spad" 72328 72335 72683 72776) (-76 "BGAGG.spad" 71658 71667 72318 72323) (-75 "BGAGG.spad" 70986 70997 71648 71653) (-74 "BEZOUT.spad" 70127 70153 70936 70941) (-73 "BBTREE.spad" 67031 67040 69760 69765) (-72 "BASTYPE.spad" 66531 66538 67021 67026) (-71 "BASTYPE.spad" 66029 66038 66521 66526) (-70 "BALFACT.spad" 65489 65501 66019 66024) (-69 "AUTOMOR.spad" 64940 64949 65469 65484) (-68 "ATTREG.spad" 62072 62079 64716 64935) (-67 "ATTRAST.spad" 61789 61796 62062 62067) (-66 "ATRIG.spad" 61259 61266 61779 61784) (-65 "ATRIG.spad" 60727 60736 61249 61254) (-64 "ASTCAT.spad" 60631 60638 60717 60722) (-63 "ASTCAT.spad" 60533 60542 60621 60626) (-62 "ASTACK.spad" 59959 59968 60227 60232) (-61 "ASSOCEQ.spad" 58793 58804 59915 59920) (-60 "ARRAY2.spad" 58338 58347 58487 58492) (-59 "ARRAY12.spad" 57051 57062 58328 58333) (-58 "ARRAY1.spad" 55627 55636 55973 55978) (-57 "ARR2CAT.spad" 51689 51710 55617 55622) (-56 "ARR2CAT.spad" 47749 47772 51679 51684) (-55 "ARITY.spad" 47121 47128 47739 47744) (-54 "APPRULE.spad" 46405 46427 47111 47116) (-53 "APPLYORE.spad" 46024 46037 46395 46400) (-52 "ANY1.spad" 45095 45104 46014 46019) (-51 "ANY.spad" 43946 43953 45085 45090) (-50 "ANTISYM.spad" 42391 42407 43926 43941) (-49 "ANON.spad" 42100 42107 42381 42386) (-48 "AN.spad" 40568 40575 41931 42024) (-47 "AMR.spad" 38753 38764 40466 40563) (-46 "AMR.spad" 36801 36814 38516 38521) (-45 "ALIST.spad" 33046 33067 33396 33401) (-44 "ALGSC.spad" 32181 32207 32918 32971) (-43 "ALGPKG.spad" 27964 27975 32137 32142) (-42 "ALGMFACT.spad" 27157 27171 27954 27959) (-41 "ALGMANIP.spad" 24658 24673 27001 27006) (-40 "ALGFF.spad" 22476 22503 22693 22849) (-39 "ALGFACT.spad" 21595 21605 22466 22471) (-38 "ALGEBRA.spad" 21428 21437 21551 21590) (-37 "ALGEBRA.spad" 21293 21304 21418 21423) (-36 "ALAGG.spad" 20831 20852 21283 21288) (-35 "AHYP.spad" 20212 20219 20821 20826) (-34 "AGG.spad" 19119 19126 20202 20207) (-33 "AGG.spad" 18024 18033 19109 19114) (-32 "AF.spad" 16469 16484 17973 17978) (-31 "ADDAST.spad" 16155 16162 16459 16464) (-30 "ACPLOT.spad" 15032 15039 16145 16150) (-29 "ACFS.spad" 12889 12898 14934 15027) (-28 "ACFS.spad" 10832 10843 12879 12884) (-27 "ACF.spad" 7586 7593 10734 10827) (-26 "ACF.spad" 4426 4435 7576 7581) (-25 "ABELSG.spad" 3967 3974 4416 4421) (-24 "ABELSG.spad" 3506 3515 3957 3962) (-23 "ABELMON.spad" 2934 2941 3496 3501) (-22 "ABELMON.spad" 2360 2369 2924 2929) (-21 "ABELGRP.spad" 2025 2032 2350 2355) (-20 "ABELGRP.spad" 1688 1697 2015 2020) (-19 "A1AGG.spad" 860 869 1678 1683) (-18 "A1AGG.spad" 30 41 850 855))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index f41447fd..c741a623 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,299 +1,309 @@ -(201112 . 3578007600) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +(202597 . 3578010134) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) ((((-350 |#2|) |#3|) . T)) -((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T)) +((((-350 (-486))) |has| (-350 |#2|) (-952 (-350 (-486)))) (((-486)) |has| (-350 |#2|) (-952 (-486))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) -((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T)) +((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-120)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-118)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) (|has| (-350 |#2|) (-190)) ((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))) (OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))) ((((-350 |#2|)) . T)) -((($ (-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) -((((-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) -((((-1091)) |has| (-350 |#2|) (-810 (-1091)))) +((($ (-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) +((((-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) +((((-1092)) |has| (-350 |#2|) (-811 (-1092)))) ((((-350 |#2|)) . T)) (((|#3|) . T)) -((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (((|#1| |#2| |#3|) . T)) -((((-485) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1057 |#2| |#1|)) . T) ((|#1|) . T)) -((((-773)) . T)) -((((-1057 |#2| |#1|)) . T) ((|#1|) . T) (((-485)) . T)) +((((-1058 |#2| |#1|)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-1058 |#2| |#1|)) . T) ((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) (((-1147 (-485)) $) . T) ((|#1| |#2|) . T)) -((((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) (((-1148 (-486)) $) . T) ((|#1| |#2|) . T)) +((((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-551 $) $) . T)) -((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T)) -((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T)) -((((-773)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +((($ $) . T) (((-552 $) $) . T)) +((((-350 (-486))) . T) (((-486)) . T) (((-552 $)) . T)) +((((-1041 (-486) (-552 $))) . T) (($) . T) (((-486)) . T) (((-350 (-486))) . T) (((-552 $)) . T)) +((((-774)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-485)) . T)) +(((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-695)) . T)) -((((-695)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-696)) . T)) +((((-696)) . T)) +((((-774)) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) (((|#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) (((|#1| |#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(|has| |#1| (-1015)) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-918 2)) . T) (((-350 (-485))) . T) (((-773)) . T)) -((((-485)) . T)) -((((-485)) . T)) +(((|#1|) . T)) +((((-919 2)) . T) (((-350 (-486))) . T) (((-774)) . T)) +((((-486)) . T)) +((((-486)) . T)) ((($) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-485) (-85)) . T)) -((((-485) (-85)) . T)) -((((-485) (-85)) . T) (((-1147 (-485)) $) . T)) -((((-474)) . T)) +((((-486) (-85)) . T)) +((((-486) (-85)) . T)) +((((-486) (-85)) . T) (((-1148 (-486)) $) . T)) +((((-475)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-474)) . T)) -((((-773)) . T)) -((((-1091)) . T)) -((((-773)) . T)) +((((-475)) . T)) +((((-774)) . T)) +((((-1092)) . T)) +((((-774)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) +((((-486)) . T) (($) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-89 |#1|)) . T) (((-350 (-486))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-89 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) ((((-89 |#1|)) . T)) -((((-1091) (-89 |#1|)) |has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) +((((-1092) (-89 |#1|)) |has| (-89 |#1|) (-457 (-1092) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|)))) ((((-89 |#1|)) . T)) -((($) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T)) +((($) . T) (((-89 |#1|)) . T) (((-350 (-486))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-485)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-486)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(|has| |#1| (-1015)) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-101)) . T)) ((((-101)) . T)) +((((-486) (-101)) . T)) +((((-1148 (-486)) $) . T) (((-486) (-101)) . T)) +((((-486) (-101)) . T)) ((((-101)) . T)) -((((-485) (-101)) . T)) -((((-1147 (-485)) $) . T) (((-485) (-101)) . T)) -((((-485) (-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-1074)) . T) (((-870 (-101))) . T) (((-773)) . T)) +((((-1075)) . T) (((-871 (-101))) . T) (((-774)) . T)) ((((-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-695)) . T)) -((((-695)) . T)) -((((-773)) . T)) -((((-485) |#3|) . T)) -((((-485) (-695)) . T) ((|#3| (-695)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-696)) . T)) +((((-696)) . T)) +((((-774)) . T)) +((((-486) |#3|) . T)) +((((-486) (-696)) . T) ((|#3| (-696)) . T)) +((((-774)) . T)) (((|#3|) . T)) -((((-584 $)) . T) (((-584 |#3|)) . T) (((-1057 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-695)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-447)) . T)) -((((-157)) . T) (((-773)) . T)) -((((-773)) . T)) +((((-585 $)) . T) (((-585 |#3|)) . T) (((-1058 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-696)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-448)) . T)) +((((-157)) . T) (((-774)) . T)) +((((-774)) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) @@ -303,9 +313,10 @@ ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-584 (-117))) . T) (((-1074)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-117)) . T)) +((((-585 (-117))) . T) (((-1075)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -313,668 +324,676 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-485)) . T)) +(((|#2|) . T) (((-486)) . T)) (((|#2|) . T) (($) . T)) -((((-773)) . T)) -(((|#2|) . T) (($) . T) (((-485)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((((-774)) . T)) +(((|#2|) . T) (($) . T) (((-486)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-299))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-120)) (((|#1|) . T)) -((((-1091)) |has| |#1| (-810 (-1091)))) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((((-1092)) |has| |#1| (-811 (-1092)))) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))) (OR (|has| |#1| (-190)) (|has| |#1| (-299))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((|#1|) . T)) -((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T)) -((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330)))) -(((|#1|) . T)) -((((-485)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T)) -(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1| (-1086 |#1|)) . T)) -(((|#1| (-1086 |#1|)) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -(((|#1| (-1086 |#1|)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T)) +((((-486)) |has| |#1| (-798 (-486))) (((-330)) |has| |#1| (-798 (-330)))) +(((|#1|) . T)) +((((-486)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T)) +(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1| (-1087 |#1|)) . T)) +(((|#1| (-1087 |#1|)) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +(((|#1| (-1087 |#1|)) . T)) (|has| |#1| (-299)) (|has| |#1| (-299)) (|has| |#1| (-299)) (OR (|has| |#1| (-320)) (|has| |#1| (-299))) (((|#1|) . T)) -((((-142 (-179))) |has| |#1| (-934)) (((-142 (-330))) |has| |#1| (-934)) (((-474)) |has| |#1| (-554 (-474))) (((-1086 |#1|)) . T) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330))))) -(-12 (|has| |#1| (-258)) (|has| |#1| (-822))) -(-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) -(|has| |#1| (-1116)) -(|has| |#1| (-1116)) -(|has| |#1| (-1116)) -(|has| |#1| (-1116)) -(|has| |#1| (-1116)) -(|has| |#1| (-1116)) -(((|#1|) . T)) -((((-773)) . T)) -((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T)) -((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T) (($) . T)) -((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T)) -((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-447)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-584 |#1|)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-918 10)) . T) (((-350 (-485))) . T) (((-773)) . T)) -((((-485)) . T)) -((((-485)) . T)) +((((-142 (-179))) |has| |#1| (-935)) (((-142 (-330))) |has| |#1| (-935)) (((-475)) |has| |#1| (-555 (-475))) (((-1087 |#1|)) . T) (((-802 (-486))) |has| |#1| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330))))) +(-12 (|has| |#1| (-258)) (|has| |#1| (-823))) +(-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +(((|#1|) . T)) +((((-774)) . T)) +((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T)) +((((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-486)) . T) (($) . T)) +((((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-486)) . T)) +((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-448)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-585 |#1|)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-919 10)) . T) (((-350 (-486))) . T) (((-774)) . T)) +((((-486)) . T)) +((((-486)) . T)) ((($) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-265 |#1|)) . T)) -((((-773)) . T)) -((((-265 |#1|)) . T) (((-485)) . T) (($) . T)) +((((-774)) . T)) +((((-265 |#1|)) . T) (((-486)) . T) (($) . T)) ((((-265 |#1|)) . T) (($) . T)) -((((-265 |#1|)) . T) (((-485)) . T)) +((((-265 |#1|)) . T) (((-486)) . T)) ((((-265 |#1|)) . T)) ((($) . T)) -((((-485)) . T) (((-350 (-485))) . T)) +((((-486)) . T) (((-350 (-486))) . T)) ((((-330)) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-474)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T)) -((((-773)) . T)) -((((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T) (((-485)) . T)) -(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) -((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T)) -(((|#2|) |has| |#2| (-962))) -((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) -((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) -((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) -(((|#2|) |has| |#2| (-962))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-475)) . T) (((-179)) . T) (((-330)) . T) (((-802 (-330))) . T)) +((((-774)) . T)) +((((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T) (((-486)) . T)) +(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1181 |#2|)) . T)) +(((|#2|) |has| |#2| (-963))) +((((-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) +((((-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) +((($ (-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) +(((|#2|) |has| |#2| (-963))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +((((-486)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (|has| |#2| (-320)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-962))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-1014))) -((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) -(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) -((((-485) |#2|) . T)) -((((-485) |#2|) . T)) -((((-485) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)))) +(((|#2|) |has| |#2| (-963))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-1015))) +((((-486)) OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) +(((|#2|) |has| |#2| (-1015)) (((-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) +((((-486) |#2|) . T)) +((((-486) |#2|) . T)) +((((-486) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-584 |#1|)) . T)) -((((-584 |#1|)) . T)) +((((-585 |#1|)) . T)) +((((-585 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) -((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-585 |#1|)) . T) (((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) +((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) ((($) . T)) -(((|#2| (-197 (-3959 |#1|) (-695))) . T)) +(((|#2| (-197 (-3960 |#1|) (-696))) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(((|#2| (-197 (-3959 |#1|) (-695))) . T)) +(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(((|#2| (-197 (-3960 |#1|) (-696))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| (-197 (-3959 |#1|) (-695)) (-774 |#1|)) . T)) -((((-773)) . T)) -((((-447)) . T)) -((((-157)) . T) (((-773)) . T)) -((((-695) (-1096)) . T)) -((((-773)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962)))) -((((-773)) . T) (((-1180 |#4|)) . T)) -(((|#4|) |has| |#4| (-962))) -((((-1091)) -12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962)))) -((((-1091)) OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962))))) -((($ (-1091)) OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962))))) -(((|#4|) |has| |#4| (-962))) -(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) -((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962))))) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(((|#3|) . T) ((|#2|) . T) (((-485)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962))) -(-12 (|has| |#4| (-190)) (|has| |#4| (-962))) +((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| (-197 (-3960 |#1|) (-696)) (-775 |#1|)) . T)) +((((-774)) . T)) +((((-448)) . T)) +((((-157)) . T) (((-774)) . T)) +((((-696) (-1097)) . T)) +((((-774)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)) (|has| |#4| (-963)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963)))) +((((-774)) . T) (((-1181 |#4|)) . T)) +(((|#4|) |has| |#4| (-963))) +((((-1092)) -12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963)))) +((((-1092)) OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963))))) +((($ (-1092)) OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963))))) +(((|#4|) |has| |#4| (-963))) +(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) +((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963))))) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(((|#3|) . T) ((|#2|) . T) (((-486)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)) (|has| |#4| (-963))) (($) |has| |#4| (-963))) +(-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (|has| |#4| (-320)) (((|#4|) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -(((|#4|) |has| |#4| (-962))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962)))) -(((|#4|) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962)))) -(((|#4|) |has| |#4| (-1014))) -((((-485)) OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1014)) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014)))) -(((|#4|) |has| |#4| (-1014)) (((-485)) -12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014)))) -((((-485) |#4|) . T)) -((((-485) |#4|) . T)) -((((-485) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)))) +(((|#4|) . T)) +(((|#4|) |has| |#4| (-963))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963))) (($) |has| |#4| (-963)) (((-486)) -12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963)))) +(((|#4|) |has| |#4| (-963)) (((-486)) -12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963)))) +(((|#4|) |has| |#4| (-1015))) +((((-486)) OR (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) (|has| |#4| (-963))) ((|#4|) |has| |#4| (-1015)) (((-350 (-486))) -12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015)))) +(((|#4|) |has| |#4| (-1015)) (((-486)) -12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) (((-350 (-486))) -12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015)))) +((((-486) |#4|) . T)) +((((-486) |#4|) . T)) +((((-486) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)))) (((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)))) -(|has| |#4| (-718)) -(|has| |#4| (-718)) -(OR (|has| |#4| (-718)) (|has| |#4| (-757))) -(OR (|has| |#4| (-718)) (|has| |#4| (-757))) -(|has| |#4| (-718)) -(|has| |#4| (-718)) +(|has| |#4| (-719)) +(|has| |#4| (-719)) +(OR (|has| |#4| (-719)) (|has| |#4| (-758))) +(OR (|has| |#4| (-719)) (|has| |#4| (-758))) +(|has| |#4| (-719)) +(|has| |#4| (-719)) (((|#4|) |has| |#4| (-312))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) -((((-773)) . T) (((-1180 |#3|)) . T)) -(((|#3|) |has| |#3| (-962))) -((((-1091)) -12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962)))) -((((-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) -((($ (-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) -(((|#3|) |has| |#3| (-962))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(((|#2|) . T) (((-485)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-962))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +((((-774)) . T) (((-1181 |#3|)) . T)) +(((|#3|) |has| |#3| (-963))) +((((-1092)) -12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963)))) +((((-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) +((($ (-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) +(((|#3|) |has| |#3| (-963))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963))))) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(((|#2|) . T) (((-486)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963))) (($) |has| |#3| (-963))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (|has| |#3| (-320)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) . T)) (((|#3|) . T)) -(((|#3|) |has| |#3| (-962))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-1014))) -((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) -(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) -((((-485) |#3|) . T)) -((((-485) |#3|) . T)) -((((-485) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)))) +(((|#3|) |has| |#3| (-963))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) (($) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-1015))) +((((-486)) OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ((|#3|) |has| |#3| (-1015)) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) +(((|#3|) |has| |#3| (-1015)) (((-486)) -12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) +((((-486) |#3|) . T)) +((((-486) |#3|) . T)) +((((-486) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) +(|has| |#3| (-719)) +(|has| |#3| (-719)) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(|has| |#3| (-719)) +(|has| |#3| (-719)) (((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-470 |#3|) |#3|) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330))))) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) ((|#3|) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ |#3|) . T)) -((((-1091)) |has| |#1| (-810 (-1091))) ((|#3|) . T)) +(((|#1| (-471 |#3|) |#3|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) (((-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330))))) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) ((|#3|) . T)) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ |#3|) . T)) +((((-1092)) |has| |#1| (-811 (-1092))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-822))) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-823))) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-470 |#3|)) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(((|#1| (-471 |#3|)) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -(((|#1| (-470 |#3|)) . T)) -((((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474))))) -((((-1040 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#2|) . T)) -((((-1040 |#1| |#2|)) . T) (((-485)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-470 |#3|)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +(((|#1| (-471 |#3|)) . T)) +((((-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) (((-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) (((-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475))))) +((((-1041 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#2|) . T)) +((((-1041 |#1| |#2|)) . T) (((-486)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-471 |#3|)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-485)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) |has| |#1| (-312))) -((((-1091)) |has| |#1| (-810 (-1091)))) -((($ (-1091)) |has| |#1| (-810 (-1091)))) -((((-1091)) |has| |#1| (-810 (-1091)))) +((((-1092)) |has| |#1| (-811 (-1092)))) +((($ (-1092)) |has| |#1| (-811 (-1092)))) +((((-1092)) |has| |#1| (-811 (-1092)))) (((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) (((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962)))) -(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962)))) -((((-485)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))) -(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(|has| |#1| (-413)) -(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))) -((((-85)) |has| |#1| (-1014)) (((-773)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))) -((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) +(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) +((((-486)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)))) +(OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(|has| |#1| (-414)) +(OR (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(OR (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) (((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015))) +((((-85)) |has| |#1| (-1015)) (((-774)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015))) +((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -(|has| (-1167 |#1| |#2| |#3| |#4|) (-118)) -(|has| (-1167 |#1| |#2| |#3| |#4|) (-120)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1091) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) (((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|)))) -((((-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|)))) -((((-1167 |#1| |#2| |#3| |#4|) $) |has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)))) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1161 |#2| |#3| |#4|)) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-1161 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T)) -((((-1167 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(((|#1|) |has| |#1| (-496))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) -((((-773)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +(|has| (-1168 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1168 |#1| |#2| |#3| |#4|) (-120)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1092) (-1168 |#1| |#2| |#3| |#4|)) |has| (-1168 |#1| |#2| |#3| |#4|) (-457 (-1092) (-1168 |#1| |#2| |#3| |#4|))) (((-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) |has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|)))) +((((-1168 |#1| |#2| |#3| |#4|)) |has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|)))) +((((-1168 |#1| |#2| |#3| |#4|) $) |has| (-1168 |#1| |#2| |#3| |#4|) (-241 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)))) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1162 |#2| |#3| |#4|)) . T) (((-486)) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-1162 |#2| |#3| |#4|)) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T)) +((((-1168 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(((|#1|) |has| |#1| (-497))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +((((-774)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-414)) (|has| |#1| (-497)) (|has| |#1| (-963)) (|has| |#1| (-1027))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-414)) (|has| |#1| (-497)) (|has| |#1| (-963)) (|has| |#1| (-1027))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-551 $) $) . T) (($ $) . T)) +((((-552 $) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496))) -((((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496))) -(|has| |#1| (-496)) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496))) -(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-485)) (-350 (-485))) |has| |#1| (-496)) (($ $) |has| |#1| (-496))) -(|has| |#1| (-496)) -(((|#1|) |has| |#1| (-962))) -((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) -(((|#1|) |has| |#1| (-962)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) -(((|#1|) . T)) -((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330)))) -(((|#1|) . T)) -(|has| |#1| (-413)) -((((-1091)) |has| |#1| (-962))) -((($ (-1091)) |has| |#1| (-962))) -((((-1091)) |has| |#1| (-962))) -(((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330))))) -((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-551 $)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T)) -((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-485)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-496)) (((-350 (-485))) OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497)) (((-350 (-486))) |has| |#1| (-497))) +((((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-963))) (((-350 (-486))) |has| |#1| (-497))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497)) (((-350 (-486))) |has| |#1| (-497))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497)) (((-350 (-486))) |has| |#1| (-497))) +(|has| |#1| (-497)) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-497)) (($) |has| |#1| (-497))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-497)) (($) |has| |#1| (-497))) +(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-486)) (-350 (-486))) |has| |#1| (-497)) (($ $) |has| |#1| (-497))) +(|has| |#1| (-497)) +(((|#1|) |has| |#1| (-963))) +((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-963))) (((-350 (-486))) |has| |#1| (-497)) (((-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) +(((|#1|) |has| |#1| (-963)) (((-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) +(((|#1|) . T)) +((((-486)) |has| |#1| (-798 (-486))) (((-330)) |has| |#1| (-798 (-330)))) +(((|#1|) . T)) +(|has| |#1| (-414)) +((((-1092)) |has| |#1| (-963))) +((($ (-1092)) |has| |#1| (-963))) +((((-1092)) |has| |#1| (-963))) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330))))) +((((-48)) -12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (((-552 $)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) OR (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-350 (-859 |#1|))) |has| |#1| (-497)) (((-859 |#1|)) |has| |#1| (-963)) (((-1092)) . T)) +((((-48)) -12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (((-486)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-952 (-486))) (|has| |#1| (-963))) ((|#1|) . T) (((-552 $)) . T) (($) |has| |#1| (-497)) (((-350 (-486))) OR (|has| |#1| (-497)) (|has| |#1| (-952 (-350 (-486))))) (((-350 (-859 |#1|))) |has| |#1| (-497)) (((-859 |#1|)) |has| |#1| (-963)) (((-1092)) . T)) (((|#1|) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) -((((-773)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-774)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-350 (-485))) . T)) -(((|#1| (-350 (-485))) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-350 (-486))) . T)) +(((|#1| (-350 (-486))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) -((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-350 (-485)) (-995)) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-350 (-485)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) +((((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-350 (-486)) (-996)) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-350 (-486)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-485)) . T)) -((((-485) (-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-773)) . T)) -((((-485)) . T)) -((((-773)) . T)) +(((|#1| (-486)) . T)) +((((-486) (-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-774)) . T)) +((((-486)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-695)) . T)) +(((|#1| (-696)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-485)) . T)) -((((-773)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-486)) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| $ (-120)) ((($) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| $ (-120)) ((($) . T)) -((((-818 |#1|)) . T)) +((((-819 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -988,16 +1007,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1006,37 +1025,37 @@ ((($) |has| |#1| (-320))) (|has| |#1| (-320)) (((|#1|) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| $ (-120)) ((($) . T)) -((((-818 |#1|)) . T)) +((((-819 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1050,16 +1069,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1073,16 +1092,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1096,16 +1115,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1116,564 +1135,574 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) ((((-338) |#1|) . T)) ((((-179)) . T)) ((($) . T)) -((((-485)) . T) (((-350 (-485))) . T)) +((((-486)) . T) (((-350 (-486))) . T)) ((((-330)) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-474)) . T) (((-1074)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T)) -((((-179)) . T) (((-773)) . T)) -((((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T) (((-485)) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-475)) . T) (((-1075)) . T) (((-179)) . T) (((-330)) . T) (((-802 (-330))) . T)) +((((-179)) . T) (((-774)) . T)) +((((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-584 (-454 |#1| |#2|))) . T)) +((((-585 (-455 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-485)) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-485)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-486)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +((((-774)) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1074)) . T)) -((((-1074)) . T)) -((((-1074)) . T) (((-773)) . T)) +((((-1075)) . T)) +((((-1075)) . T)) +((((-1075)) . T) (((-774)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-773)) . T)) -(((|#3|) . T) (((-485)) . T)) +((((-774)) . T)) +(((|#3|) . T) (((-486)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) ((((-350 |#2|)) . T)) ((($) . T)) -((((-773)) . T)) -(|has| |#1| (-1135)) -((((-474)) |has| |#1| (-554 (-474))) (((-179)) |has| |#1| (-934)) (((-330)) |has| |#1| (-934))) -(|has| |#1| (-934)) -(OR (|has| |#1| (-392)) (|has| |#1| (-1135))) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +((((-774)) . T)) +(|has| |#1| (-1136)) +((((-475)) |has| |#1| (-555 (-475))) (((-179)) |has| |#1| (-935)) (((-330)) |has| |#1| (-935))) +(|has| |#1| (-935)) +(OR (|has| |#1| (-393)) (|has| |#1| (-1136))) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|))) ((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|))) -((((-1091) $) |has| |#1| (-456 (-1091) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|))) +((((-1092) $) |has| |#1| (-457 (-1092) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|))) (((|#1|) . T)) (|has| |#1| (-190)) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) (((|#1|) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) -((((-1091)) |has| |#1| (-810 (-1091)))) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) +((((-1092)) |has| |#1| (-811 (-1092)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T) (($) . T)) -((((-773)) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T) (($) . T)) +((((-774)) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-120)) (|has| |#1| (-741))) +(OR (|has| |#1| (-120)) (|has| |#1| (-742))) (((|#1|) . T)) -((((-1091)) |has| |#1| (-810 (-1091)))) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((((-1092)) |has| |#1| (-811 (-1092)))) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) ((|#1|) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-350 (-485))) . T) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +((($) . T) ((|#1|) . T) (((-350 (-486))) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) (((|#1|) . T)) -((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330)))) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -(OR (|has| |#1| (-741)) (|has| |#1| (-757))) -(OR (|has| |#1| (-741)) (|has| |#1| (-757))) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -(|has| |#1| (-741)) +((((-486)) |has| |#1| (-798 (-486))) (((-330)) |has| |#1| (-798 (-330)))) +(|has| |#1| (-742)) +(|has| |#1| (-742)) +(|has| |#1| (-742)) +(OR (|has| |#1| (-742)) (|has| |#1| (-758))) +(OR (|has| |#1| (-742)) (|has| |#1| (-758))) +(|has| |#1| (-742)) +(|has| |#1| (-742)) +(|has| |#1| (-742)) (((|#1|) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-934)) -((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-330)) |has| |#1| (-934)) (((-179)) |has| |#1| (-934))) -((((-485)) . T) ((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-1091)) |has| |#1| (-951 (-1091)))) -((((-350 (-485))) |has| |#1| (-951 (-485))) (((-485)) |has| |#1| (-951 (-485))) (((-1091)) |has| |#1| (-951 (-1091))) ((|#1|) . T)) -(|has| |#1| (-1067)) +(|has| |#1| (-823)) +(|has| |#1| (-935)) +((((-475)) |has| |#1| (-555 (-475))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330)))) (((-330)) |has| |#1| (-935)) (((-179)) |has| |#1| (-935))) +((((-486)) . T) ((|#1|) . T) (($) . T) (((-350 (-486))) . T) (((-1092)) |has| |#1| (-952 (-1092)))) +((((-350 (-486))) |has| |#1| (-952 (-486))) (((-486)) |has| |#1| (-952 (-486))) (((-1092)) |has| |#1| (-952 (-1092))) ((|#1|) . T)) +(|has| |#1| (-1068)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-485)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-485) (-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|))) . T)) -((((-1057 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T)) -((((-773)) . T)) -((((-1057 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T) (((-485)) . T)) -((((-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|)) (-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|))) . T)) -((((-350 (-858 |#1|))) . T)) -((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) +(((|#1|) . T) (((-486)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-486) (-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|))) . T)) +((((-1058 |#2| (-350 (-859 |#1|)))) . T) (((-350 (-859 |#1|))) . T)) +((((-774)) . T)) +((((-1058 |#2| (-350 (-859 |#1|)))) . T) (((-350 (-859 |#1|))) . T) (((-486)) . T)) +((((-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|)) (-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|))) . T)) +((((-350 (-859 |#1|))) . T)) +((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| |#3| (-774 |#1|)) . T)) +((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| |#3| (-775 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-773)) . T)) -(((|#2|) . T) (((-485)) . T) ((|#6|) . T)) +((((-774)) . T)) +(((|#2|) . T) (((-486)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) (((|#4|) . T)) -((((-584 |#4|)) . T) (((-773)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +((((-585 |#4|)) . T) (((-774)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) . T)) (((|#4|) . T)) -((((-474)) |has| |#4| (-554 (-474)))) +((((-475)) |has| |#4| (-555 (-475)))) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) -((((-773)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-774)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-350 (-485))) . T)) -(((|#1| (-350 (-485))) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-350 (-486))) . T)) +(((|#1| (-350 (-486))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) -((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-350 (-485)) (-995)) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-350 (-485)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -(((|#1|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) +((((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-350 (-486)) (-996)) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-350 (-486)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +(((|#1|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-474)) |has| |#4| (-554 (-474)))) +((((-475)) |has| |#4| (-555 (-475)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -((((-773)) . T) (((-584 |#4|)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) . T)) +((((-774)) . T) (((-585 |#4|)) . T)) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-474)) . T) (((-350 (-1086 (-485)))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((((-330)) . T) (((-179)) . T) (((-773)) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) +((((-475)) . T) (((-350 (-1087 (-486)))) . T) (((-179)) . T) (((-330)) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((((-330)) . T) (((-179)) . T) (((-774)) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) +((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) ((($) . T)) -(((|#2| (-422 (-3959 |#1|) (-695))) . T)) +(((|#2| (-423 (-3960 |#1|) (-696))) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(((|#2| (-422 (-3959 |#1|) (-695))) . T)) +(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(((|#2| (-423 (-3960 |#1|) (-696))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| (-422 (-3959 |#1|) (-695)) (-774 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) -((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T)) -(((|#2|) |has| |#2| (-962))) -((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) -((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) -((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) -(((|#2|) |has| |#2| (-962))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) +((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| (-423 (-3960 |#1|) (-696)) (-775 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1181 |#2|)) . T)) +(((|#2|) |has| |#2| (-963))) +((((-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) +((((-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) +((($ (-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) +(((|#2|) |has| |#2| (-963))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +((((-486)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (|has| |#2| (-320)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-962))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-1014))) -((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) -(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) -((((-485) |#2|) . T)) -((((-485) |#2|) . T)) -((((-485) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)))) +(((|#2|) |has| |#2| (-963))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-1015))) +((((-486)) OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) +(((|#2|) |has| |#2| (-1015)) (((-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) +((((-486) |#2|) . T)) +((((-486) |#2|) . T)) +((((-486) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(|has| |#1| (-1015)) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) -((((-485)) . T)) -((((-773)) . T)) +(((|#1|) . T)) +((((-486)) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-918 16)) . T) (((-350 (-485))) . T) (((-773)) . T)) -((((-485)) . T)) -((((-485)) . T)) +((((-919 16)) . T) (((-350 (-486))) . T) (((-774)) . T)) +((((-486)) . T)) +((((-486)) . T)) ((($) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T)) -((((-1074)) . T) (((-773)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T)) +((((-1075)) . T) (((-774)) . T)) ((($) . T)) ((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-551 $) $) . T)) -((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T)) -((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T)) -((((-773)) . T)) +((($ $) . T) (((-552 $) $) . T)) +((((-350 (-486))) . T) (((-486)) . T) (((-552 $)) . T)) +((((-1041 (-486) (-552 $))) . T) (($) . T) (((-486)) . T) (((-350 (-486))) . T) (((-552 $)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2| |#3|) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-485) (-85)) . T)) -((((-485) (-85)) . T)) -((((-485) (-85)) . T) (((-1147 (-485)) $) . T)) -((((-474)) . T)) ((((-85)) . T)) +((((-486) (-85)) . T)) +((((-486) (-85)) . T)) +((((-486) (-85)) . T) (((-1148 (-486)) $) . T)) +((((-475)) . T)) ((((-85)) . T)) -((((-1074)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-584 (-454 |#1| |#2|))) . T)) +((((-85)) . T)) +((((-1075)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-585 (-455 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-485)) . T)) -((((-584 (-454 |#1| |#2|))) . T)) +((((-774)) . T)) +((((-486)) . T)) +((((-585 (-455 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-584 (-454 |#1| |#2|))) . T)) -(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) -((((-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) +((((-774)) . T)) +((((-585 (-455 |#1| |#2|))) . T)) +(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) +((((-774)) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-584 (-454 |#1| |#2|))) . T)) +((((-585 (-455 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-584 (-454 |#1| |#2|))) . T)) +((((-774)) . T)) +((((-585 (-455 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-783 |#2| |#1|)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-784 |#2| |#1|)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-518 |#1|)) . T)) -((((-518 |#1|)) . T)) -((((-518 |#1|)) . T)) -((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-518 |#1|) (-518 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -((((-518 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-519 |#1|)) . T)) +((((-519 |#1|)) . T)) +((((-519 |#1|)) . T)) +((((-519 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-519 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-519 |#1|) (-519 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +((((-519 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (|has| $ (-120)) ((($) . T)) -((((-518 |#1|)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -((((-584 (-454 (-695) |#1|))) . T)) -((((-695) |#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-516)) . T)) -((((-1016)) . T)) -((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T)) -((((-485) $) . T) (((-584 (-485)) $) . T)) -((((-773)) . T)) -((((-1074) (-1091) (-485) (-179) (-773)) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-519 |#1|)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +((((-585 (-455 (-696) |#1|))) . T)) +((((-696) |#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-517)) . T)) +((((-1017)) . T)) +((((-585 $)) . T) (((-1075)) . T) (((-1092)) . T) (((-486)) . T) (((-179)) . T) (((-774)) . T)) +((((-486) $) . T) (((-585 (-486)) $) . T)) +((((-774)) . T)) +((((-1075) (-1092) (-486) (-179) (-774)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1681,201 +1710,203 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) -((((-485)) . T)) -((($) . T) (((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-485)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) +((((-486)) . T) (($) . T)) +((((-486)) . T)) +((($) . T) (((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-486)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-486)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-773)) . T)) -((((-485)) . T) (($) . T)) +((((-774)) . T)) +((((-486)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) -((((-485)) . T)) +((((-486)) . T) (($) . T)) +((((-486)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) +((((-486)) . T) (($) . T)) (((|#1|) . T)) -((((-485)) . T)) +((((-486)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) ((($) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T)) -((((-350 (-485))) . T)) -((((-773)) . T)) -((((-485)) . T) (((-350 (-485))) . T)) -((((-350 (-485))) . T)) -((((-350 (-485))) . T)) -((((-350 (-485))) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T) (((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -(|has| |#1| (-15 * (|#1| (-485) |#1|))) -((((-773)) . T)) -((($) |has| |#1| (-15 * (|#1| (-485) |#1|)))) -(|has| |#1| (-15 * (|#1| (-485) |#1|))) -((($ $) . T) (((-485) |#1|) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) -((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) -(((|#1| (-485) (-995)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T)) +((((-350 (-486))) . T)) +((((-774)) . T)) +((((-486)) . T) (((-350 (-486))) . T)) +((((-350 (-486))) . T)) +((((-350 (-486))) . T)) +((((-350 (-486))) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T) (((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(|has| |#1| (-15 * (|#1| (-486) |#1|))) +((((-774)) . T)) +((($) |has| |#1| (-15 * (|#1| (-486) |#1|)))) +(|has| |#1| (-15 * (|#1| (-486) |#1|))) +((($ $) . T) (((-486) |#1|) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) +((($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) +(((|#1| (-486) (-996)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -(((|#1| (-485)) . T)) -(((|#1| (-485)) . T)) -((($) |has| |#1| (-496))) -((($) |has| |#1| (-496))) -((($) |has| |#1| (-496))) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -((($) |has| |#1| (-496)) ((|#1|) . T)) -((($) |has| |#1| (-496)) ((|#1|) . T)) -((($ $) |has| |#1| (-496)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-496)) (((-485)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +((((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +(((|#1| (-486)) . T)) +(((|#1| (-486)) . T)) +((($) |has| |#1| (-497))) +((($) |has| |#1| (-497))) +((($) |has| |#1| (-497))) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +((($) |has| |#1| (-497)) ((|#1|) . T)) +((($) |has| |#1| (-497)) ((|#1|) . T)) +((($ $) |has| |#1| (-497)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-497)) (((-486)) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-485)) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-1131)) . T) (((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-485) |#1|) |has| |#2| (-361 |#1|))) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-486)) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-1132)) . T) (((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-486) |#1|) |has| |#2| (-361 |#1|))) (((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|)))) (((|#1|) |has| |#2| (-361 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-773)) . T)) -(((|#1|) . T) (((-485)) . T)) +(((|#2|) . T) (((-774)) . T)) +(((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-101)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-101)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-101)) . T) (((-542)) . T)) -((((-101)) . T) (((-542)) . T)) -((((-101)) . T) (((-542)) . T) (((-773)) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-1074) |#1|) . T)) -((((-1074) |#1|) . T)) -((((-1074) |#1|) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-1074) |#1|) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-1074) |#1|) . T)) -((((-773)) . T)) -((((-338) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485))))) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +((((-101)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-101)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-101)) . T) (((-543)) . T)) +((((-101)) . T) (((-543)) . T)) +((((-101)) . T) (((-543)) . T) (((-774)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-1075) |#1|) . T)) +((((-1075) |#1|) . T)) +((((-1075) |#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-1075) |#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-1075) |#1|) . T)) +((((-774)) . T)) +((((-338) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-475)) |has| |#1| (-555 (-475))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486))))) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-485)) . T) (($) . T)) +(((|#2|) . T) (((-486)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-485)) . T)) +(((|#2|) . T) (((-486)) . T)) (((|#2|) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +(((|#2|) . T) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) (((|#1|) . T)) ((((-350 |#2|)) . T)) ((($) . T)) @@ -1885,68 +1916,69 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-190)) -(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (($) . T) (((-485)) . T)) +(((|#2|) . T) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (($) . T) (((-486)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) (((|#2|) . T)) -((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) -((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) -((((-1091)) |has| |#2| (-810 (-1091)))) +((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((((-1092)) |has| |#2| (-811 (-1092)))) (((|#2|) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T)) -((((-773)) . T)) -((((-1074) (-51)) . T)) -((((-1074) (-51)) . T)) -((((-1091) (-51)) . T) (((-1074) (-51)) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T) (((-51)) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) -((((-1074) (-51)) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T)) -((((-1074) (-51)) . T)) -((((-485) |#1|) |has| |#2| (-361 |#1|))) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T)) +((((-774)) . T)) +((((-1075) (-51)) . T)) +((((-1075) (-51)) . T)) +((((-1092) (-51)) . T) (((-1075) (-51)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T) (((-51)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T) (((-51)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) |has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) |has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) +((((-1075) (-51)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) . T)) +((((-1075) (-51)) . T)) +((((-486) |#1|) |has| |#2| (-361 |#1|))) (((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|)))) (((|#1|) |has| |#2| (-361 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-773)) . T)) -(((|#1|) . T) (((-485)) . T)) +(((|#2|) . T) (((-774)) . T)) +(((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-774 |#1|)) . T)) -((((-773)) . T)) -((((-584 (-454 |#1| (-578 |#2|)))) . T)) -(((|#1| (-578 |#2|)) . T)) -((((-578 |#2|)) . T)) +((((-775 |#1|)) . T)) +((((-774)) . T)) +((((-585 (-455 |#1| (-579 |#2|)))) . T)) +(((|#1| (-579 |#2|)) . T)) +((((-579 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-485)) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-580 |#1| |#2|) |#1|) . T)) +((((-581 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-485)) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-486)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) @@ -1954,230 +1986,234 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) (((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1096)) . T)) -(((|#1|) . T) (((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) (((|#1|) . T)) +((((-1097)) . T)) +(((|#1|) . T) (((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) (((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) (((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((((-485)) . T) ((|#2|) . T)) +((((-774)) . T)) +((((-486)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-615 |#1|)) . T)) -((((-615 |#1|)) . T)) -(((|#2| (-615 |#1|)) . T)) +((((-616 |#1|)) . T)) +((((-616 |#1|)) . T)) +(((|#2| (-616 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((((-485)) . T) ((|#2|) . T)) +((((-774)) . T)) +((((-486)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-485) |#2|) . T)) +((((-486) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-3999 "*")))) +(((|#2|) |has| |#2| (-6 (-4000 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-631 |#2|)) . T) (((-773)) . T)) -((($) . T) (((-485)) . T) ((|#2|) . T)) +((((-632 |#2|)) . T) (((-774)) . T)) +((($) . T) (((-486)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1091)) |has| |#2| (-810 (-1091)))) -((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) -((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((((-1092)) |has| |#2| (-811 (-1092)))) +((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +((($) . T) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) (((|#2|) . T)) -((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) -(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +((((-486)) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) +(((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-1131)) . T) (((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-1132)) . T) (((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (((-486)) . T) (($) . T)) (|has| |#1| (-320)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-773)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) +((((-774)) . T)) +((((-350 $) (-350 $)) |has| |#1| (-497)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-312)) -(((|#1| (-695) (-995)) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T)) -((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T)) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-695)) . T)) +(((|#1| (-696) (-996)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-996)) . T)) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-996)) . T)) +((((-1092)) |has| |#1| (-811 (-1092))) (((-996)) . T)) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-696)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -(((|#2|) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1| (-695)) . T)) -((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T)) +(((|#2|) . T) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +((((-996)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1| (-696)) . T)) +((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1067)) +(|has| |#1| (-1068)) (((|#1|) . T)) -((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T)) -((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T)) -((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T) (((-773)) . T)) +((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T)) +((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T)) +((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T) (((-774)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2188,51 +2224,51 @@ (|has| |#1| (-120)) (((|#2| |#2|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-485)) . T)) +((((-86)) . T) ((|#1|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) -((((-485)) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) +((((-486)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) -((((-773)) . T)) -((((-1023 |#1|)) . T) (((-773)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) +((((-774)) . T)) +((((-1024 |#1|)) . T) (((-774)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) +((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) ((($) . T)) -(((|#2| (-470 (-774 |#1|))) . T)) +(((|#2| (-471 (-775 |#1|))) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) -(((|#2| (-470 (-774 |#1|))) . T)) +(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(((|#2| (-471 (-775 |#1|))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| (-470 (-774 |#1|)) (-774 |#1|)) . T)) +((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(OR (|has| |#2| (-393)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| (-471 (-775 |#1|)) (-775 |#1|)) . T)) (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2243,210 +2279,212 @@ (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-485)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) +(((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) +((((-475)) |has| |#1| (-555 (-475)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -(((|#1| (-470 |#2|) |#2|) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330))))) +((((-774)) . T)) +((((-774)) . T)) +(((|#1| (-471 |#2|) |#2|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486)))) (((-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-822))) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-823))) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-470 |#2|)) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(((|#1| (-471 |#2|)) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-1040 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-773)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) -((((-1040 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -((((-1040 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1| (-470 |#2|)) . T)) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-1041 |#1| |#2|)) . T) (((-859 |#1|)) |has| |#2| (-555 (-1092))) (((-774)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) +((((-1041 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-486)) . T)) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +((((-1041 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1| (-471 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-1074)) -12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474))))) -(((|#1| (-470 |#2|) |#2|) . T)) +((((-859 |#1|)) |has| |#2| (-555 (-1092))) (((-1075)) -12 (|has| |#1| (-952 (-486))) (|has| |#2| (-555 (-1092)))) (((-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) (((-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) (((-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475))))) +(((|#1| (-471 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1086 |#1|)) . T) (((-773)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1087 |#1|)) . T) (((-774)) . T)) +((((-350 $) (-350 $)) |has| |#1| (-497)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-312)) -(((|#1| (-695) (-995)) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T)) -((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T)) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-695)) . T)) +(((|#1| (-696) (-996)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-996)) . T)) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-996)) . T)) +((((-1092)) |has| |#1| (-811 (-1092))) (((-996)) . T)) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-696)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-1086 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -((((-1086 |#1|)) . T) (((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1| (-695)) . T)) -((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T)) +((((-1087 |#1|)) . T) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +((((-1087 |#1|)) . T) (((-996)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1| (-696)) . T)) +((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1067)) +(|has| |#1| (-1068)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-474)) |has| |#1| (-554 (-474)))) +((((-475)) |has| |#1| (-555 (-475)))) (|has| |#1| (-320)) (((|#1|) . T)) -((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((((-910 |#1|)) . T) ((|#1|) . T)) -((((-910 |#1|)) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485)))))) -((((-910 |#1|)) . T) ((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-910 |#1|) (-951 (-485)))) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485)))))) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) -((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T)) -(((|#2|) |has| |#2| (-962))) -((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) -((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) -((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) -(((|#2|) |has| |#2| (-962))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) +((((-911 |#1|)) . T) ((|#1|) . T)) +((((-911 |#1|)) . T) (((-486)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| (-911 |#1|) (-952 (-350 (-486)))))) +((((-911 |#1|)) . T) ((|#1|) . T) (((-486)) OR (|has| |#1| (-952 (-486))) (|has| (-911 |#1|) (-952 (-486)))) (((-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| (-911 |#1|) (-952 (-350 (-486)))))) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1181 |#2|)) . T)) +(((|#2|) |has| |#2| (-963))) +((((-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) +((((-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) +((($ (-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) +(((|#2|) |has| |#2| (-963))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +((((-486)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (|has| |#2| (-320)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#2|) . T)) -(((|#2|) |has| |#2| (-962))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-1014))) -((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) -(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) -((((-485) |#2|) . T)) -((((-485) |#2|) . T)) -((((-485) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)))) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-963))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-1015))) +((((-486)) OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) +(((|#2|) |has| |#2| (-1015)) (((-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) +((((-486) |#2|) . T)) +((((-486) |#2|) . T)) +((((-486) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-470 (-739 (-1091))) (-739 (-1091))) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-739 (-1091))) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-739 (-1091))) . T)) -((((-1091)) |has| |#1| (-810 (-1091))) (((-739 (-1091))) . T)) -((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-739 (-1091)) |#1|) . T) (((-739 (-1091)) $) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-822))) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-470 (-739 (-1091)))) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(((|#1| (-471 (-740 (-1092))) (-740 (-1092))) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-740 (-1092))) . T)) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-740 (-1092))) . T)) +((((-1092)) |has| |#1| (-811 (-1092))) (((-740 (-1092))) . T)) +((($ $) . T) (((-1092) $) |has| |#1| (-190)) (((-1092) |#1|) |has| |#1| (-190)) (((-740 (-1092)) |#1|) . T) (((-740 (-1092)) $) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-823))) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-471 (-740 (-1092)))) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -(((|#1| (-470 (-739 (-1091)))) . T)) -((((-1040 |#1| (-1091))) . T) (((-739 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1091)) . T)) -((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-739 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1091)) . T)) -(((|#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) . T)) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +(((|#1| (-471 (-740 (-1092)))) . T)) +((((-1041 |#1| (-1092))) . T) (((-740 (-1092))) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-1092)) . T)) +((((-1041 |#1| (-1092))) . T) (((-486)) . T) (((-740 (-1092))) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-1092)) . T)) +(((|#1| (-1092) (-740 (-1092)) (-471 (-740 (-1092)))) . T)) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) -((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312))) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) @@ -2454,19 +2492,19 @@ (|has| |#2| (-312)) (((|#2|) . T)) ((($) . T)) -((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-485)) . T)) -((((-350 (-485))) |has| |#2| (-312)) (($) . T)) -(((|#2|) . T) (((-773)) . T)) -((((-350 (-485))) |has| |#2| (-312)) (($) . T) (((-485)) . T)) -((((-350 (-485))) |has| |#2| (-312)) (($) . T)) -((((-350 (-485))) |has| |#2| (-312)) (($) . T)) -((((-350 (-485)) (-350 (-485))) |has| |#2| (-312)) (($ $) . T)) +((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-486)) . T)) +((((-350 (-486))) |has| |#2| (-312)) (($) . T)) +(((|#2|) . T) (((-774)) . T)) +((((-350 (-486))) |has| |#2| (-312)) (($) . T) (((-486)) . T)) +((((-350 (-486))) |has| |#2| (-312)) (($) . T)) +((((-350 (-486))) |has| |#2| (-312)) (($) . T)) +((((-350 (-486)) (-350 (-486))) |has| |#2| (-312)) (($ $) . T)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2477,36 +2515,36 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-485)) . T) ((|#2|) |has| |#2| (-146))) +((((-486)) . T) ((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -(|has| |#1| (-756)) -((($) |has| |#1| (-756))) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) +(|has| |#1| (-757)) +((($) |has| |#1| (-757))) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((($) |has| |#1| (-757)) (((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-757)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2517,458 +2555,463 @@ (|has| |#1| (-120)) (((|#1| |#1|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-485)) . T)) +((((-86)) . T) ((|#1|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) -((((-773)) . T)) -((((-447)) . T)) -(|has| |#1| (-756)) -((($) |has| |#1| (-756))) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) +((((-774)) . T)) +((((-448)) . T)) +(|has| |#1| (-757)) +((($) |has| |#1| (-757))) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((($) |has| |#1| (-757)) (((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-757)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) |has| |#1| (-554 (-774))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +((((-486)) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -((((-1177 |#1|)) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) -(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +((((-1178 |#1|)) . T) (((-486)) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) +(((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) (((|#2|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-801 (-485))) . T) (((-801 (-330))) . T) (((-474)) . T) (((-1091)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-802 (-486))) . T) (((-802 (-330))) . T) (((-475)) . T) (((-1092)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-858 |#1|)) . T)) -(((|#1|) |has| |#1| (-146)) (((-858 |#1|)) . T) (((-485)) . T)) +((((-859 |#1|)) . T)) +(((|#1|) |has| |#1| (-146)) (((-859 |#1|)) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-858 |#1|)) . T) (((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +((((-859 |#1|)) . T) (((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T)) -((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-779 |#1|) (-779 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-779 |#1|)) . T)) -((((-1091) (-779 |#1|)) |has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|)))) -((((-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|)))) -((((-779 |#1|) $) |has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|)))) -((((-779 |#1|)) . T)) -((($) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-485)) . T) (((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-773)) . T)) +((((-486)) . T) (($) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-780 |#1|)) . T) (((-350 (-486))) . T)) +((((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-780 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-780 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-780 |#1|) (-780 |#1|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-780 |#1|)) . T)) +((((-1092) (-780 |#1|)) |has| (-780 |#1|) (-457 (-1092) (-780 |#1|))) (((-780 |#1|) (-780 |#1|)) |has| (-780 |#1|) (-260 (-780 |#1|)))) +((((-780 |#1|)) |has| (-780 |#1|) (-260 (-780 |#1|)))) +((((-780 |#1|) $) |has| (-780 |#1|) (-241 (-780 |#1|) (-780 |#1|)))) +((((-780 |#1|)) . T)) +((($) . T) (((-780 |#1|)) . T) (((-350 (-486))) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-486)) . T) (((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-774)) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-120)) (|has| |#2| (-741))) +(OR (|has| |#2| (-120)) (|has| |#2| (-742))) (((|#2|) . T)) -((((-1091)) |has| |#2| (-810 (-1091)))) -((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) -((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((((-1092)) |has| |#2| (-811 (-1092)))) +((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) -(((|#2|) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) . T)) -(((|#2|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#2|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#2|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#2|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +(((|#2|) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) ((|#2|) . T) (((-350 (-486))) . T)) +(((|#2|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#2|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#2|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#2|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) (((|#2|) . T)) -((((-1091) |#2|) |has| |#2| (-456 (-1091) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) +((((-1092) |#2|) |has| |#2| (-457 (-1092) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) (((|#2|) |has| |#2| (-260 |#2|))) (((|#2| $) |has| |#2| (-241 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-350 (-485))) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +((($) . T) ((|#2|) . T) (((-350 (-486))) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) (((|#2|) . T)) -((((-485)) |has| |#2| (-797 (-485))) (((-330)) |has| |#2| (-797 (-330)))) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(OR (|has| |#2| (-741)) (|has| |#2| (-757))) -(OR (|has| |#2| (-741)) (|has| |#2| (-757))) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(|has| |#2| (-741)) +((((-486)) |has| |#2| (-798 (-486))) (((-330)) |has| |#2| (-798 (-330)))) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(OR (|has| |#2| (-742)) (|has| |#2| (-758))) +(OR (|has| |#2| (-742)) (|has| |#2| (-758))) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(|has| |#2| (-742)) (((|#2|) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-934)) -((((-474)) |has| |#2| (-554 (-474))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-330)) |has| |#2| (-934)) (((-179)) |has| |#2| (-934))) -((((-485)) . T) ((|#2|) . T) (($) . T) (((-350 (-485))) . T) (((-1091)) |has| |#2| (-951 (-1091)))) -((((-350 (-485))) |has| |#2| (-951 (-485))) (((-485)) |has| |#2| (-951 (-485))) (((-1091)) |has| |#2| (-951 (-1091))) ((|#2|) . T)) -(|has| |#2| (-1067)) +(|has| |#2| (-823)) +(|has| |#2| (-935)) +((((-475)) |has| |#2| (-555 (-475))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-330)) |has| |#2| (-935)) (((-179)) |has| |#2| (-935))) +((((-486)) . T) ((|#2|) . T) (($) . T) (((-350 (-486))) . T) (((-1092)) |has| |#2| (-952 (-1092)))) +((((-350 (-486))) |has| |#2| (-952 (-486))) (((-486)) |has| |#2| (-952 (-486))) (((-1092)) |has| |#2| (-952 (-1092))) ((|#2|) . T)) +(|has| |#2| (-1068)) (((|#2|) . T)) -(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) -(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) -((((-773)) OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) +(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) +(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) +((((-774)) OR (-12 (|has| |#1| (-554 (-774))) (|has| |#2| (-554 (-774)))) (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))))) ((((-130)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1091)) . T) ((|#1|) . T)) -((((-1091)) . T) ((|#1|) . T)) -((((-773)) . T)) -((((-615 |#1|)) . T)) -((((-615 |#1|)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -((((-1117 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1092)) . T) ((|#1|) . T)) +((((-1092)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-616 |#1|)) . T)) +((((-616 |#1|)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-1118 |#1|)) . T) (((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-773)) . T)) -(OR (|has| |#1| (-320)) (|has| |#1| (-757))) -(OR (|has| |#1| (-320)) (|has| |#1| (-757))) +((((-774)) . T)) +(OR (|has| |#1| (-320)) (|has| |#1| (-758))) +(OR (|has| |#1| (-320)) (|has| |#1| (-758))) (((|#1|) . T)) -((((-773)) . T)) -((((-485)) . T)) +((((-774)) . T)) +((((-486)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) ((($) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($) . T) (((-350 (-485))) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-350 (-485))) . T) (($) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-584 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485))))) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($) . T) (((-350 (-486))) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-350 (-486))) . T) (($) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-585 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486))))) ((($) . T)) -(((|#1| (-470 (-1091))) . T)) +(((|#1| (-471 (-1092))) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -(((|#1| (-470 (-1091))) . T)) -(((|#1|) . T)) -((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-822))) -((($ $) . T) (((-1091) $) . T) (((-1091) |#1|) . T)) -((((-1091)) . T)) -((($ (-1091)) . T)) -((((-1091)) . T)) -((((-330)) |has| |#1| (-797 (-330))) (((-485)) |has| |#1| (-797 (-485)))) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) (((-1091)) . T)) -((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-1091)) . T)) -(((|#1| (-470 (-1091)) (-1091)) . T)) -((((-1034)) . T) (((-773)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +(((|#1| (-471 (-1092))) . T)) +(((|#1|) . T)) +((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(OR (|has| |#1| (-393)) (|has| |#1| (-823))) +((($ $) . T) (((-1092) $) . T) (((-1092) |#1|) . T)) +((((-1092)) . T)) +((($ (-1092)) . T)) +((((-1092)) . T)) +((((-330)) |has| |#1| (-798 (-330))) (((-486)) |has| |#1| (-798 (-486)))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T) (((-1092)) . T)) +((((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-1092)) . T)) +(((|#1| (-471 (-1092)) (-1092)) . T)) +((((-1035)) . T) (((-774)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-773)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) -((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-774)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) +((($) |has| |#1| (-497)) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-486)) . T)) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -((((-485)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(((|#1|) . T)) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +(OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) +(OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +((((-486)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-413)) (|has| |#2| (-413))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) -(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) -(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) +(-12 (|has| |#1| (-414)) (|has| |#2| (-414))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) +(OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) +(OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) -((((-773)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-584 (-831))) . T) (((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-585 (-832))) . T) (((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) ((((-197 |#1| |#2|) |#2|) . T)) -((((-773)) . T)) -((((-485)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-486)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-474)) |has| |#1| (-554 (-474)))) +((((-475)) |has| |#1| (-555 (-475)))) (((|#1|) . T)) -((((-1091)) |has| |#1| (-810 (-1091)))) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((((-1092)) |has| |#1| (-811 (-1092)))) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) (|has| |#1| (-312)) (OR (|has| |#1| (-246)) (|has| |#1| (-312))) -((((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485)))))) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) -((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485)) (-350 (-485))) |has| |#1| (-312))) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) -(((|#1|) . T)) -((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-486)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486)))))) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) +((($) . T) (((-486)) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-486))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-486))) |has| |#1| (-312))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-486)) (-350 (-486))) |has| |#1| (-312))) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) +(((|#1|) . T)) +((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +((($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-312)) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T)) +(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) -(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(|has| |#1| (-757)) -(|has| |#1| (-757)) (((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-350 |#2|) |#3|) . T)) -((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T)) +((((-350 (-486))) |has| (-350 |#2|) (-952 (-350 (-486)))) (((-486)) |has| (-350 |#2|) (-952 (-486))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) -((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T)) +((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-120)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-118)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) (|has| (-350 |#2|) (-190)) ((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))) (OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))) ((((-350 |#2|)) . T)) -((($ (-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) -((((-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) -((((-1091)) |has| (-350 |#2|) (-810 (-1091)))) +((($ (-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) +((((-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) +((((-1092)) |has| (-350 |#2|) (-811 (-1092)))) ((((-350 |#2|)) . T)) (((|#3|) . T)) -((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-773)) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) +((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-774)) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) (((|#1| |#2| |#3|) . T)) -((((-350 (-485))) . T) (((-773)) . T)) -((((-485)) . T)) -((((-485)) . T)) +((((-350 (-486))) . T) (((-774)) . T)) +((((-486)) . T)) +((((-486)) . T)) ((($) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485)) . T) (((-350 (-485))) . T) (($) . T)) -((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-485))) . T) (((-485)) . T)) -((((-485)) . T) (($) . T) (((-350 (-485))) . T)) -((((-485)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-485)) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (((-485) (-485)) . T) (($ $) . T)) -(((|#1|) . T) (((-485)) . T) (((-350 (-485))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) . T)) -(((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-350 (-485)) (-951 (-485)))) (((-350 (-485))) . T)) -((((-773)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486)) . T) (((-350 (-486))) . T) (($) . T)) +((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-486))) . T) (((-486)) . T)) +((((-486)) . T) (($) . T) (((-350 (-486))) . T)) +((((-486)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-486)) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-486))) . T) (((-486)) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) . T) (((-486) (-486)) . T) (($ $) . T)) +(((|#1|) . T) (((-486)) . T) (((-350 (-486))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) . T)) +(((|#1|) . T) (((-486)) OR (|has| |#1| (-952 (-486))) (|has| (-350 (-486)) (-952 (-486)))) (((-350 (-486))) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) (((|#4|) . T)) -((((-584 |#4|)) . T) (((-773)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +((((-585 |#4|)) . T) (((-774)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-474)) |has| |#4| (-554 (-474)))) +(((|#4|) . T)) +((((-475)) |has| |#4| (-555 (-475)))) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) @@ -2978,47 +3021,49 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-485)) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-486)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-485)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) -((((-704 |#1| (-774 |#2|))) . T)) -((((-704 |#1| (-774 |#2|))) . T)) -((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T)) -((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|))))) -((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|))))) -((((-704 |#1| (-774 |#2|))) . T)) -((((-474)) |has| (-704 |#1| (-774 |#2|)) (-554 (-474)))) -((((-704 |#1| (-774 |#2|))) . T)) -(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) -(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) -((((-474)) |has| |#3| (-554 (-474)))) +(((|#1|) . T) (((-486)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(((|#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) +((((-705 |#1| (-775 |#2|))) . T)) +((((-705 |#1| (-775 |#2|))) . T)) +((((-585 (-705 |#1| (-775 |#2|)))) . T) (((-774)) . T)) +((((-705 |#1| (-775 |#2|))) |has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|))))) +((((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) |has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|))))) +((((-705 |#1| (-775 |#2|))) . T)) +((((-705 |#1| (-775 |#2|))) . T)) +((((-475)) |has| (-705 |#1| (-775 |#2|)) (-555 (-475)))) +((((-705 |#1| (-775 |#2|))) . T)) +(((|#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) +(((|#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) +((((-475)) |has| |#3| (-555 (-475)))) (((|#3|) |has| |#3| (-312))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-631 |#3|)) . T) (((-773)) . T)) -((((-485)) . T) ((|#3|) . T)) +((((-632 |#3|)) . T) (((-774)) . T)) +((((-486)) . T) ((|#3|) . T)) +(((|#3|) . T)) (((|#3|) . T)) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) (((|#3|) . T)) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T)) -(|has| |#1| (-1014)) -((((-773)) |has| |#1| (-1014))) -(|has| |#1| (-1014)) -((((-773)) . T)) +(|has| |#1| (-1015)) +((((-774)) |has| |#1| (-1015))) +(|has| |#1| (-1015)) +((((-774)) . T)) (((|#1| |#2|) . T)) -((((-1091)) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-1092)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3026,31 +3071,31 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) -((((-485)) . T)) -((($) . T) (((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-485)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((((-486)) . T) (($) . T)) +((((-486)) . T)) +((($) . T) (((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-486)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-486)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) ((((-249 |#3|)) . T)) ((((-249 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#3| |#3|) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#2|) . T)) (((|#1|) |has| |#1| (-312))) -((((-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))))) -((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))))) +((((-1092)) -12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))))) +((($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))))) (((|#1|) |has| |#1| (-312))) (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))) @@ -3069,164 +3114,166 @@ (OR (|has| |#1| (-118)) (|has| |#1| (-299))) (|has| |#1| (-299)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T)) (|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) (((|#1|) . T)) -(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) (((|#1| |#2|) . T)) -((((-1091)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-1092)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-470 (-1001 (-1091))) (-1001 (-1091))) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-1001 (-1091))) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-1001 (-1091))) . T)) -((((-1091)) |has| |#1| (-810 (-1091))) (((-1001 (-1091))) . T)) -((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-1001 (-1091)) |#1|) . T) (((-1001 (-1091)) $) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-822))) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-470 (-1001 (-1091)))) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(((|#1| (-471 (-1002 (-1092))) (-1002 (-1092))) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-1002 (-1092))) . T)) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-1002 (-1092))) . T)) +((((-1092)) |has| |#1| (-811 (-1092))) (((-1002 (-1092))) . T)) +((($ $) . T) (((-1092) $) |has| |#1| (-190)) (((-1092) |#1|) |has| |#1| (-190)) (((-1002 (-1092)) |#1|) . T) (((-1002 (-1092)) $) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-823))) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-471 (-1002 (-1092)))) . T)) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -(((|#1| (-470 (-1001 (-1091)))) . T)) -((((-1040 |#1| (-1091))) . T) (((-1001 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1091)) . T)) -((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-1001 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1091)) . T)) -(((|#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) . T)) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +(((|#1| (-471 (-1002 (-1092)))) . T)) +((((-1041 |#1| (-1092))) . T) (((-1002 (-1092))) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-1092)) . T)) +((((-1041 |#1| (-1092))) . T) (((-486)) . T) (((-1002 (-1092))) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-1092)) . T)) +(((|#1| (-1092) (-1002 (-1092)) (-471 (-1002 (-1092)))) . T)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-584 |#1|)) |has| |#1| (-756))) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -((((-773)) |has| |#1| (-1014))) -(|has| |#1| (-1014)) +(((|#1| (-585 |#1|)) |has| |#1| (-757))) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +((((-774)) |has| |#1| (-1015))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -(|has| (-1002 |#1|) (-1014)) -((((-773)) |has| (-1002 |#1|) (-1014))) -(|has| (-1002 |#1|) (-1014)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(|has| (-1003 |#1|) (-1015)) +((((-774)) |has| (-1003 |#1|) (-1015))) +(|has| (-1003 |#1|) (-1015)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) . T)) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) . T)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) +(((|#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) (((|#1|) . T)) (|has| |#1| (-320)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T)) -((((-485) $) . T) (((-584 (-485)) $) . T)) -((((-773)) . T)) -((((-1074) (-1091) (-485) (-179) (-773)) . T)) -((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-485) $) . T) (((-584 (-485)) $) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-585 $)) . T) (((-1075)) . T) (((-1092)) . T) (((-486)) . T) (((-179)) . T) (((-774)) . T)) +((((-486) $) . T) (((-585 (-486)) $) . T)) +((((-774)) . T)) +((((-1075) (-1092) (-486) (-179) (-774)) . T)) +((((-585 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-486) $) . T) (((-585 (-486)) $) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962))) -(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962))) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) -((((-773)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-553 (-773))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) (((-1180 |#3|)) . T)) -(((|#3|) |has| |#3| (-962))) -((((-1091)) -12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962)))) -((((-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) -((($ (-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) -(((|#3|) |has| |#3| (-962))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -((((-485)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-962))) +(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) +(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +((((-774)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-554 (-774))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) (((-1181 |#3|)) . T)) +(((|#3|) |has| |#3| (-963))) +((((-1092)) -12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963)))) +((((-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) +((($ (-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) +(((|#3|) |has| |#3| (-963))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963))))) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +((((-486)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963))) (($) |has| |#3| (-963))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (|has| |#3| (-320)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) . T)) (((|#3|) . T)) -(((|#3|) |has| |#3| (-962))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-1014))) -((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) -(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) -((((-485) |#3|) . T)) -((((-485) |#3|) . T)) -((((-485) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)))) +(((|#3|) |has| |#3| (-963))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) (($) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-1015))) +((((-486)) OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ((|#3|) |has| |#3| (-1015)) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) +(((|#3|) |has| |#3| (-1015)) (((-486)) -12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) +((((-486) |#3|) . T)) +((((-486) |#3|) . T)) +((((-486) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) +(|has| |#3| (-719)) +(|has| |#3| (-719)) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(|has| |#3| (-719)) +(|has| |#3| (-719)) (((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3234,795 +3281,806 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-485)) . T) (($) . T)) -((((-485)) . T)) -((($) . T) (((-485)) . T)) -((((-485)) . T)) -((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) -((((-485)) . T)) -((((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485)))))) +((((-486)) . T) (($) . T)) +((((-486)) . T)) +((($) . T) (((-486)) . T)) +((((-486)) . T)) +((((-475)) . T) (((-486)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) +((((-486)) . T)) +((((-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475)))) (((-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) (((-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486)))))) ((($) . T)) -(((|#1| (-470 |#2|)) . T)) +(((|#1| (-471 |#2|)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) -(((|#1| (-470 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) +(((|#1| (-471 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +(OR (|has| |#1| (-393)) (|has| |#1| (-823))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485))))) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) ((|#2|) . T)) -((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#2|) . T)) -(((|#1| (-470 |#2|) |#2|) . T)) +((((-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330)))) (((-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486))))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T) ((|#2|) . T)) +((((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#2|) . T)) +(((|#1| (-471 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-470 |#2|) |#2|) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +(((|#1| (-471 |#2|) |#2|) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -(((|#1| (-470 |#2|)) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +((((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +(((|#1| (-471 |#2|)) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) (((|#1| |#2|) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-1055 |#1| |#2|)) . T)) -((((-1055 |#1| |#2|)) . T)) -((((-1055 |#1| |#2|)) . T)) -((((-1055 |#1| |#2|) (-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|)))) -((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|)))) -((((-773)) . T)) -((((-1055 |#1| |#2|)) . T)) -((((-474)) |has| |#2| (-554 (-474)))) -(((|#2|) |has| |#2| (-6 (-3999 "*")))) +((((-774)) . T)) +(((|#1|) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-1056 |#1| |#2|)) . T)) +((((-1056 |#1| |#2|)) . T)) +((((-1056 |#1| |#2|)) . T)) +((((-1056 |#1| |#2|)) . T)) +((((-1056 |#1| |#2|) (-1056 |#1| |#2|)) |has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|)))) +((((-1056 |#1| |#2|)) |has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|)))) +((((-774)) . T)) +((((-1056 |#1| |#2|)) . T)) +((((-475)) |has| |#2| (-555 (-475)))) +(((|#2|) |has| |#2| (-6 (-4000 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-631 |#2|)) . T) (((-773)) . T)) -((($) . T) (((-485)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-3999 "*"))) (|has| |#2| (-146)))) -(((|#2|) OR (|has| |#2| (-6 (-3999 "*"))) (|has| |#2| (-146)))) +((((-632 |#2|)) . T) (((-774)) . T)) +((($) . T) (((-486)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-4000 "*"))) (|has| |#2| (-146)))) +(((|#2|) OR (|has| |#2| (-6 (-4000 "*"))) (|has| |#2| (-146)))) (((|#2|) . T)) -((((-1091)) |has| |#2| (-810 (-1091)))) -((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) -((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((((-1092)) |has| |#2| (-811 (-1092)))) +((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) -(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +((($) . T) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) (((|#2|) . T)) -((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) -(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +((((-486)) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) +(((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-474)) |has| |#4| (-554 (-474)))) +((((-475)) |has| |#4| (-555 (-475)))) +(((|#4|) . T)) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-773)) . T) (((-584 |#4|)) . T)) +((((-774)) . T) (((-585 |#4|)) . T)) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(|has| |#1| (-1015)) (((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) +(((|#1|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +(((|#1|) . T)) +((((-585 |#1|)) . T)) (((|#1|) . T)) -((((-584 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) +(|has| |#1| (-1015)) (((|#1|) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -((((-485) |#1|) . T)) -((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) -((((-485) |#1|) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +((((-486) |#1|) . T)) +((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) +((((-486) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-485) (-117)) . T)) -((((-485) (-117)) . T)) -((((-485) (-117)) . T) (((-1147 (-485)) $) . T)) ((((-117)) . T)) +((((-486) (-117)) . T)) +((((-486) (-117)) . T)) +((((-486) (-117)) . T) (((-1148 (-486)) $) . T)) ((((-117)) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-773)) . T)) -((((-1074) |#1|) . T)) -((((-1074) |#1|) . T)) -((((-1074) |#1|) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-1074) |#1|) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T)) -((((-1074) |#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1090 |#1| |#2| |#3|)) . T)) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))))) -((((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|)))) (((-1091) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))))) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-117)) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-774)) . T)) +((((-1075) |#1|) . T)) +((((-1075) |#1|) . T)) +((((-1075) |#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-1075) |#1|) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) . T)) +((((-1075) |#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1091 |#1| |#2| |#3|)) . T)) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1091 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))))) +((((-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|)))) (((-1092) (-1091 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-457 (-1092) (-1091 |#1| |#2| |#3|))))) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-118)))) -((((-773)) . T)) -(((|#1|) . T)) -((((-1090 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T)) -(((|#1| (-485) (-995)) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1090 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-485)) . T)) -(((|#1| (-485)) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-1090 |#1| |#2| |#3|)) . T)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1178 |#2|)) . T) (($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-118)))) +((((-774)) . T)) +(((|#1|) . T)) +((((-1091 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-241 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)))) (($ $) . T) (((-486) |#1|) . T)) +(((|#1| (-486) (-996)) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-486)) . T) (($) . T) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1091 |#1| |#2| |#3|)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-486)) . T)) +(((|#1| (-486)) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-1091 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-773)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) +((((-774)) . T)) +((((-350 $) (-350 $)) |has| |#1| (-497)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (|has| |#1| (-312)) -(((|#1| (-695) (-995)) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T)) -((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T)) -((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T)) -((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-695)) . T)) +(((|#1| (-696) (-996)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-996)) . T)) +((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-996)) . T)) +((((-1092)) |has| |#1| (-811 (-1092))) (((-996)) . T)) +((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-696)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1| (-695)) . T)) -((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T)) +((((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +((((-996)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1| (-696)) . T)) +((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1067)) -(((|#1|) . T)) -((((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($ $) . T) (((-350 (-485)) |#1|) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -(((|#1| (-350 (-485)) (-995)) . T)) +(|has| |#1| (-1068)) +(((|#1|) . T)) +((((-1091 |#1| |#2| |#3|)) . T) (((-1084 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($ $) . T) (((-350 (-486)) |#1|) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +(((|#1| (-350 (-486)) (-996)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-350 (-485))) . T)) -(((|#1| (-350 (-485))) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-350 (-486))) . T)) +(((|#1| (-350 (-486))) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) -((((-773)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) +((((-774)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -((((-1177 |#2|)) . T) (((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +((((-1178 |#2|)) . T) (((-1091 |#1| |#2| |#3|)) . T) (((-1084 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1| (-1083 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-695)) . T)) -(((|#1| (-695)) . T)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +(((|#1| (-1084 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-696)) . T)) +(((|#1| (-696)) . T)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1| (-695) (-995)) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-695) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-695) |#1|)))) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -(((|#1|) . T)) -((((-330)) . T) (((-485)) . T)) -((((-447)) . T)) -((((-447)) . T) (((-1074)) . T)) -((((-801 (-330))) . T) (((-801 (-485))) . T) (((-1091)) . T) (((-474)) . T)) -((((-773)) . T)) -(((|#1| (-885)) . T)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1| (-696) (-996)) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-696) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-696) |#1|)))) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +(((|#1|) . T)) +((((-330)) . T) (((-486)) . T)) +((((-448)) . T)) +((((-448)) . T) (((-1075)) . T)) +((((-802 (-330))) . T) (((-802 (-486))) . T) (((-1092)) . T) (((-475)) . T)) +((((-774)) . T)) +(((|#1| (-886)) . T)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((((-773)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) -((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1|) . T)) -(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) -(((|#1| (-885)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1074)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T)) -((((-1074)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T)) -((((-474)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((((-774)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) +((($) |has| |#1| (-497)) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-486)) . T)) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1|) . T)) +(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1| (-886)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1075)) . T) (((-448)) . T) (((-179)) . T) (((-486)) . T)) +((((-1075)) . T) (((-448)) . T) (((-179)) . T) (((-486)) . T)) +((((-475)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-338) (-1075)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-338) (-1074)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-1015)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) ((($) . T)) -((($ $) . T) (((-1091) $) . T)) -((((-1091)) . T)) -((((-773)) . T)) -((($ (-1091)) . T)) -((((-1091)) . T)) -(((|#1| (-470 (-1091)) (-1091)) . T)) -((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) -((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((($ $) . T) (((-1092) $) . T)) +((((-1092)) . T)) +((((-774)) . T)) +((($ (-1092)) . T)) +((((-1092)) . T)) +(((|#1| (-471 (-1092)) (-1092)) . T)) +((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) -(((|#1| (-470 (-1091))) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-1091)) . T)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -((((-870 |#1|)) . T)) -((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T)) -((((-870 |#1|)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1170 |#1| |#2| |#3|)) . T)) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))))) -((((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|)))) (((-1091) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))))) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +((((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) +(((|#1| (-471 (-1092))) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-1092)) . T)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +((((-871 |#1|)) . T)) +((((-774)) |has| |#1| (-554 (-774))) (((-871 |#1|)) . T)) +((((-871 |#1|)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1171 |#1| |#2| |#3|)) . T)) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1171 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))))) +((((-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|)))) (((-1092) (-1171 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-457 (-1092) (-1171 |#1| |#2| |#3|))))) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-118)))) -((((-773)) . T)) -(((|#1|) . T)) -((((-1170 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T)) -(((|#1| (-485) (-995)) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1170 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-485)) . T)) -(((|#1| (-485)) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-1170 |#1| |#2| |#3|)) . T)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1178 |#2|)) . T) (($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-118)))) +((((-774)) . T)) +(((|#1|) . T)) +((((-1171 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-241 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)))) (($ $) . T) (((-486) |#1|) . T)) +(((|#1| (-486) (-996)) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-486)) . T) (($) . T) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1171 |#1| |#2| |#3|)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-486)) . T)) +(((|#1| (-486)) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-1171 |#1| |#2| |#3|)) . T)) (((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) -(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) (((-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485))))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-934))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-822))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-1068))) +(((|#2|) . T) (((-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) (((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) (((-350 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-935))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-823))) (((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757)))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757)))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) -((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-758)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-758)))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-330)))) (((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-486))))) (((|#2|) |has| |#1| (-312))) -((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((|#2|) |has| |#1| (-312))) +((((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ((|#2|) |has| |#1| (-312))) (((|#2|) |has| |#1| (-312))) (((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1092) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|)))) (((|#2|) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (((|#2|) |has| |#1| (-312))) -((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) -((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) +((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) (((|#2|) |has| |#1| (-312))) -((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) (((-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474))))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) +((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) (((-802 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-330))))) (((-802 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-486))))) (((-475)) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-475))))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) (OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) -((((-773)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-485) |#1|) . T)) -(((|#1| (-485) (-995)) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) -((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-485)) . T)) -(((|#1| (-485)) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) +((((-774)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-486) |#1|) . T)) +(((|#1| (-486) (-996)) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-486)) . T) (($) . T) ((|#1|) . T)) +((((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +(((|#2|) . T) (((-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-486)) . T)) +(((|#1| (-486)) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) (((|#1| |#2|) . T)) -(((|#1| (-1070 |#1|)) |has| |#1| (-756))) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -((((-773)) |has| |#1| (-1014))) -(|has| |#1| (-1014)) +(((|#1| (-1071 |#1|)) |has| |#1| (-757))) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +((((-774)) |has| |#1| (-1015))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-773)) . T)) -((((-350 $) (-350 $)) |has| |#2| (-496)) (($ $) . T) ((|#2| |#2|) . T)) +((((-774)) . T)) +((((-350 $) (-350 $)) |has| |#2| (-497)) (($ $) . T) ((|#2| |#2|) . T)) (|has| |#2| (-312)) -(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-822))) -(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) -(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-823))) +(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +(OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) +(OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (|has| |#2| (-312)) -(((|#2| (-695) (-995)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (((-995)) . T)) -((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (($ (-995)) . T)) -((((-1091)) |has| |#2| (-810 (-1091))) (((-995)) . T)) -((((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T)) +(((|#2| (-696) (-996)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092)))) (((-996)) . T)) +((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092)))) (($ (-996)) . T)) +((((-1092)) |has| |#2| (-811 (-1092))) (((-996)) . T)) +((((-486)) |has| |#2| (-582 (-486))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-695)) . T)) +(((|#2| (-696)) . T)) (|has| |#2| (-120)) (|has| |#2| (-118)) -((((-1177 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-995)) . T) ((|#2|) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485)))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((($) . T) (((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((((-485)) . T) (($) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((((-1178 |#1|)) . T) (((-486)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-996)) . T) ((|#2|) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486)))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((($) . T) (((-486)) |has| |#2| (-582 (-486))) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((((-486)) . T) (($) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2| |#2|) . T) (((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) (((|#2|) . T)) -((((-995)) . T) ((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) -(((|#2| (-695)) . T)) -((((-995) |#2|) . T) (((-995) $) . T) (($ $) . T)) +((((-996)) . T) ((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) +(((|#2| (-696)) . T)) +((((-996) |#2|) . T) (((-996) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1067)) +(|has| |#2| (-1068)) (((|#2|) . T)) -((((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($ $) . T) (((-350 (-485)) |#1|) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -(((|#1| (-350 (-485)) (-995)) . T)) +((((-1171 |#1| |#2| |#3|)) . T) (((-1141 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($ $) . T) (((-350 (-486)) |#1|) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +(((|#1| (-350 (-486)) (-996)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-350 (-485))) . T)) -(((|#1| (-350 (-485))) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-350 (-486))) . T)) +(((|#1| (-350 (-486))) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) -((((-773)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) +((((-774)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -((((-1177 |#2|)) . T) (((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +((((-1178 |#2|)) . T) (((-1171 |#1| |#2| |#3|)) . T) (((-1141 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1| (-1140 |#1| |#2| |#3|)) . T)) +(((|#1| (-1141 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) -((($ $) . T) (((-350 (-485)) |#1|) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) -(((|#1| (-350 (-485)) (-995)) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($ $) . T) (((-350 (-486)) |#1|) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) +(((|#1| (-350 (-486)) (-996)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-350 (-485))) . T)) -(((|#1| (-350 (-485))) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-350 (-486))) . T)) +(((|#1| (-350 (-486))) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) -((((-773)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) +((((-774)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) -(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) +(OR (|has| |#1| (-312)) (|has| |#1| (-497))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) (((|#1| |#2|) . T)) -((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| (-1161 |#2| |#3| |#4|) (-120)) -(|has| (-1161 |#2| |#3| |#4|) (-118)) -((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) -((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) -((((-773)) . T)) -((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) -((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) -((($ $) . T) (((-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) -((((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) -((((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (($) . T)) -((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T)) -((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) -((((-1161 |#2| |#3| |#4|)) . T)) -((((-1161 |#2| |#3| |#4|)) . T)) -((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(|has| |#1| (-38 (-350 (-485)))) -(((|#1| (-695)) . T)) -(((|#1| (-695)) . T)) -(|has| |#1| (-496)) -(|has| |#1| (-496)) -(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| (-1162 |#2| |#3| |#4|) (-120)) +(|has| (-1162 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1162 |#2| |#3| |#4|)) |has| (-1162 |#2| |#3| |#4|) (-146)) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) +((($) . T) (((-1162 |#2| |#3| |#4|)) |has| (-1162 |#2| |#3| |#4|) (-146)) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) +((((-774)) . T)) +((($) . T) (((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) +((($) . T) (((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) +((($ $) . T) (((-1162 |#2| |#3| |#4|) (-1162 |#2| |#3| |#4|)) . T) (((-350 (-486)) (-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) +((((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) +((((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) (($) . T)) +((($) . T) (((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) (((-486)) . T)) +((($) . T) (((-1162 |#2| |#3| |#4|)) |has| (-1162 |#2| |#3| |#4|) (-146)) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) +((((-1162 |#2| |#3| |#4|)) . T)) +((((-1162 |#2| |#3| |#4|)) . T)) +((((-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(|has| |#1| (-38 (-350 (-486)))) +(((|#1| (-696)) . T)) +(((|#1| (-696)) . T)) +(|has| |#1| (-497)) +(|has| |#1| (-497)) +(OR (|has| |#1| (-146)) (|has| |#1| (-497))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) -(((|#1| (-695) (-995)) . T)) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-695) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-695) |#1|)))) -((((-773)) . T)) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) -((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -(((|#1|) . T)) -((((-1091)) . T) (((-773)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-485) |#1|) . T)) -((((-485) |#1|) . T)) -((((-485) |#1|) . T) (((-1147 (-485)) $) . T)) -((((-474)) |has| |#1| (-554 (-474)))) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) -((((-1096)) . T)) -((((-773)) . T) (((-1096)) . T)) -((((-1096)) . T)) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) +(((|#1| (-696) (-996)) . T)) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-696) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-696) |#1|)))) +((((-774)) . T)) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) +((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +(((|#1|) . T)) +((((-1092)) . T) (((-774)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-486) |#1|) . T)) +((((-486) |#1|) . T)) +((((-486) |#1|) . T) (((-1148 (-486)) $) . T)) +((((-475)) |has| |#1| (-555 (-475)))) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) +((((-1097)) . T)) +((((-774)) . T) (((-1097)) . T)) +((((-1097)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -4030,18 +4088,19 @@ (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-485)) . T)) +(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-486)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -(((|#4|) . T) (((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +(((|#4|) . T) (((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-474)) |has| |#4| (-554 (-474)))) +((((-475)) |has| |#4| (-555 (-475)))) +(((|#4|) . T)) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-773)) . T) (((-584 |#4|)) . T)) +((((-774)) . T) (((-585 |#4|)) . T)) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) @@ -4051,15 +4110,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-485)) . T) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-486)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-740 |#1|)) . T)) -(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T)) -(((|#2| (-740 |#1|)) . T)) -(((|#2| (-804 |#1|)) . T)) +((((-741 |#1|)) . T)) +(((|#2|) . T) (((-486)) . T) (((-741 |#1|)) . T)) +(((|#2| (-741 |#1|)) . T)) +(((|#2| (-805 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -4069,12 +4128,12 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-773)) . T)) -(((|#2|) . T) (($) . T) (((-485)) . T)) -((((-804 |#1|)) . T) ((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T)) -((((-804 |#1|)) . T) (((-740 |#1|)) . T)) +((((-774)) . T)) +(((|#2|) . T) (($) . T) (((-486)) . T)) +((((-805 |#1|)) . T) ((|#2|) . T) (((-486)) . T) (((-741 |#1|)) . T)) +((((-805 |#1|)) . T) (((-741 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1091) |#1|) . T)) +((((-1092) |#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -4083,11 +4142,11 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-485)) . T)) -(((|#1|) . T) (((-485)) . T) (((-740 (-1091))) . T)) -((((-740 (-1091))) . T)) -((((-1091) |#1|) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-486)) . T)) +(((|#1|) . T) (((-486)) . T) (((-741 (-1092))) . T)) +((((-741 (-1092))) . T)) +((((-1092) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-146))) @@ -4097,10 +4156,10 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-485)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-486)) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-485)) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-486)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -4110,20 +4169,20 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-773)) . T)) -(((|#2|) . T) (($) . T) (((-485)) . T)) -(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T)) -((((-740 |#1|)) . T)) +((((-774)) . T)) +(((|#2|) . T) (($) . T) (((-486)) . T)) +(((|#2|) . T) (((-486)) . T) (((-741 |#1|)) . T)) +((((-741 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T) (((-773)) . T)) -((((-485)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T) (((-774)) . T)) +((((-486)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-773)) . T)) -((((-485)) . T) (($) . T)) +((((-774)) . T)) +((((-486)) . T) (($) . T)) ((($) . T)) -((((-485)) . T)) -(((-1210 . -146) T) ((-1210 . -556) 201094) ((-1210 . -971) T) ((-1210 . -1026) T) ((-1210 . -1062) T) ((-1210 . -664) T) ((-1210 . -962) T) ((-1210 . -591) 201081) ((-1210 . -589) 201053) ((-1210 . -104) T) ((-1210 . -25) T) ((-1210 . -72) T) ((-1210 . -13) T) ((-1210 . -1130) T) ((-1210 . -553) 201035) ((-1210 . -1014) T) ((-1210 . -23) T) ((-1210 . -21) T) ((-1210 . -969) 201022) ((-1210 . -964) 201009) ((-1210 . -82) 200994) ((-1210 . -320) T) ((-1210 . -554) 200976) ((-1210 . -1067) T) ((-1206 . -1014) T) ((-1206 . -553) 200943) ((-1206 . -1130) T) ((-1206 . -13) T) ((-1206 . -72) T) ((-1206 . -430) 200925) ((-1206 . -556) 200907) ((-1205 . -1203) 200886) ((-1205 . -951) 200863) ((-1205 . -556) 200812) ((-1205 . -962) T) ((-1205 . -664) T) ((-1205 . -1062) T) ((-1205 . -1026) T) ((-1205 . -971) T) ((-1205 . -21) T) ((-1205 . -589) 200771) ((-1205 . -23) T) ((-1205 . -1014) T) ((-1205 . -553) 200753) ((-1205 . -1130) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -591) 200727) ((-1205 . -1195) 200711) ((-1205 . -655) 200681) ((-1205 . -583) 200651) ((-1205 . -969) 200635) ((-1205 . -964) 200619) ((-1205 . -82) 200598) ((-1205 . -38) 200568) ((-1205 . -1200) 200547) ((-1204 . -962) T) ((-1204 . -664) T) ((-1204 . -1062) T) ((-1204 . -1026) T) ((-1204 . -971) T) ((-1204 . -21) T) ((-1204 . -589) 200506) ((-1204 . -23) T) ((-1204 . -1014) T) ((-1204 . -553) 200488) ((-1204 . -1130) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -591) 200462) ((-1204 . -556) 200418) ((-1204 . -1195) 200402) ((-1204 . -655) 200372) ((-1204 . -583) 200342) ((-1204 . -969) 200326) ((-1204 . -964) 200310) ((-1204 . -82) 200289) ((-1204 . -38) 200259) ((-1204 . -335) 200238) ((-1204 . -951) 200222) ((-1202 . -1203) 200198) ((-1202 . -951) 200172) ((-1202 . -556) 200118) ((-1202 . -962) T) ((-1202 . -664) T) ((-1202 . -1062) T) ((-1202 . -1026) T) ((-1202 . -971) T) ((-1202 . -21) T) ((-1202 . -589) 200077) ((-1202 . -23) T) ((-1202 . -1014) T) ((-1202 . -553) 200059) ((-1202 . -1130) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -591) 200033) ((-1202 . -1195) 200017) ((-1202 . -655) 199987) ((-1202 . -583) 199957) ((-1202 . -969) 199941) ((-1202 . -964) 199925) ((-1202 . -82) 199904) ((-1202 . -38) 199874) ((-1202 . -1200) 199850) ((-1201 . -1203) 199829) ((-1201 . -951) 199786) ((-1201 . -556) 199715) ((-1201 . -962) T) ((-1201 . -664) T) ((-1201 . -1062) T) ((-1201 . -1026) T) ((-1201 . -971) T) ((-1201 . -21) T) ((-1201 . -589) 199674) ((-1201 . -23) T) ((-1201 . -1014) T) ((-1201 . -553) 199656) ((-1201 . -1130) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -591) 199630) ((-1201 . -1195) 199614) ((-1201 . -655) 199584) ((-1201 . -583) 199554) ((-1201 . -969) 199538) ((-1201 . -964) 199522) ((-1201 . -82) 199501) ((-1201 . -38) 199471) ((-1201 . -1200) 199450) ((-1201 . -335) 199422) ((-1196 . -335) 199394) ((-1196 . -556) 199343) ((-1196 . -951) 199320) ((-1196 . -583) 199290) ((-1196 . -655) 199260) ((-1196 . -591) 199234) ((-1196 . -589) 199193) ((-1196 . -104) T) ((-1196 . -25) T) ((-1196 . -72) T) ((-1196 . -13) T) ((-1196 . -1130) T) ((-1196 . -553) 199175) ((-1196 . -1014) T) ((-1196 . -23) T) ((-1196 . -21) T) ((-1196 . -969) 199159) ((-1196 . -964) 199143) ((-1196 . -82) 199122) ((-1196 . -1203) 199101) ((-1196 . -962) T) ((-1196 . -664) T) ((-1196 . -1062) T) ((-1196 . -1026) T) ((-1196 . -971) T) ((-1196 . -1195) 199085) ((-1196 . -38) 199055) ((-1196 . -1200) 199034) ((-1194 . -1125) 199003) ((-1194 . -1036) 198987) ((-1194 . -553) 198949) ((-1194 . -124) 198933) ((-1194 . -34) T) ((-1194 . -13) T) ((-1194 . -1130) T) ((-1194 . -72) T) ((-1194 . -260) 198871) ((-1194 . -456) 198804) ((-1194 . -1014) T) ((-1194 . -429) 198788) ((-1194 . -554) 198749) ((-1194 . -318) 198733) ((-1194 . -890) 198702) ((-1193 . -962) T) ((-1193 . -664) T) ((-1193 . -1062) T) ((-1193 . -1026) T) ((-1193 . -971) T) ((-1193 . -21) T) ((-1193 . -589) 198647) ((-1193 . -23) T) ((-1193 . -1014) T) ((-1193 . -553) 198616) ((-1193 . -1130) T) ((-1193 . -13) T) ((-1193 . -72) T) ((-1193 . -25) T) ((-1193 . -104) T) ((-1193 . -591) 198576) ((-1193 . -556) 198518) ((-1193 . -430) 198502) ((-1193 . -38) 198472) ((-1193 . -82) 198437) ((-1193 . -964) 198407) ((-1193 . -969) 198377) ((-1193 . -583) 198347) ((-1193 . -655) 198317) ((-1192 . -996) T) ((-1192 . -430) 198298) ((-1192 . -553) 198264) ((-1192 . -556) 198245) ((-1192 . -1014) T) ((-1192 . -1130) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -64) T) ((-1191 . -996) T) ((-1191 . -430) 198226) ((-1191 . -553) 198192) ((-1191 . -556) 198173) ((-1191 . -1014) T) ((-1191 . -1130) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1186 . -553) 198155) ((-1184 . -1014) T) ((-1184 . -553) 198137) ((-1184 . -1130) T) ((-1184 . -13) T) ((-1184 . -72) T) ((-1183 . -1014) T) ((-1183 . -553) 198119) ((-1183 . -1130) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1180 . -1179) 198103) ((-1180 . -324) 198087) ((-1180 . -760) 198066) ((-1180 . -757) 198045) ((-1180 . -124) 198029) ((-1180 . -554) 197990) ((-1180 . -241) 197942) ((-1180 . -539) 197919) ((-1180 . -243) 197896) ((-1180 . -594) 197880) ((-1180 . -429) 197864) ((-1180 . -1014) 197817) ((-1180 . -456) 197750) ((-1180 . -260) 197688) ((-1180 . -553) 197603) ((-1180 . -72) 197537) ((-1180 . -1130) T) ((-1180 . -13) T) ((-1180 . -34) T) ((-1180 . -318) 197521) ((-1180 . -1036) 197505) ((-1180 . -19) 197489) ((-1177 . -1014) T) ((-1177 . -553) 197455) ((-1177 . -1130) T) ((-1177 . -13) T) ((-1177 . -72) T) ((-1170 . -1173) 197439) ((-1170 . -190) 197398) ((-1170 . -556) 197280) ((-1170 . -591) 197205) ((-1170 . -589) 197115) ((-1170 . -104) T) ((-1170 . -25) T) ((-1170 . -72) T) ((-1170 . -553) 197097) ((-1170 . -1014) T) ((-1170 . -23) T) ((-1170 . -21) T) ((-1170 . -971) T) ((-1170 . -1026) T) ((-1170 . -1062) T) ((-1170 . -664) T) ((-1170 . -962) T) ((-1170 . -186) 197050) ((-1170 . -13) T) ((-1170 . -1130) T) ((-1170 . -189) 197009) ((-1170 . -241) 196974) ((-1170 . -810) 196887) ((-1170 . -807) 196775) ((-1170 . -812) 196688) ((-1170 . -887) 196658) ((-1170 . -38) 196555) ((-1170 . -82) 196420) ((-1170 . -964) 196306) ((-1170 . -969) 196192) ((-1170 . -583) 196089) ((-1170 . -655) 195986) ((-1170 . -118) 195965) ((-1170 . -120) 195944) ((-1170 . -146) 195898) ((-1170 . -496) 195877) ((-1170 . -246) 195856) ((-1170 . -47) 195833) ((-1170 . -1159) 195810) ((-1170 . -35) 195776) ((-1170 . -66) 195742) ((-1170 . -239) 195708) ((-1170 . -433) 195674) ((-1170 . -1119) 195640) ((-1170 . -1116) 195606) ((-1170 . -916) 195572) ((-1167 . -277) 195516) ((-1167 . -951) 195482) ((-1167 . -355) 195448) ((-1167 . -38) 195305) ((-1167 . -556) 195179) ((-1167 . -591) 195068) ((-1167 . -589) 194942) ((-1167 . -971) T) ((-1167 . -1026) T) ((-1167 . -1062) T) ((-1167 . -664) T) ((-1167 . -962) T) ((-1167 . -82) 194792) ((-1167 . -964) 194681) ((-1167 . -969) 194570) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1014) T) ((-1167 . -553) 194552) ((-1167 . -1130) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -583) 194409) ((-1167 . -655) 194266) ((-1167 . -118) 194227) ((-1167 . -120) 194188) ((-1167 . -146) T) ((-1167 . -496) T) ((-1167 . -246) T) ((-1167 . -47) 194132) ((-1166 . -1165) 194111) ((-1166 . -312) 194090) ((-1166 . -1135) 194069) ((-1166 . -833) 194048) ((-1166 . -496) 194002) ((-1166 . -146) 193936) ((-1166 . -556) 193755) ((-1166 . -655) 193602) ((-1166 . -583) 193449) ((-1166 . -38) 193296) ((-1166 . -392) 193275) ((-1166 . -258) 193254) ((-1166 . -591) 193154) ((-1166 . -589) 193039) ((-1166 . -971) T) ((-1166 . -1026) T) ((-1166 . -1062) T) ((-1166 . -664) T) ((-1166 . -962) T) ((-1166 . -82) 192859) ((-1166 . -964) 192700) ((-1166 . -969) 192541) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1014) T) ((-1166 . -553) 192523) ((-1166 . -1130) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -246) 192477) ((-1166 . -201) 192456) ((-1166 . -916) 192422) ((-1166 . -1116) 192388) ((-1166 . -1119) 192354) ((-1166 . -433) 192320) ((-1166 . -239) 192286) ((-1166 . -66) 192252) ((-1166 . -35) 192218) ((-1166 . -1159) 192188) ((-1166 . -47) 192158) ((-1166 . -120) 192137) ((-1166 . -118) 192116) ((-1166 . -887) 192079) ((-1166 . -812) 191985) ((-1166 . -807) 191889) ((-1166 . -810) 191795) ((-1166 . -241) 191753) ((-1166 . -189) 191705) ((-1166 . -186) 191651) ((-1166 . -190) 191603) ((-1166 . -1163) 191587) ((-1166 . -951) 191571) ((-1161 . -1165) 191532) ((-1161 . -312) 191511) ((-1161 . -1135) 191490) ((-1161 . -833) 191469) ((-1161 . -496) 191423) ((-1161 . -146) 191357) ((-1161 . -556) 191106) ((-1161 . -655) 190953) ((-1161 . -583) 190800) ((-1161 . -38) 190647) ((-1161 . -392) 190626) ((-1161 . -258) 190605) ((-1161 . -591) 190505) ((-1161 . -589) 190390) ((-1161 . -971) T) ((-1161 . -1026) T) ((-1161 . -1062) T) ((-1161 . -664) T) ((-1161 . -962) T) ((-1161 . -82) 190210) ((-1161 . -964) 190051) ((-1161 . -969) 189892) ((-1161 . -21) T) ((-1161 . -23) T) ((-1161 . -1014) T) ((-1161 . -553) 189874) ((-1161 . -1130) T) ((-1161 . -13) T) ((-1161 . -72) T) ((-1161 . -25) T) ((-1161 . -104) T) ((-1161 . -246) 189828) ((-1161 . -201) 189807) ((-1161 . -916) 189773) ((-1161 . -1116) 189739) ((-1161 . -1119) 189705) ((-1161 . -433) 189671) ((-1161 . -239) 189637) ((-1161 . -66) 189603) ((-1161 . -35) 189569) ((-1161 . -1159) 189539) ((-1161 . -47) 189509) ((-1161 . -120) 189488) ((-1161 . -118) 189467) ((-1161 . -887) 189430) ((-1161 . -812) 189336) ((-1161 . -807) 189217) ((-1161 . -810) 189123) ((-1161 . -241) 189081) ((-1161 . -189) 189033) ((-1161 . -186) 188979) ((-1161 . -190) 188931) ((-1161 . -1163) 188915) ((-1161 . -951) 188850) ((-1149 . -1156) 188834) ((-1149 . -1067) 188812) ((-1149 . -554) NIL) ((-1149 . -260) 188799) ((-1149 . -456) 188747) ((-1149 . -277) 188724) ((-1149 . -951) 188607) ((-1149 . -355) 188591) ((-1149 . -38) 188423) ((-1149 . -82) 188228) ((-1149 . -964) 188054) ((-1149 . -969) 187880) ((-1149 . -589) 187790) ((-1149 . -591) 187679) ((-1149 . -583) 187511) ((-1149 . -655) 187343) ((-1149 . -556) 187099) ((-1149 . -118) 187078) ((-1149 . -120) 187057) ((-1149 . -47) 187034) ((-1149 . -329) 187018) ((-1149 . -581) 186966) ((-1149 . -810) 186910) ((-1149 . -807) 186817) ((-1149 . -812) 186728) ((-1149 . -797) NIL) ((-1149 . -822) 186707) ((-1149 . -1135) 186686) ((-1149 . -862) 186656) ((-1149 . -833) 186635) ((-1149 . -496) 186549) ((-1149 . -246) 186463) ((-1149 . -146) 186357) ((-1149 . -392) 186291) ((-1149 . -258) 186270) ((-1149 . -241) 186197) ((-1149 . -190) T) ((-1149 . -104) T) ((-1149 . -25) T) ((-1149 . -72) T) ((-1149 . -553) 186179) ((-1149 . -1014) T) ((-1149 . -23) T) ((-1149 . -21) T) ((-1149 . -971) T) ((-1149 . -1026) T) ((-1149 . -1062) T) ((-1149 . -664) T) ((-1149 . -962) T) ((-1149 . -186) 186166) ((-1149 . -13) T) ((-1149 . -1130) T) ((-1149 . -189) T) ((-1149 . -225) 186150) ((-1149 . -184) 186134) ((-1147 . -1007) 186118) ((-1147 . -558) 186102) ((-1147 . -1014) 186080) ((-1147 . -553) 186047) ((-1147 . -1130) 186025) ((-1147 . -13) 186003) ((-1147 . -72) 185981) ((-1147 . -1008) 185938) ((-1145 . -1144) 185917) ((-1145 . -916) 185883) ((-1145 . -1116) 185849) ((-1145 . -1119) 185815) ((-1145 . -433) 185781) ((-1145 . -239) 185747) ((-1145 . -66) 185713) ((-1145 . -35) 185679) ((-1145 . -1159) 185656) ((-1145 . -47) 185633) ((-1145 . -556) 185388) ((-1145 . -655) 185208) ((-1145 . -583) 185028) ((-1145 . -591) 184839) ((-1145 . -589) 184697) ((-1145 . -969) 184511) ((-1145 . -964) 184325) ((-1145 . -82) 184113) ((-1145 . -38) 183933) ((-1145 . -887) 183903) ((-1145 . -241) 183803) ((-1145 . -1142) 183787) ((-1145 . -971) T) ((-1145 . -1026) T) ((-1145 . -1062) T) ((-1145 . -664) T) ((-1145 . -962) T) ((-1145 . -21) T) ((-1145 . -23) T) ((-1145 . -1014) T) ((-1145 . -553) 183769) ((-1145 . -1130) T) ((-1145 . -13) T) ((-1145 . -72) T) ((-1145 . -25) T) ((-1145 . -104) T) ((-1145 . -118) 183697) ((-1145 . -120) 183579) ((-1145 . -554) 183252) ((-1145 . -184) 183222) ((-1145 . -810) 183076) ((-1145 . -812) 182876) ((-1145 . -807) 182674) ((-1145 . -225) 182644) ((-1145 . -189) 182506) ((-1145 . -186) 182362) ((-1145 . -190) 182270) ((-1145 . -312) 182249) ((-1145 . -1135) 182228) ((-1145 . -833) 182207) ((-1145 . -496) 182161) ((-1145 . -146) 182095) ((-1145 . -392) 182074) ((-1145 . -258) 182053) ((-1145 . -246) 182007) ((-1145 . -201) 181986) ((-1145 . -288) 181956) ((-1145 . -456) 181816) ((-1145 . -260) 181755) ((-1145 . -329) 181725) ((-1145 . -581) 181633) ((-1145 . -343) 181603) ((-1145 . -797) 181476) ((-1145 . -741) 181429) ((-1145 . -715) 181382) ((-1145 . -717) 181335) ((-1145 . -757) 181237) ((-1145 . -760) 181139) ((-1145 . -719) 181092) ((-1145 . -722) 181045) ((-1145 . -756) 180998) ((-1145 . -795) 180968) ((-1145 . -822) 180921) ((-1145 . -934) 180874) ((-1145 . -951) 180663) ((-1145 . -1067) 180615) ((-1145 . -905) 180585) ((-1140 . -1144) 180546) ((-1140 . -916) 180512) ((-1140 . -1116) 180478) ((-1140 . -1119) 180444) ((-1140 . -433) 180410) ((-1140 . -239) 180376) ((-1140 . -66) 180342) ((-1140 . -35) 180308) ((-1140 . -1159) 180285) ((-1140 . -47) 180262) ((-1140 . -556) 180063) ((-1140 . -655) 179865) ((-1140 . -583) 179667) ((-1140 . -591) 179522) ((-1140 . -589) 179362) ((-1140 . -969) 179158) ((-1140 . -964) 178954) ((-1140 . -82) 178706) ((-1140 . -38) 178508) ((-1140 . -887) 178478) ((-1140 . -241) 178306) ((-1140 . -1142) 178290) ((-1140 . -971) T) ((-1140 . -1026) T) ((-1140 . -1062) T) ((-1140 . -664) T) ((-1140 . -962) T) ((-1140 . -21) T) ((-1140 . -23) T) ((-1140 . -1014) T) ((-1140 . -553) 178272) ((-1140 . -1130) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -25) T) ((-1140 . -104) T) ((-1140 . -118) 178182) ((-1140 . -120) 178092) ((-1140 . -554) NIL) ((-1140 . -184) 178044) ((-1140 . -810) 177880) ((-1140 . -812) 177644) ((-1140 . -807) 177383) ((-1140 . -225) 177335) ((-1140 . -189) 177161) ((-1140 . -186) 176981) ((-1140 . -190) 176871) ((-1140 . -312) 176850) ((-1140 . -1135) 176829) ((-1140 . -833) 176808) ((-1140 . -496) 176762) ((-1140 . -146) 176696) ((-1140 . -392) 176675) ((-1140 . -258) 176654) ((-1140 . -246) 176608) ((-1140 . -201) 176587) ((-1140 . -288) 176539) ((-1140 . -456) 176273) ((-1140 . -260) 176158) ((-1140 . -329) 176110) ((-1140 . -581) 176062) ((-1140 . -343) 176014) ((-1140 . -797) NIL) ((-1140 . -741) NIL) ((-1140 . -715) NIL) ((-1140 . -717) NIL) ((-1140 . -757) NIL) ((-1140 . -760) NIL) ((-1140 . -719) NIL) ((-1140 . -722) NIL) ((-1140 . -756) NIL) ((-1140 . -795) 175966) ((-1140 . -822) NIL) ((-1140 . -934) NIL) ((-1140 . -951) 175932) ((-1140 . -1067) NIL) ((-1140 . -905) 175884) ((-1139 . -753) T) ((-1139 . -760) T) ((-1139 . -757) T) ((-1139 . -1014) T) ((-1139 . -553) 175866) ((-1139 . -1130) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -320) T) ((-1139 . -605) T) ((-1138 . -753) T) ((-1138 . -760) T) ((-1138 . -757) T) ((-1138 . -1014) T) ((-1138 . -553) 175848) ((-1138 . -1130) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -605) T) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1014) T) ((-1137 . -553) 175830) ((-1137 . -1130) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1014) T) ((-1136 . -553) 175812) ((-1136 . -1130) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -320) T) ((-1136 . -605) T) ((-1131 . -996) T) ((-1131 . -430) 175793) ((-1131 . -553) 175759) ((-1131 . -556) 175740) ((-1131 . -1014) T) ((-1131 . -1130) T) ((-1131 . -13) T) ((-1131 . -72) T) ((-1131 . -64) T) ((-1128 . -430) 175717) ((-1128 . -553) 175658) ((-1128 . -556) 175635) ((-1128 . -1014) 175613) ((-1128 . -1130) 175591) ((-1128 . -13) 175569) ((-1128 . -72) 175547) ((-1123 . -680) 175523) ((-1123 . -35) 175489) ((-1123 . -66) 175455) ((-1123 . -239) 175421) ((-1123 . -433) 175387) ((-1123 . -1119) 175353) ((-1123 . -1116) 175319) ((-1123 . -916) 175285) ((-1123 . -47) 175254) ((-1123 . -38) 175151) ((-1123 . -583) 175048) ((-1123 . -655) 174945) ((-1123 . -556) 174827) ((-1123 . -246) 174806) ((-1123 . -496) 174785) ((-1123 . -82) 174650) ((-1123 . -964) 174536) ((-1123 . -969) 174422) ((-1123 . -146) 174376) ((-1123 . -120) 174355) ((-1123 . -118) 174334) ((-1123 . -591) 174259) ((-1123 . -589) 174169) ((-1123 . -887) 174130) ((-1123 . -812) 174111) ((-1123 . -1130) T) ((-1123 . -13) T) ((-1123 . -807) 174090) ((-1123 . -962) T) ((-1123 . -664) T) ((-1123 . -1062) T) ((-1123 . -1026) T) ((-1123 . -971) T) ((-1123 . -21) T) ((-1123 . -23) T) ((-1123 . -1014) T) ((-1123 . -553) 174072) ((-1123 . -72) T) ((-1123 . -25) T) ((-1123 . -104) T) ((-1123 . -810) 174053) ((-1123 . -456) 174020) ((-1123 . -260) 174007) ((-1117 . -924) 173991) ((-1117 . -34) T) ((-1117 . -13) T) ((-1117 . -1130) T) ((-1117 . -72) 173945) ((-1117 . -553) 173880) ((-1117 . -260) 173818) ((-1117 . -456) 173751) ((-1117 . -1014) 173729) ((-1117 . -429) 173713) ((-1117 . -318) 173697) ((-1117 . -1036) 173681) ((-1112 . -314) 173655) ((-1112 . -72) T) ((-1112 . -13) T) ((-1112 . -1130) T) ((-1112 . -553) 173637) ((-1112 . -1014) T) ((-1110 . -1014) T) ((-1110 . -553) 173619) ((-1110 . -1130) T) ((-1110 . -13) T) ((-1110 . -72) T) ((-1110 . -556) 173601) ((-1105 . -748) 173585) ((-1105 . -72) T) ((-1105 . -13) T) ((-1105 . -1130) T) ((-1105 . -553) 173567) ((-1105 . -1014) T) ((-1103 . -1108) 173546) ((-1103 . -183) 173494) ((-1103 . -76) 173442) ((-1103 . -1036) 173377) ((-1103 . -124) 173325) ((-1103 . -554) NIL) ((-1103 . -193) 173273) ((-1103 . -539) 173252) ((-1103 . -260) 173050) ((-1103 . -456) 172802) ((-1103 . -429) 172737) ((-1103 . -241) 172716) ((-1103 . -243) 172695) ((-1103 . -550) 172674) ((-1103 . -1014) T) ((-1103 . -553) 172656) ((-1103 . -72) T) ((-1103 . -1130) T) ((-1103 . -13) T) ((-1103 . -34) T) ((-1103 . -318) 172604) ((-1099 . -1014) T) ((-1099 . -553) 172586) ((-1099 . -1130) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1098 . -753) T) ((-1098 . -760) T) ((-1098 . -757) T) ((-1098 . -1014) T) ((-1098 . -553) 172568) ((-1098 . -1130) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1098 . -320) T) ((-1098 . -605) T) ((-1097 . -753) T) ((-1097 . -760) T) ((-1097 . -757) T) ((-1097 . -1014) T) ((-1097 . -553) 172550) ((-1097 . -1130) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -320) T) ((-1096 . -1176) T) ((-1096 . -1014) T) ((-1096 . -553) 172517) ((-1096 . -1130) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -951) 172453) ((-1096 . -556) 172389) ((-1095 . -553) 172371) ((-1094 . -553) 172353) ((-1093 . -277) 172330) ((-1093 . -951) 172228) ((-1093 . -355) 172212) ((-1093 . -38) 172109) ((-1093 . -556) 171966) ((-1093 . -591) 171891) ((-1093 . -589) 171801) ((-1093 . -971) T) ((-1093 . -1026) T) ((-1093 . -1062) T) ((-1093 . -664) T) ((-1093 . -962) T) ((-1093 . -82) 171666) ((-1093 . -964) 171552) ((-1093 . -969) 171438) ((-1093 . -21) T) ((-1093 . -23) T) ((-1093 . -1014) T) ((-1093 . -553) 171420) ((-1093 . -1130) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -25) T) ((-1093 . -104) T) ((-1093 . -583) 171317) ((-1093 . -655) 171214) ((-1093 . -118) 171193) ((-1093 . -120) 171172) ((-1093 . -146) 171126) ((-1093 . -496) 171105) ((-1093 . -246) 171084) ((-1093 . -47) 171061) ((-1091 . -757) T) ((-1091 . -553) 171043) ((-1091 . -1014) T) ((-1091 . -72) T) ((-1091 . -13) T) ((-1091 . -1130) T) ((-1091 . -760) T) ((-1091 . -554) 170965) ((-1091 . -556) 170931) ((-1091 . -951) 170913) ((-1091 . -797) 170880) ((-1090 . -1173) 170864) ((-1090 . -190) 170823) ((-1090 . -556) 170705) ((-1090 . -591) 170630) ((-1090 . -589) 170540) ((-1090 . -104) T) ((-1090 . -25) T) ((-1090 . -72) T) ((-1090 . -553) 170522) ((-1090 . -1014) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -971) T) ((-1090 . -1026) T) ((-1090 . -1062) T) ((-1090 . -664) T) ((-1090 . -962) T) ((-1090 . -186) 170475) ((-1090 . -13) T) ((-1090 . -1130) T) ((-1090 . -189) 170434) ((-1090 . -241) 170399) ((-1090 . -810) 170312) ((-1090 . -807) 170200) ((-1090 . -812) 170113) ((-1090 . -887) 170083) ((-1090 . -38) 169980) ((-1090 . -82) 169845) ((-1090 . -964) 169731) ((-1090 . -969) 169617) ((-1090 . -583) 169514) ((-1090 . -655) 169411) ((-1090 . -118) 169390) ((-1090 . -120) 169369) ((-1090 . -146) 169323) ((-1090 . -496) 169302) ((-1090 . -246) 169281) ((-1090 . -47) 169258) ((-1090 . -1159) 169235) ((-1090 . -35) 169201) ((-1090 . -66) 169167) ((-1090 . -239) 169133) ((-1090 . -433) 169099) ((-1090 . -1119) 169065) ((-1090 . -1116) 169031) ((-1090 . -916) 168997) ((-1089 . -1165) 168958) ((-1089 . -312) 168937) ((-1089 . -1135) 168916) ((-1089 . -833) 168895) ((-1089 . -496) 168849) ((-1089 . -146) 168783) ((-1089 . -556) 168532) ((-1089 . -655) 168379) ((-1089 . -583) 168226) ((-1089 . -38) 168073) ((-1089 . -392) 168052) ((-1089 . -258) 168031) ((-1089 . -591) 167931) ((-1089 . -589) 167816) ((-1089 . -971) T) ((-1089 . -1026) T) ((-1089 . -1062) T) ((-1089 . -664) T) ((-1089 . -962) T) ((-1089 . -82) 167636) ((-1089 . -964) 167477) ((-1089 . -969) 167318) ((-1089 . -21) T) ((-1089 . -23) T) ((-1089 . -1014) T) ((-1089 . -553) 167300) ((-1089 . -1130) T) ((-1089 . -13) T) ((-1089 . -72) T) ((-1089 . -25) T) ((-1089 . -104) T) ((-1089 . -246) 167254) ((-1089 . -201) 167233) ((-1089 . -916) 167199) ((-1089 . -1116) 167165) ((-1089 . -1119) 167131) ((-1089 . -433) 167097) ((-1089 . -239) 167063) ((-1089 . -66) 167029) ((-1089 . -35) 166995) ((-1089 . -1159) 166965) ((-1089 . -47) 166935) ((-1089 . -120) 166914) ((-1089 . -118) 166893) ((-1089 . -887) 166856) ((-1089 . -812) 166762) ((-1089 . -807) 166643) ((-1089 . -810) 166549) ((-1089 . -241) 166507) ((-1089 . -189) 166459) ((-1089 . -186) 166405) ((-1089 . -190) 166357) ((-1089 . -1163) 166341) ((-1089 . -951) 166276) ((-1086 . -1156) 166260) ((-1086 . -1067) 166238) ((-1086 . -554) NIL) ((-1086 . -260) 166225) ((-1086 . -456) 166173) ((-1086 . -277) 166150) ((-1086 . -951) 166033) ((-1086 . -355) 166017) ((-1086 . -38) 165849) ((-1086 . -82) 165654) ((-1086 . -964) 165480) ((-1086 . -969) 165306) ((-1086 . -589) 165216) ((-1086 . -591) 165105) ((-1086 . -583) 164937) ((-1086 . -655) 164769) ((-1086 . -556) 164546) ((-1086 . -118) 164525) ((-1086 . -120) 164504) ((-1086 . -47) 164481) ((-1086 . -329) 164465) ((-1086 . -581) 164413) ((-1086 . -810) 164357) ((-1086 . -807) 164264) ((-1086 . -812) 164175) ((-1086 . -797) NIL) ((-1086 . -822) 164154) ((-1086 . -1135) 164133) ((-1086 . -862) 164103) ((-1086 . -833) 164082) ((-1086 . -496) 163996) ((-1086 . -246) 163910) ((-1086 . -146) 163804) ((-1086 . -392) 163738) ((-1086 . -258) 163717) ((-1086 . -241) 163644) ((-1086 . -190) T) ((-1086 . -104) T) ((-1086 . -25) T) ((-1086 . -72) T) ((-1086 . -553) 163626) ((-1086 . -1014) T) ((-1086 . -23) T) ((-1086 . -21) T) ((-1086 . -971) T) ((-1086 . -1026) T) ((-1086 . -1062) T) ((-1086 . -664) T) ((-1086 . -962) T) ((-1086 . -186) 163613) ((-1086 . -13) T) ((-1086 . -1130) T) ((-1086 . -189) T) ((-1086 . -225) 163597) ((-1086 . -184) 163581) ((-1083 . -1144) 163542) ((-1083 . -916) 163508) ((-1083 . -1116) 163474) ((-1083 . -1119) 163440) ((-1083 . -433) 163406) ((-1083 . -239) 163372) ((-1083 . -66) 163338) ((-1083 . -35) 163304) ((-1083 . -1159) 163281) ((-1083 . -47) 163258) ((-1083 . -556) 163059) ((-1083 . -655) 162861) ((-1083 . -583) 162663) ((-1083 . -591) 162518) ((-1083 . -589) 162358) ((-1083 . -969) 162154) ((-1083 . -964) 161950) ((-1083 . -82) 161702) ((-1083 . -38) 161504) ((-1083 . -887) 161474) ((-1083 . -241) 161302) ((-1083 . -1142) 161286) ((-1083 . -971) T) ((-1083 . -1026) T) ((-1083 . -1062) T) ((-1083 . -664) T) ((-1083 . -962) T) ((-1083 . -21) T) ((-1083 . -23) T) ((-1083 . -1014) T) ((-1083 . -553) 161268) ((-1083 . -1130) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -25) T) ((-1083 . -104) T) ((-1083 . -118) 161178) ((-1083 . -120) 161088) ((-1083 . -554) NIL) ((-1083 . -184) 161040) ((-1083 . -810) 160876) ((-1083 . -812) 160640) ((-1083 . -807) 160379) ((-1083 . -225) 160331) ((-1083 . -189) 160157) ((-1083 . -186) 159977) ((-1083 . -190) 159867) ((-1083 . -312) 159846) ((-1083 . -1135) 159825) ((-1083 . -833) 159804) ((-1083 . -496) 159758) ((-1083 . -146) 159692) ((-1083 . -392) 159671) ((-1083 . -258) 159650) ((-1083 . -246) 159604) ((-1083 . -201) 159583) ((-1083 . -288) 159535) ((-1083 . -456) 159269) ((-1083 . -260) 159154) ((-1083 . -329) 159106) ((-1083 . -581) 159058) ((-1083 . -343) 159010) ((-1083 . -797) NIL) ((-1083 . -741) NIL) ((-1083 . -715) NIL) ((-1083 . -717) NIL) ((-1083 . -757) NIL) ((-1083 . -760) NIL) ((-1083 . -719) NIL) ((-1083 . -722) NIL) ((-1083 . -756) NIL) ((-1083 . -795) 158962) ((-1083 . -822) NIL) ((-1083 . -934) NIL) ((-1083 . -951) 158928) ((-1083 . -1067) NIL) ((-1083 . -905) 158880) ((-1082 . -996) T) ((-1082 . -430) 158861) ((-1082 . -553) 158827) ((-1082 . -556) 158808) ((-1082 . -1014) T) ((-1082 . -1130) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -64) T) ((-1081 . -1014) T) ((-1081 . -553) 158790) ((-1081 . -1130) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1080 . -1014) T) ((-1080 . -553) 158772) ((-1080 . -1130) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1075 . -1108) 158748) ((-1075 . -183) 158693) ((-1075 . -76) 158638) ((-1075 . -1036) 158570) ((-1075 . -124) 158515) ((-1075 . -554) NIL) ((-1075 . -193) 158460) ((-1075 . -539) 158436) ((-1075 . -260) 158225) ((-1075 . -456) 157965) ((-1075 . -429) 157897) ((-1075 . -241) 157873) ((-1075 . -243) 157849) ((-1075 . -550) 157825) ((-1075 . -1014) T) ((-1075 . -553) 157807) ((-1075 . -72) T) ((-1075 . -1130) T) ((-1075 . -13) T) ((-1075 . -34) T) ((-1075 . -318) 157752) ((-1074 . -1059) T) ((-1074 . -324) 157734) ((-1074 . -760) T) ((-1074 . -757) T) ((-1074 . -124) 157716) ((-1074 . -554) NIL) ((-1074 . -241) 157666) ((-1074 . -539) 157641) ((-1074 . -243) 157616) ((-1074 . -594) 157598) ((-1074 . -429) 157580) ((-1074 . -1014) T) ((-1074 . -456) NIL) ((-1074 . -260) NIL) ((-1074 . -553) 157562) ((-1074 . -72) T) ((-1074 . -1130) T) ((-1074 . -13) T) ((-1074 . -34) T) ((-1074 . -318) 157544) ((-1074 . -1036) 157526) ((-1074 . -19) 157508) ((-1070 . -617) 157492) ((-1070 . -594) 157476) ((-1070 . -243) 157453) ((-1070 . -241) 157405) ((-1070 . -539) 157382) ((-1070 . -554) 157343) ((-1070 . -429) 157327) ((-1070 . -1014) 157305) ((-1070 . -456) 157238) ((-1070 . -260) 157176) ((-1070 . -553) 157111) ((-1070 . -72) 157065) ((-1070 . -1130) T) ((-1070 . -13) T) ((-1070 . -34) T) ((-1070 . -124) 157049) ((-1070 . -1169) 157033) ((-1070 . -924) 157017) ((-1070 . -1065) 157001) ((-1070 . -556) 156978) ((-1070 . -1036) 156962) ((-1068 . -996) T) ((-1068 . -430) 156943) ((-1068 . -553) 156909) ((-1068 . -556) 156890) ((-1068 . -1014) T) ((-1068 . -1130) T) ((-1068 . -13) T) ((-1068 . -72) T) ((-1068 . -64) T) ((-1066 . -1108) 156869) ((-1066 . -183) 156817) ((-1066 . -76) 156765) ((-1066 . -1036) 156700) ((-1066 . -124) 156648) ((-1066 . -554) NIL) ((-1066 . -193) 156596) ((-1066 . -539) 156575) ((-1066 . -260) 156373) ((-1066 . -456) 156125) ((-1066 . -429) 156060) ((-1066 . -241) 156039) ((-1066 . -243) 156018) ((-1066 . -550) 155997) ((-1066 . -1014) T) ((-1066 . -553) 155979) ((-1066 . -72) T) ((-1066 . -1130) T) ((-1066 . -13) T) ((-1066 . -34) T) ((-1066 . -318) 155927) ((-1063 . -1035) 155911) ((-1063 . -318) 155895) ((-1063 . -1036) 155879) ((-1063 . -34) T) ((-1063 . -13) T) ((-1063 . -1130) T) ((-1063 . -72) 155833) ((-1063 . -553) 155768) ((-1063 . -260) 155706) ((-1063 . -456) 155639) ((-1063 . -1014) 155617) ((-1063 . -429) 155601) ((-1063 . -76) 155585) ((-1061 . -1021) 155554) ((-1061 . -1125) 155523) ((-1061 . -1036) 155507) ((-1061 . -553) 155469) ((-1061 . -124) 155453) ((-1061 . -34) T) ((-1061 . -13) T) ((-1061 . -1130) T) ((-1061 . -72) T) ((-1061 . -260) 155391) ((-1061 . -456) 155324) ((-1061 . -1014) T) ((-1061 . -429) 155308) ((-1061 . -554) 155269) ((-1061 . -318) 155253) ((-1061 . -890) 155222) ((-1061 . -984) 155191) ((-1057 . -1038) 155136) ((-1057 . -318) 155120) ((-1057 . -34) T) ((-1057 . -260) 155058) ((-1057 . -456) 154991) ((-1057 . -429) 154975) ((-1057 . -966) 154915) ((-1057 . -951) 154813) ((-1057 . -556) 154732) ((-1057 . -355) 154716) ((-1057 . -581) 154664) ((-1057 . -591) 154602) ((-1057 . -329) 154586) ((-1057 . -190) 154565) ((-1057 . -186) 154513) ((-1057 . -189) 154467) ((-1057 . -225) 154451) ((-1057 . -807) 154375) ((-1057 . -812) 154301) ((-1057 . -810) 154260) ((-1057 . -184) 154244) ((-1057 . -655) 154179) ((-1057 . -583) 154114) ((-1057 . -589) 154073) ((-1057 . -104) T) ((-1057 . -25) T) ((-1057 . -72) T) ((-1057 . -13) T) ((-1057 . -1130) T) ((-1057 . -553) 154035) ((-1057 . -1014) T) ((-1057 . -23) T) ((-1057 . -21) T) ((-1057 . -969) 154019) ((-1057 . -964) 154003) ((-1057 . -82) 153982) ((-1057 . -962) T) ((-1057 . -664) T) ((-1057 . -1062) T) ((-1057 . -1026) T) ((-1057 . -971) T) ((-1057 . -38) 153942) ((-1057 . -554) 153903) ((-1056 . -924) 153874) ((-1056 . -34) T) ((-1056 . -13) T) ((-1056 . -1130) T) ((-1056 . -72) T) ((-1056 . -553) 153856) ((-1056 . -260) 153782) ((-1056 . -456) 153690) ((-1056 . -1014) T) ((-1056 . -429) 153661) ((-1056 . -318) 153632) ((-1056 . -1036) 153603) ((-1055 . -1014) T) ((-1055 . -553) 153585) ((-1055 . -1130) T) ((-1055 . -13) T) ((-1055 . -72) T) ((-1050 . -1052) T) ((-1050 . -1176) T) ((-1050 . -64) T) ((-1050 . -72) T) ((-1050 . -13) T) ((-1050 . -1130) T) ((-1050 . -553) 153551) ((-1050 . -1014) T) ((-1050 . -556) 153532) ((-1050 . -430) 153513) ((-1050 . -996) T) ((-1048 . -1049) 153497) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1130) T) ((-1048 . -553) 153479) ((-1048 . -1014) T) ((-1041 . -680) 153458) ((-1041 . -35) 153424) ((-1041 . -66) 153390) ((-1041 . -239) 153356) ((-1041 . -433) 153322) ((-1041 . -1119) 153288) ((-1041 . -1116) 153254) ((-1041 . -916) 153220) ((-1041 . -47) 153192) ((-1041 . -38) 153089) ((-1041 . -583) 152986) ((-1041 . -655) 152883) ((-1041 . -556) 152765) ((-1041 . -246) 152744) ((-1041 . -496) 152723) ((-1041 . -82) 152588) ((-1041 . -964) 152474) ((-1041 . -969) 152360) ((-1041 . -146) 152314) ((-1041 . -120) 152293) ((-1041 . -118) 152272) ((-1041 . -591) 152197) ((-1041 . -589) 152107) ((-1041 . -887) 152074) ((-1041 . -812) 152058) ((-1041 . -1130) T) ((-1041 . -13) T) ((-1041 . -807) 152040) ((-1041 . -962) T) ((-1041 . -664) T) ((-1041 . -1062) T) ((-1041 . -1026) T) ((-1041 . -971) T) ((-1041 . -21) T) ((-1041 . -23) T) ((-1041 . -1014) T) ((-1041 . -553) 152022) ((-1041 . -72) T) ((-1041 . -25) T) ((-1041 . -104) T) ((-1041 . -810) 152006) ((-1041 . -456) 151976) ((-1041 . -260) 151963) ((-1040 . -862) 151930) ((-1040 . -556) 151729) ((-1040 . -951) 151614) ((-1040 . -1135) 151593) ((-1040 . -822) 151572) ((-1040 . -797) 151431) ((-1040 . -812) 151415) ((-1040 . -807) 151397) ((-1040 . -810) 151381) ((-1040 . -456) 151333) ((-1040 . -392) 151287) ((-1040 . -581) 151235) ((-1040 . -591) 151124) ((-1040 . -329) 151108) ((-1040 . -47) 151080) ((-1040 . -38) 150932) ((-1040 . -583) 150784) ((-1040 . -655) 150636) ((-1040 . -246) 150570) ((-1040 . -496) 150504) ((-1040 . -82) 150329) ((-1040 . -964) 150175) ((-1040 . -969) 150021) ((-1040 . -146) 149935) ((-1040 . -120) 149914) ((-1040 . -118) 149893) ((-1040 . -589) 149803) ((-1040 . -104) T) ((-1040 . -25) T) ((-1040 . -72) T) ((-1040 . -13) T) ((-1040 . -1130) T) ((-1040 . -553) 149785) ((-1040 . -1014) T) ((-1040 . -23) T) ((-1040 . -21) T) ((-1040 . -962) T) ((-1040 . -664) T) ((-1040 . -1062) T) ((-1040 . -1026) T) ((-1040 . -971) T) ((-1040 . -355) 149769) ((-1040 . -277) 149741) ((-1040 . -260) 149728) ((-1040 . -554) 149476) ((-1034 . -484) T) ((-1034 . -1135) T) ((-1034 . -1067) T) ((-1034 . -951) 149458) ((-1034 . -554) 149373) ((-1034 . -934) T) ((-1034 . -797) 149355) ((-1034 . -756) T) ((-1034 . -722) T) ((-1034 . -719) T) ((-1034 . -760) T) ((-1034 . -757) T) ((-1034 . -717) T) ((-1034 . -715) T) ((-1034 . -741) T) ((-1034 . -591) 149327) ((-1034 . -581) 149309) ((-1034 . -833) T) ((-1034 . -496) T) ((-1034 . -246) T) ((-1034 . -146) T) ((-1034 . -556) 149281) ((-1034 . -655) 149268) ((-1034 . -583) 149255) ((-1034 . -969) 149242) ((-1034 . -964) 149229) ((-1034 . -82) 149214) ((-1034 . -38) 149201) ((-1034 . -392) T) ((-1034 . -258) T) ((-1034 . -189) T) ((-1034 . -186) 149188) ((-1034 . -190) T) ((-1034 . -116) T) ((-1034 . -962) T) ((-1034 . -664) T) ((-1034 . -1062) T) ((-1034 . -1026) T) ((-1034 . -971) T) ((-1034 . -21) T) ((-1034 . -589) 149160) ((-1034 . -23) T) ((-1034 . -1014) T) ((-1034 . -553) 149142) ((-1034 . -1130) T) ((-1034 . -13) T) ((-1034 . -72) T) ((-1034 . -25) T) ((-1034 . -104) T) ((-1034 . -120) T) ((-1034 . -753) T) ((-1034 . -320) T) ((-1034 . -84) T) ((-1034 . -605) T) ((-1030 . -996) T) ((-1030 . -430) 149123) ((-1030 . -553) 149089) ((-1030 . -556) 149070) ((-1030 . -1014) T) ((-1030 . -1130) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1030 . -64) T) ((-1029 . -1014) T) ((-1029 . -553) 149052) ((-1029 . -1130) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1027 . -196) 149031) ((-1027 . -1188) 149001) ((-1027 . -722) 148980) ((-1027 . -719) 148959) ((-1027 . -760) 148913) ((-1027 . -757) 148867) ((-1027 . -717) 148846) ((-1027 . -718) 148825) ((-1027 . -655) 148770) ((-1027 . -583) 148695) ((-1027 . -243) 148672) ((-1027 . -241) 148649) ((-1027 . -539) 148626) ((-1027 . -951) 148455) ((-1027 . -556) 148259) ((-1027 . -355) 148228) ((-1027 . -581) 148136) ((-1027 . -591) 147975) ((-1027 . -329) 147945) ((-1027 . -429) 147929) ((-1027 . -456) 147862) ((-1027 . -260) 147800) ((-1027 . -34) T) ((-1027 . -318) 147784) ((-1027 . -320) 147763) ((-1027 . -190) 147716) ((-1027 . -589) 147504) ((-1027 . -971) 147483) ((-1027 . -1026) 147462) ((-1027 . -1062) 147441) ((-1027 . -664) 147420) ((-1027 . -962) 147399) ((-1027 . -186) 147295) ((-1027 . -189) 147197) ((-1027 . -225) 147167) ((-1027 . -807) 147039) ((-1027 . -812) 146913) ((-1027 . -810) 146846) ((-1027 . -184) 146816) ((-1027 . -553) 146513) ((-1027 . -969) 146438) ((-1027 . -964) 146343) ((-1027 . -82) 146263) ((-1027 . -104) 146138) ((-1027 . -25) 145975) ((-1027 . -72) 145712) ((-1027 . -13) T) ((-1027 . -1130) T) ((-1027 . -1014) 145468) ((-1027 . -23) 145324) ((-1027 . -21) 145239) ((-1023 . -1024) 145223) ((-1023 . |MappingCategory|) 145197) ((-1023 . -1130) T) ((-1023 . -80) 145181) ((-1023 . -1014) T) ((-1023 . -553) 145163) ((-1023 . -13) T) ((-1023 . -72) T) ((-1018 . -1017) 145127) ((-1018 . -72) T) ((-1018 . -553) 145109) ((-1018 . -1014) T) ((-1018 . -241) 145065) ((-1018 . -1130) T) ((-1018 . -13) T) ((-1018 . -558) 144980) ((-1016 . -1017) 144932) ((-1016 . -72) T) ((-1016 . -553) 144914) ((-1016 . -1014) T) ((-1016 . -241) 144870) ((-1016 . -1130) T) ((-1016 . -13) T) ((-1016 . -558) 144773) ((-1015 . -320) T) ((-1015 . -72) T) ((-1015 . -13) T) ((-1015 . -1130) T) ((-1015 . -553) 144755) ((-1015 . -1014) T) ((-1010 . -369) 144739) ((-1010 . -1012) 144723) ((-1010 . -318) 144707) ((-1010 . -320) 144686) ((-1010 . -193) 144670) ((-1010 . -554) 144631) ((-1010 . -124) 144615) ((-1010 . -1036) 144599) ((-1010 . -34) T) ((-1010 . -13) T) ((-1010 . -1130) T) ((-1010 . -72) T) ((-1010 . -553) 144581) ((-1010 . -260) 144519) ((-1010 . -456) 144452) ((-1010 . -1014) T) ((-1010 . -429) 144436) ((-1010 . -76) 144420) ((-1010 . -183) 144404) ((-1009 . -996) T) ((-1009 . -430) 144385) ((-1009 . -553) 144351) ((-1009 . -556) 144332) ((-1009 . -1014) T) ((-1009 . -1130) T) ((-1009 . -13) T) ((-1009 . -72) T) ((-1009 . -64) T) ((-1005 . -1130) T) ((-1005 . -13) T) ((-1005 . -1014) 144302) ((-1005 . -553) 144261) ((-1005 . -72) 144231) ((-1004 . -996) T) ((-1004 . -430) 144212) ((-1004 . -553) 144178) ((-1004 . -556) 144159) ((-1004 . -1014) T) ((-1004 . -1130) T) ((-1004 . -13) T) ((-1004 . -72) T) ((-1004 . -64) T) ((-1002 . -1007) 144143) ((-1002 . -558) 144127) ((-1002 . -1014) 144105) ((-1002 . -553) 144072) ((-1002 . -1130) 144050) ((-1002 . -13) 144028) ((-1002 . -72) 144006) ((-1002 . -1008) 143964) ((-1001 . -228) 143948) ((-1001 . -556) 143932) ((-1001 . -951) 143916) ((-1001 . -760) T) ((-1001 . -72) T) ((-1001 . -1014) T) ((-1001 . -553) 143898) ((-1001 . -757) T) ((-1001 . -186) 143885) ((-1001 . -13) T) ((-1001 . -1130) T) ((-1001 . -189) T) ((-1000 . -213) 143822) ((-1000 . -556) 143565) ((-1000 . -951) 143394) ((-1000 . -554) NIL) ((-1000 . -277) 143355) ((-1000 . -355) 143339) ((-1000 . -38) 143191) ((-1000 . -82) 143016) ((-1000 . -964) 142862) ((-1000 . -969) 142708) ((-1000 . -589) 142618) ((-1000 . -591) 142507) ((-1000 . -583) 142359) ((-1000 . -655) 142211) ((-1000 . -118) 142190) ((-1000 . -120) 142169) ((-1000 . -146) 142083) ((-1000 . -496) 142017) ((-1000 . -246) 141951) ((-1000 . -47) 141912) ((-1000 . -329) 141896) ((-1000 . -581) 141844) ((-1000 . -392) 141798) ((-1000 . -456) 141661) ((-1000 . -810) 141596) ((-1000 . -807) 141494) ((-1000 . -812) 141396) ((-1000 . -797) NIL) ((-1000 . -822) 141375) ((-1000 . -1135) 141354) ((-1000 . -862) 141299) ((-1000 . -260) 141286) ((-1000 . -190) 141265) ((-1000 . -104) T) ((-1000 . -25) T) ((-1000 . -72) T) ((-1000 . -553) 141247) ((-1000 . -1014) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -971) T) ((-1000 . -1026) T) ((-1000 . -1062) T) ((-1000 . -664) T) ((-1000 . -962) T) ((-1000 . -186) 141195) ((-1000 . -13) T) ((-1000 . -1130) T) ((-1000 . -189) 141149) ((-1000 . -225) 141133) ((-1000 . -184) 141117) ((-998 . -553) 141099) ((-995 . -757) T) ((-995 . -553) 141081) ((-995 . -1014) T) ((-995 . -72) T) ((-995 . -13) T) ((-995 . -1130) T) ((-995 . -760) T) ((-995 . -554) 141062) ((-992 . -662) 141041) ((-992 . -951) 140939) ((-992 . -355) 140923) ((-992 . -581) 140871) ((-992 . -591) 140748) ((-992 . -329) 140732) ((-992 . -322) 140711) ((-992 . -120) 140690) ((-992 . -556) 140515) ((-992 . -655) 140389) ((-992 . -583) 140263) ((-992 . -589) 140161) ((-992 . -969) 140074) ((-992 . -964) 139987) ((-992 . -82) 139879) ((-992 . -38) 139753) ((-992 . -353) 139732) ((-992 . -345) 139711) ((-992 . -118) 139665) ((-992 . -1067) 139644) ((-992 . -299) 139623) ((-992 . -320) 139577) ((-992 . -201) 139531) ((-992 . -246) 139485) ((-992 . -258) 139439) ((-992 . -392) 139393) ((-992 . -496) 139347) ((-992 . -833) 139301) ((-992 . -1135) 139255) ((-992 . -312) 139209) ((-992 . -190) 139137) ((-992 . -186) 139013) ((-992 . -189) 138895) ((-992 . -225) 138865) ((-992 . -807) 138737) ((-992 . -812) 138611) ((-992 . -810) 138544) ((-992 . -184) 138514) ((-992 . -554) 138498) ((-992 . -21) T) ((-992 . -23) T) ((-992 . -1014) T) ((-992 . -553) 138480) ((-992 . -1130) T) ((-992 . -13) T) ((-992 . -72) T) ((-992 . -25) T) ((-992 . -104) T) ((-992 . -962) T) ((-992 . -664) T) ((-992 . -1062) T) ((-992 . -1026) T) ((-992 . -971) T) ((-992 . -146) T) ((-990 . -1014) T) ((-990 . -553) 138462) ((-990 . -1130) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -241) 138441) ((-989 . -1014) T) ((-989 . -553) 138423) ((-989 . -1130) T) ((-989 . -13) T) ((-989 . -72) T) ((-988 . -1014) T) ((-988 . -553) 138405) ((-988 . -1130) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 138384) ((-988 . -951) 138361) ((-988 . -556) 138338) ((-987 . -1130) T) ((-987 . -13) T) ((-986 . -996) T) ((-986 . -430) 138319) ((-986 . -553) 138285) ((-986 . -556) 138266) ((-986 . -1014) T) ((-986 . -1130) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -64) T) ((-979 . -996) T) ((-979 . -430) 138247) ((-979 . -553) 138213) ((-979 . -556) 138194) ((-979 . -1014) T) ((-979 . -1130) T) ((-979 . -13) T) ((-979 . -72) T) ((-979 . -64) T) ((-976 . -484) T) ((-976 . -1135) T) ((-976 . -1067) T) ((-976 . -951) 138176) ((-976 . -554) 138091) ((-976 . -934) T) ((-976 . -797) 138073) ((-976 . -756) T) ((-976 . -722) T) ((-976 . -719) T) ((-976 . -760) T) ((-976 . -757) T) ((-976 . -717) T) ((-976 . -715) T) ((-976 . -741) T) ((-976 . -591) 138045) ((-976 . -581) 138027) ((-976 . -833) T) ((-976 . -496) T) ((-976 . -246) T) ((-976 . -146) T) ((-976 . -556) 137999) ((-976 . -655) 137986) ((-976 . -583) 137973) ((-976 . -969) 137960) ((-976 . -964) 137947) ((-976 . -82) 137932) ((-976 . -38) 137919) ((-976 . -392) T) ((-976 . -258) T) ((-976 . -189) T) ((-976 . -186) 137906) ((-976 . -190) T) ((-976 . -116) T) ((-976 . -962) T) ((-976 . -664) T) ((-976 . -1062) T) ((-976 . -1026) T) ((-976 . -971) T) ((-976 . -21) T) ((-976 . -589) 137878) ((-976 . -23) T) ((-976 . -1014) T) ((-976 . -553) 137860) ((-976 . -1130) T) ((-976 . -13) T) ((-976 . -72) T) ((-976 . -25) T) ((-976 . -104) T) ((-976 . -120) T) ((-976 . -558) 137841) ((-975 . -981) 137820) ((-975 . -72) T) ((-975 . -13) T) ((-975 . -1130) T) ((-975 . -553) 137802) ((-975 . -1014) T) ((-972 . -1130) T) ((-972 . -13) T) ((-972 . -1014) 137780) ((-972 . -553) 137747) ((-972 . -72) 137725) ((-967 . -966) 137665) ((-967 . -583) 137610) ((-967 . -655) 137555) ((-967 . -429) 137539) ((-967 . -456) 137472) ((-967 . -260) 137410) ((-967 . -34) T) ((-967 . -318) 137394) ((-967 . -591) 137378) ((-967 . -589) 137347) ((-967 . -104) T) ((-967 . -25) T) ((-967 . -72) T) ((-967 . -13) T) ((-967 . -1130) T) ((-967 . -553) 137309) ((-967 . -1014) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -969) 137293) ((-967 . -964) 137277) ((-967 . -82) 137256) ((-967 . -1188) 137226) ((-967 . -554) 137187) ((-959 . -984) 137116) ((-959 . -890) 137045) ((-959 . -318) 137010) ((-959 . -554) 136952) ((-959 . -429) 136917) ((-959 . -1014) T) ((-959 . -456) 136801) ((-959 . -260) 136709) ((-959 . -553) 136652) ((-959 . -72) T) ((-959 . -1130) T) ((-959 . -13) T) ((-959 . -34) T) ((-959 . -124) 136617) ((-959 . -1036) 136582) ((-959 . -1125) 136511) ((-949 . -996) T) ((-949 . -430) 136492) ((-949 . -553) 136458) ((-949 . -556) 136439) ((-949 . -1014) T) ((-949 . -1130) T) ((-949 . -13) T) ((-949 . -72) T) ((-949 . -64) T) ((-948 . -146) T) ((-948 . -556) 136408) ((-948 . -971) T) ((-948 . -1026) T) ((-948 . -1062) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 136382) ((-948 . -589) 136341) ((-948 . -104) T) ((-948 . -25) T) ((-948 . -72) T) ((-948 . -13) T) ((-948 . -1130) T) ((-948 . -553) 136323) ((-948 . -1014) T) ((-948 . -23) T) ((-948 . -21) T) ((-948 . -969) 136297) ((-948 . -964) 136271) ((-948 . -82) 136238) ((-948 . -38) 136222) ((-948 . -583) 136206) ((-948 . -655) 136190) ((-941 . -984) 136159) ((-941 . -890) 136128) ((-941 . -318) 136112) ((-941 . -554) 136073) ((-941 . -429) 136057) ((-941 . -1014) T) ((-941 . -456) 135990) ((-941 . -260) 135928) ((-941 . -553) 135890) ((-941 . -72) T) ((-941 . -1130) T) ((-941 . -13) T) ((-941 . -34) T) ((-941 . -124) 135874) ((-941 . -1036) 135858) ((-941 . -1125) 135827) ((-940 . -1014) T) ((-940 . -553) 135809) ((-940 . -1130) T) ((-940 . -13) T) ((-940 . -72) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 135694) ((-938 . -355) 135656) ((-938 . -201) T) ((-938 . -246) T) ((-938 . -258) T) ((-938 . -392) T) ((-938 . -38) 135593) ((-938 . -583) 135530) ((-938 . -655) 135467) ((-938 . -556) 135404) ((-938 . -496) T) ((-938 . -833) T) ((-938 . -1135) T) ((-938 . -312) T) ((-938 . -82) 135313) ((-938 . -964) 135250) ((-938 . -969) 135187) ((-938 . -146) T) ((-938 . -120) T) ((-938 . -591) 135124) ((-938 . -589) 135061) ((-938 . -104) T) ((-938 . -25) T) ((-938 . -72) T) ((-938 . -13) T) ((-938 . -1130) T) ((-938 . -553) 135043) ((-938 . -1014) T) ((-938 . -23) T) ((-938 . -21) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1062) T) ((-938 . -1026) T) ((-938 . -971) T) ((-933 . -996) T) ((-933 . -430) 135024) ((-933 . -553) 134990) ((-933 . -556) 134971) ((-933 . -1014) T) ((-933 . -1130) T) ((-933 . -13) T) ((-933 . -72) T) ((-933 . -64) T) ((-918 . -905) 134953) ((-918 . -1067) T) ((-918 . -556) 134903) ((-918 . -951) 134863) ((-918 . -554) 134793) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 134775) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 134757) ((-918 . -343) 134739) ((-918 . -581) 134721) ((-918 . -329) 134703) ((-918 . -241) NIL) ((-918 . -260) NIL) ((-918 . -456) NIL) ((-918 . -288) 134685) ((-918 . -201) T) ((-918 . -82) 134612) ((-918 . -964) 134562) ((-918 . -969) 134512) ((-918 . -246) T) ((-918 . -655) 134462) ((-918 . -583) 134412) ((-918 . -591) 134362) ((-918 . -589) 134312) ((-918 . -38) 134262) ((-918 . -258) T) ((-918 . -392) T) ((-918 . -146) T) ((-918 . -496) T) ((-918 . -833) T) ((-918 . -1135) T) ((-918 . -312) T) ((-918 . -190) T) ((-918 . -186) 134249) ((-918 . -189) T) ((-918 . -225) 134231) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -184) 134213) ((-918 . -120) T) ((-918 . -118) NIL) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1130) T) ((-918 . -553) 134173) ((-918 . -1014) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1062) T) ((-918 . -1026) T) ((-918 . -971) T) ((-917 . -291) 134147) ((-917 . -146) T) ((-917 . -556) 134077) ((-917 . -971) T) ((-917 . -1026) T) ((-917 . -1062) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 133979) ((-917 . -589) 133909) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1130) T) ((-917 . -553) 133891) ((-917 . -1014) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -969) 133836) ((-917 . -964) 133781) ((-917 . -82) 133698) ((-917 . -554) 133682) ((-917 . -184) 133659) ((-917 . -810) 133611) ((-917 . -812) 133523) ((-917 . -807) 133433) ((-917 . -225) 133410) ((-917 . -189) 133350) ((-917 . -186) 133284) ((-917 . -190) 133256) ((-917 . -312) T) ((-917 . -1135) T) ((-917 . -833) T) ((-917 . -496) T) ((-917 . -655) 133201) ((-917 . -583) 133146) ((-917 . -38) 133091) ((-917 . -392) T) ((-917 . -258) T) ((-917 . -246) T) ((-917 . -201) T) ((-917 . -320) NIL) ((-917 . -299) NIL) ((-917 . -1067) NIL) ((-917 . -118) 133063) ((-917 . -345) NIL) ((-917 . -353) 133035) ((-917 . -120) 133007) ((-917 . -322) 132979) ((-917 . -329) 132956) ((-917 . -581) 132890) ((-917 . -355) 132867) ((-917 . -951) 132744) ((-917 . -662) 132716) ((-914 . -909) 132700) ((-914 . -318) 132684) ((-914 . -1036) 132668) ((-914 . -34) T) ((-914 . -13) T) ((-914 . -1130) T) ((-914 . -72) 132622) ((-914 . -553) 132557) ((-914 . -260) 132495) ((-914 . -456) 132428) ((-914 . -1014) 132406) ((-914 . -429) 132390) ((-914 . -76) 132374) ((-910 . -912) 132358) ((-910 . -760) 132337) ((-910 . -757) 132316) ((-910 . -951) 132214) ((-910 . -355) 132198) ((-910 . -581) 132146) ((-910 . -591) 132048) ((-910 . -329) 132032) ((-910 . -241) 131990) ((-910 . -260) 131955) ((-910 . -456) 131867) ((-910 . -288) 131851) ((-910 . -38) 131799) ((-910 . -82) 131677) ((-910 . -964) 131576) ((-910 . -969) 131475) ((-910 . -589) 131398) ((-910 . -583) 131346) ((-910 . -655) 131294) ((-910 . -556) 131188) ((-910 . -246) 131142) ((-910 . -201) 131121) ((-910 . -190) 131100) ((-910 . -186) 131048) ((-910 . -189) 131002) ((-910 . -225) 130986) ((-910 . -807) 130910) ((-910 . -812) 130836) ((-910 . -810) 130795) ((-910 . -184) 130779) ((-910 . -554) 130740) ((-910 . -120) 130719) ((-910 . -118) 130698) ((-910 . -104) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -13) T) ((-910 . -1130) T) ((-910 . -553) 130680) ((-910 . -1014) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1062) T) ((-910 . -1026) T) ((-910 . -971) T) ((-908 . -996) T) ((-908 . -430) 130661) ((-908 . -553) 130627) ((-908 . -556) 130608) ((-908 . -1014) T) ((-908 . -1130) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -64) T) ((-907 . -21) T) ((-907 . -589) 130590) ((-907 . -23) T) ((-907 . -1014) T) ((-907 . -553) 130572) ((-907 . -1130) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -25) T) ((-907 . -104) T) ((-907 . -241) 130539) ((-903 . -553) 130521) ((-900 . -1014) T) ((-900 . -553) 130503) ((-900 . -1130) T) ((-900 . -13) T) ((-900 . -72) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -23) T) ((-885 . -1014) T) ((-885 . -553) 130463) ((-885 . -1130) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -25) T) ((-885 . -104) T) ((-884 . -996) T) ((-884 . -430) 130444) ((-884 . -553) 130410) ((-884 . -556) 130391) ((-884 . -1014) T) ((-884 . -1130) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -64) T) ((-878 . -881) T) ((-878 . -72) T) ((-878 . -553) 130373) ((-878 . -1014) T) ((-878 . -605) T) ((-878 . -13) T) ((-878 . -1130) T) ((-878 . -84) T) ((-878 . -556) 130357) ((-877 . -553) 130339) ((-876 . -1014) T) ((-876 . -553) 130321) ((-876 . -1130) T) ((-876 . -13) T) ((-876 . -72) T) ((-876 . -320) 130274) ((-876 . -664) 130176) ((-876 . -1026) 130078) ((-876 . -23) 129892) ((-876 . -25) 129706) ((-876 . -104) 129564) ((-876 . -413) 129517) ((-876 . -21) 129472) ((-876 . -589) 129416) ((-876 . -718) 129369) ((-876 . -717) 129322) ((-876 . -757) 129224) ((-876 . -760) 129126) ((-876 . -719) 129079) ((-876 . -722) 129032) ((-870 . -19) 129016) ((-870 . -1036) 129000) ((-870 . -318) 128984) ((-870 . -34) T) ((-870 . -13) T) ((-870 . -1130) T) ((-870 . -72) 128918) ((-870 . -553) 128833) ((-870 . -260) 128771) ((-870 . -456) 128704) ((-870 . -1014) 128657) ((-870 . -429) 128641) ((-870 . -594) 128625) ((-870 . -243) 128602) ((-870 . -241) 128554) ((-870 . -539) 128531) ((-870 . -554) 128492) ((-870 . -124) 128476) ((-870 . -757) 128455) ((-870 . -760) 128434) ((-870 . -324) 128418) ((-868 . -277) 128397) ((-868 . -951) 128295) ((-868 . -355) 128279) ((-868 . -38) 128176) ((-868 . -556) 128033) ((-868 . -591) 127958) ((-868 . -589) 127868) ((-868 . -971) T) ((-868 . -1026) T) ((-868 . -1062) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -82) 127733) ((-868 . -964) 127619) ((-868 . -969) 127505) ((-868 . -21) T) ((-868 . -23) T) ((-868 . -1014) T) ((-868 . -553) 127487) ((-868 . -1130) T) ((-868 . -13) T) ((-868 . -72) T) ((-868 . -25) T) ((-868 . -104) T) ((-868 . -583) 127384) ((-868 . -655) 127281) ((-868 . -118) 127260) ((-868 . -120) 127239) ((-868 . -146) 127193) ((-868 . -496) 127172) ((-868 . -246) 127151) ((-868 . -47) 127130) ((-866 . -1014) T) ((-866 . -553) 127096) ((-866 . -1130) T) ((-866 . -13) T) ((-866 . -72) T) ((-858 . -862) 127057) ((-858 . -556) 126853) ((-858 . -951) 126735) ((-858 . -1135) 126714) ((-858 . -822) 126693) ((-858 . -797) 126618) ((-858 . -812) 126599) ((-858 . -807) 126578) ((-858 . -810) 126559) ((-858 . -456) 126505) ((-858 . -392) 126459) ((-858 . -581) 126407) ((-858 . -591) 126296) ((-858 . -329) 126280) ((-858 . -47) 126249) ((-858 . -38) 126101) ((-858 . -583) 125953) ((-858 . -655) 125805) ((-858 . -246) 125739) ((-858 . -496) 125673) ((-858 . -82) 125498) ((-858 . -964) 125344) ((-858 . -969) 125190) ((-858 . -146) 125104) ((-858 . -120) 125083) ((-858 . -118) 125062) ((-858 . -589) 124972) ((-858 . -104) T) ((-858 . -25) T) ((-858 . -72) T) ((-858 . -13) T) ((-858 . -1130) T) ((-858 . -553) 124954) ((-858 . -1014) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1062) T) ((-858 . -1026) T) ((-858 . -971) T) ((-858 . -355) 124938) ((-858 . -277) 124907) ((-858 . -260) 124894) ((-858 . -554) 124755) ((-855 . -894) 124739) ((-855 . -19) 124723) ((-855 . -1036) 124707) ((-855 . -318) 124691) ((-855 . -34) T) ((-855 . -13) T) ((-855 . -1130) T) ((-855 . -72) 124625) ((-855 . -553) 124540) ((-855 . -260) 124478) ((-855 . -456) 124411) ((-855 . -1014) 124364) ((-855 . -429) 124348) ((-855 . -594) 124332) ((-855 . -243) 124309) ((-855 . -241) 124261) ((-855 . -539) 124238) ((-855 . -554) 124199) ((-855 . -124) 124183) ((-855 . -757) 124162) ((-855 . -760) 124141) ((-855 . -324) 124125) ((-855 . -1179) 124109) ((-855 . -558) 124086) ((-839 . -888) T) ((-839 . -553) 124068) ((-837 . -867) T) ((-837 . -553) 124050) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1014) T) ((-831 . -553) 124032) ((-831 . -1130) T) ((-831 . -13) T) ((-831 . -72) T) ((-831 . -25) T) ((-831 . -664) T) ((-831 . -1026) T) ((-826 . -312) T) ((-826 . -1135) T) ((-826 . -833) T) ((-826 . -496) T) ((-826 . -146) T) ((-826 . -556) 123969) ((-826 . -655) 123921) ((-826 . -583) 123873) ((-826 . -38) 123825) ((-826 . -392) T) ((-826 . -258) T) ((-826 . -591) 123777) ((-826 . -589) 123714) ((-826 . -971) T) ((-826 . -1026) T) ((-826 . -1062) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -82) 123645) ((-826 . -964) 123597) ((-826 . -969) 123549) ((-826 . -21) T) ((-826 . -23) T) ((-826 . -1014) T) ((-826 . -553) 123531) ((-826 . -1130) T) ((-826 . -13) T) ((-826 . -72) T) ((-826 . -25) T) ((-826 . -104) T) ((-826 . -246) T) ((-826 . -201) T) ((-818 . -299) T) ((-818 . -1067) T) ((-818 . -320) T) ((-818 . -118) T) ((-818 . -312) T) ((-818 . -1135) T) ((-818 . -833) T) ((-818 . -496) T) ((-818 . -146) T) ((-818 . -556) 123481) ((-818 . -655) 123446) ((-818 . -583) 123411) ((-818 . -38) 123376) ((-818 . -392) T) ((-818 . -258) T) ((-818 . -82) 123325) ((-818 . -964) 123290) ((-818 . -969) 123255) ((-818 . -589) 123205) ((-818 . -591) 123170) ((-818 . -246) T) ((-818 . -201) T) ((-818 . -345) T) ((-818 . -189) T) ((-818 . -1130) T) ((-818 . -13) T) ((-818 . -186) 123157) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1062) T) ((-818 . -1026) T) ((-818 . -971) T) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1014) T) ((-818 . -553) 123139) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -104) T) ((-818 . -190) T) ((-818 . -280) 123126) ((-818 . -120) 123108) ((-818 . -951) 123095) ((-818 . -1188) 123082) ((-818 . -1199) 123069) ((-818 . -554) 123051) ((-817 . -1014) T) ((-817 . -553) 123033) ((-817 . -1130) T) ((-817 . -13) T) ((-817 . -72) T) ((-814 . -816) 123017) ((-814 . -760) 122971) ((-814 . -757) 122925) ((-814 . -664) T) ((-814 . -1014) T) ((-814 . -553) 122907) ((-814 . -72) T) ((-814 . -1026) T) ((-814 . -413) T) ((-814 . -1130) T) ((-814 . -13) T) ((-814 . -241) 122886) ((-813 . -92) 122870) ((-813 . -429) 122854) ((-813 . -1014) 122832) ((-813 . -456) 122765) ((-813 . -260) 122703) ((-813 . -553) 122617) ((-813 . -72) 122571) ((-813 . -1130) T) ((-813 . -13) T) ((-813 . -34) T) ((-813 . -924) 122555) ((-804 . -757) T) ((-804 . -553) 122537) ((-804 . -1014) T) ((-804 . -72) T) ((-804 . -13) T) ((-804 . -1130) T) ((-804 . -760) T) ((-804 . -951) 122514) ((-804 . -556) 122491) ((-801 . -1014) T) ((-801 . -553) 122473) ((-801 . -1130) T) ((-801 . -13) T) ((-801 . -72) T) ((-801 . -951) 122441) ((-801 . -556) 122409) ((-799 . -1014) T) ((-799 . -553) 122391) ((-799 . -1130) T) ((-799 . -13) T) ((-799 . -72) T) ((-796 . -1014) T) ((-796 . -553) 122373) ((-796 . -1130) T) ((-796 . -13) T) ((-796 . -72) T) ((-786 . -996) T) ((-786 . -430) 122354) ((-786 . -553) 122320) ((-786 . -556) 122301) ((-786 . -1014) T) ((-786 . -1130) T) ((-786 . -13) T) ((-786 . -72) T) ((-786 . -64) T) ((-786 . -1176) T) ((-784 . -1014) T) ((-784 . -553) 122283) ((-784 . -1130) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -556) 122265) ((-783 . -1130) T) ((-783 . -13) T) ((-783 . -553) 122140) ((-783 . -1014) 122091) ((-783 . -72) 122042) ((-782 . -905) 122026) ((-782 . -1067) 122004) ((-782 . -951) 121871) ((-782 . -556) 121770) ((-782 . -554) 121573) ((-782 . -934) 121552) ((-782 . -822) 121531) ((-782 . -795) 121515) ((-782 . -756) 121494) ((-782 . -722) 121473) ((-782 . -719) 121452) ((-782 . -760) 121406) ((-782 . -757) 121360) ((-782 . -717) 121339) ((-782 . -715) 121318) ((-782 . -741) 121297) ((-782 . -797) 121222) ((-782 . -343) 121206) ((-782 . -581) 121154) ((-782 . -591) 121070) ((-782 . -329) 121054) ((-782 . -241) 121012) ((-782 . -260) 120977) ((-782 . -456) 120889) ((-782 . -288) 120873) ((-782 . -201) T) ((-782 . -82) 120804) ((-782 . -964) 120756) ((-782 . -969) 120708) ((-782 . -246) T) ((-782 . -655) 120660) ((-782 . -583) 120612) ((-782 . -589) 120549) ((-782 . -38) 120501) ((-782 . -258) T) ((-782 . -392) T) ((-782 . -146) T) ((-782 . -496) T) ((-782 . -833) T) ((-782 . -1135) T) ((-782 . -312) T) ((-782 . -190) 120480) ((-782 . -186) 120428) ((-782 . -189) 120382) ((-782 . -225) 120366) ((-782 . -807) 120290) ((-782 . -812) 120216) ((-782 . -810) 120175) ((-782 . -184) 120159) ((-782 . -120) 120113) ((-782 . -118) 120092) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1130) T) ((-782 . -553) 120074) ((-782 . -1014) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1062) T) ((-782 . -1026) T) ((-782 . -971) T) ((-781 . -905) 120051) ((-781 . -1067) NIL) ((-781 . -951) 120028) ((-781 . -556) 119958) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 119935) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -343) 119912) ((-781 . -581) 119889) ((-781 . -591) 119834) ((-781 . -329) 119811) ((-781 . -241) 119741) ((-781 . -260) 119685) ((-781 . -456) 119548) ((-781 . -288) 119525) ((-781 . -201) T) ((-781 . -82) 119442) ((-781 . -964) 119387) ((-781 . -969) 119332) ((-781 . -246) T) ((-781 . -655) 119277) ((-781 . -583) 119222) ((-781 . -589) 119152) ((-781 . -38) 119097) ((-781 . -258) T) ((-781 . -392) T) ((-781 . -146) T) ((-781 . -496) T) ((-781 . -833) T) ((-781 . -1135) T) ((-781 . -312) T) ((-781 . -190) NIL) ((-781 . -186) NIL) ((-781 . -189) NIL) ((-781 . -225) 119074) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -184) 119051) ((-781 . -120) T) ((-781 . -118) NIL) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1130) T) ((-781 . -553) 119033) ((-781 . -1014) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1062) T) ((-781 . -1026) T) ((-781 . -971) T) ((-779 . -780) 119017) ((-779 . -833) T) ((-779 . -496) T) ((-779 . -246) T) ((-779 . -146) T) ((-779 . -556) 118989) ((-779 . -655) 118976) ((-779 . -583) 118963) ((-779 . -969) 118950) ((-779 . -964) 118937) ((-779 . -82) 118922) ((-779 . -38) 118909) ((-779 . -392) T) ((-779 . -258) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1062) T) ((-779 . -1026) T) ((-779 . -971) T) ((-779 . -21) T) ((-779 . -589) 118881) ((-779 . -23) T) ((-779 . -1014) T) ((-779 . -553) 118863) ((-779 . -1130) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -591) 118850) ((-779 . -120) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1062) T) ((-776 . -1026) T) ((-776 . -971) T) ((-776 . -21) T) ((-776 . -589) 118795) ((-776 . -23) T) ((-776 . -1014) T) ((-776 . -553) 118757) ((-776 . -1130) T) ((-776 . -13) T) ((-776 . -72) T) ((-776 . -25) T) ((-776 . -104) T) ((-776 . -591) 118717) ((-776 . -556) 118652) ((-776 . -430) 118629) ((-776 . -38) 118599) ((-776 . -82) 118564) ((-776 . -964) 118534) ((-776 . -969) 118504) ((-776 . -583) 118474) ((-776 . -655) 118444) ((-775 . -1014) T) ((-775 . -553) 118426) ((-775 . -1130) T) ((-775 . -13) T) ((-775 . -72) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1014) T) ((-774 . -553) 118408) ((-774 . -1130) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -320) T) ((-774 . -554) 118330) ((-773 . -1014) T) ((-773 . -553) 118312) ((-773 . -1130) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -771) T) ((-772 . -147) T) ((-772 . -553) 118294) ((-768 . -757) T) ((-768 . -553) 118276) ((-768 . -1014) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1130) T) ((-768 . -760) T) ((-765 . -762) 118260) ((-765 . -951) 118158) ((-765 . -556) 118056) ((-765 . -355) 118040) ((-765 . -655) 118010) ((-765 . -583) 117980) ((-765 . -591) 117954) ((-765 . -589) 117913) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1130) T) ((-765 . -553) 117895) ((-765 . -1014) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -969) 117879) ((-765 . -964) 117863) ((-765 . -82) 117842) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1062) T) ((-765 . -1026) T) ((-765 . -971) T) ((-765 . -38) 117812) ((-764 . -762) 117796) ((-764 . -951) 117694) ((-764 . -556) 117613) ((-764 . -355) 117597) ((-764 . -655) 117567) ((-764 . -583) 117537) ((-764 . -591) 117511) ((-764 . -589) 117470) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1130) T) ((-764 . -553) 117452) ((-764 . -1014) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -969) 117436) ((-764 . -964) 117420) ((-764 . -82) 117399) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1062) T) ((-764 . -1026) T) ((-764 . -971) T) ((-764 . -38) 117369) ((-758 . -760) T) ((-758 . -1130) T) ((-758 . -13) T) ((-758 . -72) T) ((-758 . -430) 117353) ((-758 . -553) 117301) ((-758 . -556) 117285) ((-751 . -1014) T) ((-751 . -553) 117267) ((-751 . -1130) T) ((-751 . -13) T) ((-751 . -72) T) ((-751 . -355) 117251) ((-751 . -556) 117124) ((-751 . -951) 117022) ((-751 . -21) 116977) ((-751 . -589) 116897) ((-751 . -23) 116852) ((-751 . -25) 116807) ((-751 . -104) 116762) ((-751 . -756) 116741) ((-751 . -722) 116720) ((-751 . -719) 116699) ((-751 . -760) 116678) ((-751 . -757) 116657) ((-751 . -717) 116636) ((-751 . -715) 116615) ((-751 . -962) 116594) ((-751 . -664) 116573) ((-751 . -1062) 116552) ((-751 . -1026) 116531) ((-751 . -971) 116510) ((-751 . -591) 116483) ((-751 . -120) 116462) ((-750 . -748) 116444) ((-750 . -72) T) ((-750 . -13) T) ((-750 . -1130) T) ((-750 . -553) 116426) ((-750 . -1014) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1062) T) ((-746 . -1026) T) ((-746 . -971) T) ((-746 . -21) T) ((-746 . -589) 116371) ((-746 . -23) T) ((-746 . -1014) T) ((-746 . -553) 116353) ((-746 . -1130) T) ((-746 . -13) T) ((-746 . -72) T) ((-746 . -25) T) ((-746 . -104) T) ((-746 . -591) 116313) ((-746 . -556) 116268) ((-746 . -951) 116238) ((-746 . -241) 116217) ((-746 . -120) 116196) ((-746 . -118) 116175) ((-746 . -38) 116145) ((-746 . -82) 116110) ((-746 . -964) 116080) ((-746 . -969) 116050) ((-746 . -583) 116020) ((-746 . -655) 115990) ((-744 . -1014) T) ((-744 . -553) 115972) ((-744 . -1130) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -355) 115956) ((-744 . -556) 115829) ((-744 . -951) 115727) ((-744 . -21) 115682) ((-744 . -589) 115602) ((-744 . -23) 115557) ((-744 . -25) 115512) ((-744 . -104) 115467) ((-744 . -756) 115446) ((-744 . -722) 115425) ((-744 . -719) 115404) ((-744 . -760) 115383) ((-744 . -757) 115362) ((-744 . -717) 115341) ((-744 . -715) 115320) ((-744 . -962) 115299) ((-744 . -664) 115278) ((-744 . -1062) 115257) ((-744 . -1026) 115236) ((-744 . -971) 115215) ((-744 . -591) 115188) ((-744 . -120) 115167) ((-742 . -646) 115151) ((-742 . -556) 115106) ((-742 . -655) 115076) ((-742 . -583) 115046) ((-742 . -591) 115020) ((-742 . -589) 114979) ((-742 . -104) T) ((-742 . -25) T) ((-742 . -72) T) ((-742 . -13) T) ((-742 . -1130) T) ((-742 . -553) 114961) ((-742 . -1014) T) ((-742 . -23) T) ((-742 . -21) T) ((-742 . -969) 114945) ((-742 . -964) 114929) ((-742 . -82) 114908) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1062) T) ((-742 . -1026) T) ((-742 . -971) T) ((-742 . -38) 114878) ((-742 . -190) 114857) ((-742 . -186) 114830) ((-742 . -189) 114809) ((-740 . -336) 114793) ((-740 . -556) 114777) ((-740 . -951) 114761) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1026) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1130) T) ((-740 . -553) 114743) ((-740 . -1014) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -228) 114727) ((-739 . -556) 114711) ((-739 . -951) 114695) ((-739 . -760) T) ((-739 . -72) T) ((-739 . -1014) T) ((-739 . -553) 114677) ((-739 . -757) T) ((-739 . -186) 114664) ((-739 . -13) T) ((-739 . -1130) T) ((-739 . -189) T) ((-738 . -82) 114599) ((-738 . -964) 114550) ((-738 . -969) 114501) ((-738 . -21) T) ((-738 . -589) 114437) ((-738 . -23) T) ((-738 . -1014) T) ((-738 . -553) 114406) ((-738 . -1130) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -104) T) ((-738 . -591) 114357) ((-738 . -190) T) ((-738 . -556) 114266) ((-738 . -971) T) ((-738 . -1026) T) ((-738 . -1062) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -186) 114253) ((-738 . -189) T) ((-738 . -430) 114237) ((-738 . -312) 114216) ((-738 . -1135) 114195) ((-738 . -833) 114174) ((-738 . -496) 114153) ((-738 . -146) 114132) ((-738 . -655) 114069) ((-738 . -583) 114006) ((-738 . -38) 113943) ((-738 . -392) 113922) ((-738 . -258) 113901) ((-738 . -246) 113880) ((-738 . -201) 113859) ((-737 . -213) 113798) ((-737 . -556) 113542) ((-737 . -951) 113372) ((-737 . -554) NIL) ((-737 . -277) 113334) ((-737 . -355) 113318) ((-737 . -38) 113170) ((-737 . -82) 112995) ((-737 . -964) 112841) ((-737 . -969) 112687) ((-737 . -589) 112597) ((-737 . -591) 112486) ((-737 . -583) 112338) ((-737 . -655) 112190) ((-737 . -118) 112169) ((-737 . -120) 112148) ((-737 . -146) 112062) ((-737 . -496) 111996) ((-737 . -246) 111930) ((-737 . -47) 111892) ((-737 . -329) 111876) ((-737 . -581) 111824) ((-737 . -392) 111778) ((-737 . -456) 111643) ((-737 . -810) 111579) ((-737 . -807) 111478) ((-737 . -812) 111381) ((-737 . -797) NIL) ((-737 . -822) 111360) ((-737 . -1135) 111339) ((-737 . -862) 111286) ((-737 . -260) 111273) ((-737 . -190) 111252) ((-737 . -104) T) ((-737 . -25) T) ((-737 . -72) T) ((-737 . -553) 111234) ((-737 . -1014) T) ((-737 . -23) T) ((-737 . -21) T) ((-737 . -971) T) ((-737 . -1026) T) ((-737 . -1062) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -186) 111182) ((-737 . -13) T) ((-737 . -1130) T) ((-737 . -189) 111136) ((-737 . -225) 111120) ((-737 . -184) 111104) ((-736 . -196) 111083) ((-736 . -1188) 111053) ((-736 . -722) 111032) ((-736 . -719) 111011) ((-736 . -760) 110965) ((-736 . -757) 110919) ((-736 . -717) 110898) ((-736 . -718) 110877) ((-736 . -655) 110822) ((-736 . -583) 110747) ((-736 . -243) 110724) ((-736 . -241) 110701) ((-736 . -539) 110678) ((-736 . -951) 110507) ((-736 . -556) 110311) ((-736 . -355) 110280) ((-736 . -581) 110188) ((-736 . -591) 110027) ((-736 . -329) 109997) ((-736 . -429) 109981) ((-736 . -456) 109914) ((-736 . -260) 109852) ((-736 . -34) T) ((-736 . -318) 109836) ((-736 . -320) 109815) ((-736 . -190) 109768) ((-736 . -589) 109556) ((-736 . -971) 109535) ((-736 . -1026) 109514) ((-736 . -1062) 109493) ((-736 . -664) 109472) ((-736 . -962) 109451) ((-736 . -186) 109347) ((-736 . -189) 109249) ((-736 . -225) 109219) ((-736 . -807) 109091) ((-736 . -812) 108965) ((-736 . -810) 108898) ((-736 . -184) 108868) ((-736 . -553) 108565) ((-736 . -969) 108490) ((-736 . -964) 108395) ((-736 . -82) 108315) ((-736 . -104) 108190) ((-736 . -25) 108027) ((-736 . -72) 107764) ((-736 . -13) T) ((-736 . -1130) T) ((-736 . -1014) 107520) ((-736 . -23) 107376) ((-736 . -21) 107291) ((-723 . -721) 107275) ((-723 . -760) 107254) ((-723 . -757) 107233) ((-723 . -951) 107026) ((-723 . -556) 106879) ((-723 . -355) 106843) ((-723 . -241) 106801) ((-723 . -260) 106766) ((-723 . -456) 106678) ((-723 . -288) 106662) ((-723 . -320) 106641) ((-723 . -554) 106602) ((-723 . -120) 106581) ((-723 . -118) 106560) ((-723 . -655) 106544) ((-723 . -583) 106528) ((-723 . -591) 106502) ((-723 . -589) 106461) ((-723 . -104) T) ((-723 . -25) T) ((-723 . -72) T) ((-723 . -13) T) ((-723 . -1130) T) ((-723 . -553) 106443) ((-723 . -1014) T) ((-723 . -23) T) ((-723 . -21) T) ((-723 . -969) 106427) ((-723 . -964) 106411) ((-723 . -82) 106390) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1062) T) ((-723 . -1026) T) ((-723 . -971) T) ((-723 . -38) 106374) ((-705 . -1156) 106358) ((-705 . -1067) 106336) ((-705 . -554) NIL) ((-705 . -260) 106323) ((-705 . -456) 106271) ((-705 . -277) 106248) ((-705 . -951) 106110) ((-705 . -355) 106094) ((-705 . -38) 105926) ((-705 . -82) 105731) ((-705 . -964) 105557) ((-705 . -969) 105383) ((-705 . -589) 105293) ((-705 . -591) 105182) ((-705 . -583) 105014) ((-705 . -655) 104846) ((-705 . -556) 104602) ((-705 . -118) 104581) ((-705 . -120) 104560) ((-705 . -47) 104537) ((-705 . -329) 104521) ((-705 . -581) 104469) ((-705 . -810) 104413) ((-705 . -807) 104320) ((-705 . -812) 104231) ((-705 . -797) NIL) ((-705 . -822) 104210) ((-705 . -1135) 104189) ((-705 . -862) 104159) ((-705 . -833) 104138) ((-705 . -496) 104052) ((-705 . -246) 103966) ((-705 . -146) 103860) ((-705 . -392) 103794) ((-705 . -258) 103773) ((-705 . -241) 103700) ((-705 . -190) T) ((-705 . -104) T) ((-705 . -25) T) ((-705 . -72) T) ((-705 . -553) 103661) ((-705 . -1014) T) ((-705 . -23) T) ((-705 . -21) T) ((-705 . -971) T) ((-705 . -1026) T) ((-705 . -1062) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -186) 103648) ((-705 . -13) T) ((-705 . -1130) T) ((-705 . -189) T) ((-705 . -225) 103632) ((-705 . -184) 103616) ((-704 . -978) 103583) ((-704 . -554) 103218) ((-704 . -260) 103205) ((-704 . -456) 103157) ((-704 . -277) 103129) ((-704 . -951) 102988) ((-704 . -355) 102972) ((-704 . -38) 102824) ((-704 . -556) 102597) ((-704 . -591) 102486) ((-704 . -589) 102396) ((-704 . -971) T) ((-704 . -1026) T) ((-704 . -1062) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -82) 102221) ((-704 . -964) 102067) ((-704 . -969) 101913) ((-704 . -21) T) ((-704 . -23) T) ((-704 . -1014) T) ((-704 . -553) 101827) ((-704 . -1130) T) ((-704 . -13) T) ((-704 . -72) T) ((-704 . -25) T) ((-704 . -104) T) ((-704 . -583) 101679) ((-704 . -655) 101531) ((-704 . -118) 101510) ((-704 . -120) 101489) ((-704 . -146) 101403) ((-704 . -496) 101337) ((-704 . -246) 101271) ((-704 . -47) 101243) ((-704 . -329) 101227) ((-704 . -581) 101175) ((-704 . -392) 101129) ((-704 . -810) 101113) ((-704 . -807) 101095) ((-704 . -812) 101079) ((-704 . -797) 100938) ((-704 . -822) 100917) ((-704 . -1135) 100896) ((-704 . -862) 100863) ((-697 . -1014) T) ((-697 . -553) 100845) ((-697 . -1130) T) ((-697 . -13) T) ((-697 . -72) T) ((-695 . -718) T) ((-695 . -104) T) ((-695 . -25) T) ((-695 . -72) T) ((-695 . -13) T) ((-695 . -1130) T) ((-695 . -553) 100827) ((-695 . -1014) T) ((-695 . -23) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1026) T) ((-676 . -677) 100811) ((-676 . -1012) 100795) ((-676 . -193) 100779) ((-676 . -554) 100740) ((-676 . -124) 100724) ((-676 . -1036) 100708) ((-676 . -34) T) ((-676 . -13) T) ((-676 . -1130) T) ((-676 . -72) T) ((-676 . -553) 100690) ((-676 . -260) 100628) ((-676 . -456) 100561) ((-676 . -1014) T) ((-676 . -429) 100545) ((-676 . -76) 100529) ((-676 . -635) 100513) ((-676 . -318) 100497) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1062) T) ((-675 . -1026) T) ((-675 . -971) T) ((-675 . -21) T) ((-675 . -589) 100442) ((-675 . -23) T) ((-675 . -1014) T) ((-675 . -553) 100424) ((-675 . -1130) T) ((-675 . -13) T) ((-675 . -72) T) ((-675 . -25) T) ((-675 . -104) T) ((-675 . -591) 100384) ((-675 . -556) 100340) ((-675 . -951) 100311) ((-675 . -120) 100290) ((-675 . -118) 100269) ((-675 . -38) 100239) ((-675 . -82) 100204) ((-675 . -964) 100174) ((-675 . -969) 100144) ((-675 . -583) 100114) ((-675 . -655) 100084) ((-675 . -320) 100037) ((-671 . -862) 99990) ((-671 . -556) 99782) ((-671 . -951) 99660) ((-671 . -1135) 99639) ((-671 . -822) 99618) ((-671 . -797) NIL) ((-671 . -812) 99595) ((-671 . -807) 99570) ((-671 . -810) 99547) ((-671 . -456) 99485) ((-671 . -392) 99439) ((-671 . -581) 99387) ((-671 . -591) 99276) ((-671 . -329) 99260) ((-671 . -47) 99225) ((-671 . -38) 99077) ((-671 . -583) 98929) ((-671 . -655) 98781) ((-671 . -246) 98715) ((-671 . -496) 98649) ((-671 . -82) 98474) ((-671 . -964) 98320) ((-671 . -969) 98166) ((-671 . -146) 98080) ((-671 . -120) 98059) ((-671 . -118) 98038) ((-671 . -589) 97948) ((-671 . -104) T) ((-671 . -25) T) ((-671 . -72) T) ((-671 . -13) T) ((-671 . -1130) T) ((-671 . -553) 97930) ((-671 . -1014) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1062) T) ((-671 . -1026) T) ((-671 . -971) T) ((-671 . -355) 97914) ((-671 . -277) 97879) ((-671 . -260) 97866) ((-671 . -554) 97727) ((-665 . -666) 97711) ((-665 . -80) 97695) ((-665 . -1130) T) ((-665 . |MappingCategory|) 97669) ((-665 . -1024) 97653) ((-665 . -1014) T) ((-665 . -553) 97614) ((-665 . -13) T) ((-665 . -72) T) ((-656 . -413) T) ((-656 . -1026) T) ((-656 . -72) T) ((-656 . -13) T) ((-656 . -1130) T) ((-656 . -553) 97596) ((-656 . -1014) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1062) T) ((-653 . -1026) T) ((-653 . -971) T) ((-653 . -21) T) ((-653 . -589) 97568) ((-653 . -23) T) ((-653 . -1014) T) ((-653 . -553) 97550) ((-653 . -1130) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -591) 97537) ((-653 . -556) 97519) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1062) T) ((-652 . -1026) T) ((-652 . -971) T) ((-652 . -21) T) ((-652 . -589) 97464) ((-652 . -23) T) ((-652 . -1014) T) ((-652 . -553) 97446) ((-652 . -1130) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -591) 97406) ((-652 . -556) 97361) ((-652 . -951) 97331) ((-652 . -241) 97310) ((-652 . -120) 97289) ((-652 . -118) 97268) ((-652 . -38) 97238) ((-652 . -82) 97203) ((-652 . -964) 97173) ((-652 . -969) 97143) ((-652 . -583) 97113) ((-652 . -655) 97083) ((-651 . -757) T) ((-651 . -553) 97018) ((-651 . -1014) T) ((-651 . -72) T) ((-651 . -13) T) ((-651 . -1130) T) ((-651 . -760) T) ((-651 . -430) 96968) ((-651 . -556) 96918) ((-650 . -1156) 96902) ((-650 . -1067) 96880) ((-650 . -554) NIL) ((-650 . -260) 96867) ((-650 . -456) 96815) ((-650 . -277) 96792) ((-650 . -951) 96675) ((-650 . -355) 96659) ((-650 . -38) 96491) ((-650 . -82) 96296) ((-650 . -964) 96122) ((-650 . -969) 95948) ((-650 . -589) 95858) ((-650 . -591) 95747) ((-650 . -583) 95579) ((-650 . -655) 95411) ((-650 . -556) 95175) ((-650 . -118) 95154) ((-650 . -120) 95133) ((-650 . -47) 95110) ((-650 . -329) 95094) ((-650 . -581) 95042) ((-650 . -810) 94986) ((-650 . -807) 94893) ((-650 . -812) 94804) ((-650 . -797) NIL) ((-650 . -822) 94783) ((-650 . -1135) 94762) ((-650 . -862) 94732) ((-650 . -833) 94711) ((-650 . -496) 94625) ((-650 . -246) 94539) ((-650 . -146) 94433) ((-650 . -392) 94367) ((-650 . -258) 94346) ((-650 . -241) 94273) ((-650 . -190) T) ((-650 . -104) T) ((-650 . -25) T) ((-650 . -72) T) ((-650 . -553) 94255) ((-650 . -1014) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -971) T) ((-650 . -1026) T) ((-650 . -1062) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -186) 94242) ((-650 . -13) T) ((-650 . -1130) T) ((-650 . -189) T) ((-650 . -225) 94226) ((-650 . -184) 94210) ((-650 . -320) 94189) ((-649 . -312) T) ((-649 . -1135) T) ((-649 . -833) T) ((-649 . -496) T) ((-649 . -146) T) ((-649 . -556) 94139) ((-649 . -655) 94104) ((-649 . -583) 94069) ((-649 . -38) 94034) ((-649 . -392) T) ((-649 . -258) T) ((-649 . -591) 93999) ((-649 . -589) 93949) ((-649 . -971) T) ((-649 . -1026) T) ((-649 . -1062) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -82) 93898) ((-649 . -964) 93863) ((-649 . -969) 93828) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1014) T) ((-649 . -553) 93810) ((-649 . -1130) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -104) T) ((-649 . -246) T) ((-649 . -201) T) ((-648 . -1014) T) ((-648 . -553) 93792) ((-648 . -1130) T) ((-648 . -13) T) ((-648 . -72) T) ((-633 . -1176) T) ((-633 . -951) 93776) ((-633 . -556) 93760) ((-633 . -553) 93742) ((-631 . -628) 93700) ((-631 . -318) 93684) ((-631 . -34) T) ((-631 . -13) T) ((-631 . -1130) T) ((-631 . -72) 93638) ((-631 . -553) 93573) ((-631 . -260) 93511) ((-631 . -456) 93444) ((-631 . -1014) 93422) ((-631 . -429) 93406) ((-631 . -1036) 93390) ((-631 . -57) 93348) ((-631 . -554) 93309) ((-623 . -996) T) ((-623 . -430) 93290) ((-623 . -553) 93240) ((-623 . -556) 93221) ((-623 . -1014) T) ((-623 . -1130) T) ((-623 . -13) T) ((-623 . -72) T) ((-623 . -64) T) ((-619 . -757) T) ((-619 . -553) 93203) ((-619 . -1014) T) ((-619 . -72) T) ((-619 . -13) T) ((-619 . -1130) T) ((-619 . -760) T) ((-619 . -951) 93187) ((-619 . -556) 93171) ((-618 . -996) T) ((-618 . -430) 93152) ((-618 . -553) 93118) ((-618 . -556) 93099) ((-618 . -1014) T) ((-618 . -1130) T) ((-618 . -13) T) ((-618 . -72) T) ((-618 . -64) T) ((-615 . -757) T) ((-615 . -553) 93081) ((-615 . -1014) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1130) T) ((-615 . -760) T) ((-615 . -951) 93065) ((-615 . -556) 93049) ((-614 . -996) T) ((-614 . -430) 93030) ((-614 . -553) 92996) ((-614 . -556) 92977) ((-614 . -1014) T) ((-614 . -1130) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-613 . -1038) 92922) ((-613 . -318) 92906) ((-613 . -34) T) ((-613 . -260) 92844) ((-613 . -456) 92777) ((-613 . -429) 92761) ((-613 . -966) 92701) ((-613 . -951) 92599) ((-613 . -556) 92518) ((-613 . -355) 92502) ((-613 . -581) 92450) ((-613 . -591) 92388) ((-613 . -329) 92372) ((-613 . -190) 92351) ((-613 . -186) 92299) ((-613 . -189) 92253) ((-613 . -225) 92237) ((-613 . -807) 92161) ((-613 . -812) 92087) ((-613 . -810) 92046) ((-613 . -184) 92030) ((-613 . -655) 92014) ((-613 . -583) 91998) ((-613 . -589) 91957) ((-613 . -104) T) ((-613 . -25) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1130) T) ((-613 . -553) 91919) ((-613 . -1014) T) ((-613 . -23) T) ((-613 . -21) T) ((-613 . -969) 91903) ((-613 . -964) 91887) ((-613 . -82) 91866) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1062) T) ((-613 . -1026) T) ((-613 . -971) T) ((-613 . -38) 91826) ((-613 . -361) 91810) ((-613 . -684) 91794) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -316) 91778) ((-613 . -241) 91755) ((-607 . -326) 91734) ((-607 . -655) 91718) ((-607 . -583) 91702) ((-607 . -591) 91686) ((-607 . -589) 91655) ((-607 . -104) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -13) T) ((-607 . -1130) T) ((-607 . -553) 91637) ((-607 . -1014) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -969) 91621) ((-607 . -964) 91605) ((-607 . -82) 91584) ((-607 . -575) 91568) ((-607 . -335) 91540) ((-607 . -556) 91517) ((-607 . -951) 91494) ((-599 . -601) 91478) ((-599 . -38) 91448) ((-599 . -556) 91367) ((-599 . -591) 91341) ((-599 . -589) 91300) ((-599 . -971) T) ((-599 . -1026) T) ((-599 . -1062) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -82) 91279) ((-599 . -964) 91263) ((-599 . -969) 91247) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1014) T) ((-599 . -553) 91229) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -583) 91199) ((-599 . -655) 91169) ((-599 . -355) 91153) ((-599 . -951) 91051) ((-599 . -762) 91035) ((-599 . -1130) T) ((-599 . -13) T) ((-599 . -241) 90996) ((-598 . -601) 90980) ((-598 . -38) 90950) ((-598 . -556) 90869) ((-598 . -591) 90843) ((-598 . -589) 90802) ((-598 . -971) T) ((-598 . -1026) T) ((-598 . -1062) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -82) 90781) ((-598 . -964) 90765) ((-598 . -969) 90749) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1014) T) ((-598 . -553) 90731) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -583) 90701) ((-598 . -655) 90671) ((-598 . -355) 90655) ((-598 . -951) 90553) ((-598 . -762) 90537) ((-598 . -1130) T) ((-598 . -13) T) ((-598 . -241) 90516) ((-597 . -601) 90500) ((-597 . -38) 90470) ((-597 . -556) 90389) ((-597 . -591) 90363) ((-597 . -589) 90322) ((-597 . -971) T) ((-597 . -1026) T) ((-597 . -1062) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -82) 90301) ((-597 . -964) 90285) ((-597 . -969) 90269) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1014) T) ((-597 . -553) 90251) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -583) 90221) ((-597 . -655) 90191) ((-597 . -355) 90175) ((-597 . -951) 90073) ((-597 . -762) 90057) ((-597 . -1130) T) ((-597 . -13) T) ((-597 . -241) 90036) ((-595 . -655) 90020) ((-595 . -583) 90004) ((-595 . -591) 89988) ((-595 . -589) 89957) ((-595 . -104) T) ((-595 . -25) T) ((-595 . -72) T) ((-595 . -13) T) ((-595 . -1130) T) ((-595 . -553) 89939) ((-595 . -1014) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -969) 89923) ((-595 . -964) 89907) ((-595 . -82) 89886) ((-595 . -715) 89865) ((-595 . -717) 89844) ((-595 . -757) 89823) ((-595 . -760) 89802) ((-595 . -719) 89781) ((-595 . -722) 89760) ((-592 . -1014) T) ((-592 . -553) 89742) ((-592 . -1130) T) ((-592 . -13) T) ((-592 . -72) T) ((-592 . -951) 89726) ((-592 . -556) 89710) ((-590 . -635) 89694) ((-590 . -76) 89678) ((-590 . -429) 89662) ((-590 . -1014) 89640) ((-590 . -456) 89573) ((-590 . -260) 89511) ((-590 . -553) 89446) ((-590 . -72) 89400) ((-590 . -1130) T) ((-590 . -13) T) ((-590 . -34) T) ((-590 . -1036) 89384) ((-590 . -124) 89368) ((-590 . -554) 89329) ((-590 . -193) 89313) ((-590 . -318) 89297) ((-588 . -996) T) ((-588 . -430) 89278) ((-588 . -553) 89231) ((-588 . -556) 89212) ((-588 . -1014) T) ((-588 . -1130) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -64) T) ((-584 . -609) 89196) ((-584 . -1169) 89180) ((-584 . -924) 89164) ((-584 . -1065) 89148) ((-584 . -318) 89132) ((-584 . -757) 89111) ((-584 . -760) 89090) ((-584 . -324) 89074) ((-584 . -594) 89058) ((-584 . -243) 89035) ((-584 . -241) 88987) ((-584 . -539) 88964) ((-584 . -554) 88925) ((-584 . -429) 88909) ((-584 . -1014) 88862) ((-584 . -456) 88795) ((-584 . -260) 88733) ((-584 . -553) 88648) ((-584 . -72) 88582) ((-584 . -1130) T) ((-584 . -13) T) ((-584 . -34) T) ((-584 . -124) 88566) ((-584 . -1036) 88550) ((-584 . -237) 88534) ((-582 . -1188) 88518) ((-582 . -82) 88497) ((-582 . -964) 88481) ((-582 . -969) 88465) ((-582 . -21) T) ((-582 . -589) 88434) ((-582 . -23) T) ((-582 . -1014) T) ((-582 . -553) 88416) ((-582 . -1130) T) ((-582 . -13) T) ((-582 . -72) T) ((-582 . -25) T) ((-582 . -104) T) ((-582 . -591) 88400) ((-582 . -583) 88384) ((-582 . -655) 88368) ((-582 . -241) 88335) ((-580 . -1188) 88319) ((-580 . -82) 88298) ((-580 . -964) 88282) ((-580 . -969) 88266) ((-580 . -21) T) ((-580 . -589) 88235) ((-580 . -23) T) ((-580 . -1014) T) ((-580 . -553) 88217) ((-580 . -1130) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -591) 88201) ((-580 . -583) 88185) ((-580 . -655) 88169) ((-580 . -556) 88146) ((-580 . -450) 88118) ((-580 . -558) 88076) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1014) T) ((-578 . -553) 88058) ((-578 . -1130) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -320) T) ((-578 . -556) 88035) ((-573 . -684) 88019) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -82) 87998) ((-573 . -964) 87982) ((-573 . -969) 87966) ((-573 . -21) T) ((-573 . -589) 87935) ((-573 . -23) T) ((-573 . -1014) T) ((-573 . -553) 87904) ((-573 . -1130) T) ((-573 . -13) T) ((-573 . -72) T) ((-573 . -25) T) ((-573 . -104) T) ((-573 . -591) 87888) ((-573 . -583) 87872) ((-573 . -655) 87856) ((-573 . -361) 87821) ((-573 . -316) 87756) ((-573 . -241) 87714) ((-572 . -1108) 87689) ((-572 . -183) 87633) ((-572 . -76) 87577) ((-572 . -1036) 87507) ((-572 . -124) 87451) ((-572 . -554) NIL) ((-572 . -193) 87395) ((-572 . -539) 87370) ((-572 . -260) 87215) ((-572 . -456) 87015) ((-572 . -429) 86945) ((-572 . -241) 86898) ((-572 . -243) 86873) ((-572 . -550) 86848) ((-572 . -1014) T) ((-572 . -553) 86830) ((-572 . -72) T) ((-572 . -1130) T) ((-572 . -13) T) ((-572 . -34) T) ((-572 . -318) 86774) ((-567 . -413) T) ((-567 . -1026) T) ((-567 . -72) T) ((-567 . -13) T) ((-567 . -1130) T) ((-567 . -553) 86756) ((-567 . -1014) T) ((-567 . -664) T) ((-566 . -996) T) ((-566 . -430) 86737) ((-566 . -553) 86703) ((-566 . -556) 86684) ((-566 . -1014) T) ((-566 . -1130) T) ((-566 . -13) T) ((-566 . -72) T) ((-566 . -64) T) ((-563 . -184) 86668) ((-563 . -810) 86627) ((-563 . -812) 86553) ((-563 . -807) 86477) ((-563 . -225) 86461) ((-563 . -189) 86415) ((-563 . -1130) T) ((-563 . -13) T) ((-563 . -186) 86363) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1062) T) ((-563 . -1026) T) ((-563 . -971) T) ((-563 . -21) T) ((-563 . -589) 86335) ((-563 . -23) T) ((-563 . -1014) T) ((-563 . -553) 86317) ((-563 . -72) T) ((-563 . -25) T) ((-563 . -104) T) ((-563 . -591) 86304) ((-563 . -556) 86200) ((-563 . -190) 86179) ((-563 . -496) T) ((-563 . -246) T) ((-563 . -146) T) ((-563 . -655) 86166) ((-563 . -583) 86153) ((-563 . -969) 86140) ((-563 . -964) 86127) ((-563 . -82) 86112) ((-563 . -38) 86099) ((-563 . -554) 86076) ((-563 . -355) 86060) ((-563 . -951) 85945) ((-563 . -120) 85924) ((-563 . -118) 85903) ((-563 . -258) 85882) ((-563 . -392) 85861) ((-563 . -833) 85840) ((-559 . -38) 85824) ((-559 . -556) 85793) ((-559 . -591) 85767) ((-559 . -589) 85726) ((-559 . -971) T) ((-559 . -1026) T) ((-559 . -1062) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -82) 85705) ((-559 . -964) 85689) ((-559 . -969) 85673) ((-559 . -21) T) ((-559 . -23) T) ((-559 . -1014) T) ((-559 . -553) 85655) ((-559 . -1130) T) ((-559 . -13) T) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -104) T) ((-559 . -583) 85639) ((-559 . -655) 85623) ((-559 . -756) 85602) ((-559 . -722) 85581) ((-559 . -719) 85560) ((-559 . -760) 85539) ((-559 . -757) 85518) ((-559 . -717) 85497) ((-559 . -715) 85476) ((-559 . -120) 85455) ((-557 . -881) T) ((-557 . -72) T) ((-557 . -553) 85437) ((-557 . -1014) T) ((-557 . -605) T) ((-557 . -13) T) ((-557 . -1130) T) ((-557 . -84) T) ((-557 . -320) T) ((-551 . -105) T) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1130) T) ((-551 . -553) 85419) ((-551 . -1014) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 85403) ((-551 . -554) 85264) ((-548 . -314) 85202) ((-548 . -72) T) ((-548 . -13) T) ((-548 . -1130) T) ((-548 . -553) 85184) ((-548 . -1014) T) ((-548 . -1108) 85160) ((-548 . -183) 85105) ((-548 . -76) 85050) ((-548 . -1036) 84982) ((-548 . -124) 84927) ((-548 . -554) NIL) ((-548 . -193) 84872) ((-548 . -539) 84848) ((-548 . -260) 84637) ((-548 . -456) 84377) ((-548 . -429) 84309) ((-548 . -241) 84285) ((-548 . -243) 84261) ((-548 . -550) 84237) ((-548 . -34) T) ((-548 . -318) 84182) ((-547 . -1014) T) ((-547 . -553) 84134) ((-547 . -1130) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -430) 84101) ((-547 . -556) 84068) ((-546 . -1014) T) ((-546 . -553) 84050) ((-546 . -1130) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -605) T) ((-545 . -1014) T) ((-545 . -553) 84032) ((-545 . -1130) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -605) T) ((-544 . -1014) T) ((-544 . -553) 83999) ((-544 . -1130) T) ((-544 . -13) T) ((-544 . -72) T) ((-543 . -1014) T) ((-543 . -553) 83981) ((-543 . -1130) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -605) T) ((-542 . -1014) T) ((-542 . -553) 83948) ((-542 . -1130) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -430) 83930) ((-542 . -556) 83912) ((-541 . -684) 83896) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -82) 83875) ((-541 . -964) 83859) ((-541 . -969) 83843) ((-541 . -21) T) ((-541 . -589) 83812) ((-541 . -23) T) ((-541 . -1014) T) ((-541 . -553) 83781) ((-541 . -1130) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -25) T) ((-541 . -104) T) ((-541 . -591) 83765) ((-541 . -583) 83749) ((-541 . -655) 83733) ((-541 . -361) 83698) ((-541 . -316) 83633) ((-541 . -241) 83591) ((-540 . -996) T) ((-540 . -430) 83572) ((-540 . -553) 83522) ((-540 . -556) 83503) ((-540 . -1014) T) ((-540 . -1130) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -64) T) ((-537 . -553) 83485) ((-533 . -1014) T) ((-533 . -553) 83451) ((-533 . -1130) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -430) 83432) ((-533 . -556) 83413) ((-532 . -962) T) ((-532 . -664) T) ((-532 . -1062) T) ((-532 . -1026) T) ((-532 . -971) T) ((-532 . -21) T) ((-532 . -589) 83372) ((-532 . -23) T) ((-532 . -1014) T) ((-532 . -553) 83354) ((-532 . -1130) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -591) 83328) ((-532 . -556) 83286) ((-532 . -82) 83239) ((-532 . -964) 83199) ((-532 . -969) 83159) ((-532 . -496) 83138) ((-532 . -246) 83117) ((-532 . -146) 83096) ((-532 . -655) 83069) ((-532 . -583) 83042) ((-532 . -38) 83015) ((-531 . -1159) 82992) ((-531 . -47) 82969) ((-531 . -38) 82866) ((-531 . -583) 82763) ((-531 . -655) 82660) ((-531 . -556) 82542) ((-531 . -246) 82521) ((-531 . -496) 82500) ((-531 . -82) 82365) ((-531 . -964) 82251) ((-531 . -969) 82137) ((-531 . -146) 82091) ((-531 . -120) 82070) ((-531 . -118) 82049) ((-531 . -591) 81974) ((-531 . -589) 81884) ((-531 . -887) 81854) ((-531 . -812) 81767) ((-531 . -807) 81678) ((-531 . -810) 81591) ((-531 . -241) 81556) ((-531 . -189) 81515) ((-531 . -1130) T) ((-531 . -13) T) ((-531 . -186) 81468) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1062) T) ((-531 . -1026) T) ((-531 . -971) T) ((-531 . -21) T) ((-531 . -23) T) ((-531 . -1014) T) ((-531 . -553) 81450) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -190) 81409) ((-529 . -996) T) ((-529 . -430) 81390) ((-529 . -553) 81356) ((-529 . -556) 81337) ((-529 . -1014) T) ((-529 . -1130) T) ((-529 . -13) T) ((-529 . -72) T) ((-529 . -64) T) ((-523 . -1014) T) ((-523 . -553) 81303) ((-523 . -1130) T) ((-523 . -13) T) ((-523 . -72) T) ((-523 . -430) 81284) ((-523 . -556) 81265) ((-520 . -655) 81240) ((-520 . -583) 81215) ((-520 . -591) 81190) ((-520 . -589) 81150) ((-520 . -104) T) ((-520 . -25) T) ((-520 . -72) T) ((-520 . -13) T) ((-520 . -1130) T) ((-520 . -553) 81132) ((-520 . -1014) T) ((-520 . -23) T) ((-520 . -21) T) ((-520 . -969) 81107) ((-520 . -964) 81082) ((-520 . -82) 81043) ((-520 . -951) 81027) ((-520 . -556) 81011) ((-518 . -299) T) ((-518 . -1067) T) ((-518 . -320) T) ((-518 . -118) T) ((-518 . -312) T) ((-518 . -1135) T) ((-518 . -833) T) ((-518 . -496) T) ((-518 . -146) T) ((-518 . -556) 80961) ((-518 . -655) 80926) ((-518 . -583) 80891) ((-518 . -38) 80856) ((-518 . -392) T) ((-518 . -258) T) ((-518 . -82) 80805) ((-518 . -964) 80770) ((-518 . -969) 80735) ((-518 . -589) 80685) ((-518 . -591) 80650) ((-518 . -246) T) ((-518 . -201) T) ((-518 . -345) T) ((-518 . -189) T) ((-518 . -1130) T) ((-518 . -13) T) ((-518 . -186) 80637) ((-518 . -962) T) ((-518 . -664) T) ((-518 . -1062) T) ((-518 . -1026) T) ((-518 . -971) T) ((-518 . -21) T) ((-518 . -23) T) ((-518 . -1014) T) ((-518 . -553) 80619) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -190) T) ((-518 . -280) 80606) ((-518 . -120) 80588) ((-518 . -951) 80575) ((-518 . -1188) 80562) ((-518 . -1199) 80549) ((-518 . -554) 80531) ((-517 . -780) 80515) ((-517 . -833) T) ((-517 . -496) T) ((-517 . -246) T) ((-517 . -146) T) ((-517 . -556) 80487) ((-517 . -655) 80474) ((-517 . -583) 80461) ((-517 . -969) 80448) ((-517 . -964) 80435) ((-517 . -82) 80420) ((-517 . -38) 80407) ((-517 . -392) T) ((-517 . -258) T) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1062) T) ((-517 . -1026) T) ((-517 . -971) T) ((-517 . -21) T) ((-517 . -589) 80379) ((-517 . -23) T) ((-517 . -1014) T) ((-517 . -553) 80361) ((-517 . -1130) T) ((-517 . -13) T) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -591) 80348) ((-517 . -120) T) ((-516 . -1014) T) ((-516 . -553) 80330) ((-516 . -1130) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -1014) T) ((-515 . -553) 80312) ((-515 . -1130) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -513) T) ((-514 . -771) T) ((-514 . -147) T) ((-514 . -466) T) ((-514 . -553) 80294) ((-508 . -494) 80278) ((-508 . -35) T) ((-508 . -66) T) ((-508 . -239) T) ((-508 . -433) T) ((-508 . -1119) T) ((-508 . -1116) T) ((-508 . -951) 80260) ((-508 . -916) T) ((-508 . -760) T) ((-508 . -757) T) ((-508 . -496) T) ((-508 . -246) T) ((-508 . -146) T) ((-508 . -556) 80232) ((-508 . -655) 80219) ((-508 . -583) 80206) ((-508 . -591) 80193) ((-508 . -589) 80165) ((-508 . -104) T) ((-508 . -25) T) ((-508 . -72) T) ((-508 . -13) T) ((-508 . -1130) T) ((-508 . -553) 80147) ((-508 . -1014) T) ((-508 . -23) T) ((-508 . -21) T) ((-508 . -969) 80134) ((-508 . -964) 80121) ((-508 . -82) 80106) ((-508 . -962) T) ((-508 . -664) T) ((-508 . -1062) T) ((-508 . -1026) T) ((-508 . -971) T) ((-508 . -38) 80093) ((-508 . -392) T) ((-490 . -1108) 80072) ((-490 . -183) 80020) ((-490 . -76) 79968) ((-490 . -1036) 79903) ((-490 . -124) 79851) ((-490 . -554) NIL) ((-490 . -193) 79799) ((-490 . -539) 79778) ((-490 . -260) 79576) ((-490 . -456) 79328) ((-490 . -429) 79263) ((-490 . -241) 79242) ((-490 . -243) 79221) ((-490 . -550) 79200) ((-490 . -1014) T) ((-490 . -553) 79182) ((-490 . -72) T) ((-490 . -1130) T) ((-490 . -13) T) ((-490 . -34) T) ((-490 . -318) 79130) ((-489 . -753) T) ((-489 . -760) T) ((-489 . -757) T) ((-489 . -1014) T) ((-489 . -553) 79112) ((-489 . -1130) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -320) T) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1014) T) ((-488 . -553) 79094) ((-488 . -1130) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1014) T) ((-487 . -553) 79076) ((-487 . -1130) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1014) T) ((-486 . -553) 79058) ((-486 . -1130) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -320) T) ((-485 . -484) T) ((-485 . -1135) T) ((-485 . -1067) T) ((-485 . -951) 79040) ((-485 . -554) 78955) ((-485 . -934) T) ((-485 . -797) 78937) ((-485 . -756) T) ((-485 . -722) T) ((-485 . -719) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -717) T) ((-485 . -715) T) ((-485 . -741) T) ((-485 . -591) 78909) ((-485 . -581) 78891) ((-485 . -833) T) ((-485 . -496) T) ((-485 . -246) T) ((-485 . -146) T) ((-485 . -556) 78863) ((-485 . -655) 78850) ((-485 . -583) 78837) ((-485 . -969) 78824) ((-485 . -964) 78811) ((-485 . -82) 78796) ((-485 . -38) 78783) ((-485 . -392) T) ((-485 . -258) T) ((-485 . -189) T) ((-485 . -186) 78770) ((-485 . -190) T) ((-485 . -116) T) ((-485 . -962) T) ((-485 . -664) T) ((-485 . -1062) T) ((-485 . -1026) T) ((-485 . -971) T) ((-485 . -21) T) ((-485 . -589) 78742) ((-485 . -23) T) ((-485 . -1014) T) ((-485 . -553) 78724) ((-485 . -1130) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -25) T) ((-485 . -104) T) ((-485 . -120) T) ((-474 . -1017) 78676) ((-474 . -72) T) ((-474 . -553) 78658) ((-474 . -1014) T) ((-474 . -241) 78614) ((-474 . -1130) T) ((-474 . -13) T) ((-474 . -558) 78517) ((-474 . -554) 78498) ((-472 . -692) 78480) ((-472 . -466) T) ((-472 . -147) T) ((-472 . -771) T) ((-472 . -513) T) ((-472 . -553) 78462) ((-470 . -718) T) ((-470 . -104) T) ((-470 . -25) T) ((-470 . -72) T) ((-470 . -13) T) ((-470 . -1130) T) ((-470 . -553) 78444) ((-470 . -1014) T) ((-470 . -23) T) ((-470 . -717) T) ((-470 . -757) T) ((-470 . -760) T) ((-470 . -719) T) ((-470 . -722) T) ((-470 . -450) 78421) ((-470 . -558) 78384) ((-468 . -466) T) ((-468 . -147) T) ((-468 . -553) 78366) ((-464 . -996) T) ((-464 . -430) 78347) ((-464 . -553) 78313) ((-464 . -556) 78294) ((-464 . -1014) T) ((-464 . -1130) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-463 . -996) T) ((-463 . -430) 78275) ((-463 . -553) 78241) ((-463 . -556) 78222) ((-463 . -1014) T) ((-463 . -1130) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-460 . -280) 78199) ((-460 . -190) T) ((-460 . -186) 78186) ((-460 . -189) T) ((-460 . -320) T) ((-460 . -1067) T) ((-460 . -299) T) ((-460 . -120) 78168) ((-460 . -556) 78098) ((-460 . -591) 78043) ((-460 . -589) 77973) ((-460 . -104) T) ((-460 . -25) T) ((-460 . -72) T) ((-460 . -13) T) ((-460 . -1130) T) ((-460 . -553) 77955) ((-460 . -1014) T) ((-460 . -23) T) ((-460 . -21) T) ((-460 . -971) T) ((-460 . -1026) T) ((-460 . -1062) T) ((-460 . -664) T) ((-460 . -962) T) ((-460 . -312) T) ((-460 . -1135) T) ((-460 . -833) T) ((-460 . -496) T) ((-460 . -146) T) ((-460 . -655) 77900) ((-460 . -583) 77845) ((-460 . -38) 77810) ((-460 . -392) T) ((-460 . -258) T) ((-460 . -82) 77727) ((-460 . -964) 77672) ((-460 . -969) 77617) ((-460 . -246) T) ((-460 . -201) T) ((-460 . -345) T) ((-460 . -118) T) ((-460 . -951) 77594) ((-460 . -1188) 77571) ((-460 . -1199) 77548) ((-459 . -996) T) ((-459 . -430) 77529) ((-459 . -553) 77495) ((-459 . -556) 77476) ((-459 . -1014) T) ((-459 . -1130) T) ((-459 . -13) T) ((-459 . -72) T) ((-459 . -64) T) ((-458 . -19) 77460) ((-458 . -1036) 77444) ((-458 . -318) 77428) ((-458 . -34) T) ((-458 . -13) T) ((-458 . -1130) T) ((-458 . -72) 77362) ((-458 . -553) 77277) ((-458 . -260) 77215) ((-458 . -456) 77148) ((-458 . -1014) 77101) ((-458 . -429) 77085) ((-458 . -594) 77069) ((-458 . -243) 77046) ((-458 . -241) 76998) ((-458 . -539) 76975) ((-458 . -554) 76936) ((-458 . -124) 76920) ((-458 . -757) 76899) ((-458 . -760) 76878) ((-458 . -324) 76862) ((-458 . -237) 76846) ((-457 . -274) 76825) ((-457 . -556) 76809) ((-457 . -951) 76793) ((-457 . -23) T) ((-457 . -1014) T) ((-457 . -553) 76775) ((-457 . -1130) T) ((-457 . -13) T) ((-457 . -72) T) ((-457 . -25) T) ((-457 . -104) T) ((-454 . -72) T) ((-454 . -13) T) ((-454 . -1130) T) ((-454 . -553) 76747) ((-453 . -718) T) ((-453 . -104) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1130) T) ((-453 . -553) 76729) ((-453 . -1014) T) ((-453 . -23) T) ((-453 . -717) T) ((-453 . -757) T) ((-453 . -760) T) ((-453 . -719) T) ((-453 . -722) T) ((-453 . -450) 76708) ((-453 . -558) 76673) ((-452 . -717) T) ((-452 . -757) T) ((-452 . -760) T) ((-452 . -719) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1130) T) ((-452 . -553) 76655) ((-452 . -1014) T) ((-452 . -23) T) ((-452 . -450) 76634) ((-452 . -558) 76599) ((-451 . -450) 76578) ((-451 . -553) 76518) ((-451 . -1014) 76469) ((-451 . -558) 76434) ((-451 . -1130) T) ((-451 . -13) T) ((-451 . -72) T) ((-449 . -23) T) ((-449 . -1014) T) ((-449 . -553) 76416) ((-449 . -1130) T) ((-449 . -13) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -450) 76395) ((-449 . -558) 76360) ((-448 . -21) T) ((-448 . -589) 76342) ((-448 . -23) T) ((-448 . -1014) T) ((-448 . -553) 76324) ((-448 . -1130) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -104) T) ((-448 . -450) 76303) ((-448 . -558) 76268) ((-447 . -1014) T) ((-447 . -553) 76250) ((-447 . -1130) T) ((-447 . -13) T) ((-447 . -72) T) ((-444 . -1014) T) ((-444 . -553) 76232) ((-444 . -1130) T) ((-444 . -13) T) ((-444 . -72) T) ((-442 . -757) T) ((-442 . -553) 76214) ((-442 . -1014) T) ((-442 . -72) T) ((-442 . -13) T) ((-442 . -1130) T) ((-442 . -760) T) ((-442 . -556) 76195) ((-440 . -96) T) ((-440 . -324) 76178) ((-440 . -760) T) ((-440 . -757) T) ((-440 . -124) 76161) ((-440 . -554) 76143) ((-440 . -241) 76094) ((-440 . -539) 76070) ((-440 . -243) 76046) ((-440 . -594) 76029) ((-440 . -429) 76012) ((-440 . -1014) T) ((-440 . -456) NIL) ((-440 . -260) NIL) ((-440 . -553) 75994) ((-440 . -72) T) ((-440 . -34) T) ((-440 . -318) 75977) ((-440 . -1036) 75960) ((-440 . -19) 75943) ((-440 . -605) T) ((-440 . -13) T) ((-440 . -1130) T) ((-440 . -84) T) ((-437 . -57) 75917) ((-437 . -1036) 75901) ((-437 . -429) 75885) ((-437 . -1014) 75863) ((-437 . -456) 75796) ((-437 . -260) 75734) ((-437 . -553) 75669) ((-437 . -72) 75623) ((-437 . -1130) T) ((-437 . -13) T) ((-437 . -34) T) ((-437 . -318) 75607) ((-436 . -19) 75591) ((-436 . -1036) 75575) ((-436 . -318) 75559) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1130) T) ((-436 . -72) 75493) ((-436 . -553) 75408) ((-436 . -260) 75346) ((-436 . -456) 75279) ((-436 . -1014) 75232) ((-436 . -429) 75216) ((-436 . -594) 75200) ((-436 . -243) 75177) ((-436 . -241) 75129) ((-436 . -539) 75106) ((-436 . -554) 75067) ((-436 . -124) 75051) ((-436 . -757) 75030) ((-436 . -760) 75009) ((-436 . -324) 74993) ((-435 . -254) T) ((-435 . -72) T) ((-435 . -13) T) ((-435 . -1130) T) ((-435 . -553) 74975) ((-435 . -1014) T) ((-435 . -556) 74876) ((-435 . -951) 74819) ((-435 . -456) 74785) ((-435 . -260) 74772) ((-435 . -27) T) ((-435 . -916) T) ((-435 . -201) T) ((-435 . -82) 74721) ((-435 . -964) 74686) ((-435 . -969) 74651) ((-435 . -246) T) ((-435 . -655) 74616) ((-435 . -583) 74581) ((-435 . -591) 74531) ((-435 . -589) 74481) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -962) T) ((-435 . -664) T) ((-435 . -1062) T) ((-435 . -1026) T) ((-435 . -971) T) ((-435 . -38) 74446) ((-435 . -258) T) ((-435 . -392) T) ((-435 . -146) T) ((-435 . -496) T) ((-435 . -833) T) ((-435 . -1135) T) ((-435 . -312) T) ((-435 . -581) 74406) ((-435 . -934) T) ((-435 . -554) 74351) ((-435 . -120) T) ((-435 . -190) T) ((-435 . -186) 74338) ((-435 . -189) T) ((-431 . -1014) T) ((-431 . -553) 74304) ((-431 . -1130) T) ((-431 . -13) T) ((-431 . -72) T) ((-427 . -905) 74286) ((-427 . -1067) T) ((-427 . -556) 74236) ((-427 . -951) 74196) ((-427 . -554) 74126) ((-427 . -934) T) ((-427 . -822) NIL) ((-427 . -795) 74108) ((-427 . -756) T) ((-427 . -722) T) ((-427 . -719) T) ((-427 . -760) T) ((-427 . -757) T) ((-427 . -717) T) ((-427 . -715) T) ((-427 . -741) T) ((-427 . -797) 74090) ((-427 . -343) 74072) ((-427 . -581) 74054) ((-427 . -329) 74036) ((-427 . -241) NIL) ((-427 . -260) NIL) ((-427 . -456) NIL) ((-427 . -288) 74018) ((-427 . -201) T) ((-427 . -82) 73945) ((-427 . -964) 73895) ((-427 . -969) 73845) ((-427 . -246) T) ((-427 . -655) 73795) ((-427 . -583) 73745) ((-427 . -591) 73695) ((-427 . -589) 73645) ((-427 . -38) 73595) ((-427 . -258) T) ((-427 . -392) T) ((-427 . -146) T) ((-427 . -496) T) ((-427 . -833) T) ((-427 . -1135) T) ((-427 . -312) T) ((-427 . -190) T) ((-427 . -186) 73582) ((-427 . -189) T) ((-427 . -225) 73564) ((-427 . -807) NIL) ((-427 . -812) NIL) ((-427 . -810) NIL) ((-427 . -184) 73546) ((-427 . -120) T) ((-427 . -118) NIL) ((-427 . -104) T) ((-427 . -25) T) ((-427 . -72) T) ((-427 . -13) T) ((-427 . -1130) T) ((-427 . -553) 73488) ((-427 . -1014) T) ((-427 . -23) T) ((-427 . -21) T) ((-427 . -962) T) ((-427 . -664) T) ((-427 . -1062) T) ((-427 . -1026) T) ((-427 . -971) T) ((-425 . -286) 73457) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1130) T) ((-425 . -553) 73439) ((-425 . -1014) T) ((-425 . -23) T) ((-425 . -589) 73421) ((-425 . -21) T) ((-424 . -882) 73405) ((-424 . -318) 73389) ((-424 . -1036) 73373) ((-424 . -34) T) ((-424 . -13) T) ((-424 . -1130) T) ((-424 . -72) 73327) ((-424 . -553) 73262) ((-424 . -260) 73200) ((-424 . -456) 73133) ((-424 . -1014) 73111) ((-424 . -429) 73095) ((-424 . -76) 73079) ((-423 . -996) T) ((-423 . -430) 73060) ((-423 . -553) 73026) ((-423 . -556) 73007) ((-423 . -1014) T) ((-423 . -1130) T) ((-423 . -13) T) ((-423 . -72) T) ((-423 . -64) T) ((-422 . -196) 72986) ((-422 . -1188) 72956) ((-422 . -722) 72935) ((-422 . -719) 72914) ((-422 . -760) 72868) ((-422 . -757) 72822) ((-422 . -717) 72801) ((-422 . -718) 72780) ((-422 . -655) 72725) ((-422 . -583) 72650) ((-422 . -243) 72627) ((-422 . -241) 72604) ((-422 . -539) 72581) ((-422 . -951) 72410) ((-422 . -556) 72214) ((-422 . -355) 72183) ((-422 . -581) 72091) ((-422 . -591) 71930) ((-422 . -329) 71900) ((-422 . -429) 71884) ((-422 . -456) 71817) ((-422 . -260) 71755) ((-422 . -34) T) ((-422 . -318) 71739) ((-422 . -320) 71718) ((-422 . -190) 71671) ((-422 . -589) 71459) ((-422 . -971) 71438) ((-422 . -1026) 71417) ((-422 . -1062) 71396) ((-422 . -664) 71375) ((-422 . -962) 71354) ((-422 . -186) 71250) ((-422 . -189) 71152) ((-422 . -225) 71122) ((-422 . -807) 70994) ((-422 . -812) 70868) ((-422 . -810) 70801) ((-422 . -184) 70771) ((-422 . -553) 70468) ((-422 . -969) 70393) ((-422 . -964) 70298) ((-422 . -82) 70218) ((-422 . -104) 70093) ((-422 . -25) 69930) ((-422 . -72) 69667) ((-422 . -13) T) ((-422 . -1130) T) ((-422 . -1014) 69423) ((-422 . -23) 69279) ((-422 . -21) 69194) ((-421 . -862) 69139) ((-421 . -556) 68931) ((-421 . -951) 68809) ((-421 . -1135) 68788) ((-421 . -822) 68767) ((-421 . -797) NIL) ((-421 . -812) 68744) ((-421 . -807) 68719) ((-421 . -810) 68696) ((-421 . -456) 68634) ((-421 . -392) 68588) ((-421 . -581) 68536) ((-421 . -591) 68425) ((-421 . -329) 68409) ((-421 . -47) 68366) ((-421 . -38) 68218) ((-421 . -583) 68070) ((-421 . -655) 67922) ((-421 . -246) 67856) ((-421 . -496) 67790) ((-421 . -82) 67615) ((-421 . -964) 67461) ((-421 . -969) 67307) ((-421 . -146) 67221) ((-421 . -120) 67200) ((-421 . -118) 67179) ((-421 . -589) 67089) ((-421 . -104) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -13) T) ((-421 . -1130) T) ((-421 . -553) 67071) ((-421 . -1014) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -962) T) ((-421 . -664) T) ((-421 . -1062) T) ((-421 . -1026) T) ((-421 . -971) T) ((-421 . -355) 67055) ((-421 . -277) 67012) ((-421 . -260) 66999) ((-421 . -554) 66860) ((-419 . -1108) 66839) ((-419 . -183) 66787) ((-419 . -76) 66735) ((-419 . -1036) 66670) ((-419 . -124) 66618) ((-419 . -554) NIL) ((-419 . -193) 66566) ((-419 . -539) 66545) ((-419 . -260) 66343) ((-419 . -456) 66095) ((-419 . -429) 66030) ((-419 . -241) 66009) ((-419 . -243) 65988) ((-419 . -550) 65967) ((-419 . -1014) T) ((-419 . -553) 65949) ((-419 . -72) T) ((-419 . -1130) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -318) 65897) ((-418 . -996) T) ((-418 . -430) 65878) ((-418 . -553) 65844) ((-418 . -556) 65825) ((-418 . -1014) T) ((-418 . -1130) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -312) T) ((-417 . -1135) T) ((-417 . -833) T) ((-417 . -496) T) ((-417 . -146) T) ((-417 . -556) 65775) ((-417 . -655) 65740) ((-417 . -583) 65705) ((-417 . -38) 65670) ((-417 . -392) T) ((-417 . -258) T) ((-417 . -591) 65635) ((-417 . -589) 65585) ((-417 . -971) T) ((-417 . -1026) T) ((-417 . -1062) T) ((-417 . -664) T) ((-417 . -962) T) ((-417 . -82) 65534) ((-417 . -964) 65499) ((-417 . -969) 65464) ((-417 . -21) T) ((-417 . -23) T) ((-417 . -1014) T) ((-417 . -553) 65416) ((-417 . -1130) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -25) T) ((-417 . -104) T) ((-417 . -246) T) ((-417 . -201) T) ((-417 . -120) T) ((-417 . -951) 65376) ((-417 . -934) T) ((-417 . -554) 65298) ((-416 . -1125) 65267) ((-416 . -1036) 65251) ((-416 . -553) 65213) ((-416 . -124) 65197) ((-416 . -34) T) ((-416 . -13) T) ((-416 . -1130) T) ((-416 . -72) T) ((-416 . -260) 65135) ((-416 . -456) 65068) ((-416 . -1014) T) ((-416 . -429) 65052) ((-416 . -554) 65013) ((-416 . -318) 64997) ((-416 . -890) 64966) ((-415 . -1108) 64945) ((-415 . -183) 64893) ((-415 . -76) 64841) ((-415 . -1036) 64776) ((-415 . -124) 64724) ((-415 . -554) NIL) ((-415 . -193) 64672) ((-415 . -539) 64651) ((-415 . -260) 64449) ((-415 . -456) 64201) ((-415 . -429) 64136) ((-415 . -241) 64115) ((-415 . -243) 64094) ((-415 . -550) 64073) ((-415 . -1014) T) ((-415 . -553) 64055) ((-415 . -72) T) ((-415 . -1130) T) ((-415 . -13) T) ((-415 . -34) T) ((-415 . -318) 64003) ((-414 . -1163) 63987) ((-414 . -190) 63939) ((-414 . -186) 63885) ((-414 . -189) 63837) ((-414 . -241) 63795) ((-414 . -810) 63701) ((-414 . -807) 63582) ((-414 . -812) 63488) ((-414 . -887) 63451) ((-414 . -38) 63298) ((-414 . -82) 63118) ((-414 . -964) 62959) ((-414 . -969) 62800) ((-414 . -589) 62685) ((-414 . -591) 62585) ((-414 . -583) 62432) ((-414 . -655) 62279) ((-414 . -556) 62111) ((-414 . -118) 62090) ((-414 . -120) 62069) ((-414 . -47) 62039) ((-414 . -1159) 62009) ((-414 . -35) 61975) ((-414 . -66) 61941) ((-414 . -239) 61907) ((-414 . -433) 61873) ((-414 . -1119) 61839) ((-414 . -1116) 61805) ((-414 . -916) 61771) ((-414 . -201) 61750) ((-414 . -246) 61704) ((-414 . -104) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -13) T) ((-414 . -1130) T) ((-414 . -553) 61686) ((-414 . -1014) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -962) T) ((-414 . -664) T) ((-414 . -1062) T) ((-414 . -1026) T) ((-414 . -971) T) ((-414 . -258) 61665) ((-414 . -392) 61644) ((-414 . -146) 61578) ((-414 . -496) 61532) ((-414 . -833) 61511) ((-414 . -1135) 61490) ((-414 . -312) 61469) ((-408 . -1014) T) ((-408 . -553) 61451) ((-408 . -1130) T) ((-408 . -13) T) ((-408 . -72) T) ((-403 . -890) 61420) ((-403 . -318) 61404) ((-403 . -554) 61365) ((-403 . -429) 61349) ((-403 . -1014) T) ((-403 . -456) 61282) ((-403 . -260) 61220) ((-403 . -553) 61182) ((-403 . -72) T) ((-403 . -1130) T) ((-403 . -13) T) ((-403 . -34) T) ((-403 . -124) 61166) ((-403 . -1036) 61150) ((-401 . -655) 61121) ((-401 . -583) 61092) ((-401 . -591) 61063) ((-401 . -589) 61019) ((-401 . -104) T) ((-401 . -25) T) ((-401 . -72) T) ((-401 . -13) T) ((-401 . -1130) T) ((-401 . -553) 61001) ((-401 . -1014) T) ((-401 . -23) T) ((-401 . -21) T) ((-401 . -969) 60972) ((-401 . -964) 60943) ((-401 . -82) 60904) ((-394 . -862) 60871) ((-394 . -556) 60663) ((-394 . -951) 60541) ((-394 . -1135) 60520) ((-394 . -822) 60499) ((-394 . -797) NIL) ((-394 . -812) 60476) ((-394 . -807) 60451) ((-394 . -810) 60428) ((-394 . -456) 60366) ((-394 . -392) 60320) ((-394 . -581) 60268) ((-394 . -591) 60157) ((-394 . -329) 60141) ((-394 . -47) 60120) ((-394 . -38) 59972) ((-394 . -583) 59824) ((-394 . -655) 59676) ((-394 . -246) 59610) ((-394 . -496) 59544) ((-394 . -82) 59369) ((-394 . -964) 59215) ((-394 . -969) 59061) ((-394 . -146) 58975) ((-394 . -120) 58954) ((-394 . -118) 58933) ((-394 . -589) 58843) ((-394 . -104) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -13) T) ((-394 . -1130) T) ((-394 . -553) 58825) ((-394 . -1014) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -962) T) ((-394 . -664) T) ((-394 . -1062) T) ((-394 . -1026) T) ((-394 . -971) T) ((-394 . -355) 58809) ((-394 . -277) 58788) ((-394 . -260) 58775) ((-394 . -554) 58636) ((-393 . -361) 58606) ((-393 . -684) 58576) ((-393 . -658) T) ((-393 . -686) T) ((-393 . -82) 58527) ((-393 . -964) 58497) ((-393 . -969) 58467) ((-393 . -21) T) ((-393 . -589) 58382) ((-393 . -23) T) ((-393 . -1014) T) ((-393 . -553) 58364) ((-393 . -72) T) ((-393 . -25) T) ((-393 . -104) T) ((-393 . -591) 58294) ((-393 . -583) 58264) ((-393 . -655) 58234) ((-393 . -316) 58204) ((-393 . -1130) T) ((-393 . -13) T) ((-393 . -241) 58167) ((-381 . -1014) T) ((-381 . -553) 58149) ((-381 . -1130) T) ((-381 . -13) T) ((-381 . -72) T) ((-380 . -1014) T) ((-380 . -553) 58131) ((-380 . -1130) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1014) T) ((-379 . -553) 58113) ((-379 . -1130) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -553) 58095) ((-372 . -38) 58079) ((-372 . -556) 58048) ((-372 . -591) 58022) ((-372 . -589) 57981) ((-372 . -971) T) ((-372 . -1026) T) ((-372 . -1062) T) ((-372 . -664) T) ((-372 . -962) T) ((-372 . -82) 57960) ((-372 . -964) 57944) ((-372 . -969) 57928) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1014) T) ((-372 . -553) 57910) ((-372 . -1130) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -583) 57894) ((-372 . -655) 57878) ((-358 . -664) T) ((-358 . -1014) T) ((-358 . -553) 57860) ((-358 . -1130) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1026) T) ((-356 . -413) T) ((-356 . -1026) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1130) T) ((-356 . -553) 57842) ((-356 . -1014) T) ((-356 . -664) T) ((-350 . -905) 57826) ((-350 . -1067) 57804) ((-350 . -951) 57671) ((-350 . -556) 57570) ((-350 . -554) 57373) ((-350 . -934) 57352) ((-350 . -822) 57331) ((-350 . -795) 57315) ((-350 . -756) 57294) ((-350 . -722) 57273) ((-350 . -719) 57252) ((-350 . -760) 57206) ((-350 . -757) 57160) ((-350 . -717) 57139) ((-350 . -715) 57118) ((-350 . -741) 57097) ((-350 . -797) 57022) ((-350 . -343) 57006) ((-350 . -581) 56954) ((-350 . -591) 56870) ((-350 . -329) 56854) ((-350 . -241) 56812) ((-350 . -260) 56777) ((-350 . -456) 56689) ((-350 . -288) 56673) ((-350 . -201) T) ((-350 . -82) 56604) ((-350 . -964) 56556) ((-350 . -969) 56508) ((-350 . -246) T) ((-350 . -655) 56460) ((-350 . -583) 56412) ((-350 . -589) 56349) ((-350 . -38) 56301) ((-350 . -258) T) ((-350 . -392) T) ((-350 . -146) T) ((-350 . -496) T) ((-350 . -833) T) ((-350 . -1135) T) ((-350 . -312) T) ((-350 . -190) 56280) ((-350 . -186) 56228) ((-350 . -189) 56182) ((-350 . -225) 56166) ((-350 . -807) 56090) ((-350 . -812) 56016) ((-350 . -810) 55975) ((-350 . -184) 55959) ((-350 . -120) 55913) ((-350 . -118) 55892) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1130) T) ((-350 . -553) 55874) ((-350 . -1014) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -962) T) ((-350 . -664) T) ((-350 . -1062) T) ((-350 . -1026) T) ((-350 . -971) T) ((-348 . -496) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -556) 55783) ((-348 . -655) 55757) ((-348 . -583) 55731) ((-348 . -591) 55705) ((-348 . -589) 55664) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1130) T) ((-348 . -553) 55646) ((-348 . -1014) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -969) 55620) ((-348 . -964) 55594) ((-348 . -82) 55561) ((-348 . -962) T) ((-348 . -664) T) ((-348 . -1062) T) ((-348 . -1026) T) ((-348 . -971) T) ((-348 . -38) 55535) ((-348 . -184) 55519) ((-348 . -810) 55478) ((-348 . -812) 55404) ((-348 . -807) 55328) ((-348 . -225) 55312) ((-348 . -189) 55266) ((-348 . -186) 55214) ((-348 . -190) 55193) ((-348 . -288) 55177) ((-348 . -456) 55019) ((-348 . -260) 54958) ((-348 . -241) 54886) ((-348 . -355) 54870) ((-348 . -951) 54768) ((-348 . -392) 54721) ((-348 . -934) 54700) ((-348 . -554) 54603) ((-348 . -1135) 54581) ((-342 . -1014) T) ((-342 . -553) 54563) ((-342 . -1130) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54550) ((-342 . -554) 54527) ((-340 . -684) 54511) ((-340 . -658) T) ((-340 . -686) T) ((-340 . -82) 54490) ((-340 . -964) 54474) ((-340 . -969) 54458) ((-340 . -21) T) ((-340 . -589) 54427) ((-340 . -23) T) ((-340 . -1014) T) ((-340 . -553) 54409) ((-340 . -1130) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -591) 54393) ((-340 . -583) 54377) ((-340 . -655) 54361) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1130) T) ((-338 . -553) 54327) ((-338 . -1014) T) ((-338 . -556) 54308) ((-338 . -430) 54289) ((-337 . -336) 54273) ((-337 . -556) 54257) ((-337 . -951) 54241) ((-337 . -760) 54220) ((-337 . -757) 54199) ((-337 . -1026) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1130) T) ((-337 . -553) 54181) ((-337 . -1014) T) ((-337 . -664) T) ((-334 . -335) 54160) ((-334 . -556) 54144) ((-334 . -951) 54128) ((-334 . -583) 54098) ((-334 . -655) 54068) ((-334 . -591) 54052) ((-334 . -589) 54021) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1130) T) ((-334 . -553) 54003) ((-334 . -1014) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -969) 53987) ((-334 . -964) 53971) ((-334 . -82) 53950) ((-333 . -82) 53929) ((-333 . -964) 53913) ((-333 . -969) 53897) ((-333 . -21) T) ((-333 . -589) 53866) ((-333 . -23) T) ((-333 . -1014) T) ((-333 . -553) 53848) ((-333 . -1130) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -591) 53832) ((-333 . -450) 53811) ((-333 . -558) 53776) ((-333 . -655) 53746) ((-333 . -583) 53716) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -556) 53666) ((-330 . -591) 53631) ((-330 . -589) 53581) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1130) T) ((-330 . -553) 53548) ((-330 . -1014) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -971) T) ((-330 . -1026) T) ((-330 . -1062) T) ((-330 . -664) T) ((-330 . -962) T) ((-330 . -554) 53462) ((-330 . -312) T) ((-330 . -1135) T) ((-330 . -833) T) ((-330 . -496) T) ((-330 . -146) T) ((-330 . -655) 53427) ((-330 . -583) 53392) ((-330 . -38) 53357) ((-330 . -392) T) ((-330 . -258) T) ((-330 . -82) 53306) ((-330 . -964) 53271) ((-330 . -969) 53236) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -756) T) ((-330 . -722) T) ((-330 . -719) T) ((-330 . -760) T) ((-330 . -757) T) ((-330 . -717) T) ((-330 . -715) T) ((-330 . -797) 53218) ((-330 . -916) T) ((-330 . -934) T) ((-330 . -951) 53178) ((-330 . -974) T) ((-330 . -190) T) ((-330 . -186) 53165) ((-330 . -189) T) ((-330 . -1116) T) ((-330 . -1119) T) ((-330 . -433) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -558) 53147) ((-313 . -314) 53124) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1130) T) ((-313 . -553) 53106) ((-313 . -1014) T) ((-310 . -413) T) ((-310 . -1026) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1130) T) ((-310 . -553) 53088) ((-310 . -1014) T) ((-310 . -664) T) ((-310 . -951) 53072) ((-310 . -556) 53056) ((-308 . -280) 53040) ((-308 . -190) 53019) ((-308 . -186) 52992) ((-308 . -189) 52971) ((-308 . -320) 52950) ((-308 . -1067) 52929) ((-308 . -299) 52908) ((-308 . -120) 52887) ((-308 . -556) 52824) ((-308 . -591) 52776) ((-308 . -589) 52713) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1130) T) ((-308 . -553) 52695) ((-308 . -1014) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -971) T) ((-308 . -1026) T) ((-308 . -1062) T) ((-308 . -664) T) ((-308 . -962) T) ((-308 . -312) T) ((-308 . -1135) T) ((-308 . -833) T) ((-308 . -496) T) ((-308 . -146) T) ((-308 . -655) 52647) ((-308 . -583) 52599) ((-308 . -38) 52564) ((-308 . -392) T) ((-308 . -258) T) ((-308 . -82) 52495) ((-308 . -964) 52447) ((-308 . -969) 52399) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52353) ((-308 . -118) 52307) ((-308 . -951) 52291) ((-308 . -1188) 52275) ((-308 . -1199) 52259) ((-304 . -280) 52243) ((-304 . -190) 52222) ((-304 . -186) 52195) ((-304 . -189) 52174) ((-304 . -320) 52153) ((-304 . -1067) 52132) ((-304 . -299) 52111) ((-304 . -120) 52090) ((-304 . -556) 52027) ((-304 . -591) 51979) ((-304 . -589) 51916) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1130) T) ((-304 . -553) 51898) ((-304 . -1014) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -971) T) ((-304 . -1026) T) ((-304 . -1062) T) ((-304 . -664) T) ((-304 . -962) T) ((-304 . -312) T) ((-304 . -1135) T) ((-304 . -833) T) ((-304 . -496) T) ((-304 . -146) T) ((-304 . -655) 51850) ((-304 . -583) 51802) ((-304 . -38) 51767) ((-304 . -392) T) ((-304 . -258) T) ((-304 . -82) 51698) ((-304 . -964) 51650) ((-304 . -969) 51602) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51556) ((-304 . -118) 51510) ((-304 . -951) 51494) ((-304 . -1188) 51478) ((-304 . -1199) 51462) ((-303 . -280) 51446) ((-303 . -190) 51425) ((-303 . -186) 51398) ((-303 . -189) 51377) ((-303 . -320) 51356) ((-303 . -1067) 51335) ((-303 . -299) 51314) ((-303 . -120) 51293) ((-303 . -556) 51230) ((-303 . -591) 51182) ((-303 . -589) 51119) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1130) T) ((-303 . -553) 51101) ((-303 . -1014) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -971) T) ((-303 . -1026) T) ((-303 . -1062) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -312) T) ((-303 . -1135) T) ((-303 . -833) T) ((-303 . -496) T) ((-303 . -146) T) ((-303 . -655) 51053) ((-303 . -583) 51005) ((-303 . -38) 50970) ((-303 . -392) T) ((-303 . -258) T) ((-303 . -82) 50901) ((-303 . -964) 50853) ((-303 . -969) 50805) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 50759) ((-303 . -118) 50713) ((-303 . -951) 50697) ((-303 . -1188) 50681) ((-303 . -1199) 50665) ((-302 . -280) 50649) ((-302 . -190) 50628) ((-302 . -186) 50601) ((-302 . -189) 50580) ((-302 . -320) 50559) ((-302 . -1067) 50538) ((-302 . -299) 50517) ((-302 . -120) 50496) ((-302 . -556) 50433) ((-302 . -591) 50385) ((-302 . -589) 50322) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1130) T) ((-302 . -553) 50304) ((-302 . -1014) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -971) T) ((-302 . -1026) T) ((-302 . -1062) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -312) T) ((-302 . -1135) T) ((-302 . -833) T) ((-302 . -496) T) ((-302 . -146) T) ((-302 . -655) 50256) ((-302 . -583) 50208) ((-302 . -38) 50173) ((-302 . -392) T) ((-302 . -258) T) ((-302 . -82) 50104) ((-302 . -964) 50056) ((-302 . -969) 50008) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 49962) ((-302 . -118) 49916) ((-302 . -951) 49900) ((-302 . -1188) 49884) ((-302 . -1199) 49868) ((-301 . -280) 49845) ((-301 . -190) T) ((-301 . -186) 49832) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1067) T) ((-301 . -299) T) ((-301 . -120) 49814) ((-301 . -556) 49744) ((-301 . -591) 49689) ((-301 . -589) 49619) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1130) T) ((-301 . -553) 49601) ((-301 . -1014) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -971) T) ((-301 . -1026) T) ((-301 . -1062) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -312) T) ((-301 . -1135) T) ((-301 . -833) T) ((-301 . -496) T) ((-301 . -146) T) ((-301 . -655) 49546) ((-301 . -583) 49491) ((-301 . -38) 49456) ((-301 . -392) T) ((-301 . -258) T) ((-301 . -82) 49373) ((-301 . -964) 49318) ((-301 . -969) 49263) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -951) 49240) ((-301 . -1188) 49217) ((-301 . -1199) 49194) ((-295 . -280) 49178) ((-295 . -190) 49157) ((-295 . -186) 49130) ((-295 . -189) 49109) ((-295 . -320) 49088) ((-295 . -1067) 49067) ((-295 . -299) 49046) ((-295 . -120) 49025) ((-295 . -556) 48962) ((-295 . -591) 48914) ((-295 . -589) 48851) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1130) T) ((-295 . -553) 48833) ((-295 . -1014) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -971) T) ((-295 . -1026) T) ((-295 . -1062) T) ((-295 . -664) T) ((-295 . -962) T) ((-295 . -312) T) ((-295 . -1135) T) ((-295 . -833) T) ((-295 . -496) T) ((-295 . -146) T) ((-295 . -655) 48785) ((-295 . -583) 48737) ((-295 . -38) 48702) ((-295 . -392) T) ((-295 . -258) T) ((-295 . -82) 48633) ((-295 . -964) 48585) ((-295 . -969) 48537) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48491) ((-295 . -118) 48445) ((-295 . -951) 48429) ((-295 . -1188) 48413) ((-295 . -1199) 48397) ((-294 . -280) 48381) ((-294 . -190) 48360) ((-294 . -186) 48333) ((-294 . -189) 48312) ((-294 . -320) 48291) ((-294 . -1067) 48270) ((-294 . -299) 48249) ((-294 . -120) 48228) ((-294 . -556) 48165) ((-294 . -591) 48117) ((-294 . -589) 48054) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1130) T) ((-294 . -553) 48036) ((-294 . -1014) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -971) T) ((-294 . -1026) T) ((-294 . -1062) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -312) T) ((-294 . -1135) T) ((-294 . -833) T) ((-294 . -496) T) ((-294 . -146) T) ((-294 . -655) 47988) ((-294 . -583) 47940) ((-294 . -38) 47905) ((-294 . -392) T) ((-294 . -258) T) ((-294 . -82) 47836) ((-294 . -964) 47788) ((-294 . -969) 47740) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 47694) ((-294 . -118) 47648) ((-294 . -951) 47632) ((-294 . -1188) 47616) ((-294 . -1199) 47600) ((-293 . -280) 47577) ((-293 . -190) T) ((-293 . -186) 47564) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1067) T) ((-293 . -299) T) ((-293 . -120) 47546) ((-293 . -556) 47476) ((-293 . -591) 47421) ((-293 . -589) 47351) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1130) T) ((-293 . -553) 47333) ((-293 . -1014) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -971) T) ((-293 . -1026) T) ((-293 . -1062) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -312) T) ((-293 . -1135) T) ((-293 . -833) T) ((-293 . -496) T) ((-293 . -146) T) ((-293 . -655) 47278) ((-293 . -583) 47223) ((-293 . -38) 47188) ((-293 . -392) T) ((-293 . -258) T) ((-293 . -82) 47105) ((-293 . -964) 47050) ((-293 . -969) 46995) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -951) 46972) ((-293 . -1188) 46949) ((-293 . -1199) 46926) ((-289 . -280) 46903) ((-289 . -190) T) ((-289 . -186) 46890) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1067) T) ((-289 . -299) T) ((-289 . -120) 46872) ((-289 . -556) 46802) ((-289 . -591) 46747) ((-289 . -589) 46677) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1130) T) ((-289 . -553) 46659) ((-289 . -1014) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -971) T) ((-289 . -1026) T) ((-289 . -1062) T) ((-289 . -664) T) ((-289 . -962) T) ((-289 . -312) T) ((-289 . -1135) T) ((-289 . -833) T) ((-289 . -496) T) ((-289 . -146) T) ((-289 . -655) 46604) ((-289 . -583) 46549) ((-289 . -38) 46514) ((-289 . -392) T) ((-289 . -258) T) ((-289 . -82) 46431) ((-289 . -964) 46376) ((-289 . -969) 46321) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -951) 46298) ((-289 . -1188) 46275) ((-289 . -1199) 46252) ((-283 . -286) 46221) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1130) T) ((-283 . -553) 46203) ((-283 . -1014) T) ((-283 . -23) T) ((-283 . -589) 46185) ((-283 . -21) T) ((-282 . -1014) T) ((-282 . -553) 46167) ((-282 . -1130) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -757) T) ((-281 . -553) 46149) ((-281 . -1014) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1130) T) ((-281 . -760) T) ((-278 . -19) 46133) ((-278 . -1036) 46117) ((-278 . -318) 46101) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1130) T) ((-278 . -72) 46035) ((-278 . -553) 45950) ((-278 . -260) 45888) ((-278 . -456) 45821) ((-278 . -1014) 45774) ((-278 . -429) 45758) ((-278 . -594) 45742) ((-278 . -243) 45719) ((-278 . -241) 45671) ((-278 . -539) 45648) ((-278 . -554) 45609) ((-278 . -124) 45593) ((-278 . -757) 45572) ((-278 . -760) 45551) ((-278 . -324) 45535) ((-278 . -237) 45519) ((-275 . -274) 45496) ((-275 . -556) 45480) ((-275 . -951) 45464) ((-275 . -23) T) ((-275 . -1014) T) ((-275 . -553) 45446) ((-275 . -1130) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -589) 45428) ((-273 . -23) T) ((-273 . -1014) T) ((-273 . -553) 45410) ((-273 . -1130) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -655) 45392) ((-273 . -583) 45374) ((-273 . -591) 45356) ((-273 . -969) 45338) ((-273 . -964) 45320) ((-273 . -82) 45295) ((-273 . -274) 45272) ((-273 . -556) 45256) ((-273 . -951) 45240) ((-273 . -757) 45219) ((-273 . -760) 45198) ((-270 . -1163) 45182) ((-270 . -190) 45134) ((-270 . -186) 45080) ((-270 . -189) 45032) ((-270 . -241) 44990) ((-270 . -810) 44896) ((-270 . -807) 44800) ((-270 . -812) 44706) ((-270 . -887) 44669) ((-270 . -38) 44516) ((-270 . -82) 44336) ((-270 . -964) 44177) ((-270 . -969) 44018) ((-270 . -589) 43903) ((-270 . -591) 43803) ((-270 . -583) 43650) ((-270 . -655) 43497) ((-270 . -556) 43329) ((-270 . -118) 43308) ((-270 . -120) 43287) ((-270 . -47) 43257) ((-270 . -1159) 43227) ((-270 . -35) 43193) ((-270 . -66) 43159) ((-270 . -239) 43125) ((-270 . -433) 43091) ((-270 . -1119) 43057) ((-270 . -1116) 43023) ((-270 . -916) 42989) ((-270 . -201) 42968) ((-270 . -246) 42922) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1130) T) ((-270 . -553) 42904) ((-270 . -1014) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -962) T) ((-270 . -664) T) ((-270 . -1062) T) ((-270 . -1026) T) ((-270 . -971) T) ((-270 . -258) 42883) ((-270 . -392) 42862) ((-270 . -146) 42796) ((-270 . -496) 42750) ((-270 . -833) 42729) ((-270 . -1135) 42708) ((-270 . -312) 42687) ((-270 . -717) T) ((-270 . -757) T) ((-270 . -760) T) ((-270 . -719) T) ((-265 . -364) 42671) ((-265 . -556) 42246) ((-265 . -951) 41917) ((-265 . -554) 41778) ((-265 . -795) 41762) ((-265 . -812) 41729) ((-265 . -807) 41694) ((-265 . -810) 41661) ((-265 . -413) 41640) ((-265 . -355) 41624) ((-265 . -797) 41549) ((-265 . -343) 41533) ((-265 . -581) 41441) ((-265 . -591) 41179) ((-265 . -329) 41149) ((-265 . -201) 41128) ((-265 . -82) 41017) ((-265 . -964) 40927) ((-265 . -969) 40837) ((-265 . -246) 40816) ((-265 . -655) 40726) ((-265 . -583) 40636) ((-265 . -589) 40303) ((-265 . -38) 40213) ((-265 . -258) 40192) ((-265 . -392) 40171) ((-265 . -146) 40150) ((-265 . -496) 40129) ((-265 . -833) 40108) ((-265 . -1135) 40087) ((-265 . -312) 40066) ((-265 . -260) 40053) ((-265 . -456) 40019) ((-265 . -254) T) ((-265 . -120) 39998) ((-265 . -118) 39977) ((-265 . -962) 39871) ((-265 . -664) 39724) ((-265 . -1062) 39618) ((-265 . -1026) 39471) ((-265 . -971) 39365) ((-265 . -104) 39240) ((-265 . -25) 39096) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1130) T) ((-265 . -553) 39078) ((-265 . -1014) T) ((-265 . -23) 38934) ((-265 . -21) 38809) ((-265 . -29) 38779) ((-265 . -916) 38758) ((-265 . -27) 38737) ((-265 . -1116) 38716) ((-265 . -1119) 38695) ((-265 . -433) 38674) ((-265 . -239) 38653) ((-265 . -66) 38632) ((-265 . -35) 38611) ((-265 . -133) 38590) ((-265 . -116) 38569) ((-265 . -570) 38548) ((-265 . -872) 38527) ((-265 . -1054) 38506) ((-264 . -905) 38467) ((-264 . -1067) NIL) ((-264 . -951) 38397) ((-264 . -556) 38280) ((-264 . -554) NIL) ((-264 . -934) NIL) ((-264 . -822) NIL) ((-264 . -795) 38241) ((-264 . -756) NIL) ((-264 . -722) NIL) ((-264 . -719) NIL) ((-264 . -760) NIL) ((-264 . -757) NIL) ((-264 . -717) NIL) ((-264 . -715) NIL) ((-264 . -741) NIL) ((-264 . -797) NIL) ((-264 . -343) 38202) ((-264 . -581) 38163) ((-264 . -591) 38092) ((-264 . -329) 38053) ((-264 . -241) 37919) ((-264 . -260) 37815) ((-264 . -456) 37566) ((-264 . -288) 37527) ((-264 . -201) T) ((-264 . -82) 37412) ((-264 . -964) 37341) ((-264 . -969) 37270) ((-264 . -246) T) ((-264 . -655) 37199) ((-264 . -583) 37128) ((-264 . -589) 37042) ((-264 . -38) 36971) ((-264 . -258) T) ((-264 . -392) T) ((-264 . -146) T) ((-264 . -496) T) ((-264 . -833) T) ((-264 . -1135) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36932) ((-264 . -807) NIL) ((-264 . -812) NIL) ((-264 . -810) NIL) ((-264 . -184) 36893) ((-264 . -120) 36849) ((-264 . -118) 36805) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1130) T) ((-264 . -553) 36787) ((-264 . -1014) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -962) T) ((-264 . -664) T) ((-264 . -1062) T) ((-264 . -1026) T) ((-264 . -971) T) ((-263 . -996) T) ((-263 . -430) 36768) ((-263 . -553) 36734) ((-263 . -556) 36715) ((-263 . -1014) T) ((-263 . -1130) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1014) T) ((-262 . -553) 36697) ((-262 . -1130) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1108) 36676) ((-251 . -183) 36624) ((-251 . -76) 36572) ((-251 . -1036) 36507) ((-251 . -124) 36455) ((-251 . -554) NIL) ((-251 . -193) 36403) ((-251 . -539) 36382) ((-251 . -260) 36180) ((-251 . -456) 35932) ((-251 . -429) 35867) ((-251 . -241) 35846) ((-251 . -243) 35825) ((-251 . -550) 35804) ((-251 . -1014) T) ((-251 . -553) 35786) ((-251 . -72) T) ((-251 . -1130) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 35734) ((-249 . -1130) T) ((-249 . -13) T) ((-249 . -456) 35683) ((-249 . -1014) 35469) ((-249 . -553) 35215) ((-249 . -72) 35001) ((-249 . -25) 34869) ((-249 . -21) 34756) ((-249 . -589) 34503) ((-249 . -23) 34390) ((-249 . -104) 34277) ((-249 . -1026) 34162) ((-249 . -664) 34068) ((-249 . -413) 34047) ((-249 . -962) 33993) ((-249 . -1062) 33939) ((-249 . -971) 33885) ((-249 . -591) 33753) ((-249 . -556) 33688) ((-249 . -82) 33608) ((-249 . -964) 33533) ((-249 . -969) 33458) ((-249 . -655) 33403) ((-249 . -583) 33348) ((-249 . -810) 33307) ((-249 . -807) 33264) ((-249 . -812) 33223) ((-249 . -1188) 33193) ((-247 . -553) 33175) ((-244 . -258) T) ((-244 . -392) T) ((-244 . -38) 33162) ((-244 . -556) 33134) ((-244 . -971) T) ((-244 . -1026) T) ((-244 . -1062) T) ((-244 . -664) T) ((-244 . -962) T) ((-244 . -82) 33119) ((-244 . -964) 33106) ((-244 . -969) 33093) ((-244 . -21) T) ((-244 . -589) 33065) ((-244 . -23) T) ((-244 . -1014) T) ((-244 . -553) 33047) ((-244 . -1130) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -591) 33034) ((-244 . -583) 33021) ((-244 . -655) 33008) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -496) T) ((-244 . -833) T) ((-244 . -241) 32987) ((-235 . -553) 32969) ((-234 . -553) 32951) ((-229 . -757) T) ((-229 . -553) 32933) ((-229 . -1014) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1130) T) ((-229 . -760) T) ((-226 . -213) 32895) ((-226 . -556) 32655) ((-226 . -951) 32501) ((-226 . -554) 32249) ((-226 . -277) 32221) ((-226 . -355) 32205) ((-226 . -38) 32057) ((-226 . -82) 31882) ((-226 . -964) 31728) ((-226 . -969) 31574) ((-226 . -589) 31484) ((-226 . -591) 31373) ((-226 . -583) 31225) ((-226 . -655) 31077) ((-226 . -118) 31056) ((-226 . -120) 31035) ((-226 . -146) 30949) ((-226 . -496) 30883) ((-226 . -246) 30817) ((-226 . -47) 30789) ((-226 . -329) 30773) ((-226 . -581) 30721) ((-226 . -392) 30675) ((-226 . -456) 30566) ((-226 . -810) 30512) ((-226 . -807) 30421) ((-226 . -812) 30334) ((-226 . -797) 30193) ((-226 . -822) 30172) ((-226 . -1135) 30151) ((-226 . -862) 30118) ((-226 . -260) 30105) ((-226 . -190) 30084) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -553) 30066) ((-226 . -1014) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -971) T) ((-226 . -1026) T) ((-226 . -1062) T) ((-226 . -664) T) ((-226 . -962) T) ((-226 . -186) 30014) ((-226 . -13) T) ((-226 . -1130) T) ((-226 . -189) 29968) ((-226 . -225) 29952) ((-226 . -184) 29936) ((-221 . -1014) T) ((-221 . -553) 29918) ((-221 . -1130) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29897) ((-211 . -1188) 29867) ((-211 . -722) 29846) ((-211 . -719) 29825) ((-211 . -760) 29779) ((-211 . -757) 29733) ((-211 . -717) 29712) ((-211 . -718) 29691) ((-211 . -655) 29636) ((-211 . -583) 29561) ((-211 . -243) 29538) ((-211 . -241) 29515) ((-211 . -539) 29492) ((-211 . -951) 29321) ((-211 . -556) 29125) ((-211 . -355) 29094) ((-211 . -581) 29002) ((-211 . -591) 28828) ((-211 . -329) 28798) ((-211 . -429) 28782) ((-211 . -456) 28715) ((-211 . -260) 28653) ((-211 . -34) T) ((-211 . -318) 28637) ((-211 . -320) 28616) ((-211 . -190) 28569) ((-211 . -589) 28422) ((-211 . -971) 28401) ((-211 . -1026) 28380) ((-211 . -1062) 28359) ((-211 . -664) 28338) ((-211 . -962) 28317) ((-211 . -186) 28213) ((-211 . -189) 28115) ((-211 . -225) 28085) ((-211 . -807) 27957) ((-211 . -812) 27831) ((-211 . -810) 27764) ((-211 . -184) 27734) ((-211 . -553) 27695) ((-211 . -969) 27620) ((-211 . -964) 27525) ((-211 . -82) 27445) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1130) T) ((-211 . -1014) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27424) ((-210 . -1188) 27394) ((-210 . -722) 27373) ((-210 . -719) 27352) ((-210 . -760) 27306) ((-210 . -757) 27260) ((-210 . -717) 27239) ((-210 . -718) 27218) ((-210 . -655) 27163) ((-210 . -583) 27088) ((-210 . -243) 27065) ((-210 . -241) 27042) ((-210 . -539) 27019) ((-210 . -951) 26848) ((-210 . -556) 26652) ((-210 . -355) 26621) ((-210 . -581) 26529) ((-210 . -591) 26342) ((-210 . -329) 26312) ((-210 . -429) 26296) ((-210 . -456) 26229) ((-210 . -260) 26167) ((-210 . -34) T) ((-210 . -318) 26151) ((-210 . -320) 26130) ((-210 . -190) 26083) ((-210 . -589) 25923) ((-210 . -971) 25902) ((-210 . -1026) 25881) ((-210 . -1062) 25860) ((-210 . -664) 25839) ((-210 . -962) 25818) ((-210 . -186) 25714) ((-210 . -189) 25616) ((-210 . -225) 25586) ((-210 . -807) 25458) ((-210 . -812) 25332) ((-210 . -810) 25265) ((-210 . -184) 25235) ((-210 . -553) 25196) ((-210 . -969) 25121) ((-210 . -964) 25026) ((-210 . -82) 24946) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1130) T) ((-210 . -1014) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1014) T) ((-209 . -553) 24928) ((-209 . -1130) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24902) ((-208 . -160) T) ((-208 . -1014) T) ((-208 . -553) 24869) ((-208 . -1130) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -748) 24851) ((-207 . -1014) T) ((-207 . -553) 24833) ((-207 . -1130) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -862) 24778) ((-206 . -556) 24570) ((-206 . -951) 24448) ((-206 . -1135) 24427) ((-206 . -822) 24406) ((-206 . -797) NIL) ((-206 . -812) 24383) ((-206 . -807) 24358) ((-206 . -810) 24335) ((-206 . -456) 24273) ((-206 . -392) 24227) ((-206 . -581) 24175) ((-206 . -591) 24064) ((-206 . -329) 24048) ((-206 . -47) 24005) ((-206 . -38) 23857) ((-206 . -583) 23709) ((-206 . -655) 23561) ((-206 . -246) 23495) ((-206 . -496) 23429) ((-206 . -82) 23254) ((-206 . -964) 23100) ((-206 . -969) 22946) ((-206 . -146) 22860) ((-206 . -120) 22839) ((-206 . -118) 22818) ((-206 . -589) 22728) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1130) T) ((-206 . -553) 22710) ((-206 . -1014) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -962) T) ((-206 . -664) T) ((-206 . -1062) T) ((-206 . -1026) T) ((-206 . -971) T) ((-206 . -355) 22694) ((-206 . -277) 22651) ((-206 . -260) 22638) ((-206 . -554) 22499) ((-203 . -609) 22483) ((-203 . -1169) 22467) ((-203 . -924) 22451) ((-203 . -1065) 22435) ((-203 . -318) 22419) ((-203 . -757) 22398) ((-203 . -760) 22377) ((-203 . -324) 22361) ((-203 . -594) 22345) ((-203 . -243) 22322) ((-203 . -241) 22274) ((-203 . -539) 22251) ((-203 . -554) 22212) ((-203 . -429) 22196) ((-203 . -1014) 22149) ((-203 . -456) 22082) ((-203 . -260) 22020) ((-203 . -553) 21915) ((-203 . -72) 21849) ((-203 . -1130) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21833) ((-203 . -1036) 21817) ((-203 . -237) 21801) ((-203 . -430) 21778) ((-203 . -556) 21755) ((-197 . -196) 21734) ((-197 . -1188) 21704) ((-197 . -722) 21683) ((-197 . -719) 21662) ((-197 . -760) 21616) ((-197 . -757) 21570) ((-197 . -717) 21549) ((-197 . -718) 21528) ((-197 . -655) 21473) ((-197 . -583) 21398) ((-197 . -243) 21375) ((-197 . -241) 21352) ((-197 . -539) 21329) ((-197 . -951) 21158) ((-197 . -556) 20962) ((-197 . -355) 20931) ((-197 . -581) 20839) ((-197 . -591) 20678) ((-197 . -329) 20648) ((-197 . -429) 20632) ((-197 . -456) 20565) ((-197 . -260) 20503) ((-197 . -34) T) ((-197 . -318) 20487) ((-197 . -320) 20466) ((-197 . -190) 20419) ((-197 . -589) 20207) ((-197 . -971) 20186) ((-197 . -1026) 20165) ((-197 . -1062) 20144) ((-197 . -664) 20123) ((-197 . -962) 20102) ((-197 . -186) 19998) ((-197 . -189) 19900) ((-197 . -225) 19870) ((-197 . -807) 19742) ((-197 . -812) 19616) ((-197 . -810) 19549) ((-197 . -184) 19519) ((-197 . -553) 19216) ((-197 . -969) 19141) ((-197 . -964) 19046) ((-197 . -82) 18966) ((-197 . -104) 18841) ((-197 . -25) 18678) ((-197 . -72) 18415) ((-197 . -13) T) ((-197 . -1130) T) ((-197 . -1014) 18171) ((-197 . -23) 18027) ((-197 . -21) 17942) ((-181 . -628) 17900) ((-181 . -318) 17884) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1130) T) ((-181 . -72) 17838) ((-181 . -553) 17773) ((-181 . -260) 17711) ((-181 . -456) 17644) ((-181 . -1014) 17622) ((-181 . -429) 17606) ((-181 . -1036) 17590) ((-181 . -57) 17548) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -556) 17498) ((-179 . -591) 17463) ((-179 . -589) 17413) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1130) T) ((-179 . -553) 17395) ((-179 . -1014) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -971) T) ((-179 . -1026) T) ((-179 . -1062) T) ((-179 . -664) T) ((-179 . -962) T) ((-179 . -554) 17325) ((-179 . -312) T) ((-179 . -1135) T) ((-179 . -833) T) ((-179 . -496) T) ((-179 . -146) T) ((-179 . -655) 17290) ((-179 . -583) 17255) ((-179 . -38) 17220) ((-179 . -392) T) ((-179 . -258) T) ((-179 . -82) 17169) ((-179 . -964) 17134) ((-179 . -969) 17099) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -756) T) ((-179 . -722) T) ((-179 . -719) T) ((-179 . -760) T) ((-179 . -757) T) ((-179 . -717) T) ((-179 . -715) T) ((-179 . -797) 17081) ((-179 . -916) T) ((-179 . -934) T) ((-179 . -951) 17041) ((-179 . -974) T) ((-179 . -190) T) ((-179 . -186) 17028) ((-179 . -189) T) ((-179 . -1116) T) ((-179 . -1119) T) ((-179 . -433) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -561) 17005) ((-177 . -556) 16967) ((-177 . -591) 16934) ((-177 . -589) 16886) ((-177 . -971) T) ((-177 . -1026) T) ((-177 . -1062) T) ((-177 . -664) T) ((-177 . -962) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1014) T) ((-177 . -553) 16868) ((-177 . -1130) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -951) 16845) ((-176 . -214) 16829) ((-176 . -1035) 16813) ((-176 . -76) 16797) ((-176 . -429) 16781) ((-176 . -1014) 16759) ((-176 . -456) 16692) ((-176 . -260) 16630) ((-176 . -553) 16565) ((-176 . -72) 16519) ((-176 . -1130) T) ((-176 . -13) T) ((-176 . -34) T) ((-176 . -1036) 16503) ((-176 . -318) 16487) ((-176 . -909) 16471) ((-172 . -996) T) ((-172 . -430) 16452) ((-172 . -553) 16418) ((-172 . -556) 16399) ((-172 . -1014) T) ((-172 . -1130) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -905) 16381) ((-171 . -1067) T) ((-171 . -556) 16331) ((-171 . -951) 16291) ((-171 . -554) 16221) ((-171 . -934) T) ((-171 . -822) NIL) ((-171 . -795) 16203) ((-171 . -756) T) ((-171 . -722) T) ((-171 . -719) T) ((-171 . -760) T) ((-171 . -757) T) ((-171 . -717) T) ((-171 . -715) T) ((-171 . -741) T) ((-171 . -797) 16185) ((-171 . -343) 16167) ((-171 . -581) 16149) ((-171 . -329) 16131) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -456) NIL) ((-171 . -288) 16113) ((-171 . -201) T) ((-171 . -82) 16040) ((-171 . -964) 15990) ((-171 . -969) 15940) ((-171 . -246) T) ((-171 . -655) 15890) ((-171 . -583) 15840) ((-171 . -591) 15790) ((-171 . -589) 15740) ((-171 . -38) 15690) ((-171 . -258) T) ((-171 . -392) T) ((-171 . -146) T) ((-171 . -496) T) ((-171 . -833) T) ((-171 . -1135) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15677) ((-171 . -189) T) ((-171 . -225) 15659) ((-171 . -807) NIL) ((-171 . -812) NIL) ((-171 . -810) NIL) ((-171 . -184) 15641) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1130) T) ((-171 . -553) 15583) ((-171 . -1014) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -962) T) ((-171 . -664) T) ((-171 . -1062) T) ((-171 . -1026) T) ((-171 . -971) T) ((-168 . -753) T) ((-168 . -760) T) ((-168 . -757) T) ((-168 . -1014) T) ((-168 . -553) 15565) ((-168 . -1130) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1014) T) ((-167 . -553) 15547) ((-167 . -1130) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -556) 15524) ((-166 . -1014) T) ((-166 . -553) 15506) ((-166 . -1130) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1014) T) ((-161 . -553) 15488) ((-161 . -1130) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1014) T) ((-158 . -553) 15470) ((-158 . -1130) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1014) T) ((-157 . -553) 15452) ((-157 . -1130) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -748) 15434) ((-154 . -996) T) ((-154 . -430) 15415) ((-154 . -553) 15381) ((-154 . -556) 15362) ((-154 . -1014) T) ((-154 . -1130) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -553) 15344) ((-148 . -38) 15276) ((-148 . -556) 15193) ((-148 . -591) 15125) ((-148 . -589) 15042) ((-148 . -971) T) ((-148 . -1026) T) ((-148 . -1062) T) ((-148 . -664) T) ((-148 . -962) T) ((-148 . -82) 14941) ((-148 . -964) 14873) ((-148 . -969) 14805) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1014) T) ((-148 . -553) 14787) ((-148 . -1130) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -583) 14719) ((-148 . -655) 14651) ((-148 . -312) T) ((-148 . -1135) T) ((-148 . -833) T) ((-148 . -496) T) ((-148 . -146) T) ((-148 . -392) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1014) T) ((-145 . -553) 14633) ((-145 . -1130) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14617) ((-142 . -35) 14595) ((-142 . -66) 14573) ((-142 . -239) 14551) ((-142 . -433) 14529) ((-142 . -1119) 14507) ((-142 . -1116) 14485) ((-142 . -916) 14437) ((-142 . -822) 14390) ((-142 . -554) 14158) ((-142 . -795) 14142) ((-142 . -320) 14096) ((-142 . -299) 14075) ((-142 . -1067) 14054) ((-142 . -345) 14033) ((-142 . -353) 14004) ((-142 . -38) 13838) ((-142 . -82) 13730) ((-142 . -964) 13643) ((-142 . -969) 13556) ((-142 . -583) 13390) ((-142 . -655) 13224) ((-142 . -322) 13195) ((-142 . -662) 13166) ((-142 . -951) 13064) ((-142 . -556) 12849) ((-142 . -355) 12833) ((-142 . -797) 12758) ((-142 . -343) 12742) ((-142 . -581) 12690) ((-142 . -591) 12567) ((-142 . -589) 12465) ((-142 . -329) 12449) ((-142 . -241) 12407) ((-142 . -260) 12372) ((-142 . -456) 12284) ((-142 . -288) 12268) ((-142 . -201) 12222) ((-142 . -1135) 12130) ((-142 . -312) 12084) ((-142 . -833) 12018) ((-142 . -496) 11932) ((-142 . -246) 11846) ((-142 . -392) 11780) ((-142 . -258) 11714) ((-142 . -190) 11668) ((-142 . -186) 11596) ((-142 . -189) 11530) ((-142 . -225) 11514) ((-142 . -807) 11438) ((-142 . -812) 11364) ((-142 . -810) 11323) ((-142 . -184) 11307) ((-142 . -146) T) ((-142 . -120) 11286) ((-142 . -962) T) ((-142 . -664) T) ((-142 . -1062) T) ((-142 . -1026) T) ((-142 . -971) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1014) T) ((-142 . -553) 11268) ((-142 . -1130) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11222) ((-135 . -996) T) ((-135 . -430) 11203) ((-135 . -553) 11169) ((-135 . -556) 11150) ((-135 . -1014) T) ((-135 . -1130) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1014) T) ((-134 . -553) 11132) ((-134 . -1130) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1130) T) ((-130 . -553) 11114) ((-130 . -1014) T) ((-129 . -996) T) ((-129 . -430) 11095) ((-129 . -553) 11061) ((-129 . -556) 11042) ((-129 . -1014) T) ((-129 . -1130) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -996) T) ((-127 . -430) 11023) ((-127 . -553) 10989) ((-127 . -556) 10970) ((-127 . -1014) T) ((-127 . -1130) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -962) T) ((-125 . -664) T) ((-125 . -1062) T) ((-125 . -1026) T) ((-125 . -971) T) ((-125 . -21) T) ((-125 . -589) 10929) ((-125 . -23) T) ((-125 . -1014) T) ((-125 . -553) 10911) ((-125 . -1130) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -591) 10885) ((-125 . -556) 10854) ((-125 . -38) 10838) ((-125 . -82) 10817) ((-125 . -964) 10801) ((-125 . -969) 10785) ((-125 . -583) 10769) ((-125 . -655) 10753) ((-125 . -1188) 10737) ((-117 . -753) T) ((-117 . -760) T) ((-117 . -757) T) ((-117 . -1014) T) ((-117 . -553) 10719) ((-117 . -1130) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1014) T) ((-114 . -553) 10701) ((-114 . -1130) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -554) 10660) ((-114 . -369) 10642) ((-114 . -1012) 10624) ((-114 . -318) 10606) ((-114 . -320) T) ((-114 . -193) 10588) ((-114 . -124) 10570) ((-114 . -1036) 10552) ((-114 . -34) T) ((-114 . -260) NIL) ((-114 . -456) NIL) ((-114 . -429) 10534) ((-114 . -76) 10516) ((-114 . -183) 10498) ((-113 . -553) 10480) ((-112 . -160) T) ((-112 . -1014) T) ((-112 . -553) 10447) ((-112 . -1130) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -748) 10429) ((-111 . -996) T) ((-111 . -430) 10410) ((-111 . -553) 10376) ((-111 . -556) 10357) ((-111 . -1014) T) ((-111 . -1130) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -996) T) ((-110 . -430) 10338) ((-110 . -553) 10304) ((-110 . -556) 10285) ((-110 . -1014) T) ((-110 . -1130) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -405) 10262) ((-108 . -556) 10158) ((-108 . -951) 10142) ((-108 . -1014) T) ((-108 . -553) 10124) ((-108 . -1130) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -410) 10079) ((-108 . -241) 10056) ((-107 . -757) T) ((-107 . -553) 10038) ((-107 . -1014) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1130) T) ((-107 . -760) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -664) T) ((-107 . -1026) T) ((-107 . -951) 10020) ((-107 . -556) 10002) ((-106 . -996) T) ((-106 . -430) 9983) ((-106 . -553) 9949) ((-106 . -556) 9930) ((-106 . -1014) T) ((-106 . -1130) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1014) T) ((-103 . -553) 9912) ((-103 . -1130) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9894) ((-102 . -1036) 9876) ((-102 . -318) 9858) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1130) T) ((-102 . -72) T) ((-102 . -553) 9802) ((-102 . -260) NIL) ((-102 . -456) NIL) ((-102 . -1014) T) ((-102 . -429) 9784) ((-102 . -594) 9766) ((-102 . -243) 9741) ((-102 . -241) 9691) ((-102 . -539) 9666) ((-102 . -554) NIL) ((-102 . -124) 9648) ((-102 . -757) T) ((-102 . -760) T) ((-102 . -324) 9630) ((-101 . -753) T) ((-101 . -760) T) ((-101 . -757) T) ((-101 . -1014) T) ((-101 . -553) 9612) ((-101 . -1130) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -605) T) ((-100 . -98) 9596) ((-100 . -1036) 9580) ((-100 . -318) 9564) ((-100 . -924) 9548) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1130) T) ((-100 . -72) 9502) ((-100 . -553) 9437) ((-100 . -260) 9375) ((-100 . -456) 9308) ((-100 . -1014) 9286) ((-100 . -429) 9270) ((-100 . -92) 9254) ((-99 . -98) 9238) ((-99 . -1036) 9222) ((-99 . -318) 9206) ((-99 . -924) 9190) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1130) T) ((-99 . -72) 9144) ((-99 . -553) 9079) ((-99 . -260) 9017) ((-99 . -456) 8950) ((-99 . -1014) 8928) ((-99 . -429) 8912) ((-99 . -92) 8896) ((-94 . -98) 8880) ((-94 . -1036) 8864) ((-94 . -318) 8848) ((-94 . -924) 8832) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1130) T) ((-94 . -72) 8786) ((-94 . -553) 8721) ((-94 . -260) 8659) ((-94 . -456) 8592) ((-94 . -1014) 8570) ((-94 . -429) 8554) ((-94 . -92) 8538) ((-90 . -905) 8516) ((-90 . -1067) NIL) ((-90 . -951) 8494) ((-90 . -556) 8425) ((-90 . -554) NIL) ((-90 . -934) NIL) ((-90 . -822) NIL) ((-90 . -795) 8403) ((-90 . -756) NIL) ((-90 . -722) NIL) ((-90 . -719) NIL) ((-90 . -760) NIL) ((-90 . -757) NIL) ((-90 . -717) NIL) ((-90 . -715) NIL) ((-90 . -741) NIL) ((-90 . -797) NIL) ((-90 . -343) 8381) ((-90 . -581) 8359) ((-90 . -591) 8305) ((-90 . -329) 8283) ((-90 . -241) 8217) ((-90 . -260) 8164) ((-90 . -456) 8034) ((-90 . -288) 8012) ((-90 . -201) T) ((-90 . -82) 7931) ((-90 . -964) 7877) ((-90 . -969) 7823) ((-90 . -246) T) ((-90 . -655) 7769) ((-90 . -583) 7715) ((-90 . -589) 7646) ((-90 . -38) 7592) ((-90 . -258) T) ((-90 . -392) T) ((-90 . -146) T) ((-90 . -496) T) ((-90 . -833) T) ((-90 . -1135) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7570) ((-90 . -807) NIL) ((-90 . -812) NIL) ((-90 . -810) NIL) ((-90 . -184) 7548) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1130) T) ((-90 . -553) 7530) ((-90 . -1014) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -962) T) ((-90 . -664) T) ((-90 . -1062) T) ((-90 . -1026) T) ((-90 . -971) T) ((-89 . -780) 7514) ((-89 . -833) T) ((-89 . -496) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -556) 7486) ((-89 . -655) 7473) ((-89 . -583) 7460) ((-89 . -969) 7447) ((-89 . -964) 7434) ((-89 . -82) 7419) ((-89 . -38) 7406) ((-89 . -392) T) ((-89 . -258) T) ((-89 . -962) T) ((-89 . -664) T) ((-89 . -1062) T) ((-89 . -1026) T) ((-89 . -971) T) ((-89 . -21) T) ((-89 . -589) 7378) ((-89 . -23) T) ((-89 . -1014) T) ((-89 . -553) 7360) ((-89 . -1130) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -591) 7347) ((-89 . -120) T) ((-86 . -757) T) ((-86 . -553) 7329) ((-86 . -1014) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1130) T) ((-86 . -760) T) ((-86 . -748) 7310) ((-85 . -753) T) ((-85 . -760) T) ((-85 . -757) T) ((-85 . -1014) T) ((-85 . -553) 7292) ((-85 . -1130) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -881) T) ((-85 . -605) T) ((-85 . -84) T) ((-85 . -554) 7274) ((-81 . -96) T) ((-81 . -324) 7257) ((-81 . -760) T) ((-81 . -757) T) ((-81 . -124) 7240) ((-81 . -554) 7222) ((-81 . -241) 7173) ((-81 . -539) 7149) ((-81 . -243) 7125) ((-81 . -594) 7108) ((-81 . -429) 7091) ((-81 . -1014) T) ((-81 . -456) NIL) ((-81 . -260) NIL) ((-81 . -553) 7073) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7056) ((-81 . -1036) 7039) ((-81 . -19) 7022) ((-81 . -605) T) ((-81 . -13) T) ((-81 . -1130) T) ((-81 . -84) T) ((-79 . -80) 7006) ((-79 . -1130) T) ((-79 . |MappingCategory|) 6980) ((-79 . -1014) T) ((-79 . -553) 6962) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -553) 6944) ((-77 . -905) 6926) ((-77 . -1067) T) ((-77 . -556) 6876) ((-77 . -951) 6836) ((-77 . -554) 6766) ((-77 . -934) T) ((-77 . -822) NIL) ((-77 . -795) 6748) ((-77 . -756) T) ((-77 . -722) T) ((-77 . -719) T) ((-77 . -760) T) ((-77 . -757) T) ((-77 . -717) T) ((-77 . -715) T) ((-77 . -741) T) ((-77 . -797) 6730) ((-77 . -343) 6712) ((-77 . -581) 6694) ((-77 . -329) 6676) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -456) NIL) ((-77 . -288) 6658) ((-77 . -201) T) ((-77 . -82) 6585) ((-77 . -964) 6535) ((-77 . -969) 6485) ((-77 . -246) T) ((-77 . -655) 6435) ((-77 . -583) 6385) ((-77 . -591) 6335) ((-77 . -589) 6285) ((-77 . -38) 6235) ((-77 . -258) T) ((-77 . -392) T) ((-77 . -146) T) ((-77 . -496) T) ((-77 . -833) T) ((-77 . -1135) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6222) ((-77 . -189) T) ((-77 . -225) 6204) ((-77 . -807) NIL) ((-77 . -812) NIL) ((-77 . -810) NIL) ((-77 . -184) 6186) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1130) T) ((-77 . -553) 6129) ((-77 . -1014) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -962) T) ((-77 . -664) T) ((-77 . -1062) T) ((-77 . -1026) T) ((-77 . -971) T) ((-73 . -98) 6113) ((-73 . -1036) 6097) ((-73 . -318) 6081) ((-73 . -924) 6065) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1130) T) ((-73 . -72) 6019) ((-73 . -553) 5954) ((-73 . -260) 5892) ((-73 . -456) 5825) ((-73 . -1014) 5803) ((-73 . -429) 5787) ((-73 . -92) 5771) ((-69 . -413) T) ((-69 . -1026) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1130) T) ((-69 . -553) 5753) ((-69 . -1014) T) ((-69 . -664) T) ((-69 . -241) 5732) ((-67 . -996) T) ((-67 . -430) 5713) ((-67 . -553) 5679) ((-67 . -556) 5660) ((-67 . -1014) T) ((-67 . -1130) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1035) 5644) ((-62 . -318) 5628) ((-62 . -1036) 5612) ((-62 . -34) T) ((-62 . -13) T) ((-62 . -1130) T) ((-62 . -72) 5566) ((-62 . -553) 5501) ((-62 . -260) 5439) ((-62 . -456) 5372) ((-62 . -1014) 5350) ((-62 . -429) 5334) ((-62 . -76) 5318) ((-60 . -57) 5280) ((-60 . -1036) 5264) ((-60 . -429) 5248) ((-60 . -1014) 5226) ((-60 . -456) 5159) ((-60 . -260) 5097) ((-60 . -553) 5032) ((-60 . -72) 4986) ((-60 . -1130) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 4970) ((-58 . -19) 4954) ((-58 . -1036) 4938) ((-58 . -318) 4922) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1130) T) ((-58 . -72) 4856) ((-58 . -553) 4771) ((-58 . -260) 4709) ((-58 . -456) 4642) ((-58 . -1014) 4595) ((-58 . -429) 4579) ((-58 . -594) 4563) ((-58 . -243) 4540) ((-58 . -241) 4492) ((-58 . -539) 4469) ((-58 . -554) 4430) ((-58 . -124) 4414) ((-58 . -757) 4393) ((-58 . -760) 4372) ((-58 . -324) 4356) ((-55 . -1014) T) ((-55 . -553) 4338) ((-55 . -1130) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -951) 4320) ((-55 . -556) 4302) ((-51 . -1014) T) ((-51 . -553) 4284) ((-51 . -1130) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -561) 4268) ((-50 . -556) 4237) ((-50 . -591) 4211) ((-50 . -589) 4170) ((-50 . -971) T) ((-50 . -1026) T) ((-50 . -1062) T) ((-50 . -664) T) ((-50 . -962) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1014) T) ((-50 . -553) 4152) ((-50 . -1130) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -951) 4136) ((-49 . -1014) T) ((-49 . -553) 4118) ((-49 . -1130) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1130) T) ((-48 . -553) 4100) ((-48 . -1014) T) ((-48 . -556) 4001) ((-48 . -951) 3944) ((-48 . -456) 3910) ((-48 . -260) 3897) ((-48 . -27) T) ((-48 . -916) T) ((-48 . -201) T) ((-48 . -82) 3846) ((-48 . -964) 3811) ((-48 . -969) 3776) ((-48 . -246) T) ((-48 . -655) 3741) ((-48 . -583) 3706) ((-48 . -591) 3656) ((-48 . -589) 3606) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -962) T) ((-48 . -664) T) ((-48 . -1062) T) ((-48 . -1026) T) ((-48 . -971) T) ((-48 . -38) 3571) ((-48 . -258) T) ((-48 . -392) T) ((-48 . -146) T) ((-48 . -496) T) ((-48 . -833) T) ((-48 . -1135) T) ((-48 . -312) T) ((-48 . -581) 3531) ((-48 . -934) T) ((-48 . -554) 3476) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3463) ((-48 . -189) T) ((-45 . -36) 3442) ((-45 . -550) 3421) ((-45 . -1036) 3356) ((-45 . -243) 3279) ((-45 . -241) 3177) ((-45 . -429) 3112) ((-45 . -456) 2864) ((-45 . -260) 2662) ((-45 . -539) 2585) ((-45 . -193) 2533) ((-45 . -76) 2481) ((-45 . -183) 2429) ((-45 . -1108) 2408) ((-45 . -237) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1130) T) ((-45 . -72) T) ((-45 . -553) 2286) ((-45 . -1014) T) ((-45 . -554) NIL) ((-45 . -594) 2234) ((-45 . -324) 2182) ((-45 . -760) NIL) ((-45 . -757) NIL) ((-45 . -318) 2130) ((-45 . -1065) 2078) ((-45 . -924) 2026) ((-45 . -1169) 1974) ((-45 . -609) 1922) ((-44 . -361) 1906) ((-44 . -684) 1890) ((-44 . -658) T) ((-44 . -686) T) ((-44 . -82) 1869) ((-44 . -964) 1853) ((-44 . -969) 1837) ((-44 . -21) T) ((-44 . -589) 1780) ((-44 . -23) T) ((-44 . -1014) T) ((-44 . -553) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -591) 1720) ((-44 . -583) 1704) ((-44 . -655) 1688) ((-44 . -316) 1672) ((-44 . -1130) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -556) 1553) ((-40 . -971) T) ((-40 . -1026) T) ((-40 . -1062) T) ((-40 . -664) T) ((-40 . -962) T) ((-40 . -591) 1455) ((-40 . -589) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1130) T) ((-40 . -553) 1367) ((-40 . -1014) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -969) 1312) ((-40 . -964) 1257) ((-40 . -82) 1174) ((-40 . -554) 1158) ((-40 . -184) 1135) ((-40 . -810) 1087) ((-40 . -812) 999) ((-40 . -807) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1135) T) ((-40 . -833) T) ((-40 . -496) T) ((-40 . -655) 677) ((-40 . -583) 622) ((-40 . -38) 567) ((-40 . -392) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1067) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -581) 366) ((-40 . -355) 343) ((-40 . -951) 220) ((-40 . -662) 192) ((-31 . -996) T) ((-31 . -430) 173) ((-31 . -553) 139) ((-31 . -556) 120) ((-31 . -1014) T) ((-31 . -1130) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -867) T) ((-30 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1014) T) ((0 . -72) T) ((0 . -1130) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1014) T) ((-2 . -72) T) ((-2 . -1130) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1014) T) ((-3 . -72) T) ((-3 . -1130) T) ((-1 . -1014) T) ((-1 . -553) 30) ((-1 . -1130) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file +((((-486)) . T)) +(((-1211 . -146) T) ((-1211 . -557) 202579) ((-1211 . -972) T) ((-1211 . -1027) T) ((-1211 . -1063) T) ((-1211 . -665) T) ((-1211 . -963) T) ((-1211 . -592) 202566) ((-1211 . -590) 202538) ((-1211 . -104) T) ((-1211 . -25) T) ((-1211 . -72) T) ((-1211 . -13) T) ((-1211 . -1131) T) ((-1211 . -554) 202520) ((-1211 . -1015) T) ((-1211 . -23) T) ((-1211 . -21) T) ((-1211 . -970) 202507) ((-1211 . -965) 202494) ((-1211 . -82) 202479) ((-1211 . -320) T) ((-1211 . -555) 202461) ((-1211 . -1068) T) ((-1207 . -1015) T) ((-1207 . -554) 202428) ((-1207 . -1131) T) ((-1207 . -13) T) ((-1207 . -72) T) ((-1207 . -431) 202410) ((-1207 . -557) 202392) ((-1206 . -1204) 202371) ((-1206 . -952) 202348) ((-1206 . -557) 202297) ((-1206 . -963) T) ((-1206 . -665) T) ((-1206 . -1063) T) ((-1206 . -1027) T) ((-1206 . -972) T) ((-1206 . -21) T) ((-1206 . -590) 202256) ((-1206 . -23) T) ((-1206 . -1015) T) ((-1206 . -554) 202238) ((-1206 . -1131) T) ((-1206 . -13) T) ((-1206 . -72) T) ((-1206 . -25) T) ((-1206 . -104) T) ((-1206 . -592) 202212) ((-1206 . -1196) 202196) ((-1206 . -656) 202166) ((-1206 . -584) 202136) ((-1206 . -970) 202120) ((-1206 . -965) 202104) ((-1206 . -82) 202083) ((-1206 . -38) 202053) ((-1206 . -1201) 202032) ((-1205 . -963) T) ((-1205 . -665) T) ((-1205 . -1063) T) ((-1205 . -1027) T) ((-1205 . -972) T) ((-1205 . -21) T) ((-1205 . -590) 201991) ((-1205 . -23) T) ((-1205 . -1015) T) ((-1205 . -554) 201973) ((-1205 . -1131) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -592) 201947) ((-1205 . -557) 201903) ((-1205 . -1196) 201887) ((-1205 . -656) 201857) ((-1205 . -584) 201827) ((-1205 . -970) 201811) ((-1205 . -965) 201795) ((-1205 . -82) 201774) ((-1205 . -38) 201744) ((-1205 . -335) 201723) ((-1205 . -952) 201707) ((-1203 . -1204) 201683) ((-1203 . -952) 201657) ((-1203 . -557) 201603) ((-1203 . -963) T) ((-1203 . -665) T) ((-1203 . -1063) T) ((-1203 . -1027) T) ((-1203 . -972) T) ((-1203 . -21) T) ((-1203 . -590) 201562) ((-1203 . -23) T) ((-1203 . -1015) T) ((-1203 . -554) 201544) ((-1203 . -1131) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -592) 201518) ((-1203 . -1196) 201502) ((-1203 . -656) 201472) ((-1203 . -584) 201442) ((-1203 . -970) 201426) ((-1203 . -965) 201410) ((-1203 . -82) 201389) ((-1203 . -38) 201359) ((-1203 . -1201) 201335) ((-1202 . -1204) 201314) ((-1202 . -952) 201271) ((-1202 . -557) 201200) ((-1202 . -963) T) ((-1202 . -665) T) ((-1202 . -1063) T) ((-1202 . -1027) T) ((-1202 . -972) T) ((-1202 . -21) T) ((-1202 . -590) 201159) ((-1202 . -23) T) ((-1202 . -1015) T) ((-1202 . -554) 201141) ((-1202 . -1131) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -592) 201115) ((-1202 . -1196) 201099) ((-1202 . -656) 201069) ((-1202 . -584) 201039) ((-1202 . -970) 201023) ((-1202 . -965) 201007) ((-1202 . -82) 200986) ((-1202 . -38) 200956) ((-1202 . -1201) 200935) ((-1202 . -335) 200907) ((-1197 . -335) 200879) ((-1197 . -557) 200828) ((-1197 . -952) 200805) ((-1197 . -584) 200775) ((-1197 . -656) 200745) ((-1197 . -592) 200719) ((-1197 . -590) 200678) ((-1197 . -104) T) ((-1197 . -25) T) ((-1197 . -72) T) ((-1197 . -13) T) ((-1197 . -1131) T) ((-1197 . -554) 200660) ((-1197 . -1015) T) ((-1197 . -23) T) ((-1197 . -21) T) ((-1197 . -970) 200644) ((-1197 . -965) 200628) ((-1197 . -82) 200607) ((-1197 . -1204) 200586) ((-1197 . -963) T) ((-1197 . -665) T) ((-1197 . -1063) T) ((-1197 . -1027) T) ((-1197 . -972) T) ((-1197 . -1196) 200570) ((-1197 . -38) 200540) ((-1197 . -1201) 200519) ((-1195 . -1126) 200488) ((-1195 . -1037) 200472) ((-1195 . -554) 200434) ((-1195 . -124) 200418) ((-1195 . -34) T) ((-1195 . -13) T) ((-1195 . -1131) T) ((-1195 . -72) T) ((-1195 . -260) 200356) ((-1195 . -457) 200289) ((-1195 . -381) 200273) ((-1195 . -1015) T) ((-1195 . -430) 200257) ((-1195 . -555) 200218) ((-1195 . -318) 200202) ((-1195 . -891) 200171) ((-1194 . -963) T) ((-1194 . -665) T) ((-1194 . -1063) T) ((-1194 . -1027) T) ((-1194 . -972) T) ((-1194 . -21) T) ((-1194 . -590) 200116) ((-1194 . -23) T) ((-1194 . -1015) T) ((-1194 . -554) 200085) ((-1194 . -1131) T) ((-1194 . -13) T) ((-1194 . -72) T) ((-1194 . -25) T) ((-1194 . -104) T) ((-1194 . -592) 200045) ((-1194 . -557) 199987) ((-1194 . -431) 199971) ((-1194 . -38) 199941) ((-1194 . -82) 199906) ((-1194 . -965) 199876) ((-1194 . -970) 199846) ((-1194 . -584) 199816) ((-1194 . -656) 199786) ((-1193 . -997) T) ((-1193 . -431) 199767) ((-1193 . -554) 199733) ((-1193 . -557) 199714) ((-1193 . -1015) T) ((-1193 . -1131) T) ((-1193 . -13) T) ((-1193 . -72) T) ((-1193 . -64) T) ((-1192 . -997) T) ((-1192 . -431) 199695) ((-1192 . -554) 199661) ((-1192 . -557) 199642) ((-1192 . -1015) T) ((-1192 . -1131) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -64) T) ((-1187 . -554) 199624) ((-1185 . -1015) T) ((-1185 . -554) 199606) ((-1185 . -1131) T) ((-1185 . -13) T) ((-1185 . -72) T) ((-1184 . -1015) T) ((-1184 . -554) 199588) ((-1184 . -1131) T) ((-1184 . -13) T) ((-1184 . -72) T) ((-1181 . -1180) 199572) ((-1181 . -324) 199556) ((-1181 . -761) 199535) ((-1181 . -758) 199514) ((-1181 . -124) 199498) ((-1181 . -555) 199459) ((-1181 . -241) 199411) ((-1181 . -540) 199388) ((-1181 . -243) 199365) ((-1181 . -595) 199349) ((-1181 . -430) 199333) ((-1181 . -1015) 199286) ((-1181 . -381) 199270) ((-1181 . -457) 199203) ((-1181 . -260) 199141) ((-1181 . -554) 199056) ((-1181 . -72) 198990) ((-1181 . -1131) T) ((-1181 . -13) T) ((-1181 . -34) T) ((-1181 . -318) 198974) ((-1181 . -1037) 198958) ((-1181 . -19) 198942) ((-1178 . -1015) T) ((-1178 . -554) 198908) ((-1178 . -1131) T) ((-1178 . -13) T) ((-1178 . -72) T) ((-1171 . -1174) 198892) ((-1171 . -190) 198851) ((-1171 . -557) 198733) ((-1171 . -592) 198658) ((-1171 . -590) 198568) ((-1171 . -104) T) ((-1171 . -25) T) ((-1171 . -72) T) ((-1171 . -554) 198550) ((-1171 . -1015) T) ((-1171 . -23) T) ((-1171 . -21) T) ((-1171 . -972) T) ((-1171 . -1027) T) ((-1171 . -1063) T) ((-1171 . -665) T) ((-1171 . -963) T) ((-1171 . -186) 198503) ((-1171 . -13) T) ((-1171 . -1131) T) ((-1171 . -189) 198462) ((-1171 . -241) 198427) ((-1171 . -811) 198340) ((-1171 . -808) 198228) ((-1171 . -813) 198141) ((-1171 . -888) 198111) ((-1171 . -38) 198008) ((-1171 . -82) 197873) ((-1171 . -965) 197759) ((-1171 . -970) 197645) ((-1171 . -584) 197542) ((-1171 . -656) 197439) ((-1171 . -118) 197418) ((-1171 . -120) 197397) ((-1171 . -146) 197351) ((-1171 . -497) 197330) ((-1171 . -246) 197309) ((-1171 . -47) 197286) ((-1171 . -1160) 197263) ((-1171 . -35) 197229) ((-1171 . -66) 197195) ((-1171 . -239) 197161) ((-1171 . -434) 197127) ((-1171 . -1120) 197093) ((-1171 . -1117) 197059) ((-1171 . -917) 197025) ((-1168 . -277) 196969) ((-1168 . -952) 196935) ((-1168 . -355) 196901) ((-1168 . -38) 196758) ((-1168 . -557) 196632) ((-1168 . -592) 196521) ((-1168 . -590) 196395) ((-1168 . -972) T) ((-1168 . -1027) T) ((-1168 . -1063) T) ((-1168 . -665) T) ((-1168 . -963) T) ((-1168 . -82) 196245) ((-1168 . -965) 196134) ((-1168 . -970) 196023) ((-1168 . -21) T) ((-1168 . -23) T) ((-1168 . -1015) T) ((-1168 . -554) 196005) ((-1168 . -1131) T) ((-1168 . -13) T) ((-1168 . -72) T) ((-1168 . -25) T) ((-1168 . -104) T) ((-1168 . -584) 195862) ((-1168 . -656) 195719) ((-1168 . -118) 195680) ((-1168 . -120) 195641) ((-1168 . -146) T) ((-1168 . -497) T) ((-1168 . -246) T) ((-1168 . -47) 195585) ((-1167 . -1166) 195564) ((-1167 . -312) 195543) ((-1167 . -1136) 195522) ((-1167 . -834) 195501) ((-1167 . -497) 195455) ((-1167 . -146) 195389) ((-1167 . -557) 195208) ((-1167 . -656) 195055) ((-1167 . -584) 194902) ((-1167 . -38) 194749) ((-1167 . -393) 194728) ((-1167 . -258) 194707) ((-1167 . -592) 194607) ((-1167 . -590) 194492) ((-1167 . -972) T) ((-1167 . -1027) T) ((-1167 . -1063) T) ((-1167 . -665) T) ((-1167 . -963) T) ((-1167 . -82) 194312) ((-1167 . -965) 194153) ((-1167 . -970) 193994) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1015) T) ((-1167 . -554) 193976) ((-1167 . -1131) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -246) 193930) ((-1167 . -201) 193909) ((-1167 . -917) 193875) ((-1167 . -1117) 193841) ((-1167 . -1120) 193807) ((-1167 . -434) 193773) ((-1167 . -239) 193739) ((-1167 . -66) 193705) ((-1167 . -35) 193671) ((-1167 . -1160) 193641) ((-1167 . -47) 193611) ((-1167 . -120) 193590) ((-1167 . -118) 193569) ((-1167 . -888) 193532) ((-1167 . -813) 193438) ((-1167 . -808) 193342) ((-1167 . -811) 193248) ((-1167 . -241) 193206) ((-1167 . -189) 193158) ((-1167 . -186) 193104) ((-1167 . -190) 193056) ((-1167 . -1164) 193040) ((-1167 . -952) 193024) ((-1162 . -1166) 192985) ((-1162 . -312) 192964) ((-1162 . -1136) 192943) ((-1162 . -834) 192922) ((-1162 . -497) 192876) ((-1162 . -146) 192810) ((-1162 . -557) 192559) ((-1162 . -656) 192406) ((-1162 . -584) 192253) ((-1162 . -38) 192100) ((-1162 . -393) 192079) ((-1162 . -258) 192058) ((-1162 . -592) 191958) ((-1162 . -590) 191843) ((-1162 . -972) T) ((-1162 . -1027) T) ((-1162 . -1063) T) ((-1162 . -665) T) ((-1162 . -963) T) ((-1162 . -82) 191663) ((-1162 . -965) 191504) ((-1162 . -970) 191345) ((-1162 . -21) T) ((-1162 . -23) T) ((-1162 . -1015) T) ((-1162 . -554) 191327) ((-1162 . -1131) T) ((-1162 . -13) T) ((-1162 . -72) T) ((-1162 . -25) T) ((-1162 . -104) T) ((-1162 . -246) 191281) ((-1162 . -201) 191260) ((-1162 . -917) 191226) ((-1162 . -1117) 191192) ((-1162 . -1120) 191158) ((-1162 . -434) 191124) ((-1162 . -239) 191090) ((-1162 . -66) 191056) ((-1162 . -35) 191022) ((-1162 . -1160) 190992) ((-1162 . -47) 190962) ((-1162 . -120) 190941) ((-1162 . -118) 190920) ((-1162 . -888) 190883) ((-1162 . -813) 190789) ((-1162 . -808) 190670) ((-1162 . -811) 190576) ((-1162 . -241) 190534) ((-1162 . -189) 190486) ((-1162 . -186) 190432) ((-1162 . -190) 190384) ((-1162 . -1164) 190368) ((-1162 . -952) 190303) ((-1150 . -1157) 190287) ((-1150 . -1068) 190265) ((-1150 . -555) NIL) ((-1150 . -260) 190252) ((-1150 . -457) 190200) ((-1150 . -277) 190177) ((-1150 . -952) 190060) ((-1150 . -355) 190044) ((-1150 . -38) 189876) ((-1150 . -82) 189681) ((-1150 . -965) 189507) ((-1150 . -970) 189333) ((-1150 . -590) 189243) ((-1150 . -592) 189132) ((-1150 . -584) 188964) ((-1150 . -656) 188796) ((-1150 . -557) 188552) ((-1150 . -118) 188531) ((-1150 . -120) 188510) ((-1150 . -47) 188487) ((-1150 . -329) 188471) ((-1150 . -582) 188419) ((-1150 . -811) 188363) ((-1150 . -808) 188270) ((-1150 . -813) 188181) ((-1150 . -798) NIL) ((-1150 . -823) 188160) ((-1150 . -1136) 188139) ((-1150 . -863) 188109) ((-1150 . -834) 188088) ((-1150 . -497) 188002) ((-1150 . -246) 187916) ((-1150 . -146) 187810) ((-1150 . -393) 187744) ((-1150 . -258) 187723) ((-1150 . -241) 187650) ((-1150 . -190) T) ((-1150 . -104) T) ((-1150 . -25) T) ((-1150 . -72) T) ((-1150 . -554) 187632) ((-1150 . -1015) T) ((-1150 . -23) T) ((-1150 . -21) T) ((-1150 . -972) T) ((-1150 . -1027) T) ((-1150 . -1063) T) ((-1150 . -665) T) ((-1150 . -963) T) ((-1150 . -186) 187619) ((-1150 . -13) T) ((-1150 . -1131) T) ((-1150 . -189) T) ((-1150 . -225) 187603) ((-1150 . -184) 187587) ((-1148 . -1008) 187571) ((-1148 . -559) 187555) ((-1148 . -1015) 187533) ((-1148 . -554) 187500) ((-1148 . -1131) 187478) ((-1148 . -13) 187456) ((-1148 . -72) 187434) ((-1148 . -1009) 187391) ((-1146 . -1145) 187370) ((-1146 . -917) 187336) ((-1146 . -1117) 187302) ((-1146 . -1120) 187268) ((-1146 . -434) 187234) ((-1146 . -239) 187200) ((-1146 . -66) 187166) ((-1146 . -35) 187132) ((-1146 . -1160) 187109) ((-1146 . -47) 187086) ((-1146 . -557) 186841) ((-1146 . -656) 186661) ((-1146 . -584) 186481) ((-1146 . -592) 186292) ((-1146 . -590) 186150) ((-1146 . -970) 185964) ((-1146 . -965) 185778) ((-1146 . -82) 185566) ((-1146 . -38) 185386) ((-1146 . -888) 185356) ((-1146 . -241) 185256) ((-1146 . -1143) 185240) ((-1146 . -972) T) ((-1146 . -1027) T) ((-1146 . -1063) T) ((-1146 . -665) T) ((-1146 . -963) T) ((-1146 . -21) T) ((-1146 . -23) T) ((-1146 . -1015) T) ((-1146 . -554) 185222) ((-1146 . -1131) T) ((-1146 . -13) T) ((-1146 . -72) T) ((-1146 . -25) T) ((-1146 . -104) T) ((-1146 . -118) 185150) ((-1146 . -120) 185032) ((-1146 . -555) 184705) ((-1146 . -184) 184675) ((-1146 . -811) 184529) ((-1146 . -813) 184329) ((-1146 . -808) 184127) ((-1146 . -225) 184097) ((-1146 . -189) 183959) ((-1146 . -186) 183815) ((-1146 . -190) 183723) ((-1146 . -312) 183702) ((-1146 . -1136) 183681) ((-1146 . -834) 183660) ((-1146 . -497) 183614) ((-1146 . -146) 183548) ((-1146 . -393) 183527) ((-1146 . -258) 183506) ((-1146 . -246) 183460) ((-1146 . -201) 183439) ((-1146 . -288) 183409) ((-1146 . -457) 183269) ((-1146 . -260) 183208) ((-1146 . -329) 183178) ((-1146 . -582) 183086) ((-1146 . -343) 183056) ((-1146 . -798) 182929) ((-1146 . -742) 182882) ((-1146 . -716) 182835) ((-1146 . -718) 182788) ((-1146 . -758) 182690) ((-1146 . -761) 182592) ((-1146 . -720) 182545) ((-1146 . -723) 182498) ((-1146 . -757) 182451) ((-1146 . -796) 182421) ((-1146 . -823) 182374) ((-1146 . -935) 182327) ((-1146 . -952) 182116) ((-1146 . -1068) 182068) ((-1146 . -906) 182038) ((-1141 . -1145) 181999) ((-1141 . -917) 181965) ((-1141 . -1117) 181931) ((-1141 . -1120) 181897) ((-1141 . -434) 181863) ((-1141 . -239) 181829) ((-1141 . -66) 181795) ((-1141 . -35) 181761) ((-1141 . -1160) 181738) ((-1141 . -47) 181715) ((-1141 . -557) 181516) ((-1141 . -656) 181318) ((-1141 . -584) 181120) ((-1141 . -592) 180975) ((-1141 . -590) 180815) ((-1141 . -970) 180611) ((-1141 . -965) 180407) ((-1141 . -82) 180159) ((-1141 . -38) 179961) ((-1141 . -888) 179931) ((-1141 . -241) 179759) ((-1141 . -1143) 179743) ((-1141 . -972) T) ((-1141 . -1027) T) ((-1141 . -1063) T) ((-1141 . -665) T) ((-1141 . -963) T) ((-1141 . -21) T) ((-1141 . -23) T) ((-1141 . -1015) T) ((-1141 . -554) 179725) ((-1141 . -1131) T) ((-1141 . -13) T) ((-1141 . -72) T) ((-1141 . -25) T) ((-1141 . -104) T) ((-1141 . -118) 179635) ((-1141 . -120) 179545) ((-1141 . -555) NIL) ((-1141 . -184) 179497) ((-1141 . -811) 179333) ((-1141 . -813) 179097) ((-1141 . -808) 178836) ((-1141 . -225) 178788) ((-1141 . -189) 178614) ((-1141 . -186) 178434) ((-1141 . -190) 178324) ((-1141 . -312) 178303) ((-1141 . -1136) 178282) ((-1141 . -834) 178261) ((-1141 . -497) 178215) ((-1141 . -146) 178149) ((-1141 . -393) 178128) ((-1141 . -258) 178107) ((-1141 . -246) 178061) ((-1141 . -201) 178040) ((-1141 . -288) 177992) ((-1141 . -457) 177726) ((-1141 . -260) 177611) ((-1141 . -329) 177563) ((-1141 . -582) 177515) ((-1141 . -343) 177467) ((-1141 . -798) NIL) ((-1141 . -742) NIL) ((-1141 . -716) NIL) ((-1141 . -718) NIL) ((-1141 . -758) NIL) ((-1141 . -761) NIL) ((-1141 . -720) NIL) ((-1141 . -723) NIL) ((-1141 . -757) NIL) ((-1141 . -796) 177419) ((-1141 . -823) NIL) ((-1141 . -935) NIL) ((-1141 . -952) 177385) ((-1141 . -1068) NIL) ((-1141 . -906) 177337) ((-1140 . -754) T) ((-1140 . -761) T) ((-1140 . -758) T) ((-1140 . -1015) T) ((-1140 . -554) 177319) ((-1140 . -1131) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -320) T) ((-1140 . -606) T) ((-1139 . -754) T) ((-1139 . -761) T) ((-1139 . -758) T) ((-1139 . -1015) T) ((-1139 . -554) 177301) ((-1139 . -1131) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -320) T) ((-1139 . -606) T) ((-1138 . -754) T) ((-1138 . -761) T) ((-1138 . -758) T) ((-1138 . -1015) T) ((-1138 . -554) 177283) ((-1138 . -1131) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -606) T) ((-1137 . -754) T) ((-1137 . -761) T) ((-1137 . -758) T) ((-1137 . -1015) T) ((-1137 . -554) 177265) ((-1137 . -1131) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -606) T) ((-1132 . -997) T) ((-1132 . -431) 177246) ((-1132 . -554) 177212) ((-1132 . -557) 177193) ((-1132 . -1015) T) ((-1132 . -1131) T) ((-1132 . -13) T) ((-1132 . -72) T) ((-1132 . -64) T) ((-1129 . -431) 177170) ((-1129 . -554) 177111) ((-1129 . -557) 177088) ((-1129 . -1015) 177066) ((-1129 . -1131) 177044) ((-1129 . -13) 177022) ((-1129 . -72) 177000) ((-1124 . -681) 176976) ((-1124 . -35) 176942) ((-1124 . -66) 176908) ((-1124 . -239) 176874) ((-1124 . -434) 176840) ((-1124 . -1120) 176806) ((-1124 . -1117) 176772) ((-1124 . -917) 176738) ((-1124 . -47) 176707) ((-1124 . -38) 176604) ((-1124 . -584) 176501) ((-1124 . -656) 176398) ((-1124 . -557) 176280) ((-1124 . -246) 176259) ((-1124 . -497) 176238) ((-1124 . -82) 176103) ((-1124 . -965) 175989) ((-1124 . -970) 175875) ((-1124 . -146) 175829) ((-1124 . -120) 175808) ((-1124 . -118) 175787) ((-1124 . -592) 175712) ((-1124 . -590) 175622) ((-1124 . -888) 175583) ((-1124 . -813) 175564) ((-1124 . -1131) T) ((-1124 . -13) T) ((-1124 . -808) 175543) ((-1124 . -963) T) ((-1124 . -665) T) ((-1124 . -1063) T) ((-1124 . -1027) T) ((-1124 . -972) T) ((-1124 . -21) T) ((-1124 . -23) T) ((-1124 . -1015) T) ((-1124 . -554) 175525) ((-1124 . -72) T) ((-1124 . -25) T) ((-1124 . -104) T) ((-1124 . -811) 175506) ((-1124 . -457) 175473) ((-1124 . -260) 175460) ((-1118 . -925) 175444) ((-1118 . -34) T) ((-1118 . -13) T) ((-1118 . -1131) T) ((-1118 . -72) 175398) ((-1118 . -554) 175333) ((-1118 . -260) 175271) ((-1118 . -457) 175204) ((-1118 . -381) 175188) ((-1118 . -1015) 175166) ((-1118 . -430) 175150) ((-1118 . -318) 175134) ((-1118 . -1037) 175118) ((-1113 . -314) 175092) ((-1113 . -72) T) ((-1113 . -13) T) ((-1113 . -1131) T) ((-1113 . -554) 175074) ((-1113 . -1015) T) ((-1111 . -1015) T) ((-1111 . -554) 175056) ((-1111 . -1131) T) ((-1111 . -13) T) ((-1111 . -72) T) ((-1111 . -557) 175038) ((-1106 . -749) 175022) ((-1106 . -72) T) ((-1106 . -13) T) ((-1106 . -1131) T) ((-1106 . -554) 175004) ((-1106 . -1015) T) ((-1104 . -1109) 174983) ((-1104 . -183) 174931) ((-1104 . -76) 174879) ((-1104 . -1037) 174814) ((-1104 . -124) 174762) ((-1104 . -555) NIL) ((-1104 . -193) 174710) ((-1104 . -540) 174689) ((-1104 . -260) 174487) ((-1104 . -457) 174239) ((-1104 . -381) 174174) ((-1104 . -430) 174109) ((-1104 . -241) 174088) ((-1104 . -243) 174067) ((-1104 . -551) 174046) ((-1104 . -1015) T) ((-1104 . -554) 174028) ((-1104 . -72) T) ((-1104 . -1131) T) ((-1104 . -13) T) ((-1104 . -34) T) ((-1104 . -318) 173976) ((-1100 . -1015) T) ((-1100 . -554) 173958) ((-1100 . -1131) T) ((-1100 . -13) T) ((-1100 . -72) T) ((-1099 . -754) T) ((-1099 . -761) T) ((-1099 . -758) T) ((-1099 . -1015) T) ((-1099 . -554) 173940) ((-1099 . -1131) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1099 . -320) T) ((-1099 . -606) T) ((-1098 . -754) T) ((-1098 . -761) T) ((-1098 . -758) T) ((-1098 . -1015) T) ((-1098 . -554) 173922) ((-1098 . -1131) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1098 . -320) T) ((-1097 . -1177) T) ((-1097 . -1015) T) ((-1097 . -554) 173889) ((-1097 . -1131) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -952) 173825) ((-1097 . -557) 173761) ((-1096 . -554) 173743) ((-1095 . -554) 173725) ((-1094 . -277) 173702) ((-1094 . -952) 173600) ((-1094 . -355) 173584) ((-1094 . -38) 173481) ((-1094 . -557) 173338) ((-1094 . -592) 173263) ((-1094 . -590) 173173) ((-1094 . -972) T) ((-1094 . -1027) T) ((-1094 . -1063) T) ((-1094 . -665) T) ((-1094 . -963) T) ((-1094 . -82) 173038) ((-1094 . -965) 172924) ((-1094 . -970) 172810) ((-1094 . -21) T) ((-1094 . -23) T) ((-1094 . -1015) T) ((-1094 . -554) 172792) ((-1094 . -1131) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -25) T) ((-1094 . -104) T) ((-1094 . -584) 172689) ((-1094 . -656) 172586) ((-1094 . -118) 172565) ((-1094 . -120) 172544) ((-1094 . -146) 172498) ((-1094 . -497) 172477) ((-1094 . -246) 172456) ((-1094 . -47) 172433) ((-1092 . -758) T) ((-1092 . -554) 172415) ((-1092 . -1015) T) ((-1092 . -72) T) ((-1092 . -13) T) ((-1092 . -1131) T) ((-1092 . -761) T) ((-1092 . -555) 172337) ((-1092 . -557) 172303) ((-1092 . -952) 172285) ((-1092 . -798) 172252) ((-1091 . -1174) 172236) ((-1091 . -190) 172195) ((-1091 . -557) 172077) ((-1091 . -592) 172002) ((-1091 . -590) 171912) ((-1091 . -104) T) ((-1091 . -25) T) ((-1091 . -72) T) ((-1091 . -554) 171894) ((-1091 . -1015) T) ((-1091 . -23) T) ((-1091 . -21) T) ((-1091 . -972) T) ((-1091 . -1027) T) ((-1091 . -1063) T) ((-1091 . -665) T) ((-1091 . -963) T) ((-1091 . -186) 171847) ((-1091 . -13) T) ((-1091 . -1131) T) ((-1091 . -189) 171806) ((-1091 . -241) 171771) ((-1091 . -811) 171684) ((-1091 . -808) 171572) ((-1091 . -813) 171485) ((-1091 . -888) 171455) ((-1091 . -38) 171352) ((-1091 . -82) 171217) ((-1091 . -965) 171103) ((-1091 . -970) 170989) ((-1091 . -584) 170886) ((-1091 . -656) 170783) ((-1091 . -118) 170762) ((-1091 . -120) 170741) ((-1091 . -146) 170695) ((-1091 . -497) 170674) ((-1091 . -246) 170653) ((-1091 . -47) 170630) ((-1091 . -1160) 170607) ((-1091 . -35) 170573) ((-1091 . -66) 170539) ((-1091 . -239) 170505) ((-1091 . -434) 170471) ((-1091 . -1120) 170437) ((-1091 . -1117) 170403) ((-1091 . -917) 170369) ((-1090 . -1166) 170330) ((-1090 . -312) 170309) ((-1090 . -1136) 170288) ((-1090 . -834) 170267) ((-1090 . -497) 170221) ((-1090 . -146) 170155) ((-1090 . -557) 169904) ((-1090 . -656) 169751) ((-1090 . -584) 169598) ((-1090 . -38) 169445) ((-1090 . -393) 169424) ((-1090 . -258) 169403) ((-1090 . -592) 169303) ((-1090 . -590) 169188) ((-1090 . -972) T) ((-1090 . -1027) T) ((-1090 . -1063) T) ((-1090 . -665) T) ((-1090 . -963) T) ((-1090 . -82) 169008) ((-1090 . -965) 168849) ((-1090 . -970) 168690) ((-1090 . -21) T) ((-1090 . -23) T) ((-1090 . -1015) T) ((-1090 . -554) 168672) ((-1090 . -1131) T) ((-1090 . -13) T) ((-1090 . -72) T) ((-1090 . -25) T) ((-1090 . -104) T) ((-1090 . -246) 168626) ((-1090 . -201) 168605) ((-1090 . -917) 168571) ((-1090 . -1117) 168537) ((-1090 . -1120) 168503) ((-1090 . -434) 168469) ((-1090 . -239) 168435) ((-1090 . -66) 168401) ((-1090 . -35) 168367) ((-1090 . -1160) 168337) ((-1090 . -47) 168307) ((-1090 . -120) 168286) ((-1090 . -118) 168265) ((-1090 . -888) 168228) ((-1090 . -813) 168134) ((-1090 . -808) 168015) ((-1090 . -811) 167921) ((-1090 . -241) 167879) ((-1090 . -189) 167831) ((-1090 . -186) 167777) ((-1090 . -190) 167729) ((-1090 . -1164) 167713) ((-1090 . -952) 167648) ((-1087 . -1157) 167632) ((-1087 . -1068) 167610) ((-1087 . -555) NIL) ((-1087 . -260) 167597) ((-1087 . -457) 167545) ((-1087 . -277) 167522) ((-1087 . -952) 167405) ((-1087 . -355) 167389) ((-1087 . -38) 167221) ((-1087 . -82) 167026) ((-1087 . -965) 166852) ((-1087 . -970) 166678) ((-1087 . -590) 166588) ((-1087 . -592) 166477) ((-1087 . -584) 166309) ((-1087 . -656) 166141) ((-1087 . -557) 165918) ((-1087 . -118) 165897) ((-1087 . -120) 165876) ((-1087 . -47) 165853) ((-1087 . -329) 165837) ((-1087 . -582) 165785) ((-1087 . -811) 165729) ((-1087 . -808) 165636) ((-1087 . -813) 165547) ((-1087 . -798) NIL) ((-1087 . -823) 165526) ((-1087 . -1136) 165505) ((-1087 . -863) 165475) ((-1087 . -834) 165454) ((-1087 . -497) 165368) ((-1087 . -246) 165282) ((-1087 . -146) 165176) ((-1087 . -393) 165110) ((-1087 . -258) 165089) ((-1087 . -241) 165016) ((-1087 . -190) T) ((-1087 . -104) T) ((-1087 . -25) T) ((-1087 . -72) T) ((-1087 . -554) 164998) ((-1087 . -1015) T) ((-1087 . -23) T) ((-1087 . -21) T) ((-1087 . -972) T) ((-1087 . -1027) T) ((-1087 . -1063) T) ((-1087 . -665) T) ((-1087 . -963) T) ((-1087 . -186) 164985) ((-1087 . -13) T) ((-1087 . -1131) T) ((-1087 . -189) T) ((-1087 . -225) 164969) ((-1087 . -184) 164953) ((-1084 . -1145) 164914) ((-1084 . -917) 164880) ((-1084 . -1117) 164846) ((-1084 . -1120) 164812) ((-1084 . -434) 164778) ((-1084 . -239) 164744) ((-1084 . -66) 164710) ((-1084 . -35) 164676) ((-1084 . -1160) 164653) ((-1084 . -47) 164630) ((-1084 . -557) 164431) ((-1084 . -656) 164233) ((-1084 . -584) 164035) ((-1084 . -592) 163890) ((-1084 . -590) 163730) ((-1084 . -970) 163526) ((-1084 . -965) 163322) ((-1084 . -82) 163074) ((-1084 . -38) 162876) ((-1084 . -888) 162846) ((-1084 . -241) 162674) ((-1084 . -1143) 162658) ((-1084 . -972) T) ((-1084 . -1027) T) ((-1084 . -1063) T) ((-1084 . -665) T) ((-1084 . -963) T) ((-1084 . -21) T) ((-1084 . -23) T) ((-1084 . -1015) T) ((-1084 . -554) 162640) ((-1084 . -1131) T) ((-1084 . -13) T) ((-1084 . -72) T) ((-1084 . -25) T) ((-1084 . -104) T) ((-1084 . -118) 162550) ((-1084 . -120) 162460) ((-1084 . -555) NIL) ((-1084 . -184) 162412) ((-1084 . -811) 162248) ((-1084 . -813) 162012) ((-1084 . -808) 161751) ((-1084 . -225) 161703) ((-1084 . -189) 161529) ((-1084 . -186) 161349) ((-1084 . -190) 161239) ((-1084 . -312) 161218) ((-1084 . -1136) 161197) ((-1084 . -834) 161176) ((-1084 . -497) 161130) ((-1084 . -146) 161064) ((-1084 . -393) 161043) ((-1084 . -258) 161022) ((-1084 . -246) 160976) ((-1084 . -201) 160955) ((-1084 . -288) 160907) ((-1084 . -457) 160641) ((-1084 . -260) 160526) ((-1084 . -329) 160478) ((-1084 . -582) 160430) ((-1084 . -343) 160382) ((-1084 . -798) NIL) ((-1084 . -742) NIL) ((-1084 . -716) NIL) ((-1084 . -718) NIL) ((-1084 . -758) NIL) ((-1084 . -761) NIL) ((-1084 . -720) NIL) ((-1084 . -723) NIL) ((-1084 . -757) NIL) ((-1084 . -796) 160334) ((-1084 . -823) NIL) ((-1084 . -935) NIL) ((-1084 . -952) 160300) ((-1084 . -1068) NIL) ((-1084 . -906) 160252) ((-1083 . -997) T) ((-1083 . -431) 160233) ((-1083 . -554) 160199) ((-1083 . -557) 160180) ((-1083 . -1015) T) ((-1083 . -1131) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -64) T) ((-1082 . -1015) T) ((-1082 . -554) 160162) ((-1082 . -1131) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1081 . -1015) T) ((-1081 . -554) 160144) ((-1081 . -1131) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1076 . -1109) 160120) ((-1076 . -183) 160065) ((-1076 . -76) 160010) ((-1076 . -1037) 159942) ((-1076 . -124) 159887) ((-1076 . -555) NIL) ((-1076 . -193) 159832) ((-1076 . -540) 159808) ((-1076 . -260) 159597) ((-1076 . -457) 159337) ((-1076 . -381) 159269) ((-1076 . -430) 159201) ((-1076 . -241) 159177) ((-1076 . -243) 159153) ((-1076 . -551) 159129) ((-1076 . -1015) T) ((-1076 . -554) 159111) ((-1076 . -72) T) ((-1076 . -1131) T) ((-1076 . -13) T) ((-1076 . -34) T) ((-1076 . -318) 159056) ((-1075 . -1060) T) ((-1075 . -324) 159038) ((-1075 . -761) T) ((-1075 . -758) T) ((-1075 . -124) 159020) ((-1075 . -555) NIL) ((-1075 . -241) 158970) ((-1075 . -540) 158945) ((-1075 . -243) 158920) ((-1075 . -595) 158902) ((-1075 . -430) 158884) ((-1075 . -1015) T) ((-1075 . -381) 158866) ((-1075 . -457) NIL) ((-1075 . -260) NIL) ((-1075 . -554) 158848) ((-1075 . -72) T) ((-1075 . -1131) T) ((-1075 . -13) T) ((-1075 . -34) T) ((-1075 . -318) 158830) ((-1075 . -1037) 158812) ((-1075 . -19) 158794) ((-1071 . -618) 158778) ((-1071 . -595) 158762) ((-1071 . -243) 158739) ((-1071 . -241) 158691) ((-1071 . -540) 158668) ((-1071 . -555) 158629) ((-1071 . -430) 158613) ((-1071 . -1015) 158591) ((-1071 . -381) 158575) ((-1071 . -457) 158508) ((-1071 . -260) 158446) ((-1071 . -554) 158381) ((-1071 . -72) 158335) ((-1071 . -1131) T) ((-1071 . -13) T) ((-1071 . -34) T) ((-1071 . -124) 158319) ((-1071 . -1170) 158303) ((-1071 . -925) 158287) ((-1071 . -1066) 158271) ((-1071 . -557) 158248) ((-1071 . -1037) 158232) ((-1069 . -997) T) ((-1069 . -431) 158213) ((-1069 . -554) 158179) ((-1069 . -557) 158160) ((-1069 . -1015) T) ((-1069 . -1131) T) ((-1069 . -13) T) ((-1069 . -72) T) ((-1069 . -64) T) ((-1067 . -1109) 158139) ((-1067 . -183) 158087) ((-1067 . -76) 158035) ((-1067 . -1037) 157970) ((-1067 . -124) 157918) ((-1067 . -555) NIL) ((-1067 . -193) 157866) ((-1067 . -540) 157845) ((-1067 . -260) 157643) ((-1067 . -457) 157395) ((-1067 . -381) 157330) ((-1067 . -430) 157265) ((-1067 . -241) 157244) ((-1067 . -243) 157223) ((-1067 . -551) 157202) ((-1067 . -1015) T) ((-1067 . -554) 157184) ((-1067 . -72) T) ((-1067 . -1131) T) ((-1067 . -13) T) ((-1067 . -34) T) ((-1067 . -318) 157132) ((-1064 . -1036) 157116) ((-1064 . -318) 157100) ((-1064 . -1037) 157084) ((-1064 . -34) T) ((-1064 . -13) T) ((-1064 . -1131) T) ((-1064 . -72) 157038) ((-1064 . -554) 156973) ((-1064 . -260) 156911) ((-1064 . -457) 156844) ((-1064 . -381) 156828) ((-1064 . -1015) 156806) ((-1064 . -430) 156790) ((-1064 . -76) 156774) ((-1062 . -1022) 156743) ((-1062 . -1126) 156712) ((-1062 . -1037) 156696) ((-1062 . -554) 156658) ((-1062 . -124) 156642) ((-1062 . -34) T) ((-1062 . -13) T) ((-1062 . -1131) T) ((-1062 . -72) T) ((-1062 . -260) 156580) ((-1062 . -457) 156513) ((-1062 . -381) 156497) ((-1062 . -1015) T) ((-1062 . -430) 156481) ((-1062 . -555) 156442) ((-1062 . -318) 156426) ((-1062 . -891) 156395) ((-1062 . -985) 156364) ((-1058 . -1039) 156309) ((-1058 . -318) 156293) ((-1058 . -34) T) ((-1058 . -260) 156231) ((-1058 . -457) 156164) ((-1058 . -381) 156148) ((-1058 . -430) 156132) ((-1058 . -967) 156072) ((-1058 . -952) 155970) ((-1058 . -557) 155889) ((-1058 . -355) 155873) ((-1058 . -582) 155821) ((-1058 . -592) 155759) ((-1058 . -329) 155743) ((-1058 . -190) 155722) ((-1058 . -186) 155670) ((-1058 . -189) 155624) ((-1058 . -225) 155608) ((-1058 . -808) 155532) ((-1058 . -813) 155458) ((-1058 . -811) 155417) ((-1058 . -184) 155401) ((-1058 . -656) 155336) ((-1058 . -584) 155271) ((-1058 . -590) 155230) ((-1058 . -104) T) ((-1058 . -25) T) ((-1058 . -72) T) ((-1058 . -13) T) ((-1058 . -1131) T) ((-1058 . -554) 155192) ((-1058 . -1015) T) ((-1058 . -23) T) ((-1058 . -21) T) ((-1058 . -970) 155176) ((-1058 . -965) 155160) ((-1058 . -82) 155139) ((-1058 . -963) T) ((-1058 . -665) T) ((-1058 . -1063) T) ((-1058 . -1027) T) ((-1058 . -972) T) ((-1058 . -38) 155099) ((-1058 . -555) 155060) ((-1057 . -925) 155031) ((-1057 . -34) T) ((-1057 . -13) T) ((-1057 . -1131) T) ((-1057 . -72) T) ((-1057 . -554) 155013) ((-1057 . -260) 154939) ((-1057 . -457) 154847) ((-1057 . -381) 154818) ((-1057 . -1015) T) ((-1057 . -430) 154789) ((-1057 . -318) 154760) ((-1057 . -1037) 154731) ((-1056 . -1015) T) ((-1056 . -554) 154713) ((-1056 . -1131) T) ((-1056 . -13) T) ((-1056 . -72) T) ((-1051 . -1053) T) ((-1051 . -1177) T) ((-1051 . -64) T) ((-1051 . -72) T) ((-1051 . -13) T) ((-1051 . -1131) T) ((-1051 . -554) 154679) ((-1051 . -1015) T) ((-1051 . -557) 154660) ((-1051 . -431) 154641) ((-1051 . -997) T) ((-1049 . -1050) 154625) ((-1049 . -72) T) ((-1049 . -13) T) ((-1049 . -1131) T) ((-1049 . -554) 154607) ((-1049 . -1015) T) ((-1042 . -681) 154586) ((-1042 . -35) 154552) ((-1042 . -66) 154518) ((-1042 . -239) 154484) ((-1042 . -434) 154450) ((-1042 . -1120) 154416) ((-1042 . -1117) 154382) ((-1042 . -917) 154348) ((-1042 . -47) 154320) ((-1042 . -38) 154217) ((-1042 . -584) 154114) ((-1042 . -656) 154011) ((-1042 . -557) 153893) ((-1042 . -246) 153872) ((-1042 . -497) 153851) ((-1042 . -82) 153716) ((-1042 . -965) 153602) ((-1042 . -970) 153488) ((-1042 . -146) 153442) ((-1042 . -120) 153421) ((-1042 . -118) 153400) ((-1042 . -592) 153325) ((-1042 . -590) 153235) ((-1042 . -888) 153202) ((-1042 . -813) 153186) ((-1042 . -1131) T) ((-1042 . -13) T) ((-1042 . -808) 153168) ((-1042 . -963) T) ((-1042 . -665) T) ((-1042 . -1063) T) ((-1042 . -1027) T) ((-1042 . -972) T) ((-1042 . -21) T) ((-1042 . -23) T) ((-1042 . -1015) T) ((-1042 . -554) 153150) ((-1042 . -72) T) ((-1042 . -25) T) ((-1042 . -104) T) ((-1042 . -811) 153134) ((-1042 . -457) 153104) ((-1042 . -260) 153091) ((-1041 . -863) 153058) ((-1041 . -557) 152857) ((-1041 . -952) 152742) ((-1041 . -1136) 152721) ((-1041 . -823) 152700) ((-1041 . -798) 152559) ((-1041 . -813) 152543) ((-1041 . -808) 152525) ((-1041 . -811) 152509) ((-1041 . -457) 152461) ((-1041 . -393) 152415) ((-1041 . -582) 152363) ((-1041 . -592) 152252) ((-1041 . -329) 152236) ((-1041 . -47) 152208) ((-1041 . -38) 152060) ((-1041 . -584) 151912) ((-1041 . -656) 151764) ((-1041 . -246) 151698) ((-1041 . -497) 151632) ((-1041 . -82) 151457) ((-1041 . -965) 151303) ((-1041 . -970) 151149) ((-1041 . -146) 151063) ((-1041 . -120) 151042) ((-1041 . -118) 151021) ((-1041 . -590) 150931) ((-1041 . -104) T) ((-1041 . -25) T) ((-1041 . -72) T) ((-1041 . -13) T) ((-1041 . -1131) T) ((-1041 . -554) 150913) ((-1041 . -1015) T) ((-1041 . -23) T) ((-1041 . -21) T) ((-1041 . -963) T) ((-1041 . -665) T) ((-1041 . -1063) T) ((-1041 . -1027) T) ((-1041 . -972) T) ((-1041 . -355) 150897) ((-1041 . -277) 150869) ((-1041 . -260) 150856) ((-1041 . -555) 150604) ((-1035 . -485) T) ((-1035 . -1136) T) ((-1035 . -1068) T) ((-1035 . -952) 150586) ((-1035 . -555) 150501) ((-1035 . -935) T) ((-1035 . -798) 150483) ((-1035 . -757) T) ((-1035 . -723) T) ((-1035 . -720) T) ((-1035 . -761) T) ((-1035 . -758) T) ((-1035 . -718) T) ((-1035 . -716) T) ((-1035 . -742) T) ((-1035 . -592) 150455) ((-1035 . -582) 150437) ((-1035 . -834) T) ((-1035 . -497) T) ((-1035 . -246) T) ((-1035 . -146) T) ((-1035 . -557) 150409) ((-1035 . -656) 150396) ((-1035 . -584) 150383) ((-1035 . -970) 150370) ((-1035 . -965) 150357) ((-1035 . -82) 150342) ((-1035 . -38) 150329) ((-1035 . -393) T) ((-1035 . -258) T) ((-1035 . -189) T) ((-1035 . -186) 150316) ((-1035 . -190) T) ((-1035 . -116) T) ((-1035 . -963) T) ((-1035 . -665) T) ((-1035 . -1063) T) ((-1035 . -1027) T) ((-1035 . -972) T) ((-1035 . -21) T) ((-1035 . -590) 150288) ((-1035 . -23) T) ((-1035 . -1015) T) ((-1035 . -554) 150270) ((-1035 . -1131) T) ((-1035 . -13) T) ((-1035 . -72) T) ((-1035 . -25) T) ((-1035 . -104) T) ((-1035 . -120) T) ((-1035 . -754) T) ((-1035 . -320) T) ((-1035 . -84) T) ((-1035 . -606) T) ((-1031 . -997) T) ((-1031 . -431) 150251) ((-1031 . -554) 150217) ((-1031 . -557) 150198) ((-1031 . -1015) T) ((-1031 . -1131) T) ((-1031 . -13) T) ((-1031 . -72) T) ((-1031 . -64) T) ((-1030 . -1015) T) ((-1030 . -554) 150180) ((-1030 . -1131) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1028 . -196) 150159) ((-1028 . -1189) 150129) ((-1028 . -723) 150108) ((-1028 . -720) 150087) ((-1028 . -761) 150041) ((-1028 . -758) 149995) ((-1028 . -718) 149974) ((-1028 . -719) 149953) ((-1028 . -656) 149898) ((-1028 . -584) 149823) ((-1028 . -243) 149800) ((-1028 . -241) 149777) ((-1028 . -540) 149754) ((-1028 . -952) 149583) ((-1028 . -557) 149387) ((-1028 . -355) 149356) ((-1028 . -582) 149264) ((-1028 . -592) 149103) ((-1028 . -329) 149073) ((-1028 . -430) 149057) ((-1028 . -381) 149041) ((-1028 . -457) 148974) ((-1028 . -260) 148912) ((-1028 . -34) T) ((-1028 . -318) 148896) ((-1028 . -320) 148875) ((-1028 . -190) 148828) ((-1028 . -590) 148616) ((-1028 . -972) 148595) ((-1028 . -1027) 148574) ((-1028 . -1063) 148553) ((-1028 . -665) 148532) ((-1028 . -963) 148511) ((-1028 . -186) 148407) ((-1028 . -189) 148309) ((-1028 . -225) 148279) ((-1028 . -808) 148151) ((-1028 . -813) 148025) ((-1028 . -811) 147958) ((-1028 . -184) 147928) ((-1028 . -554) 147625) ((-1028 . -970) 147550) ((-1028 . -965) 147455) ((-1028 . -82) 147375) ((-1028 . -104) 147250) ((-1028 . -25) 147087) ((-1028 . -72) 146824) ((-1028 . -13) T) ((-1028 . -1131) T) ((-1028 . -1015) 146580) ((-1028 . -23) 146436) ((-1028 . -21) 146351) ((-1024 . -1025) 146335) ((-1024 . |MappingCategory|) 146309) ((-1024 . -1131) T) ((-1024 . -80) 146293) ((-1024 . -1015) T) ((-1024 . -554) 146275) ((-1024 . -13) T) ((-1024 . -72) T) ((-1019 . -1018) 146239) ((-1019 . -72) T) ((-1019 . -554) 146221) ((-1019 . -1015) T) ((-1019 . -241) 146177) ((-1019 . -1131) T) ((-1019 . -13) T) ((-1019 . -559) 146092) ((-1017 . -1018) 146044) ((-1017 . -72) T) ((-1017 . -554) 146026) ((-1017 . -1015) T) ((-1017 . -241) 145982) ((-1017 . -1131) T) ((-1017 . -13) T) ((-1017 . -559) 145885) ((-1016 . -320) T) ((-1016 . -72) T) ((-1016 . -13) T) ((-1016 . -1131) T) ((-1016 . -554) 145867) ((-1016 . -1015) T) ((-1011 . -369) 145851) ((-1011 . -1013) 145835) ((-1011 . -318) 145819) ((-1011 . -320) 145798) ((-1011 . -193) 145782) ((-1011 . -555) 145743) ((-1011 . -124) 145727) ((-1011 . -1037) 145711) ((-1011 . -34) T) ((-1011 . -13) T) ((-1011 . -1131) T) ((-1011 . -72) T) ((-1011 . -554) 145693) ((-1011 . -260) 145631) ((-1011 . -457) 145564) ((-1011 . -381) 145548) ((-1011 . -1015) T) ((-1011 . -430) 145532) ((-1011 . -76) 145516) ((-1011 . -183) 145500) ((-1010 . -997) T) ((-1010 . -431) 145481) ((-1010 . -554) 145447) ((-1010 . -557) 145428) ((-1010 . -1015) T) ((-1010 . -1131) T) ((-1010 . -13) T) ((-1010 . -72) T) ((-1010 . -64) T) ((-1006 . -1131) T) ((-1006 . -13) T) ((-1006 . -1015) 145398) ((-1006 . -554) 145357) ((-1006 . -72) 145327) ((-1005 . -997) T) ((-1005 . -431) 145308) ((-1005 . -554) 145274) ((-1005 . -557) 145255) ((-1005 . -1015) T) ((-1005 . -1131) T) ((-1005 . -13) T) ((-1005 . -72) T) ((-1005 . -64) T) ((-1003 . -1008) 145239) ((-1003 . -559) 145223) ((-1003 . -1015) 145201) ((-1003 . -554) 145168) ((-1003 . -1131) 145146) ((-1003 . -13) 145124) ((-1003 . -72) 145102) ((-1003 . -1009) 145060) ((-1002 . -228) 145044) ((-1002 . -557) 145028) ((-1002 . -952) 145012) ((-1002 . -761) T) ((-1002 . -72) T) ((-1002 . -1015) T) ((-1002 . -554) 144994) ((-1002 . -758) T) ((-1002 . -186) 144981) ((-1002 . -13) T) ((-1002 . -1131) T) ((-1002 . -189) T) ((-1001 . -213) 144918) ((-1001 . -557) 144661) ((-1001 . -952) 144490) ((-1001 . -555) NIL) ((-1001 . -277) 144451) ((-1001 . -355) 144435) ((-1001 . -38) 144287) ((-1001 . -82) 144112) ((-1001 . -965) 143958) ((-1001 . -970) 143804) ((-1001 . -590) 143714) ((-1001 . -592) 143603) ((-1001 . -584) 143455) ((-1001 . -656) 143307) ((-1001 . -118) 143286) ((-1001 . -120) 143265) ((-1001 . -146) 143179) ((-1001 . -497) 143113) ((-1001 . -246) 143047) ((-1001 . -47) 143008) ((-1001 . -329) 142992) ((-1001 . -582) 142940) ((-1001 . -393) 142894) ((-1001 . -457) 142757) ((-1001 . -811) 142692) ((-1001 . -808) 142590) ((-1001 . -813) 142492) ((-1001 . -798) NIL) ((-1001 . -823) 142471) ((-1001 . -1136) 142450) ((-1001 . -863) 142395) ((-1001 . -260) 142382) ((-1001 . -190) 142361) ((-1001 . -104) T) ((-1001 . -25) T) ((-1001 . -72) T) ((-1001 . -554) 142343) ((-1001 . -1015) T) ((-1001 . -23) T) ((-1001 . -21) T) ((-1001 . -972) T) ((-1001 . -1027) T) ((-1001 . -1063) T) ((-1001 . -665) T) ((-1001 . -963) T) ((-1001 . -186) 142291) ((-1001 . -13) T) ((-1001 . -1131) T) ((-1001 . -189) 142245) ((-1001 . -225) 142229) ((-1001 . -184) 142213) ((-999 . -554) 142195) ((-996 . -758) T) ((-996 . -554) 142177) ((-996 . -1015) T) ((-996 . -72) T) ((-996 . -13) T) ((-996 . -1131) T) ((-996 . -761) T) ((-996 . -555) 142158) ((-993 . -663) 142137) ((-993 . -952) 142035) ((-993 . -355) 142019) ((-993 . -582) 141967) ((-993 . -592) 141844) ((-993 . -329) 141828) ((-993 . -322) 141807) ((-993 . -120) 141786) ((-993 . -557) 141611) ((-993 . -656) 141485) ((-993 . -584) 141359) ((-993 . -590) 141257) ((-993 . -970) 141170) ((-993 . -965) 141083) ((-993 . -82) 140975) ((-993 . -38) 140849) ((-993 . -353) 140828) ((-993 . -345) 140807) ((-993 . -118) 140761) ((-993 . -1068) 140740) ((-993 . -299) 140719) ((-993 . -320) 140673) ((-993 . -201) 140627) ((-993 . -246) 140581) ((-993 . -258) 140535) ((-993 . -393) 140489) ((-993 . -497) 140443) ((-993 . -834) 140397) ((-993 . -1136) 140351) ((-993 . -312) 140305) ((-993 . -190) 140233) ((-993 . -186) 140109) ((-993 . -189) 139991) ((-993 . -225) 139961) ((-993 . -808) 139833) ((-993 . -813) 139707) ((-993 . -811) 139640) ((-993 . -184) 139610) ((-993 . -555) 139594) ((-993 . -21) T) ((-993 . -23) T) ((-993 . -1015) T) ((-993 . -554) 139576) ((-993 . -1131) T) ((-993 . -13) T) ((-993 . -72) T) ((-993 . -25) T) ((-993 . -104) T) ((-993 . -963) T) ((-993 . -665) T) ((-993 . -1063) T) ((-993 . -1027) T) ((-993 . -972) T) ((-993 . -146) T) ((-991 . -1015) T) ((-991 . -554) 139558) ((-991 . -1131) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -241) 139537) ((-990 . -1015) T) ((-990 . -554) 139519) ((-990 . -1131) T) ((-990 . -13) T) ((-990 . -72) T) ((-989 . -1015) T) ((-989 . -554) 139501) ((-989 . -1131) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 139480) ((-989 . -952) 139457) ((-989 . -557) 139434) ((-988 . -1131) T) ((-988 . -13) T) ((-987 . -997) T) ((-987 . -431) 139415) ((-987 . -554) 139381) ((-987 . -557) 139362) ((-987 . -1015) T) ((-987 . -1131) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -64) T) ((-980 . -997) T) ((-980 . -431) 139343) ((-980 . -554) 139309) ((-980 . -557) 139290) ((-980 . -1015) T) ((-980 . -1131) T) ((-980 . -13) T) ((-980 . -72) T) ((-980 . -64) T) ((-977 . -485) T) ((-977 . -1136) T) ((-977 . -1068) T) ((-977 . -952) 139272) ((-977 . -555) 139187) ((-977 . -935) T) ((-977 . -798) 139169) ((-977 . -757) T) ((-977 . -723) T) ((-977 . -720) T) ((-977 . -761) T) ((-977 . -758) T) ((-977 . -718) T) ((-977 . -716) T) ((-977 . -742) T) ((-977 . -592) 139141) ((-977 . -582) 139123) ((-977 . -834) T) ((-977 . -497) T) ((-977 . -246) T) ((-977 . -146) T) ((-977 . -557) 139095) ((-977 . -656) 139082) ((-977 . -584) 139069) ((-977 . -970) 139056) ((-977 . -965) 139043) ((-977 . -82) 139028) ((-977 . -38) 139015) ((-977 . -393) T) ((-977 . -258) T) ((-977 . -189) T) ((-977 . -186) 139002) ((-977 . -190) T) ((-977 . -116) T) ((-977 . -963) T) ((-977 . -665) T) ((-977 . -1063) T) ((-977 . -1027) T) ((-977 . -972) T) ((-977 . -21) T) ((-977 . -590) 138974) ((-977 . -23) T) ((-977 . -1015) T) ((-977 . -554) 138956) ((-977 . -1131) T) ((-977 . -13) T) ((-977 . -72) T) ((-977 . -25) T) ((-977 . -104) T) ((-977 . -120) T) ((-977 . -559) 138937) ((-976 . -982) 138916) ((-976 . -72) T) ((-976 . -13) T) ((-976 . -1131) T) ((-976 . -554) 138898) ((-976 . -1015) T) ((-973 . -1131) T) ((-973 . -13) T) ((-973 . -1015) 138876) ((-973 . -554) 138843) ((-973 . -72) 138821) ((-968 . -967) 138761) ((-968 . -584) 138706) ((-968 . -656) 138651) ((-968 . -430) 138635) ((-968 . -381) 138619) ((-968 . -457) 138552) ((-968 . -260) 138490) ((-968 . -34) T) ((-968 . -318) 138474) ((-968 . -592) 138458) ((-968 . -590) 138427) ((-968 . -104) T) ((-968 . -25) T) ((-968 . -72) T) ((-968 . -13) T) ((-968 . -1131) T) ((-968 . -554) 138389) ((-968 . -1015) T) ((-968 . -23) T) ((-968 . -21) T) ((-968 . -970) 138373) ((-968 . -965) 138357) ((-968 . -82) 138336) ((-968 . -1189) 138306) ((-968 . -555) 138267) ((-960 . -985) 138196) ((-960 . -891) 138125) ((-960 . -318) 138090) ((-960 . -555) 138032) ((-960 . -430) 137997) ((-960 . -1015) T) ((-960 . -381) 137962) ((-960 . -457) 137846) ((-960 . -260) 137754) ((-960 . -554) 137697) ((-960 . -72) T) ((-960 . -1131) T) ((-960 . -13) T) ((-960 . -34) T) ((-960 . -124) 137662) ((-960 . -1037) 137627) ((-960 . -1126) 137556) ((-950 . -997) T) ((-950 . -431) 137537) ((-950 . -554) 137503) ((-950 . -557) 137484) ((-950 . -1015) T) ((-950 . -1131) T) ((-950 . -13) T) ((-950 . -72) T) ((-950 . -64) T) ((-949 . -146) T) ((-949 . -557) 137453) ((-949 . -972) T) ((-949 . -1027) T) ((-949 . -1063) T) ((-949 . -665) T) ((-949 . -963) T) ((-949 . -592) 137427) ((-949 . -590) 137386) ((-949 . -104) T) ((-949 . -25) T) ((-949 . -72) T) ((-949 . -13) T) ((-949 . -1131) T) ((-949 . -554) 137368) ((-949 . -1015) T) ((-949 . -23) T) ((-949 . -21) T) ((-949 . -970) 137342) ((-949 . -965) 137316) ((-949 . -82) 137283) ((-949 . -38) 137267) ((-949 . -584) 137251) ((-949 . -656) 137235) ((-942 . -985) 137204) ((-942 . -891) 137173) ((-942 . -318) 137157) ((-942 . -555) 137118) ((-942 . -430) 137102) ((-942 . -1015) T) ((-942 . -381) 137086) ((-942 . -457) 137019) ((-942 . -260) 136957) ((-942 . -554) 136919) ((-942 . -72) T) ((-942 . -1131) T) ((-942 . -13) T) ((-942 . -34) T) ((-942 . -124) 136903) ((-942 . -1037) 136887) ((-942 . -1126) 136856) ((-941 . -1015) T) ((-941 . -554) 136838) ((-941 . -1131) T) ((-941 . -13) T) ((-941 . -72) T) ((-939 . -927) T) ((-939 . -917) T) ((-939 . -716) T) ((-939 . -718) T) ((-939 . -758) T) ((-939 . -761) T) ((-939 . -720) T) ((-939 . -723) T) ((-939 . -757) T) ((-939 . -952) 136723) ((-939 . -355) 136685) ((-939 . -201) T) ((-939 . -246) T) ((-939 . -258) T) ((-939 . -393) T) ((-939 . -38) 136622) ((-939 . -584) 136559) ((-939 . -656) 136496) ((-939 . -557) 136433) ((-939 . -497) T) ((-939 . -834) T) ((-939 . -1136) T) ((-939 . -312) T) ((-939 . -82) 136342) ((-939 . -965) 136279) ((-939 . -970) 136216) ((-939 . -146) T) ((-939 . -120) T) ((-939 . -592) 136153) ((-939 . -590) 136090) ((-939 . -104) T) ((-939 . -25) T) ((-939 . -72) T) ((-939 . -13) T) ((-939 . -1131) T) ((-939 . -554) 136072) ((-939 . -1015) T) ((-939 . -23) T) ((-939 . -21) T) ((-939 . -963) T) ((-939 . -665) T) ((-939 . -1063) T) ((-939 . -1027) T) ((-939 . -972) T) ((-934 . -997) T) ((-934 . -431) 136053) ((-934 . -554) 136019) ((-934 . -557) 136000) ((-934 . -1015) T) ((-934 . -1131) T) ((-934 . -13) T) ((-934 . -72) T) ((-934 . -64) T) ((-919 . -906) 135982) ((-919 . -1068) T) ((-919 . -557) 135932) ((-919 . -952) 135892) ((-919 . -555) 135822) ((-919 . -935) T) ((-919 . -823) NIL) ((-919 . -796) 135804) ((-919 . -757) T) ((-919 . -723) T) ((-919 . -720) T) ((-919 . -761) T) ((-919 . -758) T) ((-919 . -718) T) ((-919 . -716) T) ((-919 . -742) T) ((-919 . -798) 135786) ((-919 . -343) 135768) ((-919 . -582) 135750) ((-919 . -329) 135732) ((-919 . -241) NIL) ((-919 . -260) NIL) ((-919 . -457) NIL) ((-919 . -288) 135714) ((-919 . -201) T) ((-919 . -82) 135641) ((-919 . -965) 135591) ((-919 . -970) 135541) ((-919 . -246) T) ((-919 . -656) 135491) ((-919 . -584) 135441) ((-919 . -592) 135391) ((-919 . -590) 135341) ((-919 . -38) 135291) ((-919 . -258) T) ((-919 . -393) T) ((-919 . -146) T) ((-919 . -497) T) ((-919 . -834) T) ((-919 . -1136) T) ((-919 . -312) T) ((-919 . -190) T) ((-919 . -186) 135278) ((-919 . -189) T) ((-919 . -225) 135260) ((-919 . -808) NIL) ((-919 . -813) NIL) ((-919 . -811) NIL) ((-919 . -184) 135242) ((-919 . -120) T) ((-919 . -118) NIL) ((-919 . -104) T) ((-919 . -25) T) ((-919 . -72) T) ((-919 . -13) T) ((-919 . -1131) T) ((-919 . -554) 135202) ((-919 . -1015) T) ((-919 . -23) T) ((-919 . -21) T) ((-919 . -963) T) ((-919 . -665) T) ((-919 . -1063) T) ((-919 . -1027) T) ((-919 . -972) T) ((-918 . -291) 135176) ((-918 . -146) T) ((-918 . -557) 135106) ((-918 . -972) T) ((-918 . -1027) T) ((-918 . -1063) T) ((-918 . -665) T) ((-918 . -963) T) ((-918 . -592) 135008) ((-918 . -590) 134938) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1131) T) ((-918 . -554) 134920) ((-918 . -1015) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -970) 134865) ((-918 . -965) 134810) ((-918 . -82) 134727) ((-918 . -555) 134711) ((-918 . -184) 134688) ((-918 . -811) 134640) ((-918 . -813) 134552) ((-918 . -808) 134462) ((-918 . -225) 134439) ((-918 . -189) 134379) ((-918 . -186) 134313) ((-918 . -190) 134285) ((-918 . -312) T) ((-918 . -1136) T) ((-918 . -834) T) ((-918 . -497) T) ((-918 . -656) 134230) ((-918 . -584) 134175) ((-918 . -38) 134120) ((-918 . -393) T) ((-918 . -258) T) ((-918 . -246) T) ((-918 . -201) T) ((-918 . -320) NIL) ((-918 . -299) NIL) ((-918 . -1068) NIL) ((-918 . -118) 134092) ((-918 . -345) NIL) ((-918 . -353) 134064) ((-918 . -120) 134036) ((-918 . -322) 134008) ((-918 . -329) 133985) ((-918 . -582) 133919) ((-918 . -355) 133896) ((-918 . -952) 133773) ((-918 . -663) 133745) ((-915 . -910) 133729) ((-915 . -318) 133713) ((-915 . -1037) 133697) ((-915 . -34) T) ((-915 . -13) T) ((-915 . -1131) T) ((-915 . -72) 133651) ((-915 . -554) 133586) ((-915 . -260) 133524) ((-915 . -457) 133457) ((-915 . -381) 133441) ((-915 . -1015) 133419) ((-915 . -430) 133403) ((-915 . -76) 133387) ((-911 . -913) 133371) ((-911 . -761) 133350) ((-911 . -758) 133329) ((-911 . -952) 133227) ((-911 . -355) 133211) ((-911 . -582) 133159) ((-911 . -592) 133061) ((-911 . -329) 133045) ((-911 . -241) 133003) ((-911 . -260) 132968) ((-911 . -457) 132880) ((-911 . -288) 132864) ((-911 . -38) 132812) ((-911 . -82) 132690) ((-911 . -965) 132589) ((-911 . -970) 132488) ((-911 . -590) 132411) ((-911 . -584) 132359) ((-911 . -656) 132307) ((-911 . -557) 132201) ((-911 . -246) 132155) ((-911 . -201) 132134) ((-911 . -190) 132113) ((-911 . -186) 132061) ((-911 . -189) 132015) ((-911 . -225) 131999) ((-911 . -808) 131923) ((-911 . -813) 131849) ((-911 . -811) 131808) ((-911 . -184) 131792) ((-911 . -555) 131753) ((-911 . -120) 131732) ((-911 . -118) 131711) ((-911 . -104) T) ((-911 . -25) T) ((-911 . -72) T) ((-911 . -13) T) ((-911 . -1131) T) ((-911 . -554) 131693) ((-911 . -1015) T) ((-911 . -23) T) ((-911 . -21) T) ((-911 . -963) T) ((-911 . -665) T) ((-911 . -1063) T) ((-911 . -1027) T) ((-911 . -972) T) ((-909 . -997) T) ((-909 . -431) 131674) ((-909 . -554) 131640) ((-909 . -557) 131621) ((-909 . -1015) T) ((-909 . -1131) T) ((-909 . -13) T) ((-909 . -72) T) ((-909 . -64) T) ((-908 . -21) T) ((-908 . -590) 131603) ((-908 . -23) T) ((-908 . -1015) T) ((-908 . -554) 131585) ((-908 . -1131) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -25) T) ((-908 . -104) T) ((-908 . -241) 131552) ((-904 . -554) 131534) ((-901 . -1015) T) ((-901 . -554) 131516) ((-901 . -1131) T) ((-901 . -13) T) ((-901 . -72) T) ((-886 . -723) T) ((-886 . -720) T) ((-886 . -761) T) ((-886 . -758) T) ((-886 . -718) T) ((-886 . -23) T) ((-886 . -1015) T) ((-886 . -554) 131476) ((-886 . -1131) T) ((-886 . -13) T) ((-886 . -72) T) ((-886 . -25) T) ((-886 . -104) T) ((-885 . -997) T) ((-885 . -431) 131457) ((-885 . -554) 131423) ((-885 . -557) 131404) ((-885 . -1015) T) ((-885 . -1131) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -64) T) ((-879 . -882) T) ((-879 . -72) T) ((-879 . -554) 131386) ((-879 . -1015) T) ((-879 . -606) T) ((-879 . -13) T) ((-879 . -1131) T) ((-879 . -84) T) ((-879 . -557) 131370) ((-878 . -554) 131352) ((-877 . -1015) T) ((-877 . -554) 131334) ((-877 . -1131) T) ((-877 . -13) T) ((-877 . -72) T) ((-877 . -320) 131287) ((-877 . -665) 131189) ((-877 . -1027) 131091) ((-877 . -23) 130905) ((-877 . -25) 130719) ((-877 . -104) 130577) ((-877 . -414) 130530) ((-877 . -21) 130485) ((-877 . -590) 130429) ((-877 . -719) 130382) ((-877 . -718) 130335) ((-877 . -758) 130237) ((-877 . -761) 130139) ((-877 . -720) 130092) ((-877 . -723) 130045) ((-871 . -19) 130029) ((-871 . -1037) 130013) ((-871 . -318) 129997) ((-871 . -34) T) ((-871 . -13) T) ((-871 . -1131) T) ((-871 . -72) 129931) ((-871 . -554) 129846) ((-871 . -260) 129784) ((-871 . -457) 129717) ((-871 . -381) 129701) ((-871 . -1015) 129654) ((-871 . -430) 129638) ((-871 . -595) 129622) ((-871 . -243) 129599) ((-871 . -241) 129551) ((-871 . -540) 129528) ((-871 . -555) 129489) ((-871 . -124) 129473) ((-871 . -758) 129452) ((-871 . -761) 129431) ((-871 . -324) 129415) ((-869 . -277) 129394) ((-869 . -952) 129292) ((-869 . -355) 129276) ((-869 . -38) 129173) ((-869 . -557) 129030) ((-869 . -592) 128955) ((-869 . -590) 128865) ((-869 . -972) T) ((-869 . -1027) T) ((-869 . -1063) T) ((-869 . -665) T) ((-869 . -963) T) ((-869 . -82) 128730) ((-869 . -965) 128616) ((-869 . -970) 128502) ((-869 . -21) T) ((-869 . -23) T) ((-869 . -1015) T) ((-869 . -554) 128484) ((-869 . -1131) T) ((-869 . -13) T) ((-869 . -72) T) ((-869 . -25) T) ((-869 . -104) T) ((-869 . -584) 128381) ((-869 . -656) 128278) ((-869 . -118) 128257) ((-869 . -120) 128236) ((-869 . -146) 128190) ((-869 . -497) 128169) ((-869 . -246) 128148) ((-869 . -47) 128127) ((-867 . -1015) T) ((-867 . -554) 128093) ((-867 . -1131) T) ((-867 . -13) T) ((-867 . -72) T) ((-859 . -863) 128054) ((-859 . -557) 127850) ((-859 . -952) 127732) ((-859 . -1136) 127711) ((-859 . -823) 127690) ((-859 . -798) 127615) ((-859 . -813) 127596) ((-859 . -808) 127575) ((-859 . -811) 127556) ((-859 . -457) 127502) ((-859 . -393) 127456) ((-859 . -582) 127404) ((-859 . -592) 127293) ((-859 . -329) 127277) ((-859 . -47) 127246) ((-859 . -38) 127098) ((-859 . -584) 126950) ((-859 . -656) 126802) ((-859 . -246) 126736) ((-859 . -497) 126670) ((-859 . -82) 126495) ((-859 . -965) 126341) ((-859 . -970) 126187) ((-859 . -146) 126101) ((-859 . -120) 126080) ((-859 . -118) 126059) ((-859 . -590) 125969) ((-859 . -104) T) ((-859 . -25) T) ((-859 . -72) T) ((-859 . -13) T) ((-859 . -1131) T) ((-859 . -554) 125951) ((-859 . -1015) T) ((-859 . -23) T) ((-859 . -21) T) ((-859 . -963) T) ((-859 . -665) T) ((-859 . -1063) T) ((-859 . -1027) T) ((-859 . -972) T) ((-859 . -355) 125935) ((-859 . -277) 125904) ((-859 . -260) 125891) ((-859 . -555) 125752) ((-856 . -895) 125736) ((-856 . -19) 125720) ((-856 . -1037) 125704) ((-856 . -318) 125688) ((-856 . -34) T) ((-856 . -13) T) ((-856 . -1131) T) ((-856 . -72) 125622) ((-856 . -554) 125537) ((-856 . -260) 125475) ((-856 . -457) 125408) ((-856 . -381) 125392) ((-856 . -1015) 125345) ((-856 . -430) 125329) ((-856 . -595) 125313) ((-856 . -243) 125290) ((-856 . -241) 125242) ((-856 . -540) 125219) ((-856 . -555) 125180) ((-856 . -124) 125164) ((-856 . -758) 125143) ((-856 . -761) 125122) ((-856 . -324) 125106) ((-856 . -1180) 125090) ((-856 . -559) 125067) ((-840 . -889) T) ((-840 . -554) 125049) ((-838 . -868) T) ((-838 . -554) 125031) ((-832 . -720) T) ((-832 . -761) T) ((-832 . -758) T) ((-832 . -1015) T) ((-832 . -554) 125013) ((-832 . -1131) T) ((-832 . -13) T) ((-832 . -72) T) ((-832 . -25) T) ((-832 . -665) T) ((-832 . -1027) T) ((-827 . -312) T) ((-827 . -1136) T) ((-827 . -834) T) ((-827 . -497) T) ((-827 . -146) T) ((-827 . -557) 124950) ((-827 . -656) 124902) ((-827 . -584) 124854) ((-827 . -38) 124806) ((-827 . -393) T) ((-827 . -258) T) ((-827 . -592) 124758) ((-827 . -590) 124695) ((-827 . -972) T) ((-827 . -1027) T) ((-827 . -1063) T) ((-827 . -665) T) ((-827 . -963) T) ((-827 . -82) 124626) ((-827 . -965) 124578) ((-827 . -970) 124530) ((-827 . -21) T) ((-827 . -23) T) ((-827 . -1015) T) ((-827 . -554) 124512) ((-827 . -1131) T) ((-827 . -13) T) ((-827 . -72) T) ((-827 . -25) T) ((-827 . -104) T) ((-827 . -246) T) ((-827 . -201) T) ((-819 . -299) T) ((-819 . -1068) T) ((-819 . -320) T) ((-819 . -118) T) ((-819 . -312) T) ((-819 . -1136) T) ((-819 . -834) T) ((-819 . -497) T) ((-819 . -146) T) ((-819 . -557) 124462) ((-819 . -656) 124427) ((-819 . -584) 124392) ((-819 . -38) 124357) ((-819 . -393) T) ((-819 . -258) T) ((-819 . -82) 124306) ((-819 . -965) 124271) ((-819 . -970) 124236) ((-819 . -590) 124186) ((-819 . -592) 124151) ((-819 . -246) T) ((-819 . -201) T) ((-819 . -345) T) ((-819 . -189) T) ((-819 . -1131) T) ((-819 . -13) T) ((-819 . -186) 124138) ((-819 . -963) T) ((-819 . -665) T) ((-819 . -1063) T) ((-819 . -1027) T) ((-819 . -972) T) ((-819 . -21) T) ((-819 . -23) T) ((-819 . -1015) T) ((-819 . -554) 124120) ((-819 . -72) T) ((-819 . -25) T) ((-819 . -104) T) ((-819 . -190) T) ((-819 . -280) 124107) ((-819 . -120) 124089) ((-819 . -952) 124076) ((-819 . -1189) 124063) ((-819 . -1200) 124050) ((-819 . -555) 124032) ((-818 . -1015) T) ((-818 . -554) 124014) ((-818 . -1131) T) ((-818 . -13) T) ((-818 . -72) T) ((-815 . -817) 123998) ((-815 . -761) 123952) ((-815 . -758) 123906) ((-815 . -665) T) ((-815 . -1015) T) ((-815 . -554) 123888) ((-815 . -72) T) ((-815 . -1027) T) ((-815 . -414) T) ((-815 . -1131) T) ((-815 . -13) T) ((-815 . -241) 123867) ((-814 . -92) 123851) ((-814 . -430) 123835) ((-814 . -1015) 123813) ((-814 . -381) 123797) ((-814 . -457) 123730) ((-814 . -260) 123668) ((-814 . -554) 123582) ((-814 . -72) 123536) ((-814 . -1131) T) ((-814 . -13) T) ((-814 . -34) T) ((-814 . -925) 123520) ((-805 . -758) T) ((-805 . -554) 123502) ((-805 . -1015) T) ((-805 . -72) T) ((-805 . -13) T) ((-805 . -1131) T) ((-805 . -761) T) ((-805 . -952) 123479) ((-805 . -557) 123456) ((-802 . -1015) T) ((-802 . -554) 123438) ((-802 . -1131) T) ((-802 . -13) T) ((-802 . -72) T) ((-802 . -952) 123406) ((-802 . -557) 123374) ((-800 . -1015) T) ((-800 . -554) 123356) ((-800 . -1131) T) ((-800 . -13) T) ((-800 . -72) T) ((-797 . -1015) T) ((-797 . -554) 123338) ((-797 . -1131) T) ((-797 . -13) T) ((-797 . -72) T) ((-787 . -997) T) ((-787 . -431) 123319) ((-787 . -554) 123285) ((-787 . -557) 123266) ((-787 . -1015) T) ((-787 . -1131) T) ((-787 . -13) T) ((-787 . -72) T) ((-787 . -64) T) ((-787 . -1177) T) ((-785 . -1015) T) ((-785 . -554) 123248) ((-785 . -1131) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -557) 123230) ((-784 . -1131) T) ((-784 . -13) T) ((-784 . -554) 123105) ((-784 . -1015) 123056) ((-784 . -72) 123007) ((-783 . -906) 122991) ((-783 . -1068) 122969) ((-783 . -952) 122836) ((-783 . -557) 122735) ((-783 . -555) 122538) ((-783 . -935) 122517) ((-783 . -823) 122496) ((-783 . -796) 122480) ((-783 . -757) 122459) ((-783 . -723) 122438) ((-783 . -720) 122417) ((-783 . -761) 122371) ((-783 . -758) 122325) ((-783 . -718) 122304) ((-783 . -716) 122283) ((-783 . -742) 122262) ((-783 . -798) 122187) ((-783 . -343) 122171) ((-783 . -582) 122119) ((-783 . -592) 122035) ((-783 . -329) 122019) ((-783 . -241) 121977) ((-783 . -260) 121942) ((-783 . -457) 121854) ((-783 . -288) 121838) ((-783 . -201) T) ((-783 . -82) 121769) ((-783 . -965) 121721) ((-783 . -970) 121673) ((-783 . -246) T) ((-783 . -656) 121625) ((-783 . -584) 121577) ((-783 . -590) 121514) ((-783 . -38) 121466) ((-783 . -258) T) ((-783 . -393) T) ((-783 . -146) T) ((-783 . -497) T) ((-783 . -834) T) ((-783 . -1136) T) ((-783 . -312) T) ((-783 . -190) 121445) ((-783 . -186) 121393) ((-783 . -189) 121347) ((-783 . -225) 121331) ((-783 . -808) 121255) ((-783 . -813) 121181) ((-783 . -811) 121140) ((-783 . -184) 121124) ((-783 . -120) 121078) ((-783 . -118) 121057) ((-783 . -104) T) ((-783 . -25) T) ((-783 . -72) T) ((-783 . -13) T) ((-783 . -1131) T) ((-783 . -554) 121039) ((-783 . -1015) T) ((-783 . -23) T) ((-783 . -21) T) ((-783 . -963) T) ((-783 . -665) T) ((-783 . -1063) T) ((-783 . -1027) T) ((-783 . -972) T) ((-782 . -906) 121016) ((-782 . -1068) NIL) ((-782 . -952) 120993) ((-782 . -557) 120923) ((-782 . -555) NIL) ((-782 . -935) NIL) ((-782 . -823) NIL) ((-782 . -796) 120900) ((-782 . -757) NIL) ((-782 . -723) NIL) ((-782 . -720) NIL) ((-782 . -761) NIL) ((-782 . -758) NIL) ((-782 . -718) NIL) ((-782 . -716) NIL) ((-782 . -742) NIL) ((-782 . -798) NIL) ((-782 . -343) 120877) ((-782 . -582) 120854) ((-782 . -592) 120799) ((-782 . -329) 120776) ((-782 . -241) 120706) ((-782 . -260) 120650) ((-782 . -457) 120513) ((-782 . -288) 120490) ((-782 . -201) T) ((-782 . -82) 120407) ((-782 . -965) 120352) ((-782 . -970) 120297) ((-782 . -246) T) ((-782 . -656) 120242) ((-782 . -584) 120187) ((-782 . -590) 120117) ((-782 . -38) 120062) ((-782 . -258) T) ((-782 . -393) T) ((-782 . -146) T) ((-782 . -497) T) ((-782 . -834) T) ((-782 . -1136) T) ((-782 . -312) T) ((-782 . -190) NIL) ((-782 . -186) NIL) ((-782 . -189) NIL) ((-782 . -225) 120039) ((-782 . -808) NIL) ((-782 . -813) NIL) ((-782 . -811) NIL) ((-782 . -184) 120016) ((-782 . -120) T) ((-782 . -118) NIL) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1131) T) ((-782 . -554) 119998) ((-782 . -1015) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -963) T) ((-782 . -665) T) ((-782 . -1063) T) ((-782 . -1027) T) ((-782 . -972) T) ((-780 . -781) 119982) ((-780 . -834) T) ((-780 . -497) T) ((-780 . -246) T) ((-780 . -146) T) ((-780 . -557) 119954) ((-780 . -656) 119941) ((-780 . -584) 119928) ((-780 . -970) 119915) ((-780 . -965) 119902) ((-780 . -82) 119887) ((-780 . -38) 119874) ((-780 . -393) T) ((-780 . -258) T) ((-780 . -963) T) ((-780 . -665) T) ((-780 . -1063) T) ((-780 . -1027) T) ((-780 . -972) T) ((-780 . -21) T) ((-780 . -590) 119846) ((-780 . -23) T) ((-780 . -1015) T) ((-780 . -554) 119828) ((-780 . -1131) T) ((-780 . -13) T) ((-780 . -72) T) ((-780 . -25) T) ((-780 . -104) T) ((-780 . -592) 119815) ((-780 . -120) T) ((-777 . -963) T) ((-777 . -665) T) ((-777 . -1063) T) ((-777 . -1027) T) ((-777 . -972) T) ((-777 . -21) T) ((-777 . -590) 119760) ((-777 . -23) T) ((-777 . -1015) T) ((-777 . -554) 119722) ((-777 . -1131) T) ((-777 . -13) T) ((-777 . -72) T) ((-777 . -25) T) ((-777 . -104) T) ((-777 . -592) 119682) ((-777 . -557) 119617) ((-777 . -431) 119594) ((-777 . -38) 119564) ((-777 . -82) 119529) ((-777 . -965) 119499) ((-777 . -970) 119469) ((-777 . -584) 119439) ((-777 . -656) 119409) ((-776 . -1015) T) ((-776 . -554) 119391) ((-776 . -1131) T) ((-776 . -13) T) ((-776 . -72) T) ((-775 . -754) T) ((-775 . -761) T) ((-775 . -758) T) ((-775 . -1015) T) ((-775 . -554) 119373) ((-775 . -1131) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -320) T) ((-775 . -555) 119295) ((-774 . -1015) T) ((-774 . -554) 119277) ((-774 . -1131) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -772) T) ((-773 . -147) T) ((-773 . -554) 119259) ((-769 . -758) T) ((-769 . -554) 119241) ((-769 . -1015) T) ((-769 . -72) T) ((-769 . -13) T) ((-769 . -1131) T) ((-769 . -761) T) ((-766 . -763) 119225) ((-766 . -952) 119123) ((-766 . -557) 119021) ((-766 . -355) 119005) ((-766 . -656) 118975) ((-766 . -584) 118945) ((-766 . -592) 118919) ((-766 . -590) 118878) ((-766 . -104) T) ((-766 . -25) T) ((-766 . -72) T) ((-766 . -13) T) ((-766 . -1131) T) ((-766 . -554) 118860) ((-766 . -1015) T) ((-766 . -23) T) ((-766 . -21) T) ((-766 . -970) 118844) ((-766 . -965) 118828) ((-766 . -82) 118807) ((-766 . -963) T) ((-766 . -665) T) ((-766 . -1063) T) ((-766 . -1027) T) ((-766 . -972) T) ((-766 . -38) 118777) ((-765 . -763) 118761) ((-765 . -952) 118659) ((-765 . -557) 118578) ((-765 . -355) 118562) ((-765 . -656) 118532) ((-765 . -584) 118502) ((-765 . -592) 118476) ((-765 . -590) 118435) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1131) T) ((-765 . -554) 118417) ((-765 . -1015) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -970) 118401) ((-765 . -965) 118385) ((-765 . -82) 118364) ((-765 . -963) T) ((-765 . -665) T) ((-765 . -1063) T) ((-765 . -1027) T) ((-765 . -972) T) ((-765 . -38) 118334) ((-759 . -761) T) ((-759 . -1131) T) ((-759 . -13) T) ((-759 . -72) T) ((-759 . -431) 118318) ((-759 . -554) 118266) ((-759 . -557) 118250) ((-752 . -1015) T) ((-752 . -554) 118232) ((-752 . -1131) T) ((-752 . -13) T) ((-752 . -72) T) ((-752 . -355) 118216) ((-752 . -557) 118089) ((-752 . -952) 117987) ((-752 . -21) 117942) ((-752 . -590) 117862) ((-752 . -23) 117817) ((-752 . -25) 117772) ((-752 . -104) 117727) ((-752 . -757) 117706) ((-752 . -723) 117685) ((-752 . -720) 117664) ((-752 . -761) 117643) ((-752 . -758) 117622) ((-752 . -718) 117601) ((-752 . -716) 117580) ((-752 . -963) 117559) ((-752 . -665) 117538) ((-752 . -1063) 117517) ((-752 . -1027) 117496) ((-752 . -972) 117475) ((-752 . -592) 117448) ((-752 . -120) 117427) ((-751 . -749) 117409) ((-751 . -72) T) ((-751 . -13) T) ((-751 . -1131) T) ((-751 . -554) 117391) ((-751 . -1015) T) ((-747 . -963) T) ((-747 . -665) T) ((-747 . -1063) T) ((-747 . -1027) T) ((-747 . -972) T) ((-747 . -21) T) ((-747 . -590) 117336) ((-747 . -23) T) ((-747 . -1015) T) ((-747 . -554) 117318) ((-747 . -1131) T) ((-747 . -13) T) ((-747 . -72) T) ((-747 . -25) T) ((-747 . -104) T) ((-747 . -592) 117278) ((-747 . -557) 117233) ((-747 . -952) 117203) ((-747 . -241) 117182) ((-747 . -120) 117161) ((-747 . -118) 117140) ((-747 . -38) 117110) ((-747 . -82) 117075) ((-747 . -965) 117045) ((-747 . -970) 117015) ((-747 . -584) 116985) ((-747 . -656) 116955) ((-745 . -1015) T) ((-745 . -554) 116937) ((-745 . -1131) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -355) 116921) ((-745 . -557) 116794) ((-745 . -952) 116692) ((-745 . -21) 116647) ((-745 . -590) 116567) ((-745 . -23) 116522) ((-745 . -25) 116477) ((-745 . -104) 116432) ((-745 . -757) 116411) ((-745 . -723) 116390) ((-745 . -720) 116369) ((-745 . -761) 116348) ((-745 . -758) 116327) ((-745 . -718) 116306) ((-745 . -716) 116285) ((-745 . -963) 116264) ((-745 . -665) 116243) ((-745 . -1063) 116222) ((-745 . -1027) 116201) ((-745 . -972) 116180) ((-745 . -592) 116153) ((-745 . -120) 116132) ((-743 . -647) 116116) ((-743 . -557) 116071) ((-743 . -656) 116041) ((-743 . -584) 116011) ((-743 . -592) 115985) ((-743 . -590) 115944) ((-743 . -104) T) ((-743 . -25) T) ((-743 . -72) T) ((-743 . -13) T) ((-743 . -1131) T) ((-743 . -554) 115926) ((-743 . -1015) T) ((-743 . -23) T) ((-743 . -21) T) ((-743 . -970) 115910) ((-743 . -965) 115894) ((-743 . -82) 115873) ((-743 . -963) T) ((-743 . -665) T) ((-743 . -1063) T) ((-743 . -1027) T) ((-743 . -972) T) ((-743 . -38) 115843) ((-743 . -190) 115822) ((-743 . -186) 115795) ((-743 . -189) 115774) ((-741 . -336) 115758) ((-741 . -557) 115742) ((-741 . -952) 115726) ((-741 . -761) T) ((-741 . -758) T) ((-741 . -1027) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1131) T) ((-741 . -554) 115708) ((-741 . -1015) T) ((-741 . -665) T) ((-741 . -756) T) ((-741 . -768) T) ((-740 . -228) 115692) ((-740 . -557) 115676) ((-740 . -952) 115660) ((-740 . -761) T) ((-740 . -72) T) ((-740 . -1015) T) ((-740 . -554) 115642) ((-740 . -758) T) ((-740 . -186) 115629) ((-740 . -13) T) ((-740 . -1131) T) ((-740 . -189) T) ((-739 . -82) 115564) ((-739 . -965) 115515) ((-739 . -970) 115466) ((-739 . -21) T) ((-739 . -590) 115402) ((-739 . -23) T) ((-739 . -1015) T) ((-739 . -554) 115371) ((-739 . -1131) T) ((-739 . -13) T) ((-739 . -72) T) ((-739 . -25) T) ((-739 . -104) T) ((-739 . -592) 115322) ((-739 . -190) T) ((-739 . -557) 115231) ((-739 . -972) T) ((-739 . -1027) T) ((-739 . -1063) T) ((-739 . -665) T) ((-739 . -963) T) ((-739 . -186) 115218) ((-739 . -189) T) ((-739 . -431) 115202) ((-739 . -312) 115181) ((-739 . -1136) 115160) ((-739 . -834) 115139) ((-739 . -497) 115118) ((-739 . -146) 115097) ((-739 . -656) 115034) ((-739 . -584) 114971) ((-739 . -38) 114908) ((-739 . -393) 114887) ((-739 . -258) 114866) ((-739 . -246) 114845) ((-739 . -201) 114824) ((-738 . -213) 114763) ((-738 . -557) 114507) ((-738 . -952) 114337) ((-738 . -555) NIL) ((-738 . -277) 114299) ((-738 . -355) 114283) ((-738 . -38) 114135) ((-738 . -82) 113960) ((-738 . -965) 113806) ((-738 . -970) 113652) ((-738 . -590) 113562) ((-738 . -592) 113451) ((-738 . -584) 113303) ((-738 . -656) 113155) ((-738 . -118) 113134) ((-738 . -120) 113113) ((-738 . -146) 113027) ((-738 . -497) 112961) ((-738 . -246) 112895) ((-738 . -47) 112857) ((-738 . -329) 112841) ((-738 . -582) 112789) ((-738 . -393) 112743) ((-738 . -457) 112608) ((-738 . -811) 112544) ((-738 . -808) 112443) ((-738 . -813) 112346) ((-738 . -798) NIL) ((-738 . -823) 112325) ((-738 . -1136) 112304) ((-738 . -863) 112251) ((-738 . -260) 112238) ((-738 . -190) 112217) ((-738 . -104) T) ((-738 . -25) T) ((-738 . -72) T) ((-738 . -554) 112199) ((-738 . -1015) T) ((-738 . -23) T) ((-738 . -21) T) ((-738 . -972) T) ((-738 . -1027) T) ((-738 . -1063) T) ((-738 . -665) T) ((-738 . -963) T) ((-738 . -186) 112147) ((-738 . -13) T) ((-738 . -1131) T) ((-738 . -189) 112101) ((-738 . -225) 112085) ((-738 . -184) 112069) ((-737 . -196) 112048) ((-737 . -1189) 112018) ((-737 . -723) 111997) ((-737 . -720) 111976) ((-737 . -761) 111930) ((-737 . -758) 111884) ((-737 . -718) 111863) ((-737 . -719) 111842) ((-737 . -656) 111787) ((-737 . -584) 111712) ((-737 . -243) 111689) ((-737 . -241) 111666) ((-737 . -540) 111643) ((-737 . -952) 111472) ((-737 . -557) 111276) ((-737 . -355) 111245) ((-737 . -582) 111153) ((-737 . -592) 110992) ((-737 . -329) 110962) ((-737 . -430) 110946) ((-737 . -381) 110930) ((-737 . -457) 110863) ((-737 . -260) 110801) ((-737 . -34) T) ((-737 . -318) 110785) ((-737 . -320) 110764) ((-737 . -190) 110717) ((-737 . -590) 110505) ((-737 . -972) 110484) ((-737 . -1027) 110463) ((-737 . -1063) 110442) ((-737 . -665) 110421) ((-737 . -963) 110400) ((-737 . -186) 110296) ((-737 . -189) 110198) ((-737 . -225) 110168) ((-737 . -808) 110040) ((-737 . -813) 109914) ((-737 . -811) 109847) ((-737 . -184) 109817) ((-737 . -554) 109514) ((-737 . -970) 109439) ((-737 . -965) 109344) ((-737 . -82) 109264) ((-737 . -104) 109139) ((-737 . -25) 108976) ((-737 . -72) 108713) ((-737 . -13) T) ((-737 . -1131) T) ((-737 . -1015) 108469) ((-737 . -23) 108325) ((-737 . -21) 108240) ((-724 . -722) 108224) ((-724 . -761) 108203) ((-724 . -758) 108182) ((-724 . -952) 107975) ((-724 . -557) 107828) ((-724 . -355) 107792) ((-724 . -241) 107750) ((-724 . -260) 107715) ((-724 . -457) 107627) ((-724 . -288) 107611) ((-724 . -320) 107590) ((-724 . -555) 107551) ((-724 . -120) 107530) ((-724 . -118) 107509) ((-724 . -656) 107493) ((-724 . -584) 107477) ((-724 . -592) 107451) ((-724 . -590) 107410) ((-724 . -104) T) ((-724 . -25) T) ((-724 . -72) T) ((-724 . -13) T) ((-724 . -1131) T) ((-724 . -554) 107392) ((-724 . -1015) T) ((-724 . -23) T) ((-724 . -21) T) ((-724 . -970) 107376) ((-724 . -965) 107360) ((-724 . -82) 107339) ((-724 . -963) T) ((-724 . -665) T) ((-724 . -1063) T) ((-724 . -1027) T) ((-724 . -972) T) ((-724 . -38) 107323) ((-706 . -1157) 107307) ((-706 . -1068) 107285) ((-706 . -555) NIL) ((-706 . -260) 107272) ((-706 . -457) 107220) ((-706 . -277) 107197) ((-706 . -952) 107059) ((-706 . -355) 107043) ((-706 . -38) 106875) ((-706 . -82) 106680) ((-706 . -965) 106506) ((-706 . -970) 106332) ((-706 . -590) 106242) ((-706 . -592) 106131) ((-706 . -584) 105963) ((-706 . -656) 105795) ((-706 . -557) 105551) ((-706 . -118) 105530) ((-706 . -120) 105509) ((-706 . -47) 105486) ((-706 . -329) 105470) ((-706 . -582) 105418) ((-706 . -811) 105362) ((-706 . -808) 105269) ((-706 . -813) 105180) ((-706 . -798) NIL) ((-706 . -823) 105159) ((-706 . -1136) 105138) ((-706 . -863) 105108) ((-706 . -834) 105087) ((-706 . -497) 105001) ((-706 . -246) 104915) ((-706 . -146) 104809) ((-706 . -393) 104743) ((-706 . -258) 104722) ((-706 . -241) 104649) ((-706 . -190) T) ((-706 . -104) T) ((-706 . -25) T) ((-706 . -72) T) ((-706 . -554) 104610) ((-706 . -1015) T) ((-706 . -23) T) ((-706 . -21) T) ((-706 . -972) T) ((-706 . -1027) T) ((-706 . -1063) T) ((-706 . -665) T) ((-706 . -963) T) ((-706 . -186) 104597) ((-706 . -13) T) ((-706 . -1131) T) ((-706 . -189) T) ((-706 . -225) 104581) ((-706 . -184) 104565) ((-705 . -979) 104532) ((-705 . -555) 104167) ((-705 . -260) 104154) ((-705 . -457) 104106) ((-705 . -277) 104078) ((-705 . -952) 103937) ((-705 . -355) 103921) ((-705 . -38) 103773) ((-705 . -557) 103546) ((-705 . -592) 103435) ((-705 . -590) 103345) ((-705 . -972) T) ((-705 . -1027) T) ((-705 . -1063) T) ((-705 . -665) T) ((-705 . -963) T) ((-705 . -82) 103170) ((-705 . -965) 103016) ((-705 . -970) 102862) ((-705 . -21) T) ((-705 . -23) T) ((-705 . -1015) T) ((-705 . -554) 102776) ((-705 . -1131) T) ((-705 . -13) T) ((-705 . -72) T) ((-705 . -25) T) ((-705 . -104) T) ((-705 . -584) 102628) ((-705 . -656) 102480) ((-705 . -118) 102459) ((-705 . -120) 102438) ((-705 . -146) 102352) ((-705 . -497) 102286) ((-705 . -246) 102220) ((-705 . -47) 102192) ((-705 . -329) 102176) ((-705 . -582) 102124) ((-705 . -393) 102078) ((-705 . -811) 102062) ((-705 . -808) 102044) ((-705 . -813) 102028) ((-705 . -798) 101887) ((-705 . -823) 101866) ((-705 . -1136) 101845) ((-705 . -863) 101812) ((-698 . -1015) T) ((-698 . -554) 101794) ((-698 . -1131) T) ((-698 . -13) T) ((-698 . -72) T) ((-696 . -719) T) ((-696 . -104) T) ((-696 . -25) T) ((-696 . -72) T) ((-696 . -13) T) ((-696 . -1131) T) ((-696 . -554) 101776) ((-696 . -1015) T) ((-696 . -23) T) ((-696 . -718) T) ((-696 . -758) T) ((-696 . -761) T) ((-696 . -720) T) ((-696 . -723) T) ((-696 . -665) T) ((-696 . -1027) T) ((-677 . -678) 101760) ((-677 . -1013) 101744) ((-677 . -193) 101728) ((-677 . -555) 101689) ((-677 . -124) 101673) ((-677 . -1037) 101657) ((-677 . -34) T) ((-677 . -13) T) ((-677 . -1131) T) ((-677 . -72) T) ((-677 . -554) 101639) ((-677 . -260) 101577) ((-677 . -457) 101510) ((-677 . -381) 101494) ((-677 . -1015) T) ((-677 . -430) 101478) ((-677 . -76) 101462) ((-677 . -636) 101446) ((-677 . -318) 101430) ((-676 . -963) T) ((-676 . -665) T) ((-676 . -1063) T) ((-676 . -1027) T) ((-676 . -972) T) ((-676 . -21) T) ((-676 . -590) 101375) ((-676 . -23) T) ((-676 . -1015) T) ((-676 . -554) 101357) ((-676 . -1131) T) ((-676 . -13) T) ((-676 . -72) T) ((-676 . -25) T) ((-676 . -104) T) ((-676 . -592) 101317) ((-676 . -557) 101273) ((-676 . -952) 101244) ((-676 . -120) 101223) ((-676 . -118) 101202) ((-676 . -38) 101172) ((-676 . -82) 101137) ((-676 . -965) 101107) ((-676 . -970) 101077) ((-676 . -584) 101047) ((-676 . -656) 101017) ((-676 . -320) 100970) ((-672 . -863) 100923) ((-672 . -557) 100715) ((-672 . -952) 100593) ((-672 . -1136) 100572) ((-672 . -823) 100551) ((-672 . -798) NIL) ((-672 . -813) 100528) ((-672 . -808) 100503) ((-672 . -811) 100480) ((-672 . -457) 100418) ((-672 . -393) 100372) ((-672 . -582) 100320) ((-672 . -592) 100209) ((-672 . -329) 100193) ((-672 . -47) 100158) ((-672 . -38) 100010) ((-672 . -584) 99862) ((-672 . -656) 99714) ((-672 . -246) 99648) ((-672 . -497) 99582) ((-672 . -82) 99407) ((-672 . -965) 99253) ((-672 . -970) 99099) ((-672 . -146) 99013) ((-672 . -120) 98992) ((-672 . -118) 98971) ((-672 . -590) 98881) ((-672 . -104) T) ((-672 . -25) T) ((-672 . -72) T) ((-672 . -13) T) ((-672 . -1131) T) ((-672 . -554) 98863) ((-672 . -1015) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -963) T) ((-672 . -665) T) ((-672 . -1063) T) ((-672 . -1027) T) ((-672 . -972) T) ((-672 . -355) 98847) ((-672 . -277) 98812) ((-672 . -260) 98799) ((-672 . -555) 98660) ((-666 . -667) 98644) ((-666 . -80) 98628) ((-666 . -1131) T) ((-666 . |MappingCategory|) 98602) ((-666 . -1025) 98586) ((-666 . -1015) T) ((-666 . -554) 98547) ((-666 . -13) T) ((-666 . -72) T) ((-657 . -414) T) ((-657 . -1027) T) ((-657 . -72) T) ((-657 . -13) T) ((-657 . -1131) T) ((-657 . -554) 98529) ((-657 . -1015) T) ((-657 . -665) T) ((-654 . -963) T) ((-654 . -665) T) ((-654 . -1063) T) ((-654 . -1027) T) ((-654 . -972) T) ((-654 . -21) T) ((-654 . -590) 98501) ((-654 . -23) T) ((-654 . -1015) T) ((-654 . -554) 98483) ((-654 . -1131) T) ((-654 . -13) T) ((-654 . -72) T) ((-654 . -25) T) ((-654 . -104) T) ((-654 . -592) 98470) ((-654 . -557) 98452) ((-653 . -963) T) ((-653 . -665) T) ((-653 . -1063) T) ((-653 . -1027) T) ((-653 . -972) T) ((-653 . -21) T) ((-653 . -590) 98397) ((-653 . -23) T) ((-653 . -1015) T) ((-653 . -554) 98379) ((-653 . -1131) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -592) 98339) ((-653 . -557) 98294) ((-653 . -952) 98264) ((-653 . -241) 98243) ((-653 . -120) 98222) ((-653 . -118) 98201) ((-653 . -38) 98171) ((-653 . -82) 98136) ((-653 . -965) 98106) ((-653 . -970) 98076) ((-653 . -584) 98046) ((-653 . -656) 98016) ((-652 . -758) T) ((-652 . -554) 97951) ((-652 . -1015) T) ((-652 . -72) T) ((-652 . -13) T) ((-652 . -1131) T) ((-652 . -761) T) ((-652 . -431) 97901) ((-652 . -557) 97851) ((-651 . -1157) 97835) ((-651 . -1068) 97813) ((-651 . -555) NIL) ((-651 . -260) 97800) ((-651 . -457) 97748) ((-651 . -277) 97725) ((-651 . -952) 97608) ((-651 . -355) 97592) ((-651 . -38) 97424) ((-651 . -82) 97229) ((-651 . -965) 97055) ((-651 . -970) 96881) ((-651 . -590) 96791) ((-651 . -592) 96680) ((-651 . -584) 96512) ((-651 . -656) 96344) ((-651 . -557) 96108) ((-651 . -118) 96087) ((-651 . -120) 96066) ((-651 . -47) 96043) ((-651 . -329) 96027) ((-651 . -582) 95975) ((-651 . -811) 95919) ((-651 . -808) 95826) ((-651 . -813) 95737) ((-651 . -798) NIL) ((-651 . -823) 95716) ((-651 . -1136) 95695) ((-651 . -863) 95665) ((-651 . -834) 95644) ((-651 . -497) 95558) ((-651 . -246) 95472) ((-651 . -146) 95366) ((-651 . -393) 95300) ((-651 . -258) 95279) ((-651 . -241) 95206) ((-651 . -190) T) ((-651 . -104) T) ((-651 . -25) T) ((-651 . -72) T) ((-651 . -554) 95188) ((-651 . -1015) T) ((-651 . -23) T) ((-651 . -21) T) ((-651 . -972) T) ((-651 . -1027) T) ((-651 . -1063) T) ((-651 . -665) T) ((-651 . -963) T) ((-651 . -186) 95175) ((-651 . -13) T) ((-651 . -1131) T) ((-651 . -189) T) ((-651 . -225) 95159) ((-651 . -184) 95143) ((-651 . -320) 95122) ((-650 . -312) T) ((-650 . -1136) T) ((-650 . -834) T) ((-650 . -497) T) ((-650 . -146) T) ((-650 . -557) 95072) ((-650 . -656) 95037) ((-650 . -584) 95002) ((-650 . -38) 94967) ((-650 . -393) T) ((-650 . -258) T) ((-650 . -592) 94932) ((-650 . -590) 94882) ((-650 . -972) T) ((-650 . -1027) T) ((-650 . -1063) T) ((-650 . -665) T) ((-650 . -963) T) ((-650 . -82) 94831) ((-650 . -965) 94796) ((-650 . -970) 94761) ((-650 . -21) T) ((-650 . -23) T) ((-650 . -1015) T) ((-650 . -554) 94743) ((-650 . -1131) T) ((-650 . -13) T) ((-650 . -72) T) ((-650 . -25) T) ((-650 . -104) T) ((-650 . -246) T) ((-650 . -201) T) ((-649 . -1015) T) ((-649 . -554) 94725) ((-649 . -1131) T) ((-649 . -13) T) ((-649 . -72) T) ((-634 . -1177) T) ((-634 . -952) 94709) ((-634 . -557) 94693) ((-634 . -554) 94675) ((-632 . -629) 94633) ((-632 . -318) 94617) ((-632 . -34) T) ((-632 . -13) T) ((-632 . -1131) T) ((-632 . -72) 94571) ((-632 . -554) 94506) ((-632 . -260) 94444) ((-632 . -457) 94377) ((-632 . -381) 94361) ((-632 . -1015) 94339) ((-632 . -430) 94323) ((-632 . -1037) 94307) ((-632 . -57) 94265) ((-632 . -555) 94226) ((-624 . -997) T) ((-624 . -431) 94207) ((-624 . -554) 94157) ((-624 . -557) 94138) ((-624 . -1015) T) ((-624 . -1131) T) ((-624 . -13) T) ((-624 . -72) T) ((-624 . -64) T) ((-620 . -758) T) ((-620 . -554) 94120) ((-620 . -1015) T) ((-620 . -72) T) ((-620 . -13) T) ((-620 . -1131) T) ((-620 . -761) T) ((-620 . -952) 94104) ((-620 . -557) 94088) ((-619 . -997) T) ((-619 . -431) 94069) ((-619 . -554) 94035) ((-619 . -557) 94016) ((-619 . -1015) T) ((-619 . -1131) T) ((-619 . -13) T) ((-619 . -72) T) ((-619 . -64) T) ((-616 . -758) T) ((-616 . -554) 93998) ((-616 . -1015) T) ((-616 . -72) T) ((-616 . -13) T) ((-616 . -1131) T) ((-616 . -761) T) ((-616 . -952) 93982) ((-616 . -557) 93966) ((-615 . -997) T) ((-615 . -431) 93947) ((-615 . -554) 93913) ((-615 . -557) 93894) ((-615 . -1015) T) ((-615 . -1131) T) ((-615 . -13) T) ((-615 . -72) T) ((-615 . -64) T) ((-614 . -1039) 93839) ((-614 . -318) 93823) ((-614 . -34) T) ((-614 . -260) 93761) ((-614 . -457) 93694) ((-614 . -381) 93678) ((-614 . -430) 93662) ((-614 . -967) 93602) ((-614 . -952) 93500) ((-614 . -557) 93419) ((-614 . -355) 93403) ((-614 . -582) 93351) ((-614 . -592) 93289) ((-614 . -329) 93273) ((-614 . -190) 93252) ((-614 . -186) 93200) ((-614 . -189) 93154) ((-614 . -225) 93138) ((-614 . -808) 93062) ((-614 . -813) 92988) ((-614 . -811) 92947) ((-614 . -184) 92931) ((-614 . -656) 92915) ((-614 . -584) 92899) ((-614 . -590) 92858) ((-614 . -104) T) ((-614 . -25) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1131) T) ((-614 . -554) 92820) ((-614 . -1015) T) ((-614 . -23) T) ((-614 . -21) T) ((-614 . -970) 92804) ((-614 . -965) 92788) ((-614 . -82) 92767) ((-614 . -963) T) ((-614 . -665) T) ((-614 . -1063) T) ((-614 . -1027) T) ((-614 . -972) T) ((-614 . -38) 92727) ((-614 . -361) 92711) ((-614 . -685) 92695) ((-614 . -659) T) ((-614 . -687) T) ((-614 . -316) 92679) ((-614 . -241) 92656) ((-608 . -326) 92635) ((-608 . -656) 92619) ((-608 . -584) 92603) ((-608 . -592) 92587) ((-608 . -590) 92556) ((-608 . -104) T) ((-608 . -25) T) ((-608 . -72) T) ((-608 . -13) T) ((-608 . -1131) T) ((-608 . -554) 92538) ((-608 . -1015) T) ((-608 . -23) T) ((-608 . -21) T) ((-608 . -970) 92522) ((-608 . -965) 92506) ((-608 . -82) 92485) ((-608 . -576) 92469) ((-608 . -335) 92441) ((-608 . -557) 92418) ((-608 . -952) 92395) ((-600 . -602) 92379) ((-600 . -38) 92349) ((-600 . -557) 92268) ((-600 . -592) 92242) ((-600 . -590) 92201) ((-600 . -972) T) ((-600 . -1027) T) ((-600 . -1063) T) ((-600 . -665) T) ((-600 . -963) T) ((-600 . -82) 92180) ((-600 . -965) 92164) ((-600 . -970) 92148) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1015) T) ((-600 . -554) 92130) ((-600 . -72) T) ((-600 . -25) T) ((-600 . -104) T) ((-600 . -584) 92100) ((-600 . -656) 92070) ((-600 . -355) 92054) ((-600 . -952) 91952) ((-600 . -763) 91936) ((-600 . -1131) T) ((-600 . -13) T) ((-600 . -241) 91897) ((-599 . -602) 91881) ((-599 . -38) 91851) ((-599 . -557) 91770) ((-599 . -592) 91744) ((-599 . -590) 91703) ((-599 . -972) T) ((-599 . -1027) T) ((-599 . -1063) T) ((-599 . -665) T) ((-599 . -963) T) ((-599 . -82) 91682) ((-599 . -965) 91666) ((-599 . -970) 91650) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1015) T) ((-599 . -554) 91632) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -584) 91602) ((-599 . -656) 91572) ((-599 . -355) 91556) ((-599 . -952) 91454) ((-599 . -763) 91438) ((-599 . -1131) T) ((-599 . -13) T) ((-599 . -241) 91417) ((-598 . -602) 91401) ((-598 . -38) 91371) ((-598 . -557) 91290) ((-598 . -592) 91264) ((-598 . -590) 91223) ((-598 . -972) T) ((-598 . -1027) T) ((-598 . -1063) T) ((-598 . -665) T) ((-598 . -963) T) ((-598 . -82) 91202) ((-598 . -965) 91186) ((-598 . -970) 91170) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1015) T) ((-598 . -554) 91152) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -584) 91122) ((-598 . -656) 91092) ((-598 . -355) 91076) ((-598 . -952) 90974) ((-598 . -763) 90958) ((-598 . -1131) T) ((-598 . -13) T) ((-598 . -241) 90937) ((-596 . -656) 90921) ((-596 . -584) 90905) ((-596 . -592) 90889) ((-596 . -590) 90858) ((-596 . -104) T) ((-596 . -25) T) ((-596 . -72) T) ((-596 . -13) T) ((-596 . -1131) T) ((-596 . -554) 90840) ((-596 . -1015) T) ((-596 . -23) T) ((-596 . -21) T) ((-596 . -970) 90824) ((-596 . -965) 90808) ((-596 . -82) 90787) ((-596 . -716) 90766) ((-596 . -718) 90745) ((-596 . -758) 90724) ((-596 . -761) 90703) ((-596 . -720) 90682) ((-596 . -723) 90661) ((-593 . -1015) T) ((-593 . -554) 90643) ((-593 . -1131) T) ((-593 . -13) T) ((-593 . -72) T) ((-593 . -952) 90627) ((-593 . -557) 90611) ((-591 . -636) 90595) ((-591 . -76) 90579) ((-591 . -430) 90563) ((-591 . -1015) 90541) ((-591 . -381) 90525) ((-591 . -457) 90458) ((-591 . -260) 90396) ((-591 . -554) 90331) ((-591 . -72) 90285) ((-591 . -1131) T) ((-591 . -13) T) ((-591 . -34) T) ((-591 . -1037) 90269) ((-591 . -124) 90253) ((-591 . -555) 90214) ((-591 . -193) 90198) ((-591 . -318) 90182) ((-589 . -997) T) ((-589 . -431) 90163) ((-589 . -554) 90116) ((-589 . -557) 90097) ((-589 . -1015) T) ((-589 . -1131) T) ((-589 . -13) T) ((-589 . -72) T) ((-589 . -64) T) ((-585 . -610) 90081) ((-585 . -1170) 90065) ((-585 . -925) 90049) ((-585 . -1066) 90033) ((-585 . -318) 90017) ((-585 . -758) 89996) ((-585 . -761) 89975) ((-585 . -324) 89959) ((-585 . -595) 89943) ((-585 . -243) 89920) ((-585 . -241) 89872) ((-585 . -540) 89849) ((-585 . -555) 89810) ((-585 . -430) 89794) ((-585 . -1015) 89747) ((-585 . -381) 89731) ((-585 . -457) 89664) ((-585 . -260) 89602) ((-585 . -554) 89517) ((-585 . -72) 89451) ((-585 . -1131) T) ((-585 . -13) T) ((-585 . -34) T) ((-585 . -124) 89435) ((-585 . -1037) 89419) ((-585 . -237) 89403) ((-583 . -1189) 89387) ((-583 . -82) 89366) ((-583 . -965) 89350) ((-583 . -970) 89334) ((-583 . -21) T) ((-583 . -590) 89303) ((-583 . -23) T) ((-583 . -1015) T) ((-583 . -554) 89285) ((-583 . -1131) T) ((-583 . -13) T) ((-583 . -72) T) ((-583 . -25) T) ((-583 . -104) T) ((-583 . -592) 89269) ((-583 . -584) 89253) ((-583 . -656) 89237) ((-583 . -241) 89204) ((-581 . -1189) 89188) ((-581 . -82) 89167) ((-581 . -965) 89151) ((-581 . -970) 89135) ((-581 . -21) T) ((-581 . -590) 89104) ((-581 . -23) T) ((-581 . -1015) T) ((-581 . -554) 89086) ((-581 . -1131) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -592) 89070) ((-581 . -584) 89054) ((-581 . -656) 89038) ((-581 . -557) 89015) ((-581 . -451) 88987) ((-581 . -559) 88945) ((-579 . -754) T) ((-579 . -761) T) ((-579 . -758) T) ((-579 . -1015) T) ((-579 . -554) 88927) ((-579 . -1131) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -320) T) ((-579 . -557) 88904) ((-574 . -685) 88888) ((-574 . -659) T) ((-574 . -687) T) ((-574 . -82) 88867) ((-574 . -965) 88851) ((-574 . -970) 88835) ((-574 . -21) T) ((-574 . -590) 88804) ((-574 . -23) T) ((-574 . -1015) T) ((-574 . -554) 88773) ((-574 . -1131) T) ((-574 . -13) T) ((-574 . -72) T) ((-574 . -25) T) ((-574 . -104) T) ((-574 . -592) 88757) ((-574 . -584) 88741) ((-574 . -656) 88725) ((-574 . -361) 88690) ((-574 . -316) 88625) ((-574 . -241) 88583) ((-573 . -1109) 88558) ((-573 . -183) 88502) ((-573 . -76) 88446) ((-573 . -1037) 88376) ((-573 . -124) 88320) ((-573 . -555) NIL) ((-573 . -193) 88264) ((-573 . -540) 88239) ((-573 . -260) 88084) ((-573 . -457) 87884) ((-573 . -381) 87814) ((-573 . -430) 87744) ((-573 . -241) 87697) ((-573 . -243) 87672) ((-573 . -551) 87647) ((-573 . -1015) T) ((-573 . -554) 87629) ((-573 . -72) T) ((-573 . -1131) T) ((-573 . -13) T) ((-573 . -34) T) ((-573 . -318) 87573) ((-568 . -414) T) ((-568 . -1027) T) ((-568 . -72) T) ((-568 . -13) T) ((-568 . -1131) T) ((-568 . -554) 87555) ((-568 . -1015) T) ((-568 . -665) T) ((-567 . -997) T) ((-567 . -431) 87536) ((-567 . -554) 87502) ((-567 . -557) 87483) ((-567 . -1015) T) ((-567 . -1131) T) ((-567 . -13) T) ((-567 . -72) T) ((-567 . -64) T) ((-564 . -184) 87467) ((-564 . -811) 87426) ((-564 . -813) 87352) ((-564 . -808) 87276) ((-564 . -225) 87260) ((-564 . -189) 87214) ((-564 . -1131) T) ((-564 . -13) T) ((-564 . -186) 87162) ((-564 . -963) T) ((-564 . -665) T) ((-564 . -1063) T) ((-564 . -1027) T) ((-564 . -972) T) ((-564 . -21) T) ((-564 . -590) 87134) ((-564 . -23) T) ((-564 . -1015) T) ((-564 . -554) 87116) ((-564 . -72) T) ((-564 . -25) T) ((-564 . -104) T) ((-564 . -592) 87103) ((-564 . -557) 86999) ((-564 . -190) 86978) ((-564 . -497) T) ((-564 . -246) T) ((-564 . -146) T) ((-564 . -656) 86965) ((-564 . -584) 86952) ((-564 . -970) 86939) ((-564 . -965) 86926) ((-564 . -82) 86911) ((-564 . -38) 86898) ((-564 . -555) 86875) ((-564 . -355) 86859) ((-564 . -952) 86744) ((-564 . -120) 86723) ((-564 . -118) 86702) ((-564 . -258) 86681) ((-564 . -393) 86660) ((-564 . -834) 86639) ((-560 . -38) 86623) ((-560 . -557) 86592) ((-560 . -592) 86566) ((-560 . -590) 86525) ((-560 . -972) T) ((-560 . -1027) T) ((-560 . -1063) T) ((-560 . -665) T) ((-560 . -963) T) ((-560 . -82) 86504) ((-560 . -965) 86488) ((-560 . -970) 86472) ((-560 . -21) T) ((-560 . -23) T) ((-560 . -1015) T) ((-560 . -554) 86454) ((-560 . -1131) T) ((-560 . -13) T) ((-560 . -72) T) ((-560 . -25) T) ((-560 . -104) T) ((-560 . -584) 86438) ((-560 . -656) 86422) ((-560 . -757) 86401) ((-560 . -723) 86380) ((-560 . -720) 86359) ((-560 . -761) 86338) ((-560 . -758) 86317) ((-560 . -718) 86296) ((-560 . -716) 86275) ((-560 . -120) 86254) ((-558 . -882) T) ((-558 . -72) T) ((-558 . -554) 86236) ((-558 . -1015) T) ((-558 . -606) T) ((-558 . -13) T) ((-558 . -1131) T) ((-558 . -84) T) ((-558 . -320) T) ((-552 . -105) T) ((-552 . -72) T) ((-552 . -13) T) ((-552 . -1131) T) ((-552 . -554) 86218) ((-552 . -1015) T) ((-552 . -758) T) ((-552 . -761) T) ((-552 . -796) 86202) ((-552 . -555) 86063) ((-549 . -314) 86001) ((-549 . -72) T) ((-549 . -13) T) ((-549 . -1131) T) ((-549 . -554) 85983) ((-549 . -1015) T) ((-549 . -1109) 85959) ((-549 . -183) 85904) ((-549 . -76) 85849) ((-549 . -1037) 85781) ((-549 . -124) 85726) ((-549 . -555) NIL) ((-549 . -193) 85671) ((-549 . -540) 85647) ((-549 . -260) 85436) ((-549 . -457) 85176) ((-549 . -381) 85108) ((-549 . -430) 85040) ((-549 . -241) 85016) ((-549 . -243) 84992) ((-549 . -551) 84968) ((-549 . -34) T) ((-549 . -318) 84913) ((-548 . -1015) T) ((-548 . -554) 84865) ((-548 . -1131) T) ((-548 . -13) T) ((-548 . -72) T) ((-548 . -431) 84832) ((-548 . -557) 84799) ((-547 . -1015) T) ((-547 . -554) 84781) ((-547 . -1131) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -606) T) ((-546 . -1015) T) ((-546 . -554) 84763) ((-546 . -1131) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -606) T) ((-545 . -1015) T) ((-545 . -554) 84730) ((-545 . -1131) T) ((-545 . -13) T) ((-545 . -72) T) ((-544 . -1015) T) ((-544 . -554) 84712) ((-544 . -1131) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -606) T) ((-543 . -1015) T) ((-543 . -554) 84679) ((-543 . -1131) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -431) 84661) ((-543 . -557) 84643) ((-542 . -685) 84627) ((-542 . -659) T) ((-542 . -687) T) ((-542 . -82) 84606) ((-542 . -965) 84590) ((-542 . -970) 84574) ((-542 . -21) T) ((-542 . -590) 84543) ((-542 . -23) T) ((-542 . -1015) T) ((-542 . -554) 84512) ((-542 . -1131) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -25) T) ((-542 . -104) T) ((-542 . -592) 84496) ((-542 . -584) 84480) ((-542 . -656) 84464) ((-542 . -361) 84429) ((-542 . -316) 84364) ((-542 . -241) 84322) ((-541 . -997) T) ((-541 . -431) 84303) ((-541 . -554) 84253) ((-541 . -557) 84234) ((-541 . -1015) T) ((-541 . -1131) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -64) T) ((-538 . -554) 84216) ((-534 . -1015) T) ((-534 . -554) 84182) ((-534 . -1131) T) ((-534 . -13) T) ((-534 . -72) T) ((-534 . -431) 84163) ((-534 . -557) 84144) ((-533 . -963) T) ((-533 . -665) T) ((-533 . -1063) T) ((-533 . -1027) T) ((-533 . -972) T) ((-533 . -21) T) ((-533 . -590) 84103) ((-533 . -23) T) ((-533 . -1015) T) ((-533 . -554) 84085) ((-533 . -1131) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -25) T) ((-533 . -104) T) ((-533 . -592) 84059) ((-533 . -557) 84017) ((-533 . -82) 83970) ((-533 . -965) 83930) ((-533 . -970) 83890) ((-533 . -497) 83869) ((-533 . -246) 83848) ((-533 . -146) 83827) ((-533 . -656) 83800) ((-533 . -584) 83773) ((-533 . -38) 83746) ((-532 . -1160) 83723) ((-532 . -47) 83700) ((-532 . -38) 83597) ((-532 . -584) 83494) ((-532 . -656) 83391) ((-532 . -557) 83273) ((-532 . -246) 83252) ((-532 . -497) 83231) ((-532 . -82) 83096) ((-532 . -965) 82982) ((-532 . -970) 82868) ((-532 . -146) 82822) ((-532 . -120) 82801) ((-532 . -118) 82780) ((-532 . -592) 82705) ((-532 . -590) 82615) ((-532 . -888) 82585) ((-532 . -813) 82498) ((-532 . -808) 82409) ((-532 . -811) 82322) ((-532 . -241) 82287) ((-532 . -189) 82246) ((-532 . -1131) T) ((-532 . -13) T) ((-532 . -186) 82199) ((-532 . -963) T) ((-532 . -665) T) ((-532 . -1063) T) ((-532 . -1027) T) ((-532 . -972) T) ((-532 . -21) T) ((-532 . -23) T) ((-532 . -1015) T) ((-532 . -554) 82181) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -190) 82140) ((-530 . -997) T) ((-530 . -431) 82121) ((-530 . -554) 82087) ((-530 . -557) 82068) ((-530 . -1015) T) ((-530 . -1131) T) ((-530 . -13) T) ((-530 . -72) T) ((-530 . -64) T) ((-524 . -1015) T) ((-524 . -554) 82034) ((-524 . -1131) T) ((-524 . -13) T) ((-524 . -72) T) ((-524 . -431) 82015) ((-524 . -557) 81996) ((-521 . -656) 81971) ((-521 . -584) 81946) ((-521 . -592) 81921) ((-521 . -590) 81881) ((-521 . -104) T) ((-521 . -25) T) ((-521 . -72) T) ((-521 . -13) T) ((-521 . -1131) T) ((-521 . -554) 81863) ((-521 . -1015) T) ((-521 . -23) T) ((-521 . -21) T) ((-521 . -970) 81838) ((-521 . -965) 81813) ((-521 . -82) 81774) ((-521 . -952) 81758) ((-521 . -557) 81742) ((-519 . -299) T) ((-519 . -1068) T) ((-519 . -320) T) ((-519 . -118) T) ((-519 . -312) T) ((-519 . -1136) T) ((-519 . -834) T) ((-519 . -497) T) ((-519 . -146) T) ((-519 . -557) 81692) ((-519 . -656) 81657) ((-519 . -584) 81622) ((-519 . -38) 81587) ((-519 . -393) T) ((-519 . -258) T) ((-519 . -82) 81536) ((-519 . -965) 81501) ((-519 . -970) 81466) ((-519 . -590) 81416) ((-519 . -592) 81381) ((-519 . -246) T) ((-519 . -201) T) ((-519 . -345) T) ((-519 . -189) T) ((-519 . -1131) T) ((-519 . -13) T) ((-519 . -186) 81368) ((-519 . -963) T) ((-519 . -665) T) ((-519 . -1063) T) ((-519 . -1027) T) ((-519 . -972) T) ((-519 . -21) T) ((-519 . -23) T) ((-519 . -1015) T) ((-519 . -554) 81350) ((-519 . -72) T) ((-519 . -25) T) ((-519 . -104) T) ((-519 . -190) T) ((-519 . -280) 81337) ((-519 . -120) 81319) ((-519 . -952) 81306) ((-519 . -1189) 81293) ((-519 . -1200) 81280) ((-519 . -555) 81262) ((-518 . -781) 81246) ((-518 . -834) T) ((-518 . -497) T) ((-518 . -246) T) ((-518 . -146) T) ((-518 . -557) 81218) ((-518 . -656) 81205) ((-518 . -584) 81192) ((-518 . -970) 81179) ((-518 . -965) 81166) ((-518 . -82) 81151) ((-518 . -38) 81138) ((-518 . -393) T) ((-518 . -258) T) ((-518 . -963) T) ((-518 . -665) T) ((-518 . -1063) T) ((-518 . -1027) T) ((-518 . -972) T) ((-518 . -21) T) ((-518 . -590) 81110) ((-518 . -23) T) ((-518 . -1015) T) ((-518 . -554) 81092) ((-518 . -1131) T) ((-518 . -13) T) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -592) 81079) ((-518 . -120) T) ((-517 . -1015) T) ((-517 . -554) 81061) ((-517 . -1131) T) ((-517 . -13) T) ((-517 . -72) T) ((-516 . -1015) T) ((-516 . -554) 81043) ((-516 . -1131) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -514) T) ((-515 . -772) T) ((-515 . -147) T) ((-515 . -467) T) ((-515 . -554) 81025) ((-509 . -495) 81009) ((-509 . -35) T) ((-509 . -66) T) ((-509 . -239) T) ((-509 . -434) T) ((-509 . -1120) T) ((-509 . -1117) T) ((-509 . -952) 80991) ((-509 . -917) T) ((-509 . -761) T) ((-509 . -758) T) ((-509 . -497) T) ((-509 . -246) T) ((-509 . -146) T) ((-509 . -557) 80963) ((-509 . -656) 80950) ((-509 . -584) 80937) ((-509 . -592) 80924) ((-509 . -590) 80896) ((-509 . -104) T) ((-509 . -25) T) ((-509 . -72) T) ((-509 . -13) T) ((-509 . -1131) T) ((-509 . -554) 80878) ((-509 . -1015) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -970) 80865) ((-509 . -965) 80852) ((-509 . -82) 80837) ((-509 . -963) T) ((-509 . -665) T) ((-509 . -1063) T) ((-509 . -1027) T) ((-509 . -972) T) ((-509 . -38) 80824) ((-509 . -393) T) ((-491 . -1109) 80803) ((-491 . -183) 80751) ((-491 . -76) 80699) ((-491 . -1037) 80634) ((-491 . -124) 80582) ((-491 . -555) NIL) ((-491 . -193) 80530) ((-491 . -540) 80509) ((-491 . -260) 80307) ((-491 . -457) 80059) ((-491 . -381) 79994) ((-491 . -430) 79929) ((-491 . -241) 79908) ((-491 . -243) 79887) ((-491 . -551) 79866) ((-491 . -1015) T) ((-491 . -554) 79848) ((-491 . -72) T) ((-491 . -1131) T) ((-491 . -13) T) ((-491 . -34) T) ((-491 . -318) 79796) ((-490 . -754) T) ((-490 . -761) T) ((-490 . -758) T) ((-490 . -1015) T) ((-490 . -554) 79778) ((-490 . -1131) T) ((-490 . -13) T) ((-490 . -72) T) ((-490 . -320) T) ((-489 . -754) T) ((-489 . -761) T) ((-489 . -758) T) ((-489 . -1015) T) ((-489 . -554) 79760) ((-489 . -1131) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -320) T) ((-488 . -754) T) ((-488 . -761) T) ((-488 . -758) T) ((-488 . -1015) T) ((-488 . -554) 79742) ((-488 . -1131) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -754) T) ((-487 . -761) T) ((-487 . -758) T) ((-487 . -1015) T) ((-487 . -554) 79724) ((-487 . -1131) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -485) T) ((-486 . -1136) T) ((-486 . -1068) T) ((-486 . -952) 79706) ((-486 . -555) 79621) ((-486 . -935) T) ((-486 . -798) 79603) ((-486 . -757) T) ((-486 . -723) T) ((-486 . -720) T) ((-486 . -761) T) ((-486 . -758) T) ((-486 . -718) T) ((-486 . -716) T) ((-486 . -742) T) ((-486 . -592) 79575) ((-486 . -582) 79557) ((-486 . -834) T) ((-486 . -497) T) ((-486 . -246) T) ((-486 . -146) T) ((-486 . -557) 79529) ((-486 . -656) 79516) ((-486 . -584) 79503) ((-486 . -970) 79490) ((-486 . -965) 79477) ((-486 . -82) 79462) ((-486 . -38) 79449) ((-486 . -393) T) ((-486 . -258) T) ((-486 . -189) T) ((-486 . -186) 79436) ((-486 . -190) T) ((-486 . -116) T) ((-486 . -963) T) ((-486 . -665) T) ((-486 . -1063) T) ((-486 . -1027) T) ((-486 . -972) T) ((-486 . -21) T) ((-486 . -590) 79408) ((-486 . -23) T) ((-486 . -1015) T) ((-486 . -554) 79390) ((-486 . -1131) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -25) T) ((-486 . -104) T) ((-486 . -120) T) ((-475 . -1018) 79342) ((-475 . -72) T) ((-475 . -554) 79324) ((-475 . -1015) T) ((-475 . -241) 79280) ((-475 . -1131) T) ((-475 . -13) T) ((-475 . -559) 79183) ((-475 . -555) 79164) ((-473 . -693) 79146) ((-473 . -467) T) ((-473 . -147) T) ((-473 . -772) T) ((-473 . -514) T) ((-473 . -554) 79128) ((-471 . -719) T) ((-471 . -104) T) ((-471 . -25) T) ((-471 . -72) T) ((-471 . -13) T) ((-471 . -1131) T) ((-471 . -554) 79110) ((-471 . -1015) T) ((-471 . -23) T) ((-471 . -718) T) ((-471 . -758) T) ((-471 . -761) T) ((-471 . -720) T) ((-471 . -723) T) ((-471 . -451) 79087) ((-471 . -559) 79050) ((-469 . -467) T) ((-469 . -147) T) ((-469 . -554) 79032) ((-465 . -997) T) ((-465 . -431) 79013) ((-465 . -554) 78979) ((-465 . -557) 78960) ((-465 . -1015) T) ((-465 . -1131) T) ((-465 . -13) T) ((-465 . -72) T) ((-465 . -64) T) ((-464 . -997) T) ((-464 . -431) 78941) ((-464 . -554) 78907) ((-464 . -557) 78888) ((-464 . -1015) T) ((-464 . -1131) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-461 . -280) 78865) ((-461 . -190) T) ((-461 . -186) 78852) ((-461 . -189) T) ((-461 . -320) T) ((-461 . -1068) T) ((-461 . -299) T) ((-461 . -120) 78834) ((-461 . -557) 78764) ((-461 . -592) 78709) ((-461 . -590) 78639) ((-461 . -104) T) ((-461 . -25) T) ((-461 . -72) T) ((-461 . -13) T) ((-461 . -1131) T) ((-461 . -554) 78621) ((-461 . -1015) T) ((-461 . -23) T) ((-461 . -21) T) ((-461 . -972) T) ((-461 . -1027) T) ((-461 . -1063) T) ((-461 . -665) T) ((-461 . -963) T) ((-461 . -312) T) ((-461 . -1136) T) ((-461 . -834) T) ((-461 . -497) T) ((-461 . -146) T) ((-461 . -656) 78566) ((-461 . -584) 78511) ((-461 . -38) 78476) ((-461 . -393) T) ((-461 . -258) T) ((-461 . -82) 78393) ((-461 . -965) 78338) ((-461 . -970) 78283) ((-461 . -246) T) ((-461 . -201) T) ((-461 . -345) T) ((-461 . -118) T) ((-461 . -952) 78260) ((-461 . -1189) 78237) ((-461 . -1200) 78214) ((-460 . -997) T) ((-460 . -431) 78195) ((-460 . -554) 78161) ((-460 . -557) 78142) ((-460 . -1015) T) ((-460 . -1131) T) ((-460 . -13) T) ((-460 . -72) T) ((-460 . -64) T) ((-459 . -19) 78126) ((-459 . -1037) 78110) ((-459 . -318) 78094) ((-459 . -34) T) ((-459 . -13) T) ((-459 . -1131) T) ((-459 . -72) 78028) ((-459 . -554) 77943) ((-459 . -260) 77881) ((-459 . -457) 77814) ((-459 . -381) 77798) ((-459 . -1015) 77751) ((-459 . -430) 77735) ((-459 . -595) 77719) ((-459 . -243) 77696) ((-459 . -241) 77648) ((-459 . -540) 77625) ((-459 . -555) 77586) ((-459 . -124) 77570) ((-459 . -758) 77549) ((-459 . -761) 77528) ((-459 . -324) 77512) ((-459 . -237) 77496) ((-458 . -274) 77475) ((-458 . -557) 77459) ((-458 . -952) 77443) ((-458 . -23) T) ((-458 . -1015) T) ((-458 . -554) 77425) ((-458 . -1131) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -25) T) ((-458 . -104) T) ((-455 . -72) T) ((-455 . -13) T) ((-455 . -1131) T) ((-455 . -554) 77397) ((-454 . -719) T) ((-454 . -104) T) ((-454 . -25) T) ((-454 . -72) T) ((-454 . -13) T) ((-454 . -1131) T) ((-454 . -554) 77379) ((-454 . -1015) T) ((-454 . -23) T) ((-454 . -718) T) ((-454 . -758) T) ((-454 . -761) T) ((-454 . -720) T) ((-454 . -723) T) ((-454 . -451) 77358) ((-454 . -559) 77323) ((-453 . -718) T) ((-453 . -758) T) ((-453 . -761) T) ((-453 . -720) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1131) T) ((-453 . -554) 77305) ((-453 . -1015) T) ((-453 . -23) T) ((-453 . -451) 77284) ((-453 . -559) 77249) ((-452 . -451) 77228) ((-452 . -554) 77168) ((-452 . -1015) 77119) ((-452 . -559) 77084) ((-452 . -1131) T) ((-452 . -13) T) ((-452 . -72) T) ((-450 . -23) T) ((-450 . -1015) T) ((-450 . -554) 77066) ((-450 . -1131) T) ((-450 . -13) T) ((-450 . -72) T) ((-450 . -25) T) ((-450 . -451) 77045) ((-450 . -559) 77010) ((-449 . -21) T) ((-449 . -590) 76992) ((-449 . -23) T) ((-449 . -1015) T) ((-449 . -554) 76974) ((-449 . -1131) T) ((-449 . -13) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -104) T) ((-449 . -451) 76953) ((-449 . -559) 76918) ((-448 . -1015) T) ((-448 . -554) 76900) ((-448 . -1131) T) ((-448 . -13) T) ((-448 . -72) T) ((-445 . -1015) T) ((-445 . -554) 76882) ((-445 . -1131) T) ((-445 . -13) T) ((-445 . -72) T) ((-443 . -758) T) ((-443 . -554) 76864) ((-443 . -1015) T) ((-443 . -72) T) ((-443 . -13) T) ((-443 . -1131) T) ((-443 . -761) T) ((-443 . -557) 76845) ((-441 . -96) T) ((-441 . -324) 76828) ((-441 . -761) T) ((-441 . -758) T) ((-441 . -124) 76811) ((-441 . -555) 76793) ((-441 . -241) 76744) ((-441 . -540) 76720) ((-441 . -243) 76696) ((-441 . -595) 76679) ((-441 . -430) 76662) ((-441 . -1015) T) ((-441 . -381) 76645) ((-441 . -457) NIL) ((-441 . -260) NIL) ((-441 . -554) 76627) ((-441 . -72) T) ((-441 . -34) T) ((-441 . -318) 76610) ((-441 . -1037) 76593) ((-441 . -19) 76576) ((-441 . -606) T) ((-441 . -13) T) ((-441 . -1131) T) ((-441 . -84) T) ((-438 . -57) 76550) ((-438 . -1037) 76534) ((-438 . -430) 76518) ((-438 . -1015) 76496) ((-438 . -381) 76480) ((-438 . -457) 76413) ((-438 . -260) 76351) ((-438 . -554) 76286) ((-438 . -72) 76240) ((-438 . -1131) T) ((-438 . -13) T) ((-438 . -34) T) ((-438 . -318) 76224) ((-437 . -19) 76208) ((-437 . -1037) 76192) ((-437 . -318) 76176) ((-437 . -34) T) ((-437 . -13) T) ((-437 . -1131) T) ((-437 . -72) 76110) ((-437 . -554) 76025) ((-437 . -260) 75963) ((-437 . -457) 75896) ((-437 . -381) 75880) ((-437 . -1015) 75833) ((-437 . -430) 75817) ((-437 . -595) 75801) ((-437 . -243) 75778) ((-437 . -241) 75730) ((-437 . -540) 75707) ((-437 . -555) 75668) ((-437 . -124) 75652) ((-437 . -758) 75631) ((-437 . -761) 75610) ((-437 . -324) 75594) ((-436 . -254) T) ((-436 . -72) T) ((-436 . -13) T) ((-436 . -1131) T) ((-436 . -554) 75576) ((-436 . -1015) T) ((-436 . -557) 75477) ((-436 . -952) 75420) ((-436 . -457) 75386) ((-436 . -260) 75373) ((-436 . -27) T) ((-436 . -917) T) ((-436 . -201) T) ((-436 . -82) 75322) ((-436 . -965) 75287) ((-436 . -970) 75252) ((-436 . -246) T) ((-436 . -656) 75217) ((-436 . -584) 75182) ((-436 . -592) 75132) ((-436 . -590) 75082) ((-436 . -104) T) ((-436 . -25) T) ((-436 . -23) T) ((-436 . -21) T) ((-436 . -963) T) ((-436 . -665) T) ((-436 . -1063) T) ((-436 . -1027) T) ((-436 . -972) T) ((-436 . -38) 75047) ((-436 . -258) T) ((-436 . -393) T) ((-436 . -146) T) ((-436 . -497) T) ((-436 . -834) T) ((-436 . -1136) T) ((-436 . -312) T) ((-436 . -582) 75007) ((-436 . -935) T) ((-436 . -555) 74952) ((-436 . -120) T) ((-436 . -190) T) ((-436 . -186) 74939) ((-436 . -189) T) ((-432 . -1015) T) ((-432 . -554) 74905) ((-432 . -1131) T) ((-432 . -13) T) ((-432 . -72) T) ((-428 . -906) 74887) ((-428 . -1068) T) ((-428 . -557) 74837) ((-428 . -952) 74797) ((-428 . -555) 74727) ((-428 . -935) T) ((-428 . -823) NIL) ((-428 . -796) 74709) ((-428 . -757) T) ((-428 . -723) T) ((-428 . -720) T) ((-428 . -761) T) ((-428 . -758) T) ((-428 . -718) T) ((-428 . -716) T) ((-428 . -742) T) ((-428 . -798) 74691) ((-428 . -343) 74673) ((-428 . -582) 74655) ((-428 . -329) 74637) ((-428 . -241) NIL) ((-428 . -260) NIL) ((-428 . -457) NIL) ((-428 . -288) 74619) ((-428 . -201) T) ((-428 . -82) 74546) ((-428 . -965) 74496) ((-428 . -970) 74446) ((-428 . -246) T) ((-428 . -656) 74396) ((-428 . -584) 74346) ((-428 . -592) 74296) ((-428 . -590) 74246) ((-428 . -38) 74196) ((-428 . -258) T) ((-428 . -393) T) ((-428 . -146) T) ((-428 . -497) T) ((-428 . -834) T) ((-428 . -1136) T) ((-428 . -312) T) ((-428 . -190) T) ((-428 . -186) 74183) ((-428 . -189) T) ((-428 . -225) 74165) ((-428 . -808) NIL) ((-428 . -813) NIL) ((-428 . -811) NIL) ((-428 . -184) 74147) ((-428 . -120) T) ((-428 . -118) NIL) ((-428 . -104) T) ((-428 . -25) T) ((-428 . -72) T) ((-428 . -13) T) ((-428 . -1131) T) ((-428 . -554) 74089) ((-428 . -1015) T) ((-428 . -23) T) ((-428 . -21) T) ((-428 . -963) T) ((-428 . -665) T) ((-428 . -1063) T) ((-428 . -1027) T) ((-428 . -972) T) ((-426 . -286) 74058) ((-426 . -104) T) ((-426 . -25) T) ((-426 . -72) T) ((-426 . -13) T) ((-426 . -1131) T) ((-426 . -554) 74040) ((-426 . -1015) T) ((-426 . -23) T) ((-426 . -590) 74022) ((-426 . -21) T) ((-425 . -883) 74006) ((-425 . -318) 73990) ((-425 . -1037) 73974) ((-425 . -34) T) ((-425 . -13) T) ((-425 . -1131) T) ((-425 . -72) 73928) ((-425 . -554) 73863) ((-425 . -260) 73801) ((-425 . -457) 73734) ((-425 . -381) 73718) ((-425 . -1015) 73696) ((-425 . -430) 73680) ((-425 . -76) 73664) ((-424 . -997) T) ((-424 . -431) 73645) ((-424 . -554) 73611) ((-424 . -557) 73592) ((-424 . -1015) T) ((-424 . -1131) T) ((-424 . -13) T) ((-424 . -72) T) ((-424 . -64) T) ((-423 . -196) 73571) ((-423 . -1189) 73541) ((-423 . -723) 73520) ((-423 . -720) 73499) ((-423 . -761) 73453) ((-423 . -758) 73407) ((-423 . -718) 73386) ((-423 . -719) 73365) ((-423 . -656) 73310) ((-423 . -584) 73235) ((-423 . -243) 73212) ((-423 . -241) 73189) ((-423 . -540) 73166) ((-423 . -952) 72995) ((-423 . -557) 72799) ((-423 . -355) 72768) ((-423 . -582) 72676) ((-423 . -592) 72515) ((-423 . -329) 72485) ((-423 . -430) 72469) ((-423 . -381) 72453) ((-423 . -457) 72386) ((-423 . -260) 72324) ((-423 . -34) T) ((-423 . -318) 72308) ((-423 . -320) 72287) ((-423 . -190) 72240) ((-423 . -590) 72028) ((-423 . -972) 72007) ((-423 . -1027) 71986) ((-423 . -1063) 71965) ((-423 . -665) 71944) ((-423 . -963) 71923) ((-423 . -186) 71819) ((-423 . -189) 71721) ((-423 . -225) 71691) ((-423 . -808) 71563) ((-423 . -813) 71437) ((-423 . -811) 71370) ((-423 . -184) 71340) ((-423 . -554) 71037) ((-423 . -970) 70962) ((-423 . -965) 70867) ((-423 . -82) 70787) ((-423 . -104) 70662) ((-423 . -25) 70499) ((-423 . -72) 70236) ((-423 . -13) T) ((-423 . -1131) T) ((-423 . -1015) 69992) ((-423 . -23) 69848) ((-423 . -21) 69763) ((-422 . -863) 69708) ((-422 . -557) 69500) ((-422 . -952) 69378) ((-422 . -1136) 69357) ((-422 . -823) 69336) ((-422 . -798) NIL) ((-422 . -813) 69313) ((-422 . -808) 69288) ((-422 . -811) 69265) ((-422 . -457) 69203) ((-422 . -393) 69157) ((-422 . -582) 69105) ((-422 . -592) 68994) ((-422 . -329) 68978) ((-422 . -47) 68935) ((-422 . -38) 68787) ((-422 . -584) 68639) ((-422 . -656) 68491) ((-422 . -246) 68425) ((-422 . -497) 68359) ((-422 . -82) 68184) ((-422 . -965) 68030) ((-422 . -970) 67876) ((-422 . -146) 67790) ((-422 . -120) 67769) ((-422 . -118) 67748) ((-422 . -590) 67658) ((-422 . -104) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1131) T) ((-422 . -554) 67640) ((-422 . -1015) T) ((-422 . -23) T) ((-422 . -21) T) ((-422 . -963) T) ((-422 . -665) T) ((-422 . -1063) T) ((-422 . -1027) T) ((-422 . -972) T) ((-422 . -355) 67624) ((-422 . -277) 67581) ((-422 . -260) 67568) ((-422 . -555) 67429) ((-420 . -1109) 67408) ((-420 . -183) 67356) ((-420 . -76) 67304) ((-420 . -1037) 67239) ((-420 . -124) 67187) ((-420 . -555) NIL) ((-420 . -193) 67135) ((-420 . -540) 67114) ((-420 . -260) 66912) ((-420 . -457) 66664) ((-420 . -381) 66599) ((-420 . -430) 66534) ((-420 . -241) 66513) ((-420 . -243) 66492) ((-420 . -551) 66471) ((-420 . -1015) T) ((-420 . -554) 66453) ((-420 . -72) T) ((-420 . -1131) T) ((-420 . -13) T) ((-420 . -34) T) ((-420 . -318) 66401) ((-419 . -997) T) ((-419 . -431) 66382) ((-419 . -554) 66348) ((-419 . -557) 66329) ((-419 . -1015) T) ((-419 . -1131) T) ((-419 . -13) T) ((-419 . -72) T) ((-419 . -64) T) ((-418 . -312) T) ((-418 . -1136) T) ((-418 . -834) T) ((-418 . -497) T) ((-418 . -146) T) ((-418 . -557) 66279) ((-418 . -656) 66244) ((-418 . -584) 66209) ((-418 . -38) 66174) ((-418 . -393) T) ((-418 . -258) T) ((-418 . -592) 66139) ((-418 . -590) 66089) ((-418 . -972) T) ((-418 . -1027) T) ((-418 . -1063) T) ((-418 . -665) T) ((-418 . -963) T) ((-418 . -82) 66038) ((-418 . -965) 66003) ((-418 . -970) 65968) ((-418 . -21) T) ((-418 . -23) T) ((-418 . -1015) T) ((-418 . -554) 65920) ((-418 . -1131) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -25) T) ((-418 . -104) T) ((-418 . -246) T) ((-418 . -201) T) ((-418 . -120) T) ((-418 . -952) 65880) ((-418 . -935) T) ((-418 . -555) 65802) ((-417 . -1126) 65771) ((-417 . -1037) 65755) ((-417 . -554) 65717) ((-417 . -124) 65701) ((-417 . -34) T) ((-417 . -13) T) ((-417 . -1131) T) ((-417 . -72) T) ((-417 . -260) 65639) ((-417 . -457) 65572) ((-417 . -381) 65556) ((-417 . -1015) T) ((-417 . -430) 65540) ((-417 . -555) 65501) ((-417 . -318) 65485) ((-417 . -891) 65454) ((-416 . -1109) 65433) ((-416 . -183) 65381) ((-416 . -76) 65329) ((-416 . -1037) 65264) ((-416 . -124) 65212) ((-416 . -555) NIL) ((-416 . -193) 65160) ((-416 . -540) 65139) ((-416 . -260) 64937) ((-416 . -457) 64689) ((-416 . -381) 64624) ((-416 . -430) 64559) ((-416 . -241) 64538) ((-416 . -243) 64517) ((-416 . -551) 64496) ((-416 . -1015) T) ((-416 . -554) 64478) ((-416 . -72) T) ((-416 . -1131) T) ((-416 . -13) T) ((-416 . -34) T) ((-416 . -318) 64426) ((-415 . -1164) 64410) ((-415 . -190) 64362) ((-415 . -186) 64308) ((-415 . -189) 64260) ((-415 . -241) 64218) ((-415 . -811) 64124) ((-415 . -808) 64005) ((-415 . -813) 63911) ((-415 . -888) 63874) ((-415 . -38) 63721) ((-415 . -82) 63541) ((-415 . -965) 63382) ((-415 . -970) 63223) ((-415 . -590) 63108) ((-415 . -592) 63008) ((-415 . -584) 62855) ((-415 . -656) 62702) ((-415 . -557) 62534) ((-415 . -118) 62513) ((-415 . -120) 62492) ((-415 . -47) 62462) ((-415 . -1160) 62432) ((-415 . -35) 62398) ((-415 . -66) 62364) ((-415 . -239) 62330) ((-415 . -434) 62296) ((-415 . -1120) 62262) ((-415 . -1117) 62228) ((-415 . -917) 62194) ((-415 . -201) 62173) ((-415 . -246) 62127) ((-415 . -104) T) ((-415 . -25) T) ((-415 . -72) T) ((-415 . -13) T) ((-415 . -1131) T) ((-415 . -554) 62109) ((-415 . -1015) T) ((-415 . -23) T) ((-415 . -21) T) ((-415 . -963) T) ((-415 . -665) T) ((-415 . -1063) T) ((-415 . -1027) T) ((-415 . -972) T) ((-415 . -258) 62088) ((-415 . -393) 62067) ((-415 . -146) 62001) ((-415 . -497) 61955) ((-415 . -834) 61934) ((-415 . -1136) 61913) ((-415 . -312) 61892) ((-409 . -1015) T) ((-409 . -554) 61874) ((-409 . -1131) T) ((-409 . -13) T) ((-409 . -72) T) ((-404 . -891) 61843) ((-404 . -318) 61827) ((-404 . -555) 61788) ((-404 . -430) 61772) ((-404 . -1015) T) ((-404 . -381) 61756) ((-404 . -457) 61689) ((-404 . -260) 61627) ((-404 . -554) 61589) ((-404 . -72) T) ((-404 . -1131) T) ((-404 . -13) T) ((-404 . -34) T) ((-404 . -124) 61573) ((-404 . -1037) 61557) ((-402 . -656) 61528) ((-402 . -584) 61499) ((-402 . -592) 61470) ((-402 . -590) 61426) ((-402 . -104) T) ((-402 . -25) T) ((-402 . -72) T) ((-402 . -13) T) ((-402 . -1131) T) ((-402 . -554) 61408) ((-402 . -1015) T) ((-402 . -23) T) ((-402 . -21) T) ((-402 . -970) 61379) ((-402 . -965) 61350) ((-402 . -82) 61311) ((-395 . -863) 61278) ((-395 . -557) 61070) ((-395 . -952) 60948) ((-395 . -1136) 60927) ((-395 . -823) 60906) ((-395 . -798) NIL) ((-395 . -813) 60883) ((-395 . -808) 60858) ((-395 . -811) 60835) ((-395 . -457) 60773) ((-395 . -393) 60727) ((-395 . -582) 60675) ((-395 . -592) 60564) ((-395 . -329) 60548) ((-395 . -47) 60527) ((-395 . -38) 60379) ((-395 . -584) 60231) ((-395 . -656) 60083) ((-395 . -246) 60017) ((-395 . -497) 59951) ((-395 . -82) 59776) ((-395 . -965) 59622) ((-395 . -970) 59468) ((-395 . -146) 59382) ((-395 . -120) 59361) ((-395 . -118) 59340) ((-395 . -590) 59250) ((-395 . -104) T) ((-395 . -25) T) ((-395 . -72) T) ((-395 . -13) T) ((-395 . -1131) T) ((-395 . -554) 59232) ((-395 . -1015) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -963) T) ((-395 . -665) T) ((-395 . -1063) T) ((-395 . -1027) T) ((-395 . -972) T) ((-395 . -355) 59216) ((-395 . -277) 59195) ((-395 . -260) 59182) ((-395 . -555) 59043) ((-394 . -361) 59013) ((-394 . -685) 58983) ((-394 . -659) T) ((-394 . -687) T) ((-394 . -82) 58934) ((-394 . -965) 58904) ((-394 . -970) 58874) ((-394 . -21) T) ((-394 . -590) 58789) ((-394 . -23) T) ((-394 . -1015) T) ((-394 . -554) 58771) ((-394 . -72) T) ((-394 . -25) T) ((-394 . -104) T) ((-394 . -592) 58701) ((-394 . -584) 58671) ((-394 . -656) 58641) ((-394 . -316) 58611) ((-394 . -1131) T) ((-394 . -13) T) ((-394 . -241) 58574) ((-382 . -1015) T) ((-382 . -554) 58556) ((-382 . -1131) T) ((-382 . -13) T) ((-382 . -72) T) ((-380 . -1015) T) ((-380 . -554) 58538) ((-380 . -1131) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1015) T) ((-379 . -554) 58520) ((-379 . -1131) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -554) 58502) ((-372 . -38) 58486) ((-372 . -557) 58455) ((-372 . -592) 58429) ((-372 . -590) 58388) ((-372 . -972) T) ((-372 . -1027) T) ((-372 . -1063) T) ((-372 . -665) T) ((-372 . -963) T) ((-372 . -82) 58367) ((-372 . -965) 58351) ((-372 . -970) 58335) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1015) T) ((-372 . -554) 58317) ((-372 . -1131) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -584) 58301) ((-372 . -656) 58285) ((-358 . -665) T) ((-358 . -1015) T) ((-358 . -554) 58267) ((-358 . -1131) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1027) T) ((-356 . -414) T) ((-356 . -1027) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1131) T) ((-356 . -554) 58249) ((-356 . -1015) T) ((-356 . -665) T) ((-350 . -906) 58233) ((-350 . -1068) 58211) ((-350 . -952) 58078) ((-350 . -557) 57977) ((-350 . -555) 57780) ((-350 . -935) 57759) ((-350 . -823) 57738) ((-350 . -796) 57722) ((-350 . -757) 57701) ((-350 . -723) 57680) ((-350 . -720) 57659) ((-350 . -761) 57613) ((-350 . -758) 57567) ((-350 . -718) 57546) ((-350 . -716) 57525) ((-350 . -742) 57504) ((-350 . -798) 57429) ((-350 . -343) 57413) ((-350 . -582) 57361) ((-350 . -592) 57277) ((-350 . -329) 57261) ((-350 . -241) 57219) ((-350 . -260) 57184) ((-350 . -457) 57096) ((-350 . -288) 57080) ((-350 . -201) T) ((-350 . -82) 57011) ((-350 . -965) 56963) ((-350 . -970) 56915) ((-350 . -246) T) ((-350 . -656) 56867) ((-350 . -584) 56819) ((-350 . -590) 56756) ((-350 . -38) 56708) ((-350 . -258) T) ((-350 . -393) T) ((-350 . -146) T) ((-350 . -497) T) ((-350 . -834) T) ((-350 . -1136) T) ((-350 . -312) T) ((-350 . -190) 56687) ((-350 . -186) 56635) ((-350 . -189) 56589) ((-350 . -225) 56573) ((-350 . -808) 56497) ((-350 . -813) 56423) ((-350 . -811) 56382) ((-350 . -184) 56366) ((-350 . -120) 56320) ((-350 . -118) 56299) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1131) T) ((-350 . -554) 56281) ((-350 . -1015) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -963) T) ((-350 . -665) T) ((-350 . -1063) T) ((-350 . -1027) T) ((-350 . -972) T) ((-348 . -497) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -557) 56190) ((-348 . -656) 56164) ((-348 . -584) 56138) ((-348 . -592) 56112) ((-348 . -590) 56071) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1131) T) ((-348 . -554) 56053) ((-348 . -1015) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -970) 56027) ((-348 . -965) 56001) ((-348 . -82) 55968) ((-348 . -963) T) ((-348 . -665) T) ((-348 . -1063) T) ((-348 . -1027) T) ((-348 . -972) T) ((-348 . -38) 55942) ((-348 . -184) 55926) ((-348 . -811) 55885) ((-348 . -813) 55811) ((-348 . -808) 55735) ((-348 . -225) 55719) ((-348 . -189) 55673) ((-348 . -186) 55621) ((-348 . -190) 55600) ((-348 . -288) 55584) ((-348 . -457) 55426) ((-348 . -260) 55365) ((-348 . -241) 55293) ((-348 . -355) 55277) ((-348 . -952) 55175) ((-348 . -393) 55128) ((-348 . -935) 55107) ((-348 . -555) 55010) ((-348 . -1136) 54988) ((-342 . -1015) T) ((-342 . -554) 54970) ((-342 . -1131) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54957) ((-342 . -555) 54934) ((-340 . -685) 54918) ((-340 . -659) T) ((-340 . -687) T) ((-340 . -82) 54897) ((-340 . -965) 54881) ((-340 . -970) 54865) ((-340 . -21) T) ((-340 . -590) 54834) ((-340 . -23) T) ((-340 . -1015) T) ((-340 . -554) 54816) ((-340 . -1131) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -592) 54800) ((-340 . -584) 54784) ((-340 . -656) 54768) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1131) T) ((-338 . -554) 54734) ((-338 . -1015) T) ((-338 . -557) 54715) ((-338 . -431) 54696) ((-337 . -336) 54680) ((-337 . -557) 54664) ((-337 . -952) 54648) ((-337 . -761) 54627) ((-337 . -758) 54606) ((-337 . -1027) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1131) T) ((-337 . -554) 54588) ((-337 . -1015) T) ((-337 . -665) T) ((-334 . -335) 54567) ((-334 . -557) 54551) ((-334 . -952) 54535) ((-334 . -584) 54505) ((-334 . -656) 54475) ((-334 . -592) 54459) ((-334 . -590) 54428) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1131) T) ((-334 . -554) 54410) ((-334 . -1015) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -970) 54394) ((-334 . -965) 54378) ((-334 . -82) 54357) ((-333 . -82) 54336) ((-333 . -965) 54320) ((-333 . -970) 54304) ((-333 . -21) T) ((-333 . -590) 54273) ((-333 . -23) T) ((-333 . -1015) T) ((-333 . -554) 54255) ((-333 . -1131) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -592) 54239) ((-333 . -451) 54218) ((-333 . -559) 54183) ((-333 . -656) 54153) ((-333 . -584) 54123) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -557) 54073) ((-330 . -592) 54038) ((-330 . -590) 53988) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1131) T) ((-330 . -554) 53955) ((-330 . -1015) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -972) T) ((-330 . -1027) T) ((-330 . -1063) T) ((-330 . -665) T) ((-330 . -963) T) ((-330 . -555) 53869) ((-330 . -312) T) ((-330 . -1136) T) ((-330 . -834) T) ((-330 . -497) T) ((-330 . -146) T) ((-330 . -656) 53834) ((-330 . -584) 53799) ((-330 . -38) 53764) ((-330 . -393) T) ((-330 . -258) T) ((-330 . -82) 53713) ((-330 . -965) 53678) ((-330 . -970) 53643) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -757) T) ((-330 . -723) T) ((-330 . -720) T) ((-330 . -761) T) ((-330 . -758) T) ((-330 . -718) T) ((-330 . -716) T) ((-330 . -798) 53625) ((-330 . -917) T) ((-330 . -935) T) ((-330 . -952) 53585) ((-330 . -975) T) ((-330 . -190) T) ((-330 . -186) 53572) ((-330 . -189) T) ((-330 . -1117) T) ((-330 . -1120) T) ((-330 . -434) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -559) 53554) ((-313 . -314) 53531) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1131) T) ((-313 . -554) 53513) ((-313 . -1015) T) ((-310 . -414) T) ((-310 . -1027) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1131) T) ((-310 . -554) 53495) ((-310 . -1015) T) ((-310 . -665) T) ((-310 . -952) 53479) ((-310 . -557) 53463) ((-308 . -280) 53447) ((-308 . -190) 53426) ((-308 . -186) 53399) ((-308 . -189) 53378) ((-308 . -320) 53357) ((-308 . -1068) 53336) ((-308 . -299) 53315) ((-308 . -120) 53294) ((-308 . -557) 53231) ((-308 . -592) 53183) ((-308 . -590) 53120) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1131) T) ((-308 . -554) 53102) ((-308 . -1015) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -972) T) ((-308 . -1027) T) ((-308 . -1063) T) ((-308 . -665) T) ((-308 . -963) T) ((-308 . -312) T) ((-308 . -1136) T) ((-308 . -834) T) ((-308 . -497) T) ((-308 . -146) T) ((-308 . -656) 53054) ((-308 . -584) 53006) ((-308 . -38) 52971) ((-308 . -393) T) ((-308 . -258) T) ((-308 . -82) 52902) ((-308 . -965) 52854) ((-308 . -970) 52806) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52760) ((-308 . -118) 52714) ((-308 . -952) 52698) ((-308 . -1189) 52682) ((-308 . -1200) 52666) ((-304 . -280) 52650) ((-304 . -190) 52629) ((-304 . -186) 52602) ((-304 . -189) 52581) ((-304 . -320) 52560) ((-304 . -1068) 52539) ((-304 . -299) 52518) ((-304 . -120) 52497) ((-304 . -557) 52434) ((-304 . -592) 52386) ((-304 . -590) 52323) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1131) T) ((-304 . -554) 52305) ((-304 . -1015) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -972) T) ((-304 . -1027) T) ((-304 . -1063) T) ((-304 . -665) T) ((-304 . -963) T) ((-304 . -312) T) ((-304 . -1136) T) ((-304 . -834) T) ((-304 . -497) T) ((-304 . -146) T) ((-304 . -656) 52257) ((-304 . -584) 52209) ((-304 . -38) 52174) ((-304 . -393) T) ((-304 . -258) T) ((-304 . -82) 52105) ((-304 . -965) 52057) ((-304 . -970) 52009) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51963) ((-304 . -118) 51917) ((-304 . -952) 51901) ((-304 . -1189) 51885) ((-304 . -1200) 51869) ((-303 . -280) 51853) ((-303 . -190) 51832) ((-303 . -186) 51805) ((-303 . -189) 51784) ((-303 . -320) 51763) ((-303 . -1068) 51742) ((-303 . -299) 51721) ((-303 . -120) 51700) ((-303 . -557) 51637) ((-303 . -592) 51589) ((-303 . -590) 51526) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1131) T) ((-303 . -554) 51508) ((-303 . -1015) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -972) T) ((-303 . -1027) T) ((-303 . -1063) T) ((-303 . -665) T) ((-303 . -963) T) ((-303 . -312) T) ((-303 . -1136) T) ((-303 . -834) T) ((-303 . -497) T) ((-303 . -146) T) ((-303 . -656) 51460) ((-303 . -584) 51412) ((-303 . -38) 51377) ((-303 . -393) T) ((-303 . -258) T) ((-303 . -82) 51308) ((-303 . -965) 51260) ((-303 . -970) 51212) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 51166) ((-303 . -118) 51120) ((-303 . -952) 51104) ((-303 . -1189) 51088) ((-303 . -1200) 51072) ((-302 . -280) 51056) ((-302 . -190) 51035) ((-302 . -186) 51008) ((-302 . -189) 50987) ((-302 . -320) 50966) ((-302 . -1068) 50945) ((-302 . -299) 50924) ((-302 . -120) 50903) ((-302 . -557) 50840) ((-302 . -592) 50792) ((-302 . -590) 50729) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1131) T) ((-302 . -554) 50711) ((-302 . -1015) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -972) T) ((-302 . -1027) T) ((-302 . -1063) T) ((-302 . -665) T) ((-302 . -963) T) ((-302 . -312) T) ((-302 . -1136) T) ((-302 . -834) T) ((-302 . -497) T) ((-302 . -146) T) ((-302 . -656) 50663) ((-302 . -584) 50615) ((-302 . -38) 50580) ((-302 . -393) T) ((-302 . -258) T) ((-302 . -82) 50511) ((-302 . -965) 50463) ((-302 . -970) 50415) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 50369) ((-302 . -118) 50323) ((-302 . -952) 50307) ((-302 . -1189) 50291) ((-302 . -1200) 50275) ((-301 . -280) 50252) ((-301 . -190) T) ((-301 . -186) 50239) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1068) T) ((-301 . -299) T) ((-301 . -120) 50221) ((-301 . -557) 50151) ((-301 . -592) 50096) ((-301 . -590) 50026) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1131) T) ((-301 . -554) 50008) ((-301 . -1015) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -972) T) ((-301 . -1027) T) ((-301 . -1063) T) ((-301 . -665) T) ((-301 . -963) T) ((-301 . -312) T) ((-301 . -1136) T) ((-301 . -834) T) ((-301 . -497) T) ((-301 . -146) T) ((-301 . -656) 49953) ((-301 . -584) 49898) ((-301 . -38) 49863) ((-301 . -393) T) ((-301 . -258) T) ((-301 . -82) 49780) ((-301 . -965) 49725) ((-301 . -970) 49670) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -952) 49647) ((-301 . -1189) 49624) ((-301 . -1200) 49601) ((-295 . -280) 49585) ((-295 . -190) 49564) ((-295 . -186) 49537) ((-295 . -189) 49516) ((-295 . -320) 49495) ((-295 . -1068) 49474) ((-295 . -299) 49453) ((-295 . -120) 49432) ((-295 . -557) 49369) ((-295 . -592) 49321) ((-295 . -590) 49258) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1131) T) ((-295 . -554) 49240) ((-295 . -1015) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -972) T) ((-295 . -1027) T) ((-295 . -1063) T) ((-295 . -665) T) ((-295 . -963) T) ((-295 . -312) T) ((-295 . -1136) T) ((-295 . -834) T) ((-295 . -497) T) ((-295 . -146) T) ((-295 . -656) 49192) ((-295 . -584) 49144) ((-295 . -38) 49109) ((-295 . -393) T) ((-295 . -258) T) ((-295 . -82) 49040) ((-295 . -965) 48992) ((-295 . -970) 48944) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48898) ((-295 . -118) 48852) ((-295 . -952) 48836) ((-295 . -1189) 48820) ((-295 . -1200) 48804) ((-294 . -280) 48788) ((-294 . -190) 48767) ((-294 . -186) 48740) ((-294 . -189) 48719) ((-294 . -320) 48698) ((-294 . -1068) 48677) ((-294 . -299) 48656) ((-294 . -120) 48635) ((-294 . -557) 48572) ((-294 . -592) 48524) ((-294 . -590) 48461) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1131) T) ((-294 . -554) 48443) ((-294 . -1015) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -972) T) ((-294 . -1027) T) ((-294 . -1063) T) ((-294 . -665) T) ((-294 . -963) T) ((-294 . -312) T) ((-294 . -1136) T) ((-294 . -834) T) ((-294 . -497) T) ((-294 . -146) T) ((-294 . -656) 48395) ((-294 . -584) 48347) ((-294 . -38) 48312) ((-294 . -393) T) ((-294 . -258) T) ((-294 . -82) 48243) ((-294 . -965) 48195) ((-294 . -970) 48147) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 48101) ((-294 . -118) 48055) ((-294 . -952) 48039) ((-294 . -1189) 48023) ((-294 . -1200) 48007) ((-293 . -280) 47984) ((-293 . -190) T) ((-293 . -186) 47971) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1068) T) ((-293 . -299) T) ((-293 . -120) 47953) ((-293 . -557) 47883) ((-293 . -592) 47828) ((-293 . -590) 47758) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1131) T) ((-293 . -554) 47740) ((-293 . -1015) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -972) T) ((-293 . -1027) T) ((-293 . -1063) T) ((-293 . -665) T) ((-293 . -963) T) ((-293 . -312) T) ((-293 . -1136) T) ((-293 . -834) T) ((-293 . -497) T) ((-293 . -146) T) ((-293 . -656) 47685) ((-293 . -584) 47630) ((-293 . -38) 47595) ((-293 . -393) T) ((-293 . -258) T) ((-293 . -82) 47512) ((-293 . -965) 47457) ((-293 . -970) 47402) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -952) 47379) ((-293 . -1189) 47356) ((-293 . -1200) 47333) ((-289 . -280) 47310) ((-289 . -190) T) ((-289 . -186) 47297) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1068) T) ((-289 . -299) T) ((-289 . -120) 47279) ((-289 . -557) 47209) ((-289 . -592) 47154) ((-289 . -590) 47084) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1131) T) ((-289 . -554) 47066) ((-289 . -1015) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -972) T) ((-289 . -1027) T) ((-289 . -1063) T) ((-289 . -665) T) ((-289 . -963) T) ((-289 . -312) T) ((-289 . -1136) T) ((-289 . -834) T) ((-289 . -497) T) ((-289 . -146) T) ((-289 . -656) 47011) ((-289 . -584) 46956) ((-289 . -38) 46921) ((-289 . -393) T) ((-289 . -258) T) ((-289 . -82) 46838) ((-289 . -965) 46783) ((-289 . -970) 46728) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -952) 46705) ((-289 . -1189) 46682) ((-289 . -1200) 46659) ((-283 . -286) 46628) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1131) T) ((-283 . -554) 46610) ((-283 . -1015) T) ((-283 . -23) T) ((-283 . -590) 46592) ((-283 . -21) T) ((-282 . -1015) T) ((-282 . -554) 46574) ((-282 . -1131) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -758) T) ((-281 . -554) 46556) ((-281 . -1015) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1131) T) ((-281 . -761) T) ((-278 . -19) 46540) ((-278 . -1037) 46524) ((-278 . -318) 46508) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1131) T) ((-278 . -72) 46442) ((-278 . -554) 46357) ((-278 . -260) 46295) ((-278 . -457) 46228) ((-278 . -381) 46212) ((-278 . -1015) 46165) ((-278 . -430) 46149) ((-278 . -595) 46133) ((-278 . -243) 46110) ((-278 . -241) 46062) ((-278 . -540) 46039) ((-278 . -555) 46000) ((-278 . -124) 45984) ((-278 . -758) 45963) ((-278 . -761) 45942) ((-278 . -324) 45926) ((-278 . -237) 45910) ((-275 . -274) 45887) ((-275 . -557) 45871) ((-275 . -952) 45855) ((-275 . -23) T) ((-275 . -1015) T) ((-275 . -554) 45837) ((-275 . -1131) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -590) 45819) ((-273 . -23) T) ((-273 . -1015) T) ((-273 . -554) 45801) ((-273 . -1131) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -656) 45783) ((-273 . -584) 45765) ((-273 . -592) 45747) ((-273 . -970) 45729) ((-273 . -965) 45711) ((-273 . -82) 45686) ((-273 . -274) 45663) ((-273 . -557) 45647) ((-273 . -952) 45631) ((-273 . -758) 45610) ((-273 . -761) 45589) ((-270 . -1164) 45573) ((-270 . -190) 45525) ((-270 . -186) 45471) ((-270 . -189) 45423) ((-270 . -241) 45381) ((-270 . -811) 45287) ((-270 . -808) 45191) ((-270 . -813) 45097) ((-270 . -888) 45060) ((-270 . -38) 44907) ((-270 . -82) 44727) ((-270 . -965) 44568) ((-270 . -970) 44409) ((-270 . -590) 44294) ((-270 . -592) 44194) ((-270 . -584) 44041) ((-270 . -656) 43888) ((-270 . -557) 43720) ((-270 . -118) 43699) ((-270 . -120) 43678) ((-270 . -47) 43648) ((-270 . -1160) 43618) ((-270 . -35) 43584) ((-270 . -66) 43550) ((-270 . -239) 43516) ((-270 . -434) 43482) ((-270 . -1120) 43448) ((-270 . -1117) 43414) ((-270 . -917) 43380) ((-270 . -201) 43359) ((-270 . -246) 43313) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1131) T) ((-270 . -554) 43295) ((-270 . -1015) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -963) T) ((-270 . -665) T) ((-270 . -1063) T) ((-270 . -1027) T) ((-270 . -972) T) ((-270 . -258) 43274) ((-270 . -393) 43253) ((-270 . -146) 43187) ((-270 . -497) 43141) ((-270 . -834) 43120) ((-270 . -1136) 43099) ((-270 . -312) 43078) ((-270 . -718) T) ((-270 . -758) T) ((-270 . -761) T) ((-270 . -720) T) ((-265 . -364) 43062) ((-265 . -557) 42637) ((-265 . -952) 42308) ((-265 . -555) 42169) ((-265 . -796) 42153) ((-265 . -813) 42120) ((-265 . -808) 42085) ((-265 . -811) 42052) ((-265 . -414) 42031) ((-265 . -355) 42015) ((-265 . -798) 41940) ((-265 . -343) 41924) ((-265 . -582) 41832) ((-265 . -592) 41570) ((-265 . -329) 41540) ((-265 . -201) 41519) ((-265 . -82) 41408) ((-265 . -965) 41318) ((-265 . -970) 41228) ((-265 . -246) 41207) ((-265 . -656) 41117) ((-265 . -584) 41027) ((-265 . -590) 40694) ((-265 . -38) 40604) ((-265 . -258) 40583) ((-265 . -393) 40562) ((-265 . -146) 40541) ((-265 . -497) 40520) ((-265 . -834) 40499) ((-265 . -1136) 40478) ((-265 . -312) 40457) ((-265 . -260) 40444) ((-265 . -457) 40410) ((-265 . -254) T) ((-265 . -120) 40389) ((-265 . -118) 40368) ((-265 . -963) 40262) ((-265 . -665) 40115) ((-265 . -1063) 40009) ((-265 . -1027) 39862) ((-265 . -972) 39756) ((-265 . -104) 39631) ((-265 . -25) 39487) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1131) T) ((-265 . -554) 39469) ((-265 . -1015) T) ((-265 . -23) 39325) ((-265 . -21) 39200) ((-265 . -29) 39170) ((-265 . -917) 39149) ((-265 . -27) 39128) ((-265 . -1117) 39107) ((-265 . -1120) 39086) ((-265 . -434) 39065) ((-265 . -239) 39044) ((-265 . -66) 39023) ((-265 . -35) 39002) ((-265 . -133) 38981) ((-265 . -116) 38960) ((-265 . -571) 38939) ((-265 . -873) 38918) ((-265 . -1055) 38897) ((-264 . -906) 38858) ((-264 . -1068) NIL) ((-264 . -952) 38788) ((-264 . -557) 38671) ((-264 . -555) NIL) ((-264 . -935) NIL) ((-264 . -823) NIL) ((-264 . -796) 38632) ((-264 . -757) NIL) ((-264 . -723) NIL) ((-264 . -720) NIL) ((-264 . -761) NIL) ((-264 . -758) NIL) ((-264 . -718) NIL) ((-264 . -716) NIL) ((-264 . -742) NIL) ((-264 . -798) NIL) ((-264 . -343) 38593) ((-264 . -582) 38554) ((-264 . -592) 38483) ((-264 . -329) 38444) ((-264 . -241) 38310) ((-264 . -260) 38206) ((-264 . -457) 37957) ((-264 . -288) 37918) ((-264 . -201) T) ((-264 . -82) 37803) ((-264 . -965) 37732) ((-264 . -970) 37661) ((-264 . -246) T) ((-264 . -656) 37590) ((-264 . -584) 37519) ((-264 . -590) 37433) ((-264 . -38) 37362) ((-264 . -258) T) ((-264 . -393) T) ((-264 . -146) T) ((-264 . -497) T) ((-264 . -834) T) ((-264 . -1136) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 37323) ((-264 . -808) NIL) ((-264 . -813) NIL) ((-264 . -811) NIL) ((-264 . -184) 37284) ((-264 . -120) 37240) ((-264 . -118) 37196) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1131) T) ((-264 . -554) 37178) ((-264 . -1015) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -963) T) ((-264 . -665) T) ((-264 . -1063) T) ((-264 . -1027) T) ((-264 . -972) T) ((-263 . -997) T) ((-263 . -431) 37159) ((-263 . -554) 37125) ((-263 . -557) 37106) ((-263 . -1015) T) ((-263 . -1131) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1015) T) ((-262 . -554) 37088) ((-262 . -1131) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1109) 37067) ((-251 . -183) 37015) ((-251 . -76) 36963) ((-251 . -1037) 36898) ((-251 . -124) 36846) ((-251 . -555) NIL) ((-251 . -193) 36794) ((-251 . -540) 36773) ((-251 . -260) 36571) ((-251 . -457) 36323) ((-251 . -381) 36258) ((-251 . -430) 36193) ((-251 . -241) 36172) ((-251 . -243) 36151) ((-251 . -551) 36130) ((-251 . -1015) T) ((-251 . -554) 36112) ((-251 . -72) T) ((-251 . -1131) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 36060) ((-249 . -1131) T) ((-249 . -13) T) ((-249 . -457) 36009) ((-249 . -1015) 35795) ((-249 . -554) 35541) ((-249 . -72) 35327) ((-249 . -25) 35195) ((-249 . -21) 35082) ((-249 . -590) 34829) ((-249 . -23) 34716) ((-249 . -104) 34603) ((-249 . -1027) 34488) ((-249 . -665) 34394) ((-249 . -414) 34373) ((-249 . -963) 34319) ((-249 . -1063) 34265) ((-249 . -972) 34211) ((-249 . -592) 34079) ((-249 . -557) 34014) ((-249 . -82) 33934) ((-249 . -965) 33859) ((-249 . -970) 33784) ((-249 . -656) 33729) ((-249 . -584) 33674) ((-249 . -811) 33633) ((-249 . -808) 33590) ((-249 . -813) 33549) ((-249 . -1189) 33519) ((-247 . -554) 33501) ((-244 . -258) T) ((-244 . -393) T) ((-244 . -38) 33488) ((-244 . -557) 33460) ((-244 . -972) T) ((-244 . -1027) T) ((-244 . -1063) T) ((-244 . -665) T) ((-244 . -963) T) ((-244 . -82) 33445) ((-244 . -965) 33432) ((-244 . -970) 33419) ((-244 . -21) T) ((-244 . -590) 33391) ((-244 . -23) T) ((-244 . -1015) T) ((-244 . -554) 33373) ((-244 . -1131) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -592) 33360) ((-244 . -584) 33347) ((-244 . -656) 33334) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -497) T) ((-244 . -834) T) ((-244 . -241) 33313) ((-235 . -554) 33295) ((-234 . -554) 33277) ((-229 . -758) T) ((-229 . -554) 33259) ((-229 . -1015) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1131) T) ((-229 . -761) T) ((-226 . -213) 33221) ((-226 . -557) 32981) ((-226 . -952) 32827) ((-226 . -555) 32575) ((-226 . -277) 32547) ((-226 . -355) 32531) ((-226 . -38) 32383) ((-226 . -82) 32208) ((-226 . -965) 32054) ((-226 . -970) 31900) ((-226 . -590) 31810) ((-226 . -592) 31699) ((-226 . -584) 31551) ((-226 . -656) 31403) ((-226 . -118) 31382) ((-226 . -120) 31361) ((-226 . -146) 31275) ((-226 . -497) 31209) ((-226 . -246) 31143) ((-226 . -47) 31115) ((-226 . -329) 31099) ((-226 . -582) 31047) ((-226 . -393) 31001) ((-226 . -457) 30892) ((-226 . -811) 30838) ((-226 . -808) 30747) ((-226 . -813) 30660) ((-226 . -798) 30519) ((-226 . -823) 30498) ((-226 . -1136) 30477) ((-226 . -863) 30444) ((-226 . -260) 30431) ((-226 . -190) 30410) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -554) 30392) ((-226 . -1015) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -972) T) ((-226 . -1027) T) ((-226 . -1063) T) ((-226 . -665) T) ((-226 . -963) T) ((-226 . -186) 30340) ((-226 . -13) T) ((-226 . -1131) T) ((-226 . -189) 30294) ((-226 . -225) 30278) ((-226 . -184) 30262) ((-221 . -1015) T) ((-221 . -554) 30244) ((-221 . -1131) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 30223) ((-211 . -1189) 30193) ((-211 . -723) 30172) ((-211 . -720) 30151) ((-211 . -761) 30105) ((-211 . -758) 30059) ((-211 . -718) 30038) ((-211 . -719) 30017) ((-211 . -656) 29962) ((-211 . -584) 29887) ((-211 . -243) 29864) ((-211 . -241) 29841) ((-211 . -540) 29818) ((-211 . -952) 29647) ((-211 . -557) 29451) ((-211 . -355) 29420) ((-211 . -582) 29328) ((-211 . -592) 29154) ((-211 . -329) 29124) ((-211 . -430) 29108) ((-211 . -381) 29092) ((-211 . -457) 29025) ((-211 . -260) 28963) ((-211 . -34) T) ((-211 . -318) 28947) ((-211 . -320) 28926) ((-211 . -190) 28879) ((-211 . -590) 28732) ((-211 . -972) 28711) ((-211 . -1027) 28690) ((-211 . -1063) 28669) ((-211 . -665) 28648) ((-211 . -963) 28627) ((-211 . -186) 28523) ((-211 . -189) 28425) ((-211 . -225) 28395) ((-211 . -808) 28267) ((-211 . -813) 28141) ((-211 . -811) 28074) ((-211 . -184) 28044) ((-211 . -554) 28005) ((-211 . -970) 27930) ((-211 . -965) 27835) ((-211 . -82) 27755) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1131) T) ((-211 . -1015) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27734) ((-210 . -1189) 27704) ((-210 . -723) 27683) ((-210 . -720) 27662) ((-210 . -761) 27616) ((-210 . -758) 27570) ((-210 . -718) 27549) ((-210 . -719) 27528) ((-210 . -656) 27473) ((-210 . -584) 27398) ((-210 . -243) 27375) ((-210 . -241) 27352) ((-210 . -540) 27329) ((-210 . -952) 27158) ((-210 . -557) 26962) ((-210 . -355) 26931) ((-210 . -582) 26839) ((-210 . -592) 26652) ((-210 . -329) 26622) ((-210 . -430) 26606) ((-210 . -381) 26590) ((-210 . -457) 26523) ((-210 . -260) 26461) ((-210 . -34) T) ((-210 . -318) 26445) ((-210 . -320) 26424) ((-210 . -190) 26377) ((-210 . -590) 26217) ((-210 . -972) 26196) ((-210 . -1027) 26175) ((-210 . -1063) 26154) ((-210 . -665) 26133) ((-210 . -963) 26112) ((-210 . -186) 26008) ((-210 . -189) 25910) ((-210 . -225) 25880) ((-210 . -808) 25752) ((-210 . -813) 25626) ((-210 . -811) 25559) ((-210 . -184) 25529) ((-210 . -554) 25490) ((-210 . -970) 25415) ((-210 . -965) 25320) ((-210 . -82) 25240) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1131) T) ((-210 . -1015) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1015) T) ((-209 . -554) 25222) ((-209 . -1131) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 25196) ((-208 . -160) T) ((-208 . -1015) T) ((-208 . -554) 25163) ((-208 . -1131) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -749) 25145) ((-207 . -1015) T) ((-207 . -554) 25127) ((-207 . -1131) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -863) 25072) ((-206 . -557) 24864) ((-206 . -952) 24742) ((-206 . -1136) 24721) ((-206 . -823) 24700) ((-206 . -798) NIL) ((-206 . -813) 24677) ((-206 . -808) 24652) ((-206 . -811) 24629) ((-206 . -457) 24567) ((-206 . -393) 24521) ((-206 . -582) 24469) ((-206 . -592) 24358) ((-206 . -329) 24342) ((-206 . -47) 24299) ((-206 . -38) 24151) ((-206 . -584) 24003) ((-206 . -656) 23855) ((-206 . -246) 23789) ((-206 . -497) 23723) ((-206 . -82) 23548) ((-206 . -965) 23394) ((-206 . -970) 23240) ((-206 . -146) 23154) ((-206 . -120) 23133) ((-206 . -118) 23112) ((-206 . -590) 23022) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1131) T) ((-206 . -554) 23004) ((-206 . -1015) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -963) T) ((-206 . -665) T) ((-206 . -1063) T) ((-206 . -1027) T) ((-206 . -972) T) ((-206 . -355) 22988) ((-206 . -277) 22945) ((-206 . -260) 22932) ((-206 . -555) 22793) ((-203 . -610) 22777) ((-203 . -1170) 22761) ((-203 . -925) 22745) ((-203 . -1066) 22729) ((-203 . -318) 22713) ((-203 . -758) 22692) ((-203 . -761) 22671) ((-203 . -324) 22655) ((-203 . -595) 22639) ((-203 . -243) 22616) ((-203 . -241) 22568) ((-203 . -540) 22545) ((-203 . -555) 22506) ((-203 . -430) 22490) ((-203 . -1015) 22443) ((-203 . -381) 22427) ((-203 . -457) 22360) ((-203 . -260) 22298) ((-203 . -554) 22193) ((-203 . -72) 22127) ((-203 . -1131) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 22111) ((-203 . -1037) 22095) ((-203 . -237) 22079) ((-203 . -431) 22056) ((-203 . -557) 22033) ((-197 . -196) 22012) ((-197 . -1189) 21982) ((-197 . -723) 21961) ((-197 . -720) 21940) ((-197 . -761) 21894) ((-197 . -758) 21848) ((-197 . -718) 21827) ((-197 . -719) 21806) ((-197 . -656) 21751) ((-197 . -584) 21676) ((-197 . -243) 21653) ((-197 . -241) 21630) ((-197 . -540) 21607) ((-197 . -952) 21436) ((-197 . -557) 21240) ((-197 . -355) 21209) ((-197 . -582) 21117) ((-197 . -592) 20956) ((-197 . -329) 20926) ((-197 . -430) 20910) ((-197 . -381) 20894) ((-197 . -457) 20827) ((-197 . -260) 20765) ((-197 . -34) T) ((-197 . -318) 20749) ((-197 . -320) 20728) ((-197 . -190) 20681) ((-197 . -590) 20469) ((-197 . -972) 20448) ((-197 . -1027) 20427) ((-197 . -1063) 20406) ((-197 . -665) 20385) ((-197 . -963) 20364) ((-197 . -186) 20260) ((-197 . -189) 20162) ((-197 . -225) 20132) ((-197 . -808) 20004) ((-197 . -813) 19878) ((-197 . -811) 19811) ((-197 . -184) 19781) ((-197 . -554) 19478) ((-197 . -970) 19403) ((-197 . -965) 19308) ((-197 . -82) 19228) ((-197 . -104) 19103) ((-197 . -25) 18940) ((-197 . -72) 18677) ((-197 . -13) T) ((-197 . -1131) T) ((-197 . -1015) 18433) ((-197 . -23) 18289) ((-197 . -21) 18204) ((-181 . -629) 18162) ((-181 . -318) 18146) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1131) T) ((-181 . -72) 18100) ((-181 . -554) 18035) ((-181 . -260) 17973) ((-181 . -457) 17906) ((-181 . -381) 17890) ((-181 . -1015) 17868) ((-181 . -430) 17852) ((-181 . -1037) 17836) ((-181 . -57) 17794) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -557) 17744) ((-179 . -592) 17709) ((-179 . -590) 17659) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1131) T) ((-179 . -554) 17641) ((-179 . -1015) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -972) T) ((-179 . -1027) T) ((-179 . -1063) T) ((-179 . -665) T) ((-179 . -963) T) ((-179 . -555) 17571) ((-179 . -312) T) ((-179 . -1136) T) ((-179 . -834) T) ((-179 . -497) T) ((-179 . -146) T) ((-179 . -656) 17536) ((-179 . -584) 17501) ((-179 . -38) 17466) ((-179 . -393) T) ((-179 . -258) T) ((-179 . -82) 17415) ((-179 . -965) 17380) ((-179 . -970) 17345) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -757) T) ((-179 . -723) T) ((-179 . -720) T) ((-179 . -761) T) ((-179 . -758) T) ((-179 . -718) T) ((-179 . -716) T) ((-179 . -798) 17327) ((-179 . -917) T) ((-179 . -935) T) ((-179 . -952) 17287) ((-179 . -975) T) ((-179 . -190) T) ((-179 . -186) 17274) ((-179 . -189) T) ((-179 . -1117) T) ((-179 . -1120) T) ((-179 . -434) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -562) 17251) ((-177 . -557) 17213) ((-177 . -592) 17180) ((-177 . -590) 17132) ((-177 . -972) T) ((-177 . -1027) T) ((-177 . -1063) T) ((-177 . -665) T) ((-177 . -963) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1015) T) ((-177 . -554) 17114) ((-177 . -1131) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -952) 17091) ((-176 . -214) 17075) ((-176 . -1036) 17059) ((-176 . -76) 17043) ((-176 . -430) 17027) ((-176 . -1015) 17005) ((-176 . -381) 16989) ((-176 . -457) 16922) ((-176 . -260) 16860) ((-176 . -554) 16795) ((-176 . -72) 16749) ((-176 . -1131) T) ((-176 . -13) T) ((-176 . -34) T) ((-176 . -1037) 16733) ((-176 . -318) 16717) ((-176 . -910) 16701) ((-172 . -997) T) ((-172 . -431) 16682) ((-172 . -554) 16648) ((-172 . -557) 16629) ((-172 . -1015) T) ((-172 . -1131) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -906) 16611) ((-171 . -1068) T) ((-171 . -557) 16561) ((-171 . -952) 16521) ((-171 . -555) 16451) ((-171 . -935) T) ((-171 . -823) NIL) ((-171 . -796) 16433) ((-171 . -757) T) ((-171 . -723) T) ((-171 . -720) T) ((-171 . -761) T) ((-171 . -758) T) ((-171 . -718) T) ((-171 . -716) T) ((-171 . -742) T) ((-171 . -798) 16415) ((-171 . -343) 16397) ((-171 . -582) 16379) ((-171 . -329) 16361) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -457) NIL) ((-171 . -288) 16343) ((-171 . -201) T) ((-171 . -82) 16270) ((-171 . -965) 16220) ((-171 . -970) 16170) ((-171 . -246) T) ((-171 . -656) 16120) ((-171 . -584) 16070) ((-171 . -592) 16020) ((-171 . -590) 15970) ((-171 . -38) 15920) ((-171 . -258) T) ((-171 . -393) T) ((-171 . -146) T) ((-171 . -497) T) ((-171 . -834) T) ((-171 . -1136) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15907) ((-171 . -189) T) ((-171 . -225) 15889) ((-171 . -808) NIL) ((-171 . -813) NIL) ((-171 . -811) NIL) ((-171 . -184) 15871) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1131) T) ((-171 . -554) 15813) ((-171 . -1015) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -963) T) ((-171 . -665) T) ((-171 . -1063) T) ((-171 . -1027) T) ((-171 . -972) T) ((-168 . -754) T) ((-168 . -761) T) ((-168 . -758) T) ((-168 . -1015) T) ((-168 . -554) 15795) ((-168 . -1131) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1015) T) ((-167 . -554) 15777) ((-167 . -1131) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -557) 15754) ((-166 . -1015) T) ((-166 . -554) 15736) ((-166 . -1131) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1015) T) ((-161 . -554) 15718) ((-161 . -1131) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1015) T) ((-158 . -554) 15700) ((-158 . -1131) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1015) T) ((-157 . -554) 15682) ((-157 . -1131) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -749) 15664) ((-154 . -997) T) ((-154 . -431) 15645) ((-154 . -554) 15611) ((-154 . -557) 15592) ((-154 . -1015) T) ((-154 . -1131) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -554) 15574) ((-148 . -38) 15506) ((-148 . -557) 15423) ((-148 . -592) 15355) ((-148 . -590) 15272) ((-148 . -972) T) ((-148 . -1027) T) ((-148 . -1063) T) ((-148 . -665) T) ((-148 . -963) T) ((-148 . -82) 15171) ((-148 . -965) 15103) ((-148 . -970) 15035) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1015) T) ((-148 . -554) 15017) ((-148 . -1131) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -584) 14949) ((-148 . -656) 14881) ((-148 . -312) T) ((-148 . -1136) T) ((-148 . -834) T) ((-148 . -497) T) ((-148 . -146) T) ((-148 . -393) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1015) T) ((-145 . -554) 14863) ((-145 . -1131) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14847) ((-142 . -35) 14825) ((-142 . -66) 14803) ((-142 . -239) 14781) ((-142 . -434) 14759) ((-142 . -1120) 14737) ((-142 . -1117) 14715) ((-142 . -917) 14667) ((-142 . -823) 14620) ((-142 . -555) 14388) ((-142 . -796) 14372) ((-142 . -320) 14326) ((-142 . -299) 14305) ((-142 . -1068) 14284) ((-142 . -345) 14263) ((-142 . -353) 14234) ((-142 . -38) 14068) ((-142 . -82) 13960) ((-142 . -965) 13873) ((-142 . -970) 13786) ((-142 . -584) 13620) ((-142 . -656) 13454) ((-142 . -322) 13425) ((-142 . -663) 13396) ((-142 . -952) 13294) ((-142 . -557) 13079) ((-142 . -355) 13063) ((-142 . -798) 12988) ((-142 . -343) 12972) ((-142 . -582) 12920) ((-142 . -592) 12797) ((-142 . -590) 12695) ((-142 . -329) 12679) ((-142 . -241) 12637) ((-142 . -260) 12602) ((-142 . -457) 12514) ((-142 . -288) 12498) ((-142 . -201) 12452) ((-142 . -1136) 12360) ((-142 . -312) 12314) ((-142 . -834) 12248) ((-142 . -497) 12162) ((-142 . -246) 12076) ((-142 . -393) 12010) ((-142 . -258) 11944) ((-142 . -190) 11898) ((-142 . -186) 11826) ((-142 . -189) 11760) ((-142 . -225) 11744) ((-142 . -808) 11668) ((-142 . -813) 11594) ((-142 . -811) 11553) ((-142 . -184) 11537) ((-142 . -146) T) ((-142 . -120) 11516) ((-142 . -963) T) ((-142 . -665) T) ((-142 . -1063) T) ((-142 . -1027) T) ((-142 . -972) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1015) T) ((-142 . -554) 11498) ((-142 . -1131) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11452) ((-135 . -997) T) ((-135 . -431) 11433) ((-135 . -554) 11399) ((-135 . -557) 11380) ((-135 . -1015) T) ((-135 . -1131) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1015) T) ((-134 . -554) 11362) ((-134 . -1131) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1131) T) ((-130 . -554) 11344) ((-130 . -1015) T) ((-129 . -997) T) ((-129 . -431) 11325) ((-129 . -554) 11291) ((-129 . -557) 11272) ((-129 . -1015) T) ((-129 . -1131) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -997) T) ((-127 . -431) 11253) ((-127 . -554) 11219) ((-127 . -557) 11200) ((-127 . -1015) T) ((-127 . -1131) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -963) T) ((-125 . -665) T) ((-125 . -1063) T) ((-125 . -1027) T) ((-125 . -972) T) ((-125 . -21) T) ((-125 . -590) 11159) ((-125 . -23) T) ((-125 . -1015) T) ((-125 . -554) 11141) ((-125 . -1131) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -592) 11115) ((-125 . -557) 11084) ((-125 . -38) 11068) ((-125 . -82) 11047) ((-125 . -965) 11031) ((-125 . -970) 11015) ((-125 . -584) 10999) ((-125 . -656) 10983) ((-125 . -1189) 10967) ((-117 . -754) T) ((-117 . -761) T) ((-117 . -758) T) ((-117 . -1015) T) ((-117 . -554) 10949) ((-117 . -1131) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1015) T) ((-114 . -554) 10931) ((-114 . -1131) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -555) 10890) ((-114 . -369) 10872) ((-114 . -1013) 10854) ((-114 . -318) 10836) ((-114 . -320) T) ((-114 . -193) 10818) ((-114 . -124) 10800) ((-114 . -1037) 10782) ((-114 . -34) T) ((-114 . -260) NIL) ((-114 . -457) NIL) ((-114 . -381) 10764) ((-114 . -430) 10746) ((-114 . -76) 10728) ((-114 . -183) 10710) ((-113 . -554) 10692) ((-112 . -160) T) ((-112 . -1015) T) ((-112 . -554) 10659) ((-112 . -1131) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -749) 10641) ((-111 . -997) T) ((-111 . -431) 10622) ((-111 . -554) 10588) ((-111 . -557) 10569) ((-111 . -1015) T) ((-111 . -1131) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -997) T) ((-110 . -431) 10550) ((-110 . -554) 10516) ((-110 . -557) 10497) ((-110 . -1015) T) ((-110 . -1131) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -406) 10474) ((-108 . -557) 10370) ((-108 . -952) 10354) ((-108 . -1015) T) ((-108 . -554) 10336) ((-108 . -1131) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -411) 10291) ((-108 . -241) 10268) ((-107 . -758) T) ((-107 . -554) 10250) ((-107 . -1015) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1131) T) ((-107 . -761) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -665) T) ((-107 . -1027) T) ((-107 . -952) 10232) ((-107 . -557) 10214) ((-106 . -997) T) ((-106 . -431) 10195) ((-106 . -554) 10161) ((-106 . -557) 10142) ((-106 . -1015) T) ((-106 . -1131) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1015) T) ((-103 . -554) 10124) ((-103 . -1131) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 10106) ((-102 . -1037) 10088) ((-102 . -318) 10070) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1131) T) ((-102 . -72) T) ((-102 . -554) 10014) ((-102 . -260) NIL) ((-102 . -457) NIL) ((-102 . -381) 9996) ((-102 . -1015) T) ((-102 . -430) 9978) ((-102 . -595) 9960) ((-102 . -243) 9935) ((-102 . -241) 9885) ((-102 . -540) 9860) ((-102 . -555) NIL) ((-102 . -124) 9842) ((-102 . -758) T) ((-102 . -761) T) ((-102 . -324) 9824) ((-101 . -754) T) ((-101 . -761) T) ((-101 . -758) T) ((-101 . -1015) T) ((-101 . -554) 9806) ((-101 . -1131) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -606) T) ((-100 . -98) 9790) ((-100 . -1037) 9774) ((-100 . -318) 9758) ((-100 . -925) 9742) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1131) T) ((-100 . -72) 9696) ((-100 . -554) 9631) ((-100 . -260) 9569) ((-100 . -457) 9502) ((-100 . -381) 9486) ((-100 . -1015) 9464) ((-100 . -430) 9448) ((-100 . -92) 9432) ((-99 . -98) 9416) ((-99 . -1037) 9400) ((-99 . -318) 9384) ((-99 . -925) 9368) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1131) T) ((-99 . -72) 9322) ((-99 . -554) 9257) ((-99 . -260) 9195) ((-99 . -457) 9128) ((-99 . -381) 9112) ((-99 . -1015) 9090) ((-99 . -430) 9074) ((-99 . -92) 9058) ((-94 . -98) 9042) ((-94 . -1037) 9026) ((-94 . -318) 9010) ((-94 . -925) 8994) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1131) T) ((-94 . -72) 8948) ((-94 . -554) 8883) ((-94 . -260) 8821) ((-94 . -457) 8754) ((-94 . -381) 8738) ((-94 . -1015) 8716) ((-94 . -430) 8700) ((-94 . -92) 8684) ((-90 . -906) 8662) ((-90 . -1068) NIL) ((-90 . -952) 8640) ((-90 . -557) 8571) ((-90 . -555) NIL) ((-90 . -935) NIL) ((-90 . -823) NIL) ((-90 . -796) 8549) ((-90 . -757) NIL) ((-90 . -723) NIL) ((-90 . -720) NIL) ((-90 . -761) NIL) ((-90 . -758) NIL) ((-90 . -718) NIL) ((-90 . -716) NIL) ((-90 . -742) NIL) ((-90 . -798) NIL) ((-90 . -343) 8527) ((-90 . -582) 8505) ((-90 . -592) 8451) ((-90 . -329) 8429) ((-90 . -241) 8363) ((-90 . -260) 8310) ((-90 . -457) 8180) ((-90 . -288) 8158) ((-90 . -201) T) ((-90 . -82) 8077) ((-90 . -965) 8023) ((-90 . -970) 7969) ((-90 . -246) T) ((-90 . -656) 7915) ((-90 . -584) 7861) ((-90 . -590) 7792) ((-90 . -38) 7738) ((-90 . -258) T) ((-90 . -393) T) ((-90 . -146) T) ((-90 . -497) T) ((-90 . -834) T) ((-90 . -1136) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7716) ((-90 . -808) NIL) ((-90 . -813) NIL) ((-90 . -811) NIL) ((-90 . -184) 7694) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1131) T) ((-90 . -554) 7676) ((-90 . -1015) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -963) T) ((-90 . -665) T) ((-90 . -1063) T) ((-90 . -1027) T) ((-90 . -972) T) ((-89 . -781) 7660) ((-89 . -834) T) ((-89 . -497) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -557) 7632) ((-89 . -656) 7619) ((-89 . -584) 7606) ((-89 . -970) 7593) ((-89 . -965) 7580) ((-89 . -82) 7565) ((-89 . -38) 7552) ((-89 . -393) T) ((-89 . -258) T) ((-89 . -963) T) ((-89 . -665) T) ((-89 . -1063) T) ((-89 . -1027) T) ((-89 . -972) T) ((-89 . -21) T) ((-89 . -590) 7524) ((-89 . -23) T) ((-89 . -1015) T) ((-89 . -554) 7506) ((-89 . -1131) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -592) 7493) ((-89 . -120) T) ((-86 . -758) T) ((-86 . -554) 7475) ((-86 . -1015) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1131) T) ((-86 . -761) T) ((-86 . -749) 7456) ((-85 . -754) T) ((-85 . -761) T) ((-85 . -758) T) ((-85 . -1015) T) ((-85 . -554) 7438) ((-85 . -1131) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -882) T) ((-85 . -606) T) ((-85 . -84) T) ((-85 . -555) 7420) ((-81 . -96) T) ((-81 . -324) 7403) ((-81 . -761) T) ((-81 . -758) T) ((-81 . -124) 7386) ((-81 . -555) 7368) ((-81 . -241) 7319) ((-81 . -540) 7295) ((-81 . -243) 7271) ((-81 . -595) 7254) ((-81 . -430) 7237) ((-81 . -1015) T) ((-81 . -381) 7220) ((-81 . -457) NIL) ((-81 . -260) NIL) ((-81 . -554) 7202) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7185) ((-81 . -1037) 7168) ((-81 . -19) 7151) ((-81 . -606) T) ((-81 . -13) T) ((-81 . -1131) T) ((-81 . -84) T) ((-79 . -80) 7135) ((-79 . -1131) T) ((-79 . |MappingCategory|) 7109) ((-79 . -1015) T) ((-79 . -554) 7091) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -554) 7073) ((-77 . -906) 7055) ((-77 . -1068) T) ((-77 . -557) 7005) ((-77 . -952) 6965) ((-77 . -555) 6895) ((-77 . -935) T) ((-77 . -823) NIL) ((-77 . -796) 6877) ((-77 . -757) T) ((-77 . -723) T) ((-77 . -720) T) ((-77 . -761) T) ((-77 . -758) T) ((-77 . -718) T) ((-77 . -716) T) ((-77 . -742) T) ((-77 . -798) 6859) ((-77 . -343) 6841) ((-77 . -582) 6823) ((-77 . -329) 6805) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -457) NIL) ((-77 . -288) 6787) ((-77 . -201) T) ((-77 . -82) 6714) ((-77 . -965) 6664) ((-77 . -970) 6614) ((-77 . -246) T) ((-77 . -656) 6564) ((-77 . -584) 6514) ((-77 . -592) 6464) ((-77 . -590) 6414) ((-77 . -38) 6364) ((-77 . -258) T) ((-77 . -393) T) ((-77 . -146) T) ((-77 . -497) T) ((-77 . -834) T) ((-77 . -1136) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6351) ((-77 . -189) T) ((-77 . -225) 6333) ((-77 . -808) NIL) ((-77 . -813) NIL) ((-77 . -811) NIL) ((-77 . -184) 6315) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1131) T) ((-77 . -554) 6258) ((-77 . -1015) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -963) T) ((-77 . -665) T) ((-77 . -1063) T) ((-77 . -1027) T) ((-77 . -972) T) ((-73 . -98) 6242) ((-73 . -1037) 6226) ((-73 . -318) 6210) ((-73 . -925) 6194) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1131) T) ((-73 . -72) 6148) ((-73 . -554) 6083) ((-73 . -260) 6021) ((-73 . -457) 5954) ((-73 . -381) 5938) ((-73 . -1015) 5916) ((-73 . -430) 5900) ((-73 . -92) 5884) ((-69 . -414) T) ((-69 . -1027) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1131) T) ((-69 . -554) 5866) ((-69 . -1015) T) ((-69 . -665) T) ((-69 . -241) 5845) ((-67 . -997) T) ((-67 . -431) 5826) ((-67 . -554) 5792) ((-67 . -557) 5773) ((-67 . -1015) T) ((-67 . -1131) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1036) 5757) ((-62 . -318) 5741) ((-62 . -1037) 5725) ((-62 . -34) T) ((-62 . -13) T) ((-62 . -1131) T) ((-62 . -72) 5679) ((-62 . -554) 5614) ((-62 . -260) 5552) ((-62 . -457) 5485) ((-62 . -381) 5469) ((-62 . -1015) 5447) ((-62 . -430) 5431) ((-62 . -76) 5415) ((-60 . -57) 5377) ((-60 . -1037) 5361) ((-60 . -430) 5345) ((-60 . -1015) 5323) ((-60 . -381) 5307) ((-60 . -457) 5240) ((-60 . -260) 5178) ((-60 . -554) 5113) ((-60 . -72) 5067) ((-60 . -1131) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 5051) ((-58 . -19) 5035) ((-58 . -1037) 5019) ((-58 . -318) 5003) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1131) T) ((-58 . -72) 4937) ((-58 . -554) 4852) ((-58 . -260) 4790) ((-58 . -457) 4723) ((-58 . -381) 4707) ((-58 . -1015) 4660) ((-58 . -430) 4644) ((-58 . -595) 4628) ((-58 . -243) 4605) ((-58 . -241) 4557) ((-58 . -540) 4534) ((-58 . -555) 4495) ((-58 . -124) 4479) ((-58 . -758) 4458) ((-58 . -761) 4437) ((-58 . -324) 4421) ((-55 . -1015) T) ((-55 . -554) 4403) ((-55 . -1131) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -952) 4385) ((-55 . -557) 4367) ((-51 . -1015) T) ((-51 . -554) 4349) ((-51 . -1131) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -562) 4333) ((-50 . -557) 4302) ((-50 . -592) 4276) ((-50 . -590) 4235) ((-50 . -972) T) ((-50 . -1027) T) ((-50 . -1063) T) ((-50 . -665) T) ((-50 . -963) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1015) T) ((-50 . -554) 4217) ((-50 . -1131) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -952) 4201) ((-49 . -1015) T) ((-49 . -554) 4183) ((-49 . -1131) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1131) T) ((-48 . -554) 4165) ((-48 . -1015) T) ((-48 . -557) 4066) ((-48 . -952) 4009) ((-48 . -457) 3975) ((-48 . -260) 3962) ((-48 . -27) T) ((-48 . -917) T) ((-48 . -201) T) ((-48 . -82) 3911) ((-48 . -965) 3876) ((-48 . -970) 3841) ((-48 . -246) T) ((-48 . -656) 3806) ((-48 . -584) 3771) ((-48 . -592) 3721) ((-48 . -590) 3671) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -963) T) ((-48 . -665) T) ((-48 . -1063) T) ((-48 . -1027) T) ((-48 . -972) T) ((-48 . -38) 3636) ((-48 . -258) T) ((-48 . -393) T) ((-48 . -146) T) ((-48 . -497) T) ((-48 . -834) T) ((-48 . -1136) T) ((-48 . -312) T) ((-48 . -582) 3596) ((-48 . -935) T) ((-48 . -555) 3541) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3528) ((-48 . -189) T) ((-45 . -36) 3507) ((-45 . -551) 3486) ((-45 . -1037) 3421) ((-45 . -243) 3344) ((-45 . -241) 3242) ((-45 . -430) 3177) ((-45 . -381) 3112) ((-45 . -457) 2864) ((-45 . -260) 2662) ((-45 . -540) 2585) ((-45 . -193) 2533) ((-45 . -76) 2481) ((-45 . -183) 2429) ((-45 . -1109) 2408) ((-45 . -237) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1131) T) ((-45 . -72) T) ((-45 . -554) 2286) ((-45 . -1015) T) ((-45 . -555) NIL) ((-45 . -595) 2234) ((-45 . -324) 2182) ((-45 . -761) NIL) ((-45 . -758) NIL) ((-45 . -318) 2130) ((-45 . -1066) 2078) ((-45 . -925) 2026) ((-45 . -1170) 1974) ((-45 . -610) 1922) ((-44 . -361) 1906) ((-44 . -685) 1890) ((-44 . -659) T) ((-44 . -687) T) ((-44 . -82) 1869) ((-44 . -965) 1853) ((-44 . -970) 1837) ((-44 . -21) T) ((-44 . -590) 1780) ((-44 . -23) T) ((-44 . -1015) T) ((-44 . -554) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -592) 1720) ((-44 . -584) 1704) ((-44 . -656) 1688) ((-44 . -316) 1672) ((-44 . -1131) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -557) 1553) ((-40 . -972) T) ((-40 . -1027) T) ((-40 . -1063) T) ((-40 . -665) T) ((-40 . -963) T) ((-40 . -592) 1455) ((-40 . -590) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1131) T) ((-40 . -554) 1367) ((-40 . -1015) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -970) 1312) ((-40 . -965) 1257) ((-40 . -82) 1174) ((-40 . -555) 1158) ((-40 . -184) 1135) ((-40 . -811) 1087) ((-40 . -813) 999) ((-40 . -808) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1136) T) ((-40 . -834) T) ((-40 . -497) T) ((-40 . -656) 677) ((-40 . -584) 622) ((-40 . -38) 567) ((-40 . -393) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1068) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -582) 366) ((-40 . -355) 343) ((-40 . -952) 220) ((-40 . -663) 192) ((-31 . -997) T) ((-31 . -431) 173) ((-31 . -554) 139) ((-31 . -557) 120) ((-31 . -1015) T) ((-31 . -1131) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -868) T) ((-30 . -554) 102) ((0 . |EnumerationCategory|) T) ((0 . -554) 84) ((0 . -1015) T) ((0 . -72) T) ((0 . -1131) T) ((-2 . |RecordCategory|) T) ((-2 . -554) 66) ((-2 . -1015) T) ((-2 . -72) T) ((-2 . -1131) T) ((-3 . |UnionCategory|) T) ((-3 . -554) 48) ((-3 . -1015) T) ((-3 . -72) T) ((-3 . -1131) T) ((-1 . -1015) T) ((-1 . -554) 30) ((-1 . -1131) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index abcdc820..30b5d2f2 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3578007596) -(4000 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3578010131) +(4001 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -121,7 +121,7 @@ |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FunctionCalled| - |FunctionDescriptor| |GaloisGroupFactorizer| + |Functorial| |FunctionDescriptor| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index b4716686..751ba7bd 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4052 +1,4057 @@ -(2793113 . 3578007604) -((-1736 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1734 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 44 T ELT)) (-2298 (($ $) 80 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3421 (((-485) (-1 (-85) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-3520 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2610 (((-584 |#2|) $) 13 T ELT)) (-3328 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2305 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 76 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1731 (((-695) |#2| $) NIL T ELT) (((-695) (-1 (-85) |#2|) $) 34 T ELT)) (-1735 (($ $ $ (-485)) 69 T ELT)) (-3402 (($ $) 68 T ELT)) (-3532 (($ (-584 |#2|)) 73 T ELT)) (-3804 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3948 (((-773) $) 92 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3058 (((-85) $ $) 95 T ELT)) (-2687 (((-85) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3328 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -1734 (|#1| |#1|)) (-15 -1734 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -1735 (|#1| |#1| |#1| (-485))) (-15 -1736 ((-85) |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -2610 ((-584 |#2|) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3790 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3960 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3532 (|#1| (-584 |#2|))) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3790 (|#2| |#1| (-485) |#2|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#1| |#1|))) (-19 |#2|) (-1130)) (T -18)) +(2794307 . 3578010139) +((-1737 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1735 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-1148 (-486)) |#2|) 44 T ELT)) (-2299 (($ $) 80 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3422 (((-486) (-1 (-85) |#2|) $) 27 T ELT) (((-486) |#2| $) NIL T ELT) (((-486) |#2| $ (-486)) 96 T ELT)) (-3521 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2611 (((-585 |#2|) $) 13 T ELT)) (-3329 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2306 (($ |#2| $ (-486)) NIL T ELT) (($ $ $ (-486)) 67 T ELT)) (-1356 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 76 T ELT) (($ $ (-1148 (-486))) 75 T ELT)) (-1732 (((-696) |#2| $) NIL T ELT) (((-696) (-1 (-85) |#2|) $) 34 T ELT)) (-1736 (($ $ $ (-486)) 69 T ELT)) (-3403 (($ $) 68 T ELT)) (-3533 (($ (-585 |#2|)) 73 T ELT)) (-3805 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-585 $)) 85 T ELT)) (-3949 (((-774) $) 92 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3059 (((-85) $ $) 95 T ELT)) (-2688 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3329 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2688 ((-85) |#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1735 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -1736 (|#1| |#1| |#1| (-486))) (-15 -1737 ((-85) |#1|)) (-15 -3521 (|#1| |#1| |#1|)) (-15 -3422 ((-486) |#2| |#1| (-486))) (-15 -3422 ((-486) |#2| |#1|)) (-15 -3422 ((-486) (-1 (-85) |#2|) |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3521 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1734 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -2611 ((-585 |#2|) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3791 (|#2| |#1| (-1148 (-486)) |#2|)) (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -2307 (|#1| |#1| (-1148 (-486)))) (-15 -2307 (|#1| |#1| (-486))) (-15 -3961 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -3533 (|#1| (-585 |#2|))) (-15 -1356 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3803 (|#2| |#1| (-486))) (-15 -3803 (|#2| |#1| (-486) |#2|)) (-15 -3791 (|#2| |#1| (-486) |#2|)) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3403 (|#1| |#1|))) (-19 |#2|) (-1131)) (T -18)) NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 46 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 109 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 45 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 104 T ELT)) (-3247 (((-85) |#1| $) 108 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 111 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 59 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 67 T ELT)) (-2200 (($ $ |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 39 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 44 T ELT) ((|#1| $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-1731 (((-695) |#1| $) 107 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 103 T ELT)) (-1735 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 66 T ELT)) (-3804 (($ $ |#1|) 63 T ELT) (($ |#1| $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2568 (((-85) $ $) 82 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 100 T ELT))) -(((-19 |#1|) (-113) (-1130)) (T -19)) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1037 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 89 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 99 T ELT)) (-1355 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1578 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 96 T ELT) (((-486) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 94 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 105 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 82 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 104 T ELT)) (-1736 (($ $ $ (-486)) 90 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2569 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 86 (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-19 |#1|) (-113) (-1131)) (T -19)) NIL -(-13 (-324 |t#1|) (-1036 |t#1|)) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T)) -((-1313 (((-3 $ "failed") $ $) 12 T ELT)) (-1215 (((-85) $ $) 27 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-485) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -1313 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-21)) (T -20)) +(-13 (-324 |t#1|) (-1037 |t#1|)) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1131) . T)) +((-1314 (((-3 $ "failed") $ $) 12 T ELT)) (-1216 (((-85) $ $) 27 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 16 T ELT) (($ (-486) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 -1314 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1216 ((-85) |#1| |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-21)) (T -20)) NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT))) (((-21) (-113)) (T -21)) -((-3839 (*1 *1 *1) (-4 *1 (-21))) (-3839 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-104) (-589 (-485)) (-10 -8 (-15 -3839 ($ $)) (-15 -3839 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T)) -((-3190 (((-85) $) 10 T ELT)) (-3726 (($) 15 T CONST)) (-1215 (((-85) $ $) 22 T ELT)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 -3726 (|#1|) -3954) (-15 * (|#1| (-831) |#1|))) (-23)) (T -22)) +((-3840 (*1 *1 *1) (-4 *1 (-21))) (-3840 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-590 (-486)) (-10 -8 (-15 -3840 ($ $)) (-15 -3840 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-1015) . T) ((-1131) . T)) +((-3191 (((-85) $) 10 T ELT)) (-3727 (($) 15 T CONST)) (-1216 (((-85) $ $) 22 T ELT)) (* (($ (-832) $) 14 T ELT) (($ (-696) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 -1216 ((-85) |#1| |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3191 ((-85) |#1|)) (-15 -3727 (|#1|) -3955) (-15 * (|#1| (-832) |#1|))) (-23)) (T -22)) NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) (((-23) (-113)) (T -23)) -((-2662 (*1 *1) (-4 *1 (-23))) (-3726 (*1 *1) (-4 *1 (-23))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) (-1215 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -(-13 (-25) (-10 -8 (-15 -2662 ($) -3954) (-15 -3726 ($) -3954) (-15 -3190 ((-85) $)) (-15 * ($ (-695) $)) (-15 -1215 ((-85) $ $)))) -(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((* (($ (-831) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-831) |#1|))) (-25)) (T -24)) +((-2663 (*1 *1) (-4 *1 (-23))) (-3727 (*1 *1) (-4 *1 (-23))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-696)))) (-1216 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) +(-13 (-25) (-10 -8 (-15 -2663 ($) -3955) (-15 -3727 ($) -3955) (-15 -3191 ((-85) $)) (-15 * ($ (-696) $)) (-15 -1216 ((-85) $ $)))) +(((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((* (($ (-832) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-832) |#1|))) (-25)) (T -24)) NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT))) +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT))) (((-25) (-113)) (T -25)) -((-3841 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831))))) -(-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ (-831) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-1216 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1086 $)) 16 T ELT) (((-584 $) (-1086 $) (-1091)) 20 T ELT)) (-1217 (($ (-858 $)) 30 T ELT) (($ (-1086 $)) 11 T ELT) (($ (-1086 $) (-1091)) 60 T ELT)) (-1218 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1086 $)) 18 T ELT) (((-584 $) (-1086 $) (-1091)) 19 T ELT)) (-3185 (($ (-858 $)) 31 T ELT) (($ (-1086 $)) 13 T ELT) (($ (-1086 $) (-1091)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-584 |#1|) (-1086 |#1|))) (-15 -1216 ((-584 |#1|) (-858 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-858 |#1|))) (-15 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-584 |#1|) (-1086 |#1|))) (-15 -1218 ((-584 |#1|) (-858 |#1|))) (-15 -3185 (|#1| (-1086 |#1|) (-1091))) (-15 -3185 (|#1| (-1086 |#1|))) (-15 -3185 (|#1| (-858 |#1|)))) (-27)) (T -26)) +((-3842 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-832))))) +(-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ (-832) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-1217 (((-585 $) (-859 $)) 32 T ELT) (((-585 $) (-1087 $)) 16 T ELT) (((-585 $) (-1087 $) (-1092)) 20 T ELT)) (-1218 (($ (-859 $)) 30 T ELT) (($ (-1087 $)) 11 T ELT) (($ (-1087 $) (-1092)) 60 T ELT)) (-1219 (((-585 $) (-859 $)) 33 T ELT) (((-585 $) (-1087 $)) 18 T ELT) (((-585 $) (-1087 $) (-1092)) 19 T ELT)) (-3186 (($ (-859 $)) 31 T ELT) (($ (-1087 $)) 13 T ELT) (($ (-1087 $) (-1092)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1217 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1217 ((-585 |#1|) (-1087 |#1|))) (-15 -1217 ((-585 |#1|) (-859 |#1|))) (-15 -1218 (|#1| (-1087 |#1|) (-1092))) (-15 -1218 (|#1| (-1087 |#1|))) (-15 -1218 (|#1| (-859 |#1|))) (-15 -1219 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1219 ((-585 |#1|) (-1087 |#1|))) (-15 -1219 ((-585 |#1|) (-859 |#1|))) (-15 -3186 (|#1| (-1087 |#1|) (-1092))) (-15 -3186 (|#1| (-1087 |#1|))) (-15 -3186 (|#1| (-859 |#1|)))) (-27)) (T -26)) NIL -((-2570 (((-85) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT)) (-3185 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) +((-2571 (((-85) $ $) 7 T ELT)) (-1217 (((-585 $) (-859 $)) 98 T ELT) (((-585 $) (-1087 $)) 97 T ELT) (((-585 $) (-1087 $) (-1092)) 96 T ELT)) (-1218 (($ (-859 $)) 101 T ELT) (($ (-1087 $)) 100 T ELT) (($ (-1087 $) (-1092)) 99 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 110 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-1219 (((-585 $) (-859 $)) 104 T ELT) (((-585 $) (-1087 $)) 103 T ELT) (((-585 $) (-1087 $) (-1092)) 102 T ELT)) (-3186 (($ (-859 $)) 107 T ELT) (($ (-1087 $)) 106 T ELT) (($ (-1087 $) (-1092)) 105 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 109 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 108 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) (((-27) (-113)) (T -27)) -((-3185 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1))))) -(-13 (-312) (-916) (-10 -8 (-15 -3185 ($ (-858 $))) (-15 -3185 ($ (-1086 $))) (-15 -3185 ($ (-1086 $) (-1091))) (-15 -1218 ((-584 $) (-858 $))) (-15 -1218 ((-584 $) (-1086 $))) (-15 -1218 ((-584 $) (-1086 $) (-1091))) (-15 -1217 ($ (-858 $))) (-15 -1217 ($ (-1086 $))) (-15 -1217 ($ (-1086 $) (-1091))) (-15 -1216 ((-584 $) (-858 $))) (-15 -1216 ((-584 $) (-1086 $))) (-15 -1216 ((-584 $) (-1086 $) (-1091))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-1216 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1091)) 45 T ELT)) (-1217 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1091)) 39 T ELT)) (-1218 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1091)) 47 T ELT)) (-3185 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1091)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1216 ((-584 |#1|) |#1| (-1091))) (-15 -1217 (|#1| |#1| (-1091))) (-15 -1216 ((-584 |#1|) |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -1218 ((-584 |#1|) |#1| (-1091))) (-15 -3185 (|#1| |#1| (-1091))) (-15 -1218 ((-584 |#1|) |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-584 |#1|) (-1086 |#1|))) (-15 -1216 ((-584 |#1|) (-858 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-858 |#1|))) (-15 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-584 |#1|) (-1086 |#1|))) (-15 -1218 ((-584 |#1|) (-858 |#1|))) (-15 -3185 (|#1| (-1086 |#1|) (-1091))) (-15 -3185 (|#1| (-1086 |#1|))) (-15 -3185 (|#1| (-858 |#1|)))) (-29 |#2|) (-496)) (T -28)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT) (((-584 $) $) 148 T ELT) (((-584 $) $ (-1091)) 146 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1091)) 147 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-1091)) $) 217 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) 249 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1601 (((-584 (-551 $)) $) 180 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1605 (($ $ (-584 (-551 $)) (-584 $)) 170 T ELT) (($ $ (-584 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT) (((-584 $) $) 152 T ELT) (((-584 $) $ (-1091)) 150 T ELT)) (-3185 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1091)) 151 T ELT)) (-3159 (((-3 (-858 |#1|) #1="failed") $) 268 (|has| |#1| (-962)) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 251 (|has| |#1| (-496)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-485) #1#) $) 210 (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) 204 T ELT) (((-3 (-551 $) #1#) $) 155 T ELT) (((-3 (-350 (-485)) #1#) $) 143 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 (((-858 |#1|) $) 267 (|has| |#1| (-962)) ELT) (((-350 (-858 |#1|)) $) 250 (|has| |#1| (-496)) ELT) ((|#1| $) 212 T ELT) (((-485) $) 211 (|has| |#1| (-951 (-485))) ELT) (((-1091) $) 203 T ELT) (((-551 $) $) 154 T ELT) (((-350 (-485)) $) 144 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2566 (($ $ $) 71 T ELT)) (-2280 (((-631 |#1|) (-631 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 142 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-631 $)) 141 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 209 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 208 (|has| |#1| (-797 (-485))) ELT)) (-2575 (($ (-584 $)) 174 T ELT) (($ $) 173 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1600 (((-584 (-86)) $) 181 T ELT)) (-3597 (((-86) (-86)) 182 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2675 (((-85) $) 202 (|has| $ (-951 (-485))) ELT)) (-2998 (($ $) 234 (|has| |#1| (-962)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 233 (|has| |#1| (-962)) ELT)) (-3013 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-1598 (((-1086 $) (-551 $)) 199 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 188 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 178 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 258 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 257 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 140 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-1180 $)) 139 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 179 T ELT)) (-2236 (($ (-86) (-584 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2825 (((-3 (-584 $) #3="failed") $) 228 (|has| |#1| (-1026)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #3#) $) 237 (|has| |#1| (-962)) ELT)) (-2824 (((-3 (-584 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-1091)) 236 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-86)) 235 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $) 229 (|has| |#1| (-1026)) ELT)) (-2635 (((-85) $ (-1091)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2486 (($ $) 88 T ELT)) (-2605 (((-695) $) 177 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 215 T ELT)) (-1800 ((|#1| $) 216 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1599 (((-85) $ (-1091)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2676 (((-85) $) 201 (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-1091) (-695) (-1 $ $)) 241 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 240 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 239 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 227 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 226 (|has| |#1| (-554 (-474))) ELT) (($ $) 225 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 224 (|has| |#1| (-554 (-474))) ELT) (($ $ (-1091)) 223 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-584 $))) 197 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 196 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 195 T ELT) (($ $ (-1091) (-1 $ $)) 194 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 193 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 192 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 191 T ELT) (($ $ (-584 $) (-584 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-584 (-249 $))) 159 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 158 T ELT) (($ $ (-551 $) $) 157 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-3802 (($ (-86) (-584 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1604 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3760 (($ $ (-584 (-1091)) (-584 (-695))) 263 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 262 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 259 (|has| |#1| (-962)) ELT)) (-2997 (($ $) 244 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 243 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 200 (|has| $ (-962)) ELT)) (-3974 (((-474) $) 272 (|has| |#1| (-554 (-474))) ELT) (($ (-348 $)) 242 (|has| |#1| (-496)) ELT) (((-801 (-330)) $) 207 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 206 (|has| |#1| (-554 (-801 (-485)))) ELT)) (-3011 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-858 |#1|)) 269 (|has| |#1| (-962)) ELT) (($ (-350 (-858 |#1|))) 252 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 248 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 247 (|has| |#1| (-496)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-496)) ELT) (($ (-1040 |#1| (-551 $))) 232 (|has| |#1| (-962)) ELT) (($ |#1|) 214 T ELT) (($ (-1091)) 205 T ELT) (($ (-551 $)) 156 T ELT)) (-2704 (((-633 $) $) 254 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-2592 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-2255 (((-85) (-86)) 183 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-1799 (($ (-1091) (-584 $)) 222 T ELT) (($ (-1091) $ $ $ $) 221 T ELT) (($ (-1091) $ $ $) 220 T ELT) (($ (-1091) $ $) 219 T ELT) (($ (-1091) $) 218 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 (-1091)) (-584 (-695))) 266 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 265 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 260 (|has| |#1| (-962)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT) (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 245 (|has| |#1| (-496)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-962)) ELT))) -(((-29 |#1|) (-113) (-496)) (T -29)) -((-3185 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1218 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-3185 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1218 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1216 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-1217 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1216 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3185 ($ $)) (-15 -1218 ((-584 $) $)) (-15 -3185 ($ $ (-1091))) (-15 -1218 ((-584 $) $ (-1091))) (-15 -1217 ($ $)) (-15 -1216 ((-584 $) $)) (-15 -1217 ($ $ (-1091))) (-15 -1216 ((-584 $) $ (-1091))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) . T) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) . T) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-2898 (((-1002 (-179)) $) NIL T ELT)) (-2899 (((-1002 (-179)) $) NIL T ELT)) (-3136 (($ $ (-179)) 164 T ELT)) (-1219 (($ (-858 (-485)) (-1091) (-1091) (-1002 (-350 (-485))) (-1002 (-350 (-485)))) 103 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 181 T ELT)) (-3948 (((-773) $) 195 T ELT))) -(((-30) (-13 (-867) (-10 -8 (-15 -1219 ($ (-858 (-485)) (-1091) (-1091) (-1002 (-350 (-485))) (-1002 (-350 (-485))))) (-15 -3136 ($ $ (-179)))))) (T -30)) -((-1219 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-350 (-485)))) (-5 *1 (-30)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-1050) $) 10 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-31) (-13 (-996) (-10 -8 (-15 -2696 ((-1050) $)) (-15 -3235 ((-1050) $))))) (T -31)) -((-2696 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31))))) -((-3185 ((|#2| (-1086 |#2|) (-1091)) 39 T ELT)) (-3597 (((-86) (-86)) 53 T ELT)) (-1598 (((-1086 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-485))) ELT)) (-1222 ((|#2| |#1| (-485)) 120 (|has| |#1| (-951 (-485))) ELT)) (-1220 ((|#2| (-1086 |#2|) |#2|) 29 T ELT)) (-1221 (((-773) (-584 |#2|)) 87 T ELT)) (-3187 ((|#2| |#2|) 143 (|has| |#1| (-951 (-485))) ELT)) (-2255 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-485))) 96 (|has| |#1| (-951 (-485))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3185 (|#2| (-1086 |#2|) (-1091))) (-15 -3597 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -1220 (|#2| (-1086 |#2|) |#2|)) (-15 -1221 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-485))) (PROGN (-15 ** (|#2| |#2| (-350 (-485)))) (-15 -1598 ((-1086 |#2|) (-551 |#2|))) (-15 -3187 (|#2| |#2|)) (-15 -1222 (|#2| |#1| (-485)))) |%noBranch|)) (-496) (-364 |#1|)) (T -32)) -((-1222 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-496)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5)))) (-1220 (*1 *2 *3 *2) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-496))))) -((-3726 (($) 10 T CONST)) (-1223 (((-85) $ $) 8 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3726 (|#1|) -3954) (-15 -1223 ((-85) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3726 (($) 6 T CONST)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT))) +((-3186 (*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) (-3186 (*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1219 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1218 (*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) (-1218 (*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) (-1218 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1217 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1))))) +(-13 (-312) (-917) (-10 -8 (-15 -3186 ($ (-859 $))) (-15 -3186 ($ (-1087 $))) (-15 -3186 ($ (-1087 $) (-1092))) (-15 -1219 ((-585 $) (-859 $))) (-15 -1219 ((-585 $) (-1087 $))) (-15 -1219 ((-585 $) (-1087 $) (-1092))) (-15 -1218 ($ (-859 $))) (-15 -1218 ($ (-1087 $))) (-15 -1218 ($ (-1087 $) (-1092))) (-15 -1217 ((-585 $) (-859 $))) (-15 -1217 ((-585 $) (-1087 $))) (-15 -1217 ((-585 $) (-1087 $) (-1092))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-917) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-1217 (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-1087 $) (-1092)) 54 T ELT) (((-585 $) $) 22 T ELT) (((-585 $) $ (-1092)) 45 T ELT)) (-1218 (($ (-859 $)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-1087 $) (-1092)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1092)) 39 T ELT)) (-1219 (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-1087 $) (-1092)) 52 T ELT) (((-585 $) $) 18 T ELT) (((-585 $) $ (-1092)) 47 T ELT)) (-3186 (($ (-859 $)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-1087 $) (-1092)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1092)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1217 ((-585 |#1|) |#1| (-1092))) (-15 -1218 (|#1| |#1| (-1092))) (-15 -1217 ((-585 |#1|) |#1|)) (-15 -1218 (|#1| |#1|)) (-15 -1219 ((-585 |#1|) |#1| (-1092))) (-15 -3186 (|#1| |#1| (-1092))) (-15 -1219 ((-585 |#1|) |#1|)) (-15 -3186 (|#1| |#1|)) (-15 -1217 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1217 ((-585 |#1|) (-1087 |#1|))) (-15 -1217 ((-585 |#1|) (-859 |#1|))) (-15 -1218 (|#1| (-1087 |#1|) (-1092))) (-15 -1218 (|#1| (-1087 |#1|))) (-15 -1218 (|#1| (-859 |#1|))) (-15 -1219 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1219 ((-585 |#1|) (-1087 |#1|))) (-15 -1219 ((-585 |#1|) (-859 |#1|))) (-15 -3186 (|#1| (-1087 |#1|) (-1092))) (-15 -3186 (|#1| (-1087 |#1|))) (-15 -3186 (|#1| (-859 |#1|)))) (-29 |#2|) (-497)) (T -28)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-1217 (((-585 $) (-859 $)) 98 T ELT) (((-585 $) (-1087 $)) 97 T ELT) (((-585 $) (-1087 $) (-1092)) 96 T ELT) (((-585 $) $) 148 T ELT) (((-585 $) $ (-1092)) 146 T ELT)) (-1218 (($ (-859 $)) 101 T ELT) (($ (-1087 $)) 100 T ELT) (($ (-1087 $) (-1092)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1092)) 147 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-1092)) $) 217 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) 249 (|has| |#1| (-497)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1602 (((-585 (-552 $)) $) 180 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-1606 (($ $ (-585 (-552 $)) (-585 $)) 170 T ELT) (($ $ (-585 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 110 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-1219 (((-585 $) (-859 $)) 104 T ELT) (((-585 $) (-1087 $)) 103 T ELT) (((-585 $) (-1087 $) (-1092)) 102 T ELT) (((-585 $) $) 152 T ELT) (((-585 $) $ (-1092)) 150 T ELT)) (-3186 (($ (-859 $)) 107 T ELT) (($ (-1087 $)) 106 T ELT) (($ (-1087 $) (-1092)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1092)) 151 T ELT)) (-3160 (((-3 (-859 |#1|) #1="failed") $) 268 (|has| |#1| (-963)) ELT) (((-3 (-350 (-859 |#1|)) #1#) $) 251 (|has| |#1| (-497)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-486) #1#) $) 210 (|has| |#1| (-952 (-486))) ELT) (((-3 (-1092) #1#) $) 204 T ELT) (((-3 (-552 $) #1#) $) 155 T ELT) (((-3 (-350 (-486)) #1#) $) 143 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 (((-859 |#1|) $) 267 (|has| |#1| (-963)) ELT) (((-350 (-859 |#1|)) $) 250 (|has| |#1| (-497)) ELT) ((|#1| $) 212 T ELT) (((-486) $) 211 (|has| |#1| (-952 (-486))) ELT) (((-1092) $) 203 T ELT) (((-552 $) $) 154 T ELT) (((-350 (-486)) $) 144 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2567 (($ $ $) 71 T ELT)) (-2281 (((-632 |#1|) (-632 $)) 256 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 255 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 142 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (((-632 (-486)) (-632 $)) 141 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 209 (|has| |#1| (-798 (-330))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 208 (|has| |#1| (-798 (-486))) ELT)) (-2576 (($ (-585 $)) 174 T ELT) (($ $) 173 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-1601 (((-585 (-86)) $) 181 T ELT)) (-3598 (((-86) (-86)) 182 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2676 (((-85) $) 202 (|has| $ (-952 (-486))) ELT)) (-2999 (($ $) 234 (|has| |#1| (-963)) ELT)) (-3001 (((-1041 |#1| (-552 $)) $) 233 (|has| |#1| (-963)) ELT)) (-3014 (($ $ (-486)) 109 T ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-1599 (((-1087 $) (-552 $)) 199 (|has| $ (-963)) ELT)) (-3961 (($ (-1 $ $) (-552 $)) 188 T ELT)) (-1604 (((-3 (-552 $) "failed") $) 178 T ELT)) (-2282 (((-632 |#1|) (-1181 $)) 258 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 257 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 140 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (((-632 (-486)) (-1181 $)) 139 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1603 (((-585 (-552 $)) $) 179 T ELT)) (-2237 (($ (-86) (-585 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2826 (((-3 (-585 $) #3="failed") $) 228 (|has| |#1| (-1027)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) #3#) $) 237 (|has| |#1| (-963)) ELT)) (-2825 (((-3 (-585 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1799 (((-3 (-2 (|:| -3957 (-486)) (|:| |var| (-552 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #3#) $ (-1092)) 236 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #3#) $ (-86)) 235 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #3#) $) 229 (|has| |#1| (-1027)) ELT)) (-2636 (((-85) $ (-1092)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2487 (($ $) 88 T ELT)) (-2606 (((-696) $) 177 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 215 T ELT)) (-1801 ((|#1| $) 216 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1600 (((-85) $ (-1092)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-2677 (((-85) $) 201 (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-1092) (-696) (-1 $ $)) 241 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) 240 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 239 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) 238 (|has| |#1| (-963)) ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 227 (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) $ (-1092)) 226 (|has| |#1| (-555 (-475))) ELT) (($ $) 225 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092))) 224 (|has| |#1| (-555 (-475))) ELT) (($ $ (-1092)) 223 (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-585 $))) 197 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 196 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 195 T ELT) (($ $ (-1092) (-1 $ $)) 194 T ELT) (($ $ (-1092) (-1 $ (-585 $))) 193 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 192 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 191 T ELT) (($ $ (-585 $) (-585 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-585 (-249 $))) 159 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 158 T ELT) (($ $ (-552 $) $) 157 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-3803 (($ (-86) (-585 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1605 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3761 (($ $ (-585 (-1092)) (-585 (-696))) 263 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 262 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 261 (|has| |#1| (-963)) ELT) (($ $ (-1092)) 259 (|has| |#1| (-963)) ELT)) (-2998 (($ $) 244 (|has| |#1| (-497)) ELT)) (-3000 (((-1041 |#1| (-552 $)) $) 243 (|has| |#1| (-497)) ELT)) (-3188 (($ $) 200 (|has| $ (-963)) ELT)) (-3975 (((-475) $) 272 (|has| |#1| (-555 (-475))) ELT) (($ (-348 $)) 242 (|has| |#1| (-497)) ELT) (((-802 (-330)) $) 207 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-802 (-486)) $) 206 (|has| |#1| (-555 (-802 (-486)))) ELT)) (-3012 (($ $ $) 271 (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) 270 (|has| |#1| (-414)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ (-859 |#1|)) 269 (|has| |#1| (-963)) ELT) (($ (-350 (-859 |#1|))) 252 (|has| |#1| (-497)) ELT) (($ (-350 (-859 (-350 |#1|)))) 248 (|has| |#1| (-497)) ELT) (($ (-859 (-350 |#1|))) 247 (|has| |#1| (-497)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-497)) ELT) (($ (-1041 |#1| (-552 $))) 232 (|has| |#1| (-963)) ELT) (($ |#1|) 214 T ELT) (($ (-1092)) 205 T ELT) (($ (-552 $)) 156 T ELT)) (-2705 (((-634 $) $) 254 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-2593 (($ (-585 $)) 172 T ELT) (($ $) 171 T ELT)) (-2256 (((-85) (-86)) 183 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-1800 (($ (-1092) (-585 $)) 222 T ELT) (($ (-1092) $ $ $ $) 221 T ELT) (($ (-1092) $ $ $) 220 T ELT) (($ (-1092) $ $) 219 T ELT) (($ (-1092) $) 218 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 (-1092)) (-585 (-696))) 266 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 265 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 264 (|has| |#1| (-963)) ELT) (($ $ (-1092)) 260 (|has| |#1| (-963)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT) (($ (-1041 |#1| (-552 $)) (-1041 |#1| (-552 $))) 245 (|has| |#1| (-497)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 108 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-963)) ELT))) +(((-29 |#1|) (-113) (-497)) (T -29)) +((-3186 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497)))) (-1219 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-3186 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) (-1219 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) (-1218 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497)))) (-1217 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-1218 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3186 ($ $)) (-15 -1219 ((-585 $) $)) (-15 -3186 ($ $ (-1092))) (-15 -1219 ((-585 $) $ (-1092))) (-15 -1218 ($ $)) (-15 -1217 ((-585 $) $)) (-15 -1218 ($ $ (-1092))) (-15 -1217 ((-585 $) $ (-1092))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) . T) ((-557 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-557 (-486)) . T) ((-557 (-552 $)) . T) ((-557 (-859 |#1|)) |has| |#1| (-963)) ((-557 (-1092)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-963)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-393) . T) ((-414) |has| |#1| (-414)) ((-457 (-552 $) $) . T) ((-457 $ $) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-592 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) . T) ((-582 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-582 |#1|) |has| |#1| (-963)) ((-656 (-350 (-486))) . T) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) . T) ((-665) . T) ((-808 $ (-1092)) |has| |#1| (-963)) ((-811 (-1092)) |has| |#1| (-963)) ((-813 (-1092)) |has| |#1| (-963)) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-834) . T) ((-917) . T) ((-952 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486))))) ((-952 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-552 $)) . T) ((-952 (-859 |#1|)) |has| |#1| (-963)) ((-952 (-1092)) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) |has| |#1| (-146)) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) |has| |#1| (-146)) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-2899 (((-1003 (-179)) $) NIL T ELT)) (-2900 (((-1003 (-179)) $) NIL T ELT)) (-3137 (($ $ (-179)) 164 T ELT)) (-1220 (($ (-859 (-486)) (-1092) (-1092) (-1003 (-350 (-486))) (-1003 (-350 (-486)))) 103 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 181 T ELT)) (-3949 (((-774) $) 195 T ELT))) +(((-30) (-13 (-868) (-10 -8 (-15 -1220 ($ (-859 (-486)) (-1092) (-1092) (-1003 (-350 (-486))) (-1003 (-350 (-486))))) (-15 -3137 ($ $ (-179)))))) (T -30)) +((-1220 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-859 (-486))) (-5 *3 (-1092)) (-5 *4 (-1003 (-350 (-486)))) (-5 *1 (-30)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-1051) $) 10 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-997) (-10 -8 (-15 -2697 ((-1051) $)) (-15 -3236 ((-1051) $))))) (T -31)) +((-2697 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31))))) +((-3186 ((|#2| (-1087 |#2|) (-1092)) 39 T ELT)) (-3598 (((-86) (-86)) 53 T ELT)) (-1599 (((-1087 |#2|) (-552 |#2|)) 148 (|has| |#1| (-952 (-486))) ELT)) (-1223 ((|#2| |#1| (-486)) 120 (|has| |#1| (-952 (-486))) ELT)) (-1221 ((|#2| (-1087 |#2|) |#2|) 29 T ELT)) (-1222 (((-774) (-585 |#2|)) 87 T ELT)) (-3188 ((|#2| |#2|) 143 (|has| |#1| (-952 (-486))) ELT)) (-2256 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-486))) 96 (|has| |#1| (-952 (-486))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3186 (|#2| (-1087 |#2|) (-1092))) (-15 -3598 ((-86) (-86))) (-15 -2256 ((-85) (-86))) (-15 -1221 (|#2| (-1087 |#2|) |#2|)) (-15 -1222 ((-774) (-585 |#2|))) (IF (|has| |#1| (-952 (-486))) (PROGN (-15 ** (|#2| |#2| (-350 (-486)))) (-15 -1599 ((-1087 |#2|) (-552 |#2|))) (-15 -3188 (|#2| |#2|)) (-15 -1223 (|#2| |#1| (-486)))) |%noBranch|)) (-497) (-364 |#1|)) (T -32)) +((-1223 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-497)))) (-3188 (*1 *2 *2) (-12 (-4 *3 (-952 (-486))) (-4 *3 (-497)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-552 *5)) (-4 *5 (-364 *4)) (-4 *4 (-952 (-486))) (-4 *4 (-497)) (-5 *2 (-1087 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-952 (-486))) (-4 *4 (-497)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-497)) (-5 *2 (-774)) (-5 *1 (-32 *4 *5)))) (-1221 (*1 *2 *3 *2) (-12 (-5 *3 (-1087 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-32 *4 *2)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *2)) (-5 *4 (-1092)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-497))))) +((-3727 (($) 10 T CONST)) (-1224 (((-85) $ $) 8 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3727 (|#1|) -3955) (-15 -1224 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3727 (($) 6 T CONST)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT))) (((-34) (-113)) (T -34)) -((-1223 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3402 (*1 *1 *1) (-4 *1 (-34))) (-3567 (*1 *1) (-4 *1 (-34))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3726 (*1 *1) (-4 *1 (-34)))) -(-13 (-1130) (-10 -8 (-15 -1223 ((-85) $ $)) (-15 -3402 ($ $)) (-15 -3567 ($)) (-15 -3405 ((-85) $)) (-15 -3726 ($) -3954))) -(((-13) . T) ((-1130) . T)) -((-3500 (($ $) 11 T ELT)) (-3498 (($ $) 10 T ELT)) (-3502 (($ $) 9 T ELT)) (-3503 (($ $) 8 T ELT)) (-3501 (($ $) 7 T ELT)) (-3499 (($ $) 6 T ELT))) +((-1224 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3403 (*1 *1 *1) (-4 *1 (-34))) (-3568 (*1 *1) (-4 *1 (-34))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3727 (*1 *1) (-4 *1 (-34)))) +(-13 (-1131) (-10 -8 (-15 -1224 ((-85) $ $)) (-15 -3403 ($ $)) (-15 -3568 ($)) (-15 -3406 ((-85) $)) (-15 -3727 ($) -3955))) +(((-13) . T) ((-1131) . T)) +((-3501 (($ $) 11 T ELT)) (-3499 (($ $) 10 T ELT)) (-3503 (($ $) 9 T ELT)) (-3504 (($ $) 8 T ELT)) (-3502 (($ $) 7 T ELT)) (-3500 (($ $) 6 T ELT))) (((-35) (-113)) (T -35)) -((-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3503 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3499 ($ $)) (-15 -3501 ($ $)) (-15 -3503 ($ $)) (-15 -3502 ($ $)) (-15 -3498 ($ $)) (-15 -3500 ($ $)))) -((-2570 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3404 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 131 T ELT)) (-3797 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 154 T ELT)) (-3799 (($ $) 152 T ELT)) (-3601 (($) 92 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 91 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 80 (|has| $ (-1036 |#2|)) ELT) (((-1186) $ (-485) (-485)) 181 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3787 (($ $ (-485)) 165 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 215 T ELT) (((-85) $) 209 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1734 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 206 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 205 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-2911 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 216 T ELT) (($ $) 210 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3444 (((-85) $ (-695)) 198 T ELT)) (-3027 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 140 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (($ $ $) 161 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 163 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 159 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 ((|#2| $ |#1| |#2|) 68 (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 192 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 162 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 160 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 139 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3028 (($ $ (-584 $)) 138 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 231 T ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 179 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3798 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 153 T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 57 T ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 207 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2299 (($ $) 217 T ELT)) (-3801 (($ $ (-695)) 148 T ELT) (($ $) 146 T ELT)) (-2369 (($ $) 229 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1354 (($ $) 50 (OR (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 58 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 180 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 178 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 107 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 104 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 227 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 224 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 67 (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 193 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3114 ((|#2| $ |#1|) 69 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 191 T ELT)) (-3445 (((-85) $) 195 T ELT)) (-3421 (((-485) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 214 T ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 213 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 212 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3033 (((-584 $) $) 129 T ELT)) (-3029 (((-85) $ $) 137 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3616 (($ (-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 174 T ELT)) (-3721 (((-85) $ (-695)) 197 T ELT)) (-2201 ((|#1| $) 77 (|has| |#1| (-757)) ELT) (((-485) $) 183 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 199 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2858 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) 232 T ELT) (($ $ $) 228 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3520 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) 218 T ELT) (($ $ $) 211 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 222 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 106 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 76 (|has| |#1| (-757)) ELT) (((-485) $) 184 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 200 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 33 T ELT) (($ (-1 |#2| |#2|) $) 61 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 62 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 93 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 90 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) 171 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 123 T ELT)) (-3536 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 241 T ELT)) (-3718 (((-85) $ (-695)) 196 T ELT)) (-3032 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 134 T ELT)) (-3529 (((-85) $) 130 T ELT)) (-3244 (((-1074) $) 20 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3800 (($ $ (-695)) 151 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 149 T ELT)) (-2233 (((-584 |#1|) $) 59 T ELT)) (-2234 (((-85) |#1| $) 60 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 35 T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 234 T ELT) (($ $ $ (-485)) 233 T ELT)) (-2305 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 168 T ELT) (($ $ $ (-485)) 167 T ELT)) (-2204 (((-584 |#1|) $) 74 T ELT) (((-584 (-485)) $) 186 T ELT)) (-2205 (((-85) |#1| $) 73 T ELT) (((-85) (-485) $) 187 T ELT)) (-3245 (((-1034) $) 19 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 78 (|has| |#1| (-757)) ELT) (($ $ (-695)) 145 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 143 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 46 T ELT) (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 177 T ELT)) (-2200 (($ $ |#2|) 79 (|has| $ (-1036 |#2|)) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-3446 (((-85) $) 194 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 100 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 220 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 97 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 96 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 95 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 94 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 126 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 125 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 124 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 75 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2206 (((-584 |#2|) $) 72 T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 188 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1|) 71 T ELT) ((|#2| $ |#1| |#2|) 70 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 190 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 189 T ELT) (($ $ (-1147 (-485))) 175 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1#) 150 T ELT) (($ $ #2#) 147 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3#) 144 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4#) 132 T ELT)) (-3031 (((-485) $ $) 135 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-1572 (($ $ (-485)) 237 T ELT) (($ $ (-1147 (-485))) 236 T ELT)) (-2306 (($ $ (-485)) 170 T ELT) (($ $ (-1147 (-485))) 169 T ELT)) (-3635 (((-85) $) 133 T ELT)) (-3794 (($ $) 157 T ELT)) (-3792 (($ $) 158 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3795 (((-695) $) 156 T ELT)) (-3796 (($ $) 155 T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 105 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 101 T ELT) (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 225 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 221 T ELT)) (-1735 (($ $ $ (-485)) 208 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474)))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 176 T ELT)) (-3793 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 239 T ELT) (($ $ $) 238 T ELT)) (-3804 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 173 T ELT) (($ (-584 $)) 172 T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 142 T ELT) (($ $ $) 141 T ELT)) (-3948 (((-773) $) 15 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3524 (((-584 $) $) 128 T ELT)) (-3030 (((-85) $ $) 136 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1266 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-1224 (((-633 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |#1| $) 122 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 99 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 219 T ELT)) (-2568 (((-85) $ $) 201 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2569 (((-85) $ $) 203 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3058 (((-85) $ $) 16 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2686 (((-85) $ $) 202 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2687 (((-85) $ $) 204 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3959 (((-695) $) 98 T ELT))) -(((-36 |#1| |#2|) (-113) (-1014) (-1014)) (T -36)) -((-1224 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-633 (-2 (|:| -3862 *3) (|:| |entry| *4))))))) -(-13 (-1108 |t#1| |t#2|) (-609 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1224 ((-633 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1147 (-485)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-237 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1014) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1036 |#2|) . T) ((-1065 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1108 |#1| |#2|) . T) ((-1130) . T) ((-1169 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T)) -((-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-38 |#2|) (-146)) (T -37)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +((-3501 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3503 (*1 *1 *1) (-4 *1 (-35))) (-3504 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3500 ($ $)) (-15 -3502 ($ $)) (-15 -3504 ($ $)) (-15 -3503 ($ $)) (-15 -3499 ($ $)) (-15 -3501 ($ $)))) +((-2571 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3405 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 135 T ELT)) (-3798 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 158 T ELT)) (-3800 (($ $) 156 T ELT)) (-3602 (($) 95 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2200 (((-1187) $ |#1| |#1|) 82 (|has| $ (-1037 |#2|)) ELT) (((-1187) $ (-486) (-486)) 185 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ (-486)) 169 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-85) $) 213 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1735 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 210 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 209 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT)) (-2912 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (($ $) 214 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3445 (((-85) $ (-696)) 202 T ELT)) (-3028 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 144 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (($ $ $) 165 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 167 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 163 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 196 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-1148 (-486)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 170 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 166 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 143 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3029 (($ $ (-585 $)) 142 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 235 T ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 157 T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 211 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2300 (($ $) 221 T ELT)) (-3802 (($ $ (-696)) 152 T ELT) (($ $) 150 T ELT)) (-2370 (($ $) 233 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1355 (($ $) 51 (OR (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 43 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 60 T ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 239 T ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 234 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 184 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 110 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 106 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 231 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 228 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-1578 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) 195 T ELT)) (-3446 (((-85) $) 199 T ELT)) (-3422 (((-486) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 218 T ELT) (((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 217 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) 216 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3034 (((-585 $) $) 133 T ELT)) (-3030 (((-85) $ $) 141 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3617 (($ (-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 178 T ELT)) (-3722 (((-85) $ (-696)) 201 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-758)) ELT) (((-486) $) 187 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 203 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2859 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ $) 236 T ELT) (($ $ $) 232 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3521 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ $) 222 T ELT) (($ $ $) 215 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 105 T ELT) (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 226 T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-758)) ELT) (((-486) $) 188 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 204 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 244 T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ $) 175 T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 127 T ELT)) (-3537 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 245 T ELT)) (-3719 (((-85) $ (-696)) 200 T ELT)) (-3033 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 138 T ELT)) (-3530 (((-85) $) 134 T ELT)) (-3245 (((-1075) $) 21 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3801 (($ $ (-696)) 155 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 153 T ELT)) (-2234 (((-585 |#1|) $) 61 T ELT)) (-2235 (((-85) |#1| $) 62 T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 36 T ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) 238 T ELT) (($ $ $ (-486)) 237 T ELT)) (-2306 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) 172 T ELT) (($ $ $ (-486)) 171 T ELT)) (-2205 (((-585 |#1|) $) 76 T ELT) (((-585 (-486)) $) 190 T ELT)) (-2206 (((-85) |#1| $) 75 T ELT) (((-85) (-486) $) 191 T ELT)) (-3246 (((-1035) $) 20 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-758)) ELT) (($ $ (-696)) 149 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 147 T ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 47 T ELT) (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 181 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1037 |#2|)) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 186 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3447 (((-85) $) 198 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 224 T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 68 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 100 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 99 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 98 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) 97 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 131 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 130 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) 128 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 77 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 189 (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2207 (((-585 |#2|) $) 74 T ELT) (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 192 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 194 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) 193 T ELT) (($ $ (-1148 (-486))) 179 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #1#) 154 T ELT) (($ $ #2#) 151 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #3#) 148 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #4#) 136 T ELT)) (-3032 (((-486) $ $) 139 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 44 T ELT)) (-1573 (($ $ (-486)) 241 T ELT) (($ $ (-1148 (-486))) 240 T ELT)) (-2307 (($ $ (-486)) 174 T ELT) (($ $ (-1148 (-486))) 173 T ELT)) (-3636 (((-85) $) 137 T ELT)) (-3795 (($ $) 161 T ELT)) (-3793 (($ $) 162 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3796 (((-696) $) 160 T ELT)) (-3797 (($ $) 159 T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 108 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 104 T ELT) (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 229 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 225 T ELT)) (-1736 (($ $ $ (-486)) 212 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475)))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 46 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 180 T ELT)) (-3794 (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 243 T ELT) (($ $ $) 242 T ELT)) (-3805 (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 177 T ELT) (($ (-585 $)) 176 T ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 146 T ELT) (($ $ $) 145 T ELT)) (-3949 (((-774) $) 16 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-3525 (((-585 $) $) 132 T ELT)) (-3031 (((-85) $ $) 140 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1267 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1225 (((-634 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |#1| $) 126 T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-2569 (((-85) $ $) 205 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2570 (((-85) $ $) 207 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3059 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2687 (((-85) $ $) 206 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2688 (((-85) $ $) 208 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-36 |#1| |#2|) (-113) (-1015) (-1015)) (T -36)) +((-1225 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-634 (-2 (|:| -3863 *3) (|:| |entry| *4))))))) +(-13 (-1109 |t#1| |t#2|) (-610 (-2 (|:| -3863 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1225 ((-634 (-2 (|:| -3863 |t#1|) (|:| |entry| |t#2|))) |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-475)) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ((-183 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1148 (-486)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-237 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-381 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-381 |#2|) . T) ((-430 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-430 |#2|) . T) ((-540 (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-540 |#1| |#2|) . T) ((-457 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-551 |#1| |#2|) . T) ((-595 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-610 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-758) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ((-761) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ((-925 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-1015) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) (|has| |#2| (-1015))) ((-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-1037 |#2|) . T) ((-1066 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-1109 |#1| |#2|) . T) ((-1131) . T) ((-1170 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T)) +((-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#2|)) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-38 |#2|) (-146)) (T -37)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) (((-38 |#1|) (-113) (-146)) (T -38)) NIL -(-13 (-962) (-655 |t#1|) (-556 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3420 (((-348 |#1|) |#1|) 41 T ELT)) (-3734 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-584 (-48))) 33 T ELT)) (-1225 (((-85) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1| (-584 (-48)))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3420 ((-348 |#1|) |#1|)) (-15 -1225 ((-85) |#1|))) (-1156 (-48))) (T -39)) -((-1225 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3420 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3332 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3138 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1796 (($ (-1180 (-350 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#2|))) 60 T ELT) (($ (-1180 |#2|) |#2|) 130 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-631 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3844 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3110 (((-831)) NIL T ELT)) (-2996 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3505 (($ $) NIL T ELT)) (-2835 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3725 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3774 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3379 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) 105 T ELT)) (-3134 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3081 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1226 (((-1186) (-695)) 83 T ELT)) (-1649 (((-631 (-350 |#2|))) 55 T ELT)) (-1651 (((-631 (-350 |#2|))) 48 T ELT)) (-2486 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 131 T ELT)) (-1650 (((-631 (-350 |#2|))) 49 T ELT)) (-1652 (((-631 (-350 |#2|))) 47 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1658 (((-1180 $)) 46 T ELT)) (-3920 (((-1180 $)) 45 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3448 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3734 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3802 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3759 (((-350 |#2|) (-1180 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1769 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3760 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3187 ((|#3|) 54 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3226 (((-1180 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 |#2|)) $) 61 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 106 T ELT)) (-3974 (((-1180 (-350 |#2|)) $) NIL T ELT) (($ (-1180 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2704 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2451 ((|#3| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1664 (((-85)) 41 T ELT)) (-1663 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 27 T CONST)) (-2671 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1226 ((-1186) (-695))))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) |#3|) (T -40)) -((-1226 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-350 *5))) (-14 *7 *6)))) -((-1227 ((|#2| |#2|) 47 T ELT)) (-1232 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1231 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1230 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1233 ((|#2| (-86) |#2| (-695)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1229 (((-1086 |#2|) |#2|) 44 T ELT)) (-1228 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1228 (|#2| |#2| |#2|)) (-15 -1228 (|#2| |#2| (-584 |#2|))) (-15 -1228 (|#2| |#2| (-584 (-551 |#2|)))) (-15 -1229 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-13 (-392) (-951 (-485)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1233 (|#2| (-86) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-496) (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 |#1| (-551 $)) $)) (-15 -2999 ((-1040 |#1| (-551 $)) $)) (-15 -3948 ($ (-1040 |#1| (-551 $))))))) (T -41)) -((-1233 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)))) (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *5 (-551 $)) $)) (-15 -2999 ((-1040 *5 (-551 $)) $)) (-15 -3948 ($ (-1040 *5 (-551 $))))))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -3948 ($ (-1040 *4 (-551 $))))))))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -3948 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -3948 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $)))))))))) -((-3734 (((-348 (-1086 |#3|)) (-1086 |#3|) (-584 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-584 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-348 |#3|) |#3| (-584 (-48)))) (-15 -3734 ((-348 (-1086 |#3|)) (-1086 |#3|) (-584 (-48))))) (-757) (-718) (-862 (-48) |#2| |#1|)) (T -42)) -((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5))))) -((-1237 (((-695) |#2|) 70 T ELT)) (-1235 (((-695) |#2|) 74 T ELT)) (-1250 (((-584 |#2|)) 37 T ELT)) (-1234 (((-695) |#2|) 73 T ELT)) (-1236 (((-695) |#2|) 69 T ELT)) (-1238 (((-695) |#2|) 72 T ELT)) (-1248 (((-584 (-631 |#1|))) 65 T ELT)) (-1243 (((-584 |#2|)) 60 T ELT)) (-1241 (((-584 |#2|) |#2|) 48 T ELT)) (-1245 (((-584 |#2|)) 62 T ELT)) (-1244 (((-584 |#2|)) 61 T ELT)) (-1247 (((-584 (-631 |#1|))) 53 T ELT)) (-1242 (((-584 |#2|)) 59 T ELT)) (-1240 (((-584 |#2|) |#2|) 47 T ELT)) (-1239 (((-584 |#2|)) 55 T ELT)) (-1249 (((-584 (-631 |#1|))) 66 T ELT)) (-1246 (((-584 |#2|)) 64 T ELT)) (-2013 (((-1180 |#2|) (-1180 |#2|)) 99 (|has| |#1| (-258)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1234 ((-695) |#2|)) (-15 -1235 ((-695) |#2|)) (-15 -1236 ((-695) |#2|)) (-15 -1237 ((-695) |#2|)) (-15 -1238 ((-695) |#2|)) (-15 -1239 ((-584 |#2|))) (-15 -1240 ((-584 |#2|) |#2|)) (-15 -1241 ((-584 |#2|) |#2|)) (-15 -1242 ((-584 |#2|))) (-15 -1243 ((-584 |#2|))) (-15 -1244 ((-584 |#2|))) (-15 -1245 ((-584 |#2|))) (-15 -1246 ((-584 |#2|))) (-15 -1247 ((-584 (-631 |#1|)))) (-15 -1248 ((-584 (-631 |#1|)))) (-15 -1249 ((-584 (-631 |#1|)))) (-15 -1250 ((-584 |#2|))) (IF (|has| |#1| (-258)) (-15 -2013 ((-1180 |#2|) (-1180 |#2|))) |%noBranch|)) (-496) (-361 |#1|)) (T -43)) -((-2013 (*1 *2 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) (-1250 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1239 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#1|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#1|))) 24 T ELT)) (-1730 (((-1180 $)) 52 T ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1792 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1790 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1794 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1086 |#1|) $) NIL T ELT)) (-1718 (((-85)) 99 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 14 (|has| |#1| (-496)) ELT)) (-3110 (((-831)) 53 T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) 101 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1908 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1086 |#1|) $) NIL T ELT)) (-1719 (((-85)) 98 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) 106 T ELT)) (-1712 (((-85)) 105 T ELT)) (-1714 (((-85)) 107 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) 100 T ELT)) (-3802 ((|#1| $ (-485)) 55 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 48 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 28 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3974 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1896 (((-584 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) 95 T ELT)) (-3948 (((-773) $) 71 T ELT) (($ (-1180 |#1|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 51 T ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) 91 T ELT)) (-2547 (($ (-631 |#1|) $) 18 T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) 97 T ELT)) (-1720 (((-85)) 92 T ELT)) (-1716 (((-85)) 90 T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1057 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-591 (-1057 |#2| |#1|)) (-10 -8 (-15 -3948 ($ (-1180 |#1|))))) (-312) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -44)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-631 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3404 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3797 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3799 (($ $) NIL T ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT) (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3787 (($ $ (-485)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1734 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-12 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2911 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3027 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (($ $ $) 34 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 ((|#2| $ |#1| |#2|) 59 (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3798 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2299 (($ $) NIL T ELT)) (-3801 (($ $ (-695)) NIL T ELT) (($ $) 30 T ELT)) (-2369 (($ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3421 (((-485) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3616 (($ (-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2858 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3520 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 21 T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 41 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3536 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) 50 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3800 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-584 |#1|) $) 23 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2305 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT) (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT) (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3405 (((-85) $) 19 T ELT)) (-3567 (($) 15 T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1467 (($) 14 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1572 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3792 (($ $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3793 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3804 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1224 (((-633 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3959 (((-695) $) 26 T ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1014) (-1014)) (T -45)) -NIL -((-3939 (((-85) $) 12 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3939 ((-85) |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-47 |#2| |#3|) (-962) (-717)) (T -46)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-47 |#1| |#2|) (-113) (-962) (-717)) (T -47)) -((-3176 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-2895 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312))))) -(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (-15 -3176 (|t#1| $)) (-15 -2896 ($ $)) (-15 -3950 (|t#2| $)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -3939 ((-85) $)) (-15 -2895 ($ |t#1| |t#2|)) (-15 -3961 ($ $)) (-15 -3679 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3951 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-496)) (-6 (-496)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-6 (-38 (-350 (-485)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3190 (((-85) $) 9 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3185 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3159 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3844 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2575 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3597 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 11 T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3000 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (((-1086 $) (-1086 $) (-551 $)) NIL T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-2605 (((-695) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2999 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3187 (($ $) NIL (|has| $ (-962)) ELT)) (-3974 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-2592 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 6 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) -(((-48) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-15 -3000 ((-1040 (-485) (-551 $)) $)) (-15 -2999 ((-1040 (-485) (-551 $)) $)) (-15 -3844 ($ $)) (-15 -3134 ((-1086 $) (-1086 $) (-551 $))) (-15 -3134 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-15 -3134 ($ $ (-551 $))) (-15 -3134 ($ $ (-584 (-551 $))))))) (T -48)) -((-3000 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-3844 (*1 *1 *1) (-5 *1 (-48))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1942 (((-584 (-447)) $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 7 T ELT)) (-3235 (((-1096) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-49) (-13 (-1014) (-10 -8 (-15 -1942 ((-584 (-447)) $)) (-15 -3235 ((-1096) $))))) (T -49)) -((-1942 (*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 86 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2666 (((-85) $) 31 T ELT)) (-3159 (((-3 |#1| #1#) $) 34 T ELT)) (-3158 ((|#1| $) 35 T ELT)) (-3961 (($ $) 41 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3176 ((|#1| $) 32 T ELT)) (-1456 (($ $) 75 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) 44 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 73 T ELT)) (-3945 (($ (-584 (-485))) 74 T ELT)) (-3950 (((-695) $) 45 T ELT)) (-3948 (((-773) $) 92 T ELT) (($ (-485)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3679 ((|#1| $ $) 29 T ELT)) (-3128 (((-695)) 72 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 46 T CONST)) (-2668 (($) 17 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-561 |#1|) (-951 |#1|) (-10 -8 (-15 -3176 (|#1| $)) (-15 -1456 ($ $)) (-15 -3961 ($ $)) (-15 -3679 (|#1| $ $)) (-15 -2410 ($ (-695))) (-15 -3945 ($ (-584 (-485)))) (-15 -1455 ((-85) $)) (-15 -2666 ((-85) $)) (-15 -3950 ((-695) $)) (-15 -3960 ($ (-1 |#1| |#1|) $)))) (-962) (-584 (-1091))) (T -50)) -((-3176 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) (-3679 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) (-14 *4 (-584 (-1091)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1251 (((-697) $) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1252 (((-1016) $) 10 T ELT)) (-3948 (((-773) $) 15 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1253 (($ (-1016) (-697)) 16 T ELT)) (-3058 (((-85) $ $) 12 T ELT))) -(((-51) (-13 (-1014) (-10 -8 (-15 -1253 ($ (-1016) (-697))) (-15 -1252 ((-1016) $)) (-15 -1251 ((-697) $))))) (T -51)) -((-1253 (*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51))))) -((-2666 (((-85) (-51)) 18 T ELT)) (-3159 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3158 ((|#1| (-51)) 21 T ELT)) (-3948 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3948 ((-51) |#1|)) (-15 -3159 ((-3 |#1| "failed") (-51))) (-15 -2666 ((-85) (-51))) (-15 -3158 (|#1| (-51)))) (-1130)) (T -52)) -((-3158 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130))))) -((-2547 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2547 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -53)) -((-2547 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5))))) -((-1255 ((|#3| |#3| (-584 (-1091))) 44 T ELT)) (-1254 ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|)) (-15 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831))) (-15 -1255 (|#3| |#3| (-584 (-1091))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -54)) -((-1255 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-1254 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1254 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 13 T ELT)) (-3159 (((-3 (-695) "failed") $) 31 T ELT)) (-3158 (((-695) $) NIL T ELT)) (-2411 (((-85) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) 17 T ELT)) (-3948 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1256 (($) 10 T CONST)) (-3058 (((-85) $ $) 19 T ELT))) -(((-55) (-13 (-1014) (-951 (-695)) (-10 -8 (-15 -1256 ($) -3954) (-15 -3190 ((-85) $)) (-15 -2411 ((-85) $))))) (T -55)) -((-1256 (*1 *1) (-5 *1 (-55))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) -((-1258 (($ $ (-485) |#3|) 46 T ELT)) (-1257 (($ $ (-485) |#4|) 50 T ELT)) (-2610 (((-584 |#2|) $) 41 T ELT)) (-3247 (((-85) |#2| $) 55 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3802 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) 29 T ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) 35 T ELT) (((-695) |#2| $) 57 T ELT)) (-3948 (((-773) $) 63 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3058 (((-85) $ $) 54 T ELT)) (-3959 (((-695) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -1257 (|#1| |#1| (-485) |#4|)) (-15 -1258 (|#1| |#1| (-485) |#3|)) (-15 -3802 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) (-485))) (-15 -3247 ((-85) |#2| |#1|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -2610 ((-584 |#2|) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3959 ((-695) |#1|))) (-57 |#2| |#3| |#4|) (-1130) (-324 |#2|) (-324 |#2|)) (T -56)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) 50 T ELT)) (-1258 (($ $ (-485) |#2|) 48 T ELT)) (-1257 (($ $ (-485) |#3|) 47 T ELT)) (-3726 (($) 6 T CONST)) (-3113 ((|#2| $ (-485)) 52 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 36 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 33 (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 49 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 54 T ELT)) (-3116 (((-695) $) 57 T ELT)) (-3616 (($ (-695) (-695) |#1|) 63 T ELT)) (-3115 (((-695) $) 56 T ELT)) (-3120 (((-485) $) 61 T ELT)) (-3118 (((-485) $) 59 T ELT)) (-2610 (((-584 |#1|) $) 38 T ELT)) (-3247 (((-85) |#1| $) 34 (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 60 T ELT)) (-3117 (((-485) $) 58 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 64 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 46 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 45 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 62 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 40 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) (-485)) 55 T ELT) ((|#1| $ (-485) (-485) |#1|) 53 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 39 T ELT) (((-695) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3112 ((|#3| $ (-485)) 51 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 42 T ELT))) -(((-57 |#1| |#2| |#3|) (-113) (-1130) (-324 |t#1|) (-324 |t#1|)) (T -57)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3616 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2200 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1130)))) (-3114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3790 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1577 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1258 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3960 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) -(-13 (-318 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -3616 ($ (-695) (-695) |t#1|)) (-15 -2200 ($ $ |t#1|)) (-15 -3120 ((-485) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-695) $)) (-15 -3115 ((-695) $)) (-15 -3802 (|t#1| $ (-485) (-485))) (-15 -3114 (|t#1| $ (-485) (-485))) (-15 -3802 (|t#1| $ (-485) (-485) |t#1|)) (-15 -3113 (|t#2| $ (-485))) (-15 -3112 (|t#3| $ (-485))) (-15 -3790 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1577 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1258 ($ $ (-485) |t#2|)) (-15 -1257 ($ $ (-485) |t#3|)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -3328 ($ (-1 |t#1| |t#1|) $)) (-15 -3960 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3960 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-1259 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3616 (($ (-695) |#1|) 13 T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 10 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1259 ($ (-584 |#1|))) (-15 -1259 ($ (-695) |#1|)))) (-1130)) (T -58)) -((-1259 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3)))) (-1259 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1130))))) -((-3843 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3960 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3843 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3960 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1130) (-1130)) (T -59)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-59 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1258 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3113 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3616 (($ (-695) (-695) |#1|) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3112 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1130)) (T -60)) -NIL -((-1261 (((-1180 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1260 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1262 (((-2 (|:| |minor| (-584 (-831))) (|:| -3268 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-312)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1260 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831))) (-15 -1261 ((-1180 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-312)) (-15 -1262 ((-2 (|:| |minor| (-584 (-831))) (|:| -3268 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-496) (-601 |#1|)) (T -61)) -((-1262 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3268 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-496)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 42 T ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3327 ((|#1| |#1| $) 37 T ELT)) (-3326 ((|#1| $) 35 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-3611 (($ |#1| $) 38 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 20 T ELT)) (-3567 (($) 46 T ELT)) (-3324 (((-695) $) 33 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 19 T ELT)) (-3948 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1263 (($ (-584 |#1|)) 44 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 14 T ELT))) -(((-62 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -1263 ($ (-584 |#1|))))) (-1014)) (T -62)) -((-1263 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3))))) -((-3948 (((-773) $) 13 T ELT) (($ (-1096)) 9 T ELT) (((-1096) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3948 ((-1096) |#1|)) (-15 -3948 (|#1| (-1096))) (-15 -3948 ((-773) |#1|))) (-64)) (T -63)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(-13 (-963) (-656 |t#1|) (-557 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3421 (((-348 |#1|) |#1|) 41 T ELT)) (-3735 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-585 (-48))) 33 T ELT)) (-1226 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1| (-585 (-48)))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3421 ((-348 |#1|) |#1|)) (-15 -1226 ((-85) |#1|))) (-1157 (-48))) (T -39)) +((-1226 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) (-3421 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1649 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2065 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1787 (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|))) NIL T ELT)) (-3333 (((-350 |#2|) $) NIL T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1610 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3139 (((-696)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1663 (((-85)) NIL T ELT)) (-1662 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1797 (($ (-1181 (-350 |#2|)) (-1181 $)) NIL T ELT) (($ (-1181 (-350 |#2|))) 60 T ELT) (($ (-1181 |#2|) |#2|) 130 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2567 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-632 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-632 $)) NIL T ELT)) (-1654 (((-1181 $) (-1181 $)) NIL T ELT)) (-3845 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1641 (((-585 (-585 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1666 (((-85) |#1| |#1|) NIL T ELT)) (-3111 (((-832)) NIL T ELT)) (-2997 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3506 (($ $) NIL T ELT)) (-2836 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1682 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3726 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3775 (((-832) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-745 (-832)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3380 (((-696)) NIL T ELT)) (-1655 (((-1181 $) (-1181 $)) 105 T ELT)) (-3135 (((-350 |#2|) $) NIL T ELT)) (-1642 (((-585 (-859 |#1|)) (-1092)) NIL (|has| |#1| (-312)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2016 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2012 (((-832) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3082 ((|#3| $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-1181 $) $) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1227 (((-1187) (-696)) 83 T ELT)) (-1650 (((-632 (-350 |#2|))) 55 T ELT)) (-1652 (((-632 (-350 |#2|))) 48 T ELT)) (-2487 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1647 (($ (-1181 |#2|) |#2|) 131 T ELT)) (-1651 (((-632 (-350 |#2|))) 49 T ELT)) (-1653 (((-632 (-350 |#2|))) 47 T ELT)) (-1646 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1648 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1659 (((-1181 $)) 46 T ELT)) (-3921 (((-1181 $)) 45 T ELT)) (-1658 (((-85) $) NIL T ELT)) (-1657 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3449 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1668 (((-696)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3735 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-696) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1645 (((-3 |#2| #1#)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3760 (((-350 |#2|) (-1181 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1770 (((-696) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3761 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2410 (((-632 (-350 |#2|)) (-1181 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3188 ((|#3|) 54 T ELT)) (-1676 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3227 (((-1181 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 (-350 |#2|)) $) 61 T ELT) (((-632 (-350 |#2|)) (-1181 $)) 106 T ELT)) (-3975 (((-1181 (-350 |#2|)) $) NIL T ELT) (($ (-1181 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1656 (((-1181 $) (-1181 $)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2705 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-634 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2452 ((|#3| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1665 (((-85)) 41 T ELT)) (-1664 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-1643 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1667 (((-85)) NIL T ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 27 T CONST)) (-2672 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| (-350 |#2|) (-312)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1227 ((-1187) (-696))))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) |#3|) (T -40)) +((-1227 (*1 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *2 (-1187)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1157 (-350 *5))) (-14 *7 *6)))) +((-1228 ((|#2| |#2|) 47 T ELT)) (-1233 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1232 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1231 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1234 ((|#2| (-86) |#2| (-696)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1230 (((-1087 |#2|) |#2|) 44 T ELT)) (-1229 ((|#2| |#2| (-585 (-552 |#2|))) 18 T ELT) ((|#2| |#2| (-585 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1229 (|#2| |#2| |#2|)) (-15 -1229 (|#2| |#2| (-585 |#2|))) (-15 -1229 (|#2| |#2| (-585 (-552 |#2|)))) (-15 -1230 ((-1087 |#2|) |#2|)) (IF (|has| |#1| (-13 (-393) (-952 (-486)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1233 (|#2| |#2|)) (-15 -1234 (|#2| (-86) |#2| (-696)))) |%noBranch|) |%noBranch|)) (-497) (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 |#1| (-552 $)) $)) (-15 -3000 ((-1041 |#1| (-552 $)) $)) (-15 -3949 ($ (-1041 |#1| (-552 $))))))) (T -41)) +((-1234 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)))) (-4 *5 (-497)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *5 (-552 $)) $)) (-15 -3000 ((-1041 *5 (-552 $)) $)) (-15 -3949 ($ (-1041 *5 (-552 $))))))))) (-1233 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3949 ($ (-1041 *3 (-552 $))))))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3949 ($ (-1041 *3 (-552 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3949 ($ (-1041 *3 (-552 $))))))))) (-1230 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-1087 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) (-15 -3000 ((-1041 *4 (-552 $)) $)) (-15 -3949 ($ (-1041 *4 (-552 $))))))))) (-1229 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-552 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) (-15 -3000 ((-1041 *4 (-552 $)) $)) (-15 -3949 ($ (-1041 *4 (-552 $))))))) (-4 *4 (-497)) (-5 *1 (-41 *4 *2)))) (-1229 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) (-15 -3000 ((-1041 *4 (-552 $)) $)) (-15 -3949 ($ (-1041 *4 (-552 $))))))) (-4 *4 (-497)) (-5 *1 (-41 *4 *2)))) (-1229 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3949 ($ (-1041 *3 (-552 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3949 ($ (-1041 *3 (-552 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3949 ($ (-1041 *3 (-552 $)))))))))) +((-3735 (((-348 (-1087 |#3|)) (-1087 |#3|) (-585 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-585 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-348 |#3|) |#3| (-585 (-48)))) (-15 -3735 ((-348 (-1087 |#3|)) (-1087 |#3|) (-585 (-48))))) (-758) (-719) (-863 (-48) |#2| |#1|)) (T -42)) +((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *7 (-863 (-48) *6 *5)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-863 (-48) *6 *5))))) +((-1238 (((-696) |#2|) 70 T ELT)) (-1236 (((-696) |#2|) 74 T ELT)) (-1251 (((-585 |#2|)) 37 T ELT)) (-1235 (((-696) |#2|) 73 T ELT)) (-1237 (((-696) |#2|) 69 T ELT)) (-1239 (((-696) |#2|) 72 T ELT)) (-1249 (((-585 (-632 |#1|))) 65 T ELT)) (-1244 (((-585 |#2|)) 60 T ELT)) (-1242 (((-585 |#2|) |#2|) 48 T ELT)) (-1246 (((-585 |#2|)) 62 T ELT)) (-1245 (((-585 |#2|)) 61 T ELT)) (-1248 (((-585 (-632 |#1|))) 53 T ELT)) (-1243 (((-585 |#2|)) 59 T ELT)) (-1241 (((-585 |#2|) |#2|) 47 T ELT)) (-1240 (((-585 |#2|)) 55 T ELT)) (-1250 (((-585 (-632 |#1|))) 66 T ELT)) (-1247 (((-585 |#2|)) 64 T ELT)) (-2014 (((-1181 |#2|) (-1181 |#2|)) 99 (|has| |#1| (-258)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1235 ((-696) |#2|)) (-15 -1236 ((-696) |#2|)) (-15 -1237 ((-696) |#2|)) (-15 -1238 ((-696) |#2|)) (-15 -1239 ((-696) |#2|)) (-15 -1240 ((-585 |#2|))) (-15 -1241 ((-585 |#2|) |#2|)) (-15 -1242 ((-585 |#2|) |#2|)) (-15 -1243 ((-585 |#2|))) (-15 -1244 ((-585 |#2|))) (-15 -1245 ((-585 |#2|))) (-15 -1246 ((-585 |#2|))) (-15 -1247 ((-585 |#2|))) (-15 -1248 ((-585 (-632 |#1|)))) (-15 -1249 ((-585 (-632 |#1|)))) (-15 -1250 ((-585 (-632 |#1|)))) (-15 -1251 ((-585 |#2|))) (IF (|has| |#1| (-258)) (-15 -2014 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|)) (-497) (-361 |#1|)) (T -43)) +((-2014 (*1 *2 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-43 *3 *4)))) (-1251 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1250 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1240 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#1|)) (-1181 $)) NIL T ELT) (((-1181 (-632 |#1|))) 24 T ELT)) (-1731 (((-1181 $)) 52 T ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#1| (-497)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-497)) ELT)) (-1793 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1791 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-497)) ELT)) (-1905 (((-1087 (-859 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1087 |#1|) $) NIL (|has| |#1| (-497)) ELT)) (-1795 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1087 |#1|) $) NIL T ELT)) (-1719 (((-85)) 99 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 14 (|has| |#1| (-497)) ELT)) (-3111 (((-832)) 53 T ELT)) (-1716 (((-85)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1714 (((-85)) 101 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#1| (-497)) ELT)) (-1706 (((-3 $ #1#)) NIL (|has| |#1| (-497)) ELT)) (-1794 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-1730 ((|#1| $) NIL T ELT)) (-1792 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#1| (-497)) ELT)) (-1909 (((-1087 (-859 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1708 (((-1087 |#1|) $) NIL (|has| |#1| (-497)) ELT)) (-1796 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1726 (((-1087 |#1|) $) NIL T ELT)) (-1720 (((-85)) 98 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1711 (((-85)) 106 T ELT)) (-1713 (((-85)) 105 T ELT)) (-1715 (((-85)) 107 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1718 (((-85)) 100 T ELT)) (-3803 ((|#1| $ (-486)) 55 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 48 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#1|) $) 28 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3975 (((-1181 |#1|) $) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT)) (-1897 (((-585 (-859 |#1|)) (-1181 $)) NIL T ELT) (((-585 (-859 |#1|))) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-1724 (((-85)) 95 T ELT)) (-3949 (((-774) $) 71 T ELT) (($ (-1181 |#1|)) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 51 T ELT)) (-1709 (((-585 (-1181 |#1|))) NIL (|has| |#1| (-497)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1722 (((-85)) 91 T ELT)) (-2548 (($ (-632 |#1|) $) 18 T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) 97 T ELT)) (-1721 (((-85)) 92 T ELT)) (-1717 (((-85)) 90 T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1058 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-592 (-1058 |#2| |#1|)) (-10 -8 (-15 -3949 ($ (-1181 |#1|))))) (-312) (-832) (-585 (-1092)) (-1181 (-632 |#1|))) (T -44)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-14 *6 (-1181 (-632 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1092)))))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3405 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3798 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT) (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ (-486)) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1735 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-12 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758))) ELT)) (-2912 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3028 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (($ $ $) 34 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 ((|#2| $ |#1| |#2|) 59 (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-1148 (-486)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2300 (($ $) NIL T ELT)) (-3802 (($ $ (-696)) NIL T ELT) (($ $) 30 T ELT)) (-2370 (($ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3422 (((-486) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3617 (($ (-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT) (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2859 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3521 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 21 T ELT) (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT) (((-486) $) 41 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3537 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) 50 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3801 (($ $ (-696)) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2234 (((-585 |#1|) $) 23 T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2306 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT) (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT) (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT) (($ $ (-696)) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3447 (((-85) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT) (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3406 (((-85) $) 19 T ELT)) (-3568 (($) 15 T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-1468 (($) 14 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1573 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3794 (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3805 (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1225 (((-634 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2687 (((-85) $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3960 (((-696) $) 26 T ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1015) (-1015)) (T -45)) +NIL +((-3940 (((-85) $) 12 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-486)) $) 25 T ELT) (($ $ (-350 (-486))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3940 ((-85) |#1|)) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-47 |#2| |#3|) (-963) (-718)) (T -46)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| |#2|) 81 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-3951 ((|#2| $) 84 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ |#2|) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-47 |#1| |#2|) (-113) (-963) (-718)) (T -47)) +((-3177 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) (-2896 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-312))))) +(-13 (-963) (-82 |t#1| |t#1|) (-10 -8 (-15 -3177 (|t#1| $)) (-15 -2897 ($ $)) (-15 -3951 (|t#2| $)) (-15 -3961 ($ (-1 |t#1| |t#1|) $)) (-15 -3940 ((-85) $)) (-15 -2896 ($ |t#1| |t#2|)) (-15 -3962 ($ $)) (-15 -3680 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3952 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-497)) (-6 (-497)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (-6 (-38 (-350 (-486)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-246) |has| |#1| (-497)) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-1217 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-1218 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3191 (((-85) $) 9 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1219 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-3186 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3160 (((-3 (-552 $) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-552 $) $) NIL T ELT) (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 (-486))) (-632 $)) NIL T ELT)) (-3845 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2576 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1601 (((-585 (-86)) $) NIL T ELT)) (-3598 (((-86) (-86)) NIL T ELT)) (-2412 (((-85) $) 11 T ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3001 (((-1041 (-486) (-552 $)) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3135 (((-1087 $) (-1087 $) (-552 $)) NIL T ELT) (((-1087 $) (-1087 $) (-585 (-552 $))) NIL T ELT) (($ $ (-552 $)) NIL T ELT) (($ $ (-585 (-552 $))) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1599 (((-1087 $) (-552 $)) NIL (|has| $ (-963)) ELT)) (-3961 (($ (-1 $ $) (-552 $)) NIL T ELT)) (-1604 (((-3 (-552 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-1181 $) $) NIL T ELT) (((-632 (-350 (-486))) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1603 (((-585 (-552 $)) $) NIL T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2636 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-2606 (((-696) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1600 (((-85) $ $) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1605 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3000 (((-1041 (-486) (-552 $)) $) NIL T ELT)) (-3188 (($ $) NIL (|has| $ (-963)) ELT)) (-3975 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-552 $)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-1041 (-486) (-552 $))) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-2593 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2256 (((-85) (-86)) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 6 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) 13 T ELT)) (-3952 (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) +(((-48) (-13 (-254) (-27) (-952 (-486)) (-952 (-350 (-486))) (-582 (-486)) (-935) (-582 (-350 (-486))) (-120) (-555 (-142 (-330))) (-190) (-557 (-1041 (-486) (-552 $))) (-10 -8 (-15 -3001 ((-1041 (-486) (-552 $)) $)) (-15 -3000 ((-1041 (-486) (-552 $)) $)) (-15 -3845 ($ $)) (-15 -3135 ((-1087 $) (-1087 $) (-552 $))) (-15 -3135 ((-1087 $) (-1087 $) (-585 (-552 $)))) (-15 -3135 ($ $ (-552 $))) (-15 -3135 ($ $ (-585 (-552 $))))))) (T -48)) +((-3001 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) (-3845 (*1 *1 *1) (-5 *1 (-48))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-552 (-48))) (-5 *1 (-48)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-585 (-552 (-48)))) (-5 *1 (-48)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-552 (-48))) (-5 *1 (-48)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-48)))) (-5 *1 (-48))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1943 (((-585 (-448)) $) 17 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 7 T ELT)) (-3236 (((-1097) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1015) (-10 -8 (-15 -1943 ((-585 (-448)) $)) (-15 -3236 ((-1097) $))))) (T -49)) +((-1943 (*1 *2 *1) (-12 (-5 *2 (-585 (-448))) (-5 *1 (-49)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-49))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 86 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2667 (((-85) $) 31 T ELT)) (-3160 (((-3 |#1| #1#) $) 34 T ELT)) (-3159 ((|#1| $) 35 T ELT)) (-3962 (($ $) 41 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3177 ((|#1| $) 32 T ELT)) (-1457 (($ $) 75 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1456 (((-85) $) 44 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) 73 T ELT)) (-3946 (($ (-585 (-486))) 74 T ELT)) (-3951 (((-696) $) 45 T ELT)) (-3949 (((-774) $) 92 T ELT) (($ (-486)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3680 ((|#1| $ $) 29 T ELT)) (-3129 (((-696)) 72 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 46 T CONST)) (-2669 (($) 17 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 65 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-562 |#1|) (-952 |#1|) (-10 -8 (-15 -3177 (|#1| $)) (-15 -1457 ($ $)) (-15 -3962 ($ $)) (-15 -3680 (|#1| $ $)) (-15 -2411 ($ (-696))) (-15 -3946 ($ (-585 (-486)))) (-15 -1456 ((-85) $)) (-15 -2667 ((-85) $)) (-15 -3951 ((-696) $)) (-15 -3961 ($ (-1 |#1| |#1|) $)))) (-963) (-585 (-1092))) (T -50)) +((-3177 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) (-1457 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) (-3680 (*1 *2 *1 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-50 *3 *4)) (-14 *4 (-585 (-1092)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1252 (((-698) $) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1253 (((-1017) $) 10 T ELT)) (-3949 (((-774) $) 15 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1254 (($ (-1017) (-698)) 16 T ELT)) (-3059 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1015) (-10 -8 (-15 -1254 ($ (-1017) (-698))) (-15 -1253 ((-1017) $)) (-15 -1252 ((-698) $))))) (T -51)) +((-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-698)) (-5 *1 (-51)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-51))))) +((-2667 (((-85) (-51)) 18 T ELT)) (-3160 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3159 ((|#1| (-51)) 21 T ELT)) (-3949 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3949 ((-51) |#1|)) (-15 -3160 ((-3 |#1| "failed") (-51))) (-15 -2667 ((-85) (-51))) (-15 -3159 (|#1| (-51)))) (-1131)) (T -52)) +((-3159 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1131)))) (-3160 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) (-3949 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1131))))) +((-2548 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2548 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-963) (-592 |#1|) (-763 |#1|)) (T -53)) +((-2548 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-592 *5)) (-4 *5 (-963)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-763 *5))))) +((-1256 ((|#3| |#3| (-585 (-1092))) 44 T ELT)) (-1255 ((|#3| (-585 (-989 |#1| |#2| |#3|)) |#3| (-832)) 32 T ELT) ((|#3| (-585 (-989 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1255 (|#3| (-585 (-989 |#1| |#2| |#3|)) |#3|)) (-15 -1255 (|#3| (-585 (-989 |#1| |#2| |#3|)) |#3| (-832))) (-15 -1256 (|#3| |#3| (-585 (-1092))))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-364 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -54)) +((-1256 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) (-1255 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 (-989 *5 *6 *2))) (-5 *4 (-832)) (-4 *5 (-1015)) (-4 *6 (-13 (-963) (-798 *5) (-555 (-802 *5)))) (-4 *2 (-13 (-364 *6) (-798 *5) (-555 (-802 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1255 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-989 *4 *5 *2))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 13 T ELT)) (-3160 (((-3 (-696) "failed") $) 31 T ELT)) (-3159 (((-696) $) NIL T ELT)) (-2412 (((-85) $) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) 17 T ELT)) (-3949 (((-774) $) 22 T ELT) (($ (-696)) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1257 (($) 10 T CONST)) (-3059 (((-85) $ $) 19 T ELT))) +(((-55) (-13 (-1015) (-952 (-696)) (-10 -8 (-15 -1257 ($) -3955) (-15 -3191 ((-85) $)) (-15 -2412 ((-85) $))))) (T -55)) +((-1257 (*1 *1) (-5 *1 (-55))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1259 (($ $ (-486) |#3|) 46 T ELT)) (-1258 (($ $ (-486) |#4|) 50 T ELT)) (-2611 (((-585 |#2|) $) 41 T ELT)) (-3248 (((-85) |#2| $) 55 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3803 ((|#2| $ (-486) (-486)) NIL T ELT) ((|#2| $ (-486) (-486) |#2|) 29 T ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) 35 T ELT) (((-696) |#2| $) 57 T ELT)) (-3949 (((-774) $) 63 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3059 (((-85) $ $) 54 T ELT)) (-3960 (((-696) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -1258 (|#1| |#1| (-486) |#4|)) (-15 -1259 (|#1| |#1| (-486) |#3|)) (-15 -3803 (|#2| |#1| (-486) (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) (-486))) (-15 -3248 ((-85) |#2| |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -2611 ((-585 |#2|) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1734 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3960 ((-696) |#1|))) (-57 |#2| |#3| |#4|) (-1131) (-324 |#2|) (-324 |#2|)) (T -56)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) 51 T ELT)) (-1259 (($ $ (-486) |#2|) 49 T ELT)) (-1258 (($ $ (-486) |#3|) 48 T ELT)) (-3727 (($) 6 T CONST)) (-3114 ((|#2| $ (-486)) 53 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-1578 ((|#1| $ (-486) (-486) |#1|) 50 T ELT)) (-3115 ((|#1| $ (-486) (-486)) 55 T ELT)) (-3117 (((-696) $) 58 T ELT)) (-3617 (($ (-696) (-696) |#1|) 64 T ELT)) (-3116 (((-696) $) 57 T ELT)) (-3121 (((-486) $) 62 T ELT)) (-3119 (((-486) $) 60 T ELT)) (-2611 (((-585 |#1|) $) 39 T ELT)) (-3248 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 61 T ELT)) (-3118 (((-486) $) 59 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 65 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 47 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 46 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) 63 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) (-486)) 56 T ELT) ((|#1| $ (-486) (-486) |#1|) 54 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 40 T ELT) (((-696) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3113 ((|#3| $ (-486)) 52 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 43 T ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1131) (-324 |t#1|) (-324 |t#1|)) (T -57)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3617 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-696)) (-4 *3 (-1131)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-696)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-696)))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1131)))) (-3115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3791 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1578 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1258 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3961 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3961 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) +(-13 (-318 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -3617 ($ (-696) (-696) |t#1|)) (-15 -2201 ($ $ |t#1|)) (-15 -3121 ((-486) $)) (-15 -3120 ((-486) $)) (-15 -3119 ((-486) $)) (-15 -3118 ((-486) $)) (-15 -3117 ((-696) $)) (-15 -3116 ((-696) $)) (-15 -3803 (|t#1| $ (-486) (-486))) (-15 -3115 (|t#1| $ (-486) (-486))) (-15 -3803 (|t#1| $ (-486) (-486) |t#1|)) (-15 -3114 (|t#2| $ (-486))) (-15 -3113 (|t#3| $ (-486))) (-15 -3791 (|t#1| $ (-486) (-486) |t#1|)) (-15 -1578 (|t#1| $ (-486) (-486) |t#1|)) (-15 -1259 ($ $ (-486) |t#2|)) (-15 -1258 ($ $ (-486) |t#3|)) (-15 -3961 ($ (-1 |t#1| |t#1|) $)) (-15 -3329 ($ (-1 |t#1| |t#1|) $)) (-15 -3961 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3961 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-585 |#1|)) 11 T ELT) (($ (-696) |#1|) 14 T ELT)) (-3617 (($ (-696) |#1|) 13 T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 10 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1260 ($ (-585 |#1|))) (-15 -1260 ($ (-696) |#1|)))) (-1131)) (T -58)) +((-1260 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-58 *3)))) (-1260 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-58 *3)) (-4 *3 (-1131))))) +((-3844 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3961 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3844 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3961 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1131) (-1131)) (T -59)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-59 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-1259 (($ $ (-486) (-58 |#1|)) NIL T ELT)) (-1258 (($ $ (-486) (-58 |#1|)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3114 (((-58 |#1|) $ (-486)) NIL T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1578 ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-3115 ((|#1| $ (-486) (-486)) NIL T ELT)) (-3117 (((-696) $) NIL T ELT)) (-3617 (($ (-696) (-696) |#1|) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) NIL T ELT) ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3113 (((-58 |#1|) $ (-486)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1131)) (T -60)) +NIL +((-1262 (((-1181 (-632 |#1|)) (-632 |#1|)) 61 T ELT)) (-1261 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 (-585 (-832))))) |#2| (-832)) 49 T ELT)) (-1263 (((-2 (|:| |minor| (-585 (-832))) (|:| -3269 |#2|) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 |#2|))) |#2| (-832)) 72 (|has| |#1| (-312)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1261 ((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 (-585 (-832))))) |#2| (-832))) (-15 -1262 ((-1181 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-312)) (-15 -1263 ((-2 (|:| |minor| (-585 (-832))) (|:| -3269 |#2|) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 |#2|))) |#2| (-832))) |%noBranch|)) (-497) (-602 |#1|)) (T -61)) +((-1263 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |minor| (-585 (-832))) (|:| -3269 *3) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5)))) (-1262 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-497)) (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 (-585 (-832)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) 37 T ELT)) (-3327 ((|#1| $) 35 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) NIL T ELT)) (-3612 (($ |#1| $) 38 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 36 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 20 T ELT)) (-3568 (($) 46 T ELT)) (-3325 (((-696) $) 33 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 19 T ELT)) (-3949 (((-774) $) 32 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-1264 (($ (-585 |#1|)) 44 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 14 T ELT))) +(((-62 |#1|) (-13 (-1036 |#1|) (-10 -8 (-15 -1264 ($ (-585 |#1|))))) (-1015)) (T -62)) +((-1264 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-62 *3))))) +((-3949 (((-774) $) 13 T ELT) (($ (-1097)) 9 T ELT) (((-1097) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3949 ((-1097) |#1|)) (-15 -3949 (|#1| (-1097))) (-15 -3949 ((-774) |#1|))) (-64)) (T -63)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-1097)) 20 T ELT) (((-1097) $) 19 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-64) (-113)) (T -64)) NIL -(-13 (-1014) (-430 (-1096))) -(((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-3490 (($ $) 10 T ELT)) (-3491 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|))) (-66)) (T -65)) +(-13 (-1015) (-431 (-1097))) +(((-72) . T) ((-557 (-1097)) . T) ((-554 (-774)) . T) ((-554 (-1097)) . T) ((-431 (-1097)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-3491 (($ $) 10 T ELT)) (-3492 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|))) (-66)) (T -65)) NIL -((-3488 (($ $) 11 T ELT)) (-3486 (($ $) 10 T ELT)) (-3490 (($ $) 9 T ELT)) (-3491 (($ $) 8 T ELT)) (-3489 (($ $) 7 T ELT)) (-3487 (($ $) 6 T ELT))) +((-3489 (($ $) 11 T ELT)) (-3487 (($ $) 10 T ELT)) (-3491 (($ $) 9 T ELT)) (-3492 (($ $) 8 T ELT)) (-3490 (($ $) 7 T ELT)) (-3488 (($ $) 6 T ELT))) (((-66) (-113)) (T -66)) -((-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3491 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3491 ($ $)) (-15 -3490 ($ $)) (-15 -3486 ($ $)) (-15 -3488 ($ $)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-1050) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-67) (-13 (-996) (-10 -8 (-15 -3544 ((-1050) $))))) (T -67)) -((-3544 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67))))) +((-3489 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3491 (*1 *1 *1) (-4 *1 (-66))) (-3492 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3488 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $)) (-15 -3491 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-1051) $) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 17 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-997) (-10 -8 (-15 -3545 ((-1051) $))))) (T -67)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-67))))) NIL (((-68) (-113)) (T -68)) NIL -(-13 (-10 -7 (-6 (-3999 "*")) (-6 -3994) (-6 -3992) (-6 -3991) (-6 -3990) (-6 -3995) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3993) (-6 -3996) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3984))) -((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1264 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-485))) 24 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1|) 13 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 8 T CONST)) (-3058 (((-85) $ $) 10 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-413) (-241 |#1| |#1|) (-10 -8 (-15 -1264 ($ (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1| (-485)))))) (-962)) (T -69)) -((-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3))))) -((-1265 (((-348 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1265 ((-348 |#2|) |#2| |#2|)) (-15 -1265 ((-348 |#2|) |#2| (-584 |#2|)))) (-13 (-392) (-120)) (-1156 |#1|)) (T -70)) -((-1265 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1265 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) 13 T ELT)) (-1266 (((-85) $ $) 14 T ELT)) (-3058 (((-85) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1266 ((-85) |#1| |#1|)) (-15 -2570 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 (-4000 "*")) (-6 -3995) (-6 -3993) (-6 -3992) (-6 -3991) (-6 -3996) (-6 -3990) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3994) (-6 -3997) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3985))) +((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1265 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-486))) 24 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1|) 13 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3949 (((-774) $) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 8 T CONST)) (-3059 (((-85) $ $) 10 T ELT)) (-3952 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 30 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-414) (-241 |#1| |#1|) (-10 -8 (-15 -1265 ($ (-1 |#1| |#1|))) (-15 -1265 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1265 ($ (-1 |#1| |#1| (-486)))))) (-963)) (T -69)) +((-1265 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) (-1265 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-69 *3))))) +((-1266 (((-348 |#2|) |#2| (-585 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1266 ((-348 |#2|) |#2| |#2|)) (-15 -1266 ((-348 |#2|) |#2| (-585 |#2|)))) (-13 (-393) (-120)) (-1157 |#1|)) (T -70)) +((-1266 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1266 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) 13 T ELT)) (-1267 (((-85) $ $) 14 T ELT)) (-3059 (((-85) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1267 ((-85) |#1| |#1|)) (-15 -2571 ((-85) |#1| |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-72) (-113)) (T -72)) -((-3058 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2570 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1266 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) -(-13 (-1130) (-10 -8 (-15 -3058 ((-85) $ $)) (-15 -2570 ((-85) $ $)) (-15 -1266 ((-85) $ $)))) -(((-13) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3027 ((|#1| $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1269 (($ $ (-584 |#1|)) 30 T ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 12 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 32 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1268 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1267 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 11 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) 13 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 9 T ELT)) (-3567 (($) 31 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1270 (($ (-695) |#1|) 33 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1270 ($ (-695) |#1|)) (-15 -1269 ($ $ (-584 |#1|))) (-15 -1268 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1268 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -73)) -((-1270 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1268 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014)))) (-1268 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2))))) -((-1271 ((|#3| |#2| |#2|) 34 T ELT)) (-1273 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-1272 ((|#3| |#2| |#2|) 36 T ELT)) (-1274 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3999 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1271 (|#3| |#2| |#2|)) (-15 -1272 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3999 "*"))) (PROGN (-15 -1273 (|#1| |#2| |#2|)) (-15 -1274 (|#1| |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-628 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74)) -((-1274 (*1 *2 *3) (-12 (|has| *2 (-6 (-3999 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3999 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) -((-1277 (($ (-584 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1277 (|#1| (-584 |#2|)))) (-76 |#2|) (-1130)) (T -75)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-76 |#1|) (-113) (-1130)) (T -76)) -((-1277 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-3611 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) -(-13 (-1036 |t#1|) (-10 -8 (-15 -1277 ($ (-584 |t#1|))) (-15 -1276 (|t#1| $)) (-15 -3611 ($ |t#1| $)) (-15 -1275 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2030 (($ (-350 (-485))) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) -(((-77) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 2)) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -2030 ($ (-350 (-485))))))) (T -77)) -((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77))))) -((-1289 (((-584 (-877)) $) 14 T ELT)) (-3544 (((-447) $) 12 T ELT)) (-3948 (((-773) $) 21 T ELT)) (-1278 (($ (-447) (-584 (-877))) 16 T ELT))) -(((-78) (-13 (-553 (-773)) (-10 -8 (-15 -3544 ((-447) $)) (-15 -1289 ((-584 (-877)) $)) (-15 -1278 ($ (-447) (-584 (-877))))))) (T -78)) -((-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1279 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-79 |#1|) (-13 (-80 |#1|) (-1014) (-10 -8 (-15 -1279 ($ (-1 |#1| |#1| |#1|))))) (-1130)) (T -79)) -((-1279 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3))))) -((-3802 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-80 |#1|) (-113) (-1130)) (T -80)) +((-3059 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2571 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1267 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) +(-13 (-1131) (-10 -8 (-15 -3059 ((-85) $ $)) (-15 -2571 ((-85) $ $)) (-15 -1267 ((-85) $ $)))) +(((-13) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3028 ((|#1| $ |#1|) 24 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-1270 (($ $ (-585 |#1|)) 30 T ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 12 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 32 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1269 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1268 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 11 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) 13 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 9 T ELT)) (-3568 (($) 31 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1271 (($ (-696) |#1|) 33 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1271 ($ (-696) |#1|)) (-15 -1270 ($ $ (-585 |#1|))) (-15 -1269 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1269 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1268 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1268 ($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|))))) (-1015)) (T -73)) +((-1271 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-73 *3)) (-4 *3 (-1015)))) (-1270 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) (-1269 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1015)))) (-1269 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) (-1268 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2)))) (-1268 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2))))) +((-1272 ((|#3| |#2| |#2|) 34 T ELT)) (-1274 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-1273 ((|#3| |#2| |#2|) 36 T ELT)) (-1275 ((|#1| |#2|) 53 (|has| |#1| (-6 (-4000 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1272 (|#3| |#2| |#2|)) (-15 -1273 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4000 "*"))) (PROGN (-15 -1274 (|#1| |#2| |#2|)) (-15 -1275 (|#1| |#2|))) |%noBranch|)) (-963) (-1157 |#1|) (-629 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74)) +((-1275 (*1 *2 *3) (-12 (|has| *2 (-6 (-4000 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-629 *2 *5 *6)))) (-1274 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4000 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-629 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) +((-1278 (($ (-585 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1278 (|#1| (-585 |#2|)))) (-76 |#2|) (-1131)) (T -75)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-76 |#1|) (-113) (-1131)) (T -76)) +((-1278 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-76 *3)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131)))) (-3612 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131))))) +(-13 (-1037 |t#1|) (-10 -8 (-15 -1278 ($ (-585 |t#1|))) (-15 -1277 (|t#1| $)) (-15 -3612 ($ |t#1| $)) (-15 -1276 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-486) $) NIL (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) NIL T ELT)) (-3133 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 8 T ELT) (($ (-486)) NIL T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL T ELT) (((-919 2) $) 10 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2031 (($ (-350 (-486))) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3952 (($ $ $) NIL T ELT) (($ (-486) (-486)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT))) +(((-77) (-13 (-906 (-486)) (-554 (-350 (-486))) (-554 (-919 2)) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -2031 ($ (-350 (-486))))))) (T -77)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77)))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77))))) +((-1290 (((-585 (-878)) $) 14 T ELT)) (-3545 (((-448) $) 12 T ELT)) (-3949 (((-774) $) 21 T ELT)) (-1279 (($ (-448) (-585 (-878))) 16 T ELT))) +(((-78) (-13 (-554 (-774)) (-10 -8 (-15 -3545 ((-448) $)) (-15 -1290 ((-585 (-878)) $)) (-15 -1279 ($ (-448) (-585 (-878))))))) (T -78)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-78)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-585 (-878))) (-5 *1 (-78)))) (-1279 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-78))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1280 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-79 |#1|) (-13 (-80 |#1|) (-1015) (-10 -8 (-15 -1280 ($ (-1 |#1| |#1| |#1|))))) (-1131)) (T -79)) +((-1280 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-79 *3))))) +((-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-80 |#1|) (-113) (-1131)) (T -80)) NIL (-13 (|MappingCategory| |t#1| |t#1| |t#1|)) -(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3323 (($ $ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-85))) ELT)) (-1736 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 (-85))) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1036 (-85))) ELT)) (-2911 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3790 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-1036 (-85))) ELT) (((-85) $ (-485) (-85)) NIL (|has| $ (-1036 (-85))) ELT)) (-3712 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-85))) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3408 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3844 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-1036 (-85))) ELT)) (-3114 (((-85) $ (-485)) NIL T ELT)) (-3421 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-72)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2562 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3616 (($ (-695) (-85)) 10 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL T ELT)) (-3520 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2610 (((-584 (-85)) $) NIL T ELT)) (-3247 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL T ELT)) (-3328 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3960 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-1036 (-85))) ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3770 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) NIL T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-85)) $) NIL T ELT) (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-85))) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3532 (($ (-584 (-85))) NIL T ELT)) (-3804 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1773 (($ (-695) (-85)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-81) (-13 (-96) (-10 -8 (-15 -1773 ($ (-695) (-85)))))) (T -81)) -((-1773 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-82 |#1| |#2|) (-113) (-962) (-962)) (T -82)) -NIL -(-13 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3992) (-6 -3991))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T)) -((-2563 (($ $ $) 12 T ELT)) (-2562 (($ $) 8 T ELT)) (-2564 (($ $ $) 10 T ELT))) -(((-83 |#1|) (-10 -7 (-15 -2563 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1|))) (-84)) (T -83)) -NIL -((-2314 (($ $) 8 T ELT)) (-2563 (($ $ $) 9 T ELT)) (-2562 (($ $) 11 T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT))) +(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3324 (($ $ $) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-1737 (((-85) $) NIL (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 (-85))) (|has| (-85) (-758))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1037 (-85))) ELT)) (-2912 (($ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3791 (((-85) $ (-1148 (-486)) (-85)) NIL (|has| $ (-1037 (-85))) ELT) (((-85) $ (-486) (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-3713 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-85))) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3409 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3845 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1578 (((-85) $ (-486) (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-3115 (((-85) $ (-486)) NIL T ELT)) (-3422 (((-486) (-85) $ (-486)) NIL (|has| (-85) (-72)) ELT) (((-486) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-486) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2563 (($ $) NIL T ELT)) (-1302 (($ $ $) NIL T ELT)) (-3617 (($ (-696) (-85)) 10 T ELT)) (-1303 (($ $ $) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2611 (((-585 (-85)) $) NIL T ELT)) (-3248 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL T ELT)) (-3329 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3961 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ (-85) $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-85) $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2201 (($ $ (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3771 (($ $ (-585 (-85)) (-585 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2207 (((-585 (-85)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 (($ $ (-1148 (-486))) NIL T ELT) (((-85) $ (-486)) NIL T ELT) (((-85) $ (-486) (-85)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-85)) $) NIL T ELT) (((-696) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-85) (-555 (-475))) ELT)) (-3533 (($ (-585 (-85))) NIL T ELT)) (-3805 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1774 (($ (-696) (-85)) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1774 ($ (-696) (-85)))))) (T -81)) +((-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-82 |#1| |#2|) (-113) (-963) (-963)) (T -82)) +NIL +(-13 (-592 |t#1|) (-970 |t#2|) (-10 -7 (-6 -3993) (-6 -3992))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-1015) . T) ((-1131) . T)) +((-2564 (($ $ $) 12 T ELT)) (-2563 (($ $) 8 T ELT)) (-2565 (($ $ $) 10 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2564 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2315 (($ $) 8 T ELT)) (-2564 (($ $ $) 9 T ELT)) (-2563 (($ $) 11 T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT))) (((-84) (-113)) (T -84)) -((-2562 (*1 *1 *1) (-4 *1 (-84))) (-2564 (*1 *1 *1 *1) (-4 *1 (-84))) (-2563 (*1 *1 *1 *1) (-4 *1 (-84)))) -(-13 (-605) (-10 -8 (-15 -2562 ($ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)))) -(((-13) . T) ((-605) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 9 T ELT)) (-3323 (($ $ $) 14 T ELT)) (-2857 (($) 6 T CONST)) (-3138 (((-695)) 23 T ELT)) (-2996 (($) 31 T ELT)) (-2563 (($ $ $) 12 T ELT)) (-2562 (($ $) 8 T ELT)) (-1301 (($ $ $) 15 T ELT)) (-1302 (($ $ $) 16 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 27 T ELT)) (-2855 (($ $ $) 19 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2856 (($) 7 T CONST)) (-2854 (($ $ $) 20 T ELT)) (-3974 (((-474) $) 33 T ELT)) (-3948 (((-773) $) 35 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 13 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT)) (-2313 (($ $ $) 11 T ELT))) -(((-85) (-13 (-753) (-881) (-554 (-474)) (-10 -8 (-15 -3323 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $))))) (T -85)) -((-3323 (*1 *1 *1 *1) (-5 *1 (-85))) (-1302 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85)))) -((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1287 (((-85) $) 42 T ELT)) (-1281 (($ $ (-1074) (-697)) 59 T ELT) (($ $ (-447) (-697)) 34 T ELT)) (-1280 (($ $ (-45 (-1074) (-697))) 16 T ELT)) (-2843 (((-3 (-697) "failed") $ (-1074)) 27 T ELT) (((-633 (-697)) $ (-447)) 33 T ELT)) (-1289 (((-45 (-1074) (-697)) $) 15 T ELT)) (-3597 (($ (-1091)) 20 T ELT) (($ (-1091) (-695)) 23 T ELT) (($ (-1091) (-55)) 24 T ELT)) (-1288 (((-85) $) 40 T ELT)) (-1286 (((-85) $) 44 T ELT)) (-3544 (((-1091) $) 8 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ (-1091)) 11 T ELT)) (-2129 (($ $ (-1 (-474) (-584 (-474)))) 65 T ELT) (((-633 (-1 (-474) (-584 (-474)))) $) 69 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1283 (((-85) $ (-447)) 37 T ELT)) (-1285 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3619 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1282 (($ $ (-1074)) 56 T ELT) (($ $ (-447)) 57 T ELT)) (-3402 (($ $) 75 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3948 (((-773) $) 61 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2794 (($ $ (-447)) 35 T ELT)) (-2523 (((-55) $) 70 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 88 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 104 T ELT))) -(((-86) (-13 (-757) (-748 (-1091)) (-10 -8 (-15 -1289 ((-45 (-1074) (-697)) $)) (-15 -3402 ($ $)) (-15 -3597 ($ (-1091))) (-15 -3597 ($ (-1091) (-695))) (-15 -3597 ($ (-1091) (-55))) (-15 -1288 ((-85) $)) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1523 ((-695) $)) (-15 -1523 ($ $ (-695))) (-15 -1285 ($ $ (-1 (-85) $ $))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -3619 ((-633 (-1 (-773) (-584 (-773)))) $)) (-15 -3619 ($ $ (-1 (-773) (-584 (-773))))) (-15 -3619 ($ $ (-1 (-773) (-773)))) (-15 -2129 ($ $ (-1 (-474) (-584 (-474))))) (-15 -2129 ((-633 (-1 (-474) (-584 (-474)))) $)) (-15 -1283 ((-85) $ (-447))) (-15 -2794 ($ $ (-447))) (-15 -1282 ($ $ (-1074))) (-15 -1282 ($ $ (-447))) (-15 -2843 ((-3 (-697) "failed") $ (-1074))) (-15 -2843 ((-633 (-697)) $ (-447))) (-15 -1281 ($ $ (-1074) (-697))) (-15 -1281 ($ $ (-447) (-697))) (-15 -1280 ($ $ (-45 (-1074) (-697))))))) (T -86)) -((-1289 (*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86)))) (-3402 (*1 *1 *1) (-5 *1 (-86))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-86)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1523 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) (-2129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-2843 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-86)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86))))) -((-2520 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-584 |#1|)) 25 T ELT)) (-1290 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1291 (((-86) |#1|) 63 T ELT)) (-1292 (((-3 |#1| #1#) (-86)) 58 T ELT))) -(((-87 |#1|) (-10 -7 (-15 -2520 ((-3 |#1| #1="failed") (-86) (-584 |#1|))) (-15 -2520 ((-86) (-86) (-1 |#1| (-584 |#1|)))) (-15 -2520 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2520 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-86))) (-15 -1290 ((-86) (-86) (-584 (-1 |#1| (-584 |#1|))))) (-15 -1290 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1290 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86))) (-15 -1291 ((-86) |#1|)) (-15 -1292 ((-3 |#1| #1#) (-86)))) (-1014)) (T -87)) -((-1292 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))) (-1291 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014)))) (-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1014))))) -((-1293 (((-485) |#2|) 41 T ELT))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1293 ((-485) |#2|))) (-13 (-312) (-951 (-350 (-485)))) (-1156 |#1|)) (T -88)) -((-1293 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3774 (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 (((-485)) NIL T ELT)) (-2615 (((-485) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3771 (($ $ (-485)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-1070 (-485)) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-485) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-89 |#1|) (-780 |#1|) (-485)) (T -89)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3158 (((-89 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3732 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-89 |#1|)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-89 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-89 |#1|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-89 |#1|) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-89 |#1|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3960 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-89 |#1|)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-89 |#1|) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-89 |#1|)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) ELT) (($ $ (-1091) (-89 |#1|)) NIL (|has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-89 |#1|) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-89 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-934)) ELT)) (-2618 (((-148 (-350 (-485))) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) (|has| (-89 |#1|) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) -(((-90 |#1|) (-13 (-905 (-89 |#1|)) (-10 -8 (-15 -3772 ((-350 (-485)) $ (-485))) (-15 -2618 ((-148 (-350 (-485))) $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)))) (-485)) (T -90)) -((-3772 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2)))) -((-3790 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3033 (((-584 $) $) 31 T ELT)) (-3029 (((-85) $ $) 36 T ELT)) (-3032 (((-584 |#2|) $) 25 T ELT)) (-3529 (((-85) $) 18 T ELT)) (-3802 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3635 (((-85) $) 55 T ELT)) (-3948 (((-773) $) 46 T ELT)) (-3524 (((-584 $) $) 32 T ELT)) (-3058 (((-85) $ $) 38 T ELT))) -(((-91 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3790 (|#1| |#1| #1="right" |#1|)) (-15 -3790 (|#1| |#1| #2="left" |#1|)) (-15 -3802 (|#1| |#1| #1#)) (-15 -3802 (|#1| |#1| #2#)) (-15 -3790 (|#2| |#1| #3="value" |#2|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3032 ((-584 |#2|) |#1|)) (-15 -3635 ((-85) |#1|)) (-15 -3802 (|#2| |#1| #3#)) (-15 -3529 ((-85) |#1|)) (-15 -3033 ((-584 |#1|) |#1|)) (-15 -3524 ((-584 |#1|) |#1|))) (-92 |#2|) (-1130)) (T -91)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 48 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT) (($ $ "left" $) 51 (|has| $ (-1036 |#1|)) ELT) (($ $ "right" $) 49 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-3139 (($ $) 53 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3140 (($ $) 55 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT) (($ $ "left") 54 T ELT) (($ $ "right") 52 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-92 |#1|) (-113) (-1130)) (T -92)) -((-3140 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1295 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3140 ($ $)) (-15 -3802 ($ $ "left")) (-15 -3139 ($ $)) (-15 -3802 ($ $ "right")) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3790 ($ $ "left" $)) (-15 -1295 ($ $ $)) (-15 -3790 ($ $ "right" $)) (-15 -1294 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-1298 (((-85) |#1|) 29 T ELT)) (-1297 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1296 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1296 ((-85) |#1|)) (-15 -1296 ((-85) |#1| (-85))) (-15 -1297 ((-695))) (-15 -1297 ((-695) (-695))) (-15 -1298 ((-85) |#1|))) (-1156 (-485))) (T -93)) -((-1298 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 18 T ELT)) (-3420 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 20 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 27 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 22 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1299 (($ |#1| $) 28 T ELT)) (-3611 (($ |#1| $) 15 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 11 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1300 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1300 ($ (-584 |#1|))) (-15 -3611 ($ |#1| $)) (-15 -1299 ($ |#1| $)) (-15 -3420 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -94)) -((-1300 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-1299 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-757))))) -((-2314 (($ $) 13 T ELT)) (-2562 (($ $) 11 T ELT)) (-1301 (($ $ $) 23 T ELT)) (-1302 (($ $ $) 21 T ELT)) (-2312 (($ $ $) 19 T ELT)) (-2313 (($ $ $) 17 T ELT))) -(((-95 |#1|) (-10 -7 (-15 -1301 (|#1| |#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1|))) (-96)) (T -95)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-2314 (($ $) 104 T ELT)) (-3323 (($ $ $) 33 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 59 (|has| $ (-1036 (-85))) ELT)) (-1736 (((-85) $) 98 (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1734 (($ $) 102 (-12 (|has| (-85) (-757)) (|has| $ (-1036 (-85)))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-1036 (-85))) ELT)) (-2911 (($ $) 97 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3790 (((-85) $ (-1147 (-485)) (-85)) 78 (|has| $ (-1036 (-85))) ELT) (((-85) $ (-485) (-85)) 47 (|has| $ (-1036 (-85))) ELT)) (-3712 (($ (-1 (-85) (-85)) $) 63 (|has| $ (-318 (-85))) ELT)) (-3726 (($) 40 T CONST)) (-2298 (($ $) 100 (|has| $ (-1036 (-85))) ELT)) (-2299 (($ $) 90 T ELT)) (-1354 (($ $) 61 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3408 (($ (-1 (-85) (-85)) $) 64 (|has| $ (-318 (-85))) ELT) (($ (-85) $) 62 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3844 (((-85) (-1 (-85) (-85) (-85)) $) 83 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 82 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 79 (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-485) (-85)) 46 (|has| $ (-1036 (-85))) ELT)) (-3114 (((-85) $ (-485)) 48 T ELT)) (-3421 (((-485) (-85) $ (-485)) 95 (|has| (-85) (-72)) ELT) (((-485) (-85) $) 94 (|has| (-85) (-72)) ELT) (((-485) (-1 (-85) (-85)) $) 93 T ELT)) (-2563 (($ $ $) 109 T ELT)) (-2562 (($ $) 107 T ELT)) (-1301 (($ $ $) 34 T ELT)) (-3616 (($ (-695) (-85)) 68 T ELT)) (-1302 (($ $ $) 35 T ELT)) (-2201 (((-485) $) 56 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 23 T ELT)) (-3520 (($ $ $) 96 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2610 (((-584 (-85)) $) 84 T ELT)) (-3247 (((-85) (-85) $) 80 (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) 55 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 22 T ELT)) (-3328 (($ (-1 (-85) (-85)) $) 103 T ELT)) (-3960 (($ (-1 (-85) (-85) (-85)) $ $) 73 T ELT) (($ (-1 (-85) (-85)) $) 41 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2305 (($ $ $ (-485)) 77 T ELT) (($ (-85) $ (-485)) 76 T ELT)) (-2204 (((-584 (-485)) $) 53 T ELT)) (-2205 (((-85) (-485) $) 52 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-85) $) 57 (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 65 T ELT)) (-2200 (($ $ (-85)) 58 (|has| $ (-1036 (-85))) ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) 86 T ELT)) (-3770 (($ $ (-584 (-85)) (-584 (-85))) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) 42 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) 36 T ELT)) (-2203 (((-85) (-85) $) 54 (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2206 (((-584 (-85)) $) 51 T ELT)) (-3405 (((-85) $) 39 T ELT)) (-3567 (($) 38 T ELT)) (-3802 (($ $ (-1147 (-485))) 67 T ELT) (((-85) $ (-485)) 50 T ELT) (((-85) $ (-485) (-85)) 49 T ELT)) (-2306 (($ $ (-1147 (-485))) 75 T ELT) (($ $ (-485)) 74 T ELT)) (-1731 (((-695) (-1 (-85) (-85)) $) 85 T ELT) (((-695) (-85) $) 81 (|has| (-85) (-72)) ELT)) (-1735 (($ $ $ (-485)) 99 (|has| $ (-1036 (-85))) ELT)) (-3402 (($ $) 37 T ELT)) (-3974 (((-474) $) 60 (|has| (-85) (-554 (-474))) ELT)) (-3532 (($ (-584 (-85))) 66 T ELT)) (-3804 (($ (-584 $)) 72 T ELT) (($ $ $) 71 T ELT) (($ (-85) $) 70 T ELT) (($ $ (-85)) 69 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-2564 (($ $ $) 108 T ELT)) (-2312 (($ $ $) 106 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 105 T ELT)) (-3959 (((-695) $) 88 T ELT))) +((-2563 (*1 *1 *1) (-4 *1 (-84))) (-2565 (*1 *1 *1 *1) (-4 *1 (-84))) (-2564 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-606) (-10 -8 (-15 -2563 ($ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)))) +(((-13) . T) ((-606) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 9 T ELT)) (-3324 (($ $ $) 14 T ELT)) (-2858 (($) 6 T CONST)) (-3139 (((-696)) 23 T ELT)) (-2997 (($) 31 T ELT)) (-2564 (($ $ $) 12 T ELT)) (-2563 (($ $) 8 T ELT)) (-1302 (($ $ $) 15 T ELT)) (-1303 (($ $ $) 16 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 27 T ELT)) (-2856 (($ $ $) 19 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2857 (($) 7 T CONST)) (-2855 (($ $ $) 20 T ELT)) (-3975 (((-475) $) 33 T ELT)) (-3949 (((-774) $) 35 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 13 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 18 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 21 T ELT)) (-2314 (($ $ $) 11 T ELT))) +(((-85) (-13 (-754) (-882) (-555 (-475)) (-10 -8 (-15 -3324 ($ $ $)) (-15 -1303 ($ $ $)) (-15 -1302 ($ $ $))))) (T -85)) +((-3324 (*1 *1 *1 *1) (-5 *1 (-85))) (-1303 (*1 *1 *1 *1) (-5 *1 (-85))) (-1302 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2571 (((-85) $ $) NIL T ELT)) (-1524 (((-696) $) 92 T ELT) (($ $ (-696)) 38 T ELT)) (-1288 (((-85) $) 42 T ELT)) (-1282 (($ $ (-1075) (-698)) 59 T ELT) (($ $ (-448) (-698)) 34 T ELT)) (-1281 (($ $ (-45 (-1075) (-698))) 16 T ELT)) (-2844 (((-3 (-698) "failed") $ (-1075)) 27 T ELT) (((-634 (-698)) $ (-448)) 33 T ELT)) (-1290 (((-45 (-1075) (-698)) $) 15 T ELT)) (-3598 (($ (-1092)) 20 T ELT) (($ (-1092) (-696)) 23 T ELT) (($ (-1092) (-55)) 24 T ELT)) (-1289 (((-85) $) 40 T ELT)) (-1287 (((-85) $) 44 T ELT)) (-3545 (((-1092) $) 8 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2636 (((-85) $ (-1092)) 11 T ELT)) (-2130 (($ $ (-1 (-475) (-585 (-475)))) 65 T ELT) (((-634 (-1 (-475) (-585 (-475)))) $) 69 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1284 (((-85) $ (-448)) 37 T ELT)) (-1286 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3620 (((-634 (-1 (-774) (-585 (-774)))) $) 67 T ELT) (($ $ (-1 (-774) (-585 (-774)))) 52 T ELT) (($ $ (-1 (-774) (-774))) 54 T ELT)) (-1283 (($ $ (-1075)) 56 T ELT) (($ $ (-448)) 57 T ELT)) (-3403 (($ $) 75 T ELT)) (-1285 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3949 (((-774) $) 61 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2795 (($ $ (-448)) 35 T ELT)) (-2524 (((-55) $) 70 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 88 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-758) (-749 (-1092)) (-10 -8 (-15 -1290 ((-45 (-1075) (-698)) $)) (-15 -3403 ($ $)) (-15 -3598 ($ (-1092))) (-15 -3598 ($ (-1092) (-696))) (-15 -3598 ($ (-1092) (-55))) (-15 -1289 ((-85) $)) (-15 -1288 ((-85) $)) (-15 -1287 ((-85) $)) (-15 -1524 ((-696) $)) (-15 -1524 ($ $ (-696))) (-15 -1286 ($ $ (-1 (-85) $ $))) (-15 -1285 ($ $ (-1 (-85) $ $))) (-15 -3620 ((-634 (-1 (-774) (-585 (-774)))) $)) (-15 -3620 ($ $ (-1 (-774) (-585 (-774))))) (-15 -3620 ($ $ (-1 (-774) (-774)))) (-15 -2130 ($ $ (-1 (-475) (-585 (-475))))) (-15 -2130 ((-634 (-1 (-475) (-585 (-475)))) $)) (-15 -1284 ((-85) $ (-448))) (-15 -2795 ($ $ (-448))) (-15 -1283 ($ $ (-1075))) (-15 -1283 ($ $ (-448))) (-15 -2844 ((-3 (-698) "failed") $ (-1075))) (-15 -2844 ((-634 (-698)) $ (-448))) (-15 -1282 ($ $ (-1075) (-698))) (-15 -1282 ($ $ (-448) (-698))) (-15 -1281 ($ $ (-45 (-1075) (-698))))))) (T -86)) +((-1290 (*1 *2 *1) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86)))) (-3403 (*1 *1 *1) (-5 *1 (-86))) (-3598 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-86)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *1 (-86)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) (-1524 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) (-1286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-774) (-585 (-774))))) (-5 *1 (-86)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-585 (-774)))) (-5 *1 (-86)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-774))) (-5 *1 (-86)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-475) (-585 (-475)))) (-5 *1 (-86)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-475) (-585 (-475))))) (-5 *1 (-86)))) (-1284 (*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) (-2844 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-698)) (-5 *1 (-86)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-698))) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-698)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-698)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86))))) +((-2521 (((-3 (-1 |#1| (-585 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-585 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-585 |#1|)) 25 T ELT)) (-1291 (((-3 (-585 (-1 |#1| (-585 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-585 (-1 |#1| (-585 |#1|)))) 30 T ELT)) (-1292 (((-86) |#1|) 63 T ELT)) (-1293 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2521 ((-3 |#1| #1="failed") (-86) (-585 |#1|))) (-15 -2521 ((-86) (-86) (-1 |#1| (-585 |#1|)))) (-15 -2521 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2521 ((-3 (-1 |#1| (-585 |#1|)) #1#) (-86))) (-15 -1291 ((-86) (-86) (-585 (-1 |#1| (-585 |#1|))))) (-15 -1291 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1291 ((-3 (-585 (-1 |#1| (-585 |#1|))) #1#) (-86))) (-15 -1292 ((-86) |#1|)) (-15 -1293 ((-3 |#1| #1#) (-86)))) (-1015)) (T -87)) +((-1293 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1015)))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1015)))) (-1291 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-1 *4 (-585 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1015)))) (-1291 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-1291 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2521 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1015)))) (-2521 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2521 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-585 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1015))))) +((-1294 (((-486) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1294 ((-486) |#2|))) (-13 (-312) (-952 (-350 (-486)))) (-1157 |#1|)) (T -88)) +((-1294 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-952 (-350 *2)))) (-5 *2 (-486)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-486)) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1087 (-486)) (-486)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2615 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3775 (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 (((-486)) NIL T ELT)) (-2616 (((-486) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-486)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-1071 (-486)) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-486) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-781 |#1|) (-486)) (T -89)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-89 |#1|) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT)) (-3159 (((-89 |#1|) $) NIL T ELT) (((-1092) $) NIL (|has| (-89 |#1|) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-486) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-89 |#1|))) (|:| |vec| (-1181 (-89 |#1|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-89 |#1|)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-89 |#1|) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-89 |#1|) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-89 |#1|) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-89 |#1|) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-89 |#1|) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3961 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-89 |#1|))) (|:| |vec| (-1181 (-89 |#1|)))) (-1181 $) $) NIL T ELT) (((-632 (-89 |#1|)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-89 |#1|) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3133 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-89 |#1|)) (-585 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-585 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-585 (-1092)) (-585 (-89 |#1|))) NIL (|has| (-89 |#1|) (-457 (-1092) (-89 |#1|))) ELT) (($ $ (-1092) (-89 |#1|)) NIL (|has| (-89 |#1|) (-457 (-1092) (-89 |#1|))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-89 |#1|) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-89 |#1|) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-89 |#1|) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-89 |#1|) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-935)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-935)) ELT)) (-2619 (((-148 (-350 (-486))) $) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1092)) NIL (|has| (-89 |#1|) (-952 (-1092))) ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-823))) (|has| (-89 |#1|) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3952 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-906 (-89 |#1|)) (-10 -8 (-15 -3773 ((-350 (-486)) $ (-486))) (-15 -2619 ((-148 (-350 (-486))) $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)))) (-486)) (T -90)) +((-3773 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-486)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-90 *3)) (-14 *3 (-486)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-486)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3034 (((-585 $) $) 31 T ELT)) (-3030 (((-85) $ $) 36 T ELT)) (-3033 (((-585 |#2|) $) 25 T ELT)) (-3530 (((-85) $) 18 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3636 (((-85) $) 55 T ELT)) (-3949 (((-774) $) 46 T ELT)) (-3525 (((-585 $) $) 32 T ELT)) (-3059 (((-85) $ $) 38 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3791 (|#1| |#1| #1="right" |#1|)) (-15 -3791 (|#1| |#1| #2="left" |#1|)) (-15 -3803 (|#1| |#1| #1#)) (-15 -3803 (|#1| |#1| #2#)) (-15 -3791 (|#2| |#1| #3="value" |#2|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3033 ((-585 |#2|) |#1|)) (-15 -3636 ((-85) |#1|)) (-15 -3803 (|#2| |#1| #3#)) (-15 -3530 ((-85) |#1|)) (-15 -3034 ((-585 |#1|) |#1|)) (-15 -3525 ((-585 |#1|) |#1|))) (-92 |#2|) (-1131)) (T -91)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 49 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 51 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (-1037 |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3140 (($ $) 54 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3141 (($ $) 56 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-92 |#1|) (-113) (-1131)) (T -92)) +((-3141 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-3791 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-1296 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131)))) (-3791 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-1295 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131))))) +(-13 (-925 |t#1|) (-10 -8 (-15 -3141 ($ $)) (-15 -3803 ($ $ "left")) (-15 -3140 ($ $)) (-15 -3803 ($ $ "right")) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3791 ($ $ "left" $)) (-15 -1296 ($ $ $)) (-15 -3791 ($ $ "right" $)) (-15 -1295 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-1299 (((-85) |#1|) 29 T ELT)) (-1298 (((-696) (-696)) 28 T ELT) (((-696)) 27 T ELT)) (-1297 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1297 ((-85) |#1|)) (-15 -1297 ((-85) |#1| (-85))) (-15 -1298 ((-696))) (-15 -1298 ((-696) (-696))) (-15 -1299 ((-85) |#1|))) (-1157 (-486))) (T -93)) +((-1299 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1298 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1298 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1297 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1297 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 18 T ELT)) (-3421 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 23 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 20 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 27 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 22 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1300 (($ |#1| $) 28 T ELT)) (-3612 (($ |#1| $) 15 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1301 (($ (-585 |#1|)) 16 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1301 ($ (-585 |#1|))) (-15 -3612 ($ |#1| $)) (-15 -1300 ($ |#1| $)) (-15 -3421 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-758)) (T -94)) +((-1301 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-94 *3)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) (-1300 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) (-3421 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-758))))) +((-2315 (($ $) 13 T ELT)) (-2563 (($ $) 11 T ELT)) (-1302 (($ $ $) 23 T ELT)) (-1303 (($ $ $) 21 T ELT)) (-2313 (($ $ $) 19 T ELT)) (-2314 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1302 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-2315 (($ $) 105 T ELT)) (-3324 (($ $ $) 34 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 60 (|has| $ (-1037 (-85))) ELT)) (-1737 (((-85) $) 99 (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 93 T ELT)) (-1735 (($ $) 103 (-12 (|has| (-85) (-758)) (|has| $ (-1037 (-85)))) ELT) (($ (-1 (-85) (-85) (-85)) $) 102 (|has| $ (-1037 (-85))) ELT)) (-2912 (($ $) 98 (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-3791 (((-85) $ (-1148 (-486)) (-85)) 79 (|has| $ (-1037 (-85))) ELT) (((-85) $ (-486) (-85)) 48 (|has| $ (-1037 (-85))) ELT)) (-3713 (($ (-1 (-85) (-85)) $) 64 (|has| $ (-318 (-85))) ELT)) (-3727 (($) 41 T CONST)) (-2299 (($ $) 101 (|has| $ (-1037 (-85))) ELT)) (-2300 (($ $) 91 T ELT)) (-1355 (($ $) 62 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3409 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-318 (-85))) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3845 (((-85) (-1 (-85) (-85) (-85)) $) 84 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 83 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 80 (|has| (-85) (-72)) ELT)) (-1578 (((-85) $ (-486) (-85)) 47 (|has| $ (-1037 (-85))) ELT)) (-3115 (((-85) $ (-486)) 49 T ELT)) (-3422 (((-486) (-85) $ (-486)) 96 (|has| (-85) (-72)) ELT) (((-486) (-85) $) 95 (|has| (-85) (-72)) ELT) (((-486) (-1 (-85) (-85)) $) 94 T ELT)) (-2564 (($ $ $) 110 T ELT)) (-2563 (($ $) 108 T ELT)) (-1302 (($ $ $) 35 T ELT)) (-3617 (($ (-696) (-85)) 69 T ELT)) (-1303 (($ $ $) 36 T ELT)) (-2202 (((-486) $) 57 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 23 T ELT)) (-3521 (($ $ $) 97 (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 90 T ELT)) (-2611 (((-585 (-85)) $) 85 T ELT)) (-3248 (((-85) (-85) $) 81 (|has| (-85) (-72)) ELT)) (-2203 (((-486) $) 56 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 22 T ELT)) (-3329 (($ (-1 (-85) (-85)) $) 104 T ELT)) (-3961 (($ (-1 (-85) (-85) (-85)) $ $) 74 T ELT) (($ (-1 (-85) (-85)) $) 42 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2306 (($ $ $ (-486)) 78 T ELT) (($ (-85) $ (-486)) 77 T ELT)) (-2205 (((-585 (-486)) $) 54 T ELT)) (-2206 (((-85) (-486) $) 53 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-85) $) 58 (|has| (-486) (-758)) ELT)) (-1356 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 66 T ELT)) (-2201 (($ $ (-85)) 59 (|has| $ (-1037 (-85))) ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-3771 (($ $ (-585 (-85)) (-585 (-85))) 46 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1224 (((-85) $ $) 37 T ELT)) (-2204 (((-85) (-85) $) 55 (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2207 (((-585 (-85)) $) 52 T ELT)) (-3406 (((-85) $) 40 T ELT)) (-3568 (($) 39 T ELT)) (-3803 (($ $ (-1148 (-486))) 68 T ELT) (((-85) $ (-486)) 51 T ELT) (((-85) $ (-486) (-85)) 50 T ELT)) (-2307 (($ $ (-1148 (-486))) 76 T ELT) (($ $ (-486)) 75 T ELT)) (-1732 (((-696) (-1 (-85) (-85)) $) 86 T ELT) (((-696) (-85) $) 82 (|has| (-85) (-72)) ELT)) (-1736 (($ $ $ (-486)) 100 (|has| $ (-1037 (-85))) ELT)) (-3403 (($ $) 38 T ELT)) (-3975 (((-475) $) 61 (|has| (-85) (-555 (-475))) ELT)) (-3533 (($ (-585 (-85))) 67 T ELT)) (-3805 (($ (-585 $)) 73 T ELT) (($ $ $) 72 T ELT) (($ (-85) $) 71 T ELT) (($ $ (-85)) 70 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) (-85)) $) 88 T ELT)) (-2565 (($ $ $) 109 T ELT)) (-2313 (($ $ $) 107 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-2314 (($ $ $) 106 T ELT)) (-3960 (((-696) $) 89 T ELT))) (((-96) (-113)) (T -96)) -((-1302 (*1 *1 *1 *1) (-4 *1 (-96))) (-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-3323 (*1 *1 *1 *1) (-4 *1 (-96)))) -(-13 (-757) (-84) (-605) (-19 (-85)) (-10 -8 (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -3323 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-124 (-85)) . T) ((-554 (-474)) |has| (-85) (-554 (-474))) ((-241 (-485) (-85)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-429 (-85)) . T) ((-539 (-485) (-85)) . T) ((-456 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-13) . T) ((-594 (-85)) . T) ((-605) . T) ((-19 (-85)) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1036 (-85)) . T) ((-1130) . T)) -((-3328 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3402 (($ $) 16 T ELT)) (-3959 (((-695) $) 25 T ELT))) -(((-97 |#1| |#2|) (-10 -7 (-15 -3328 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 ((-695) |#1|)) (-15 -3402 (|#1| |#1|))) (-98 |#2|) (-1014)) (T -97)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 48 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) 51 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) 49 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-3139 (($ $) 53 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 69 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 66 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 65 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 58 T ELT)) (-2610 (((-584 |#1|) $) 64 T ELT)) (-3247 (((-85) |#1| $) 68 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 59 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3140 (($ $) 55 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 62 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT) (($ $ #2#) 54 T ELT) (($ $ #3#) 52 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-1731 (((-695) |#1| $) 67 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 63 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 61 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 60 T ELT))) -(((-98 |#1|) (-113) (-1014)) (T -98)) -((-1303 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014))))) -(-13 (-92 |t#1|) (-318 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -1303 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 18 T ELT)) (-3027 ((|#1| $ |#1|) 22 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 24 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3611 (($ |#1| $) 15 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 11 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 20 T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1304 ($ (-584 |#1|))) (-15 -3611 ($ |#1| $)))) (-757)) (T -99)) -((-1304 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 31 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 37 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 35 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 24 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 17 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 23 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) 26 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 21 T ELT)) (-3567 (($) 13 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1305 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1305 ($ |#1|)) (-15 -1305 ($ $ |#1| $)))) (-1014)) (T -100)) -((-1305 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))) (-1305 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 32 T ELT)) (-3138 (((-695)) 17 T ELT)) (-3726 (($) 9 T CONST)) (-2996 (($) 27 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2011 (((-831) $) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 23 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1306 (($ (-695)) 8 T ELT)) (-3727 (($ $ $) 29 T ELT)) (-3728 (($ $ $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 31 T ELT)) (-2568 (((-85) $ $) 14 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-3058 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) 11 T ELT)) (-2313 (($ $ $) 30 T ELT))) -(((-101) (-13 (-753) (-605) (-10 -8 (-15 -1306 ($ (-695))) (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -101)) -((-1306 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))) (-3728 (*1 *1 *1 *1) (-5 *1 (-101))) (-3727 (*1 *1 *1 *1) (-5 *1 (-101))) (-3726 (*1 *1) (-5 *1 (-101)))) -((-695) (|%ilt| |#1| 256)) -((-2570 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-101))) ELT)) (-1736 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-757)) ELT)) (-1734 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-1036 (-101))) ELT) (($ $) NIL (-12 (|has| $ (-1036 (-101))) (|has| (-101) (-757))) ELT)) (-2911 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-757)) ELT)) (-3790 (((-101) $ (-485) (-101)) 26 (|has| $ (-1036 (-101))) ELT) (((-101) $ (-1147 (-485)) (-101)) NIL (|has| $ (-1036 (-101))) ELT)) (-1307 (((-695) $ (-695)) 35 T ELT)) (-3712 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-101))) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-3408 (($ (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3844 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (|has| (-101) (-72)) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL T ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL T ELT)) (-1577 (((-101) $ (-485) (-101)) 25 (|has| $ (-1036 (-101))) ELT)) (-3114 (((-101) $ (-485)) 20 T ELT)) (-3421 (((-485) (-1 (-85) (-101)) $) NIL T ELT) (((-485) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-485) (-101) $ (-485)) NIL (|has| (-101) (-72)) ELT)) (-3616 (($ (-695) (-101)) 14 T ELT)) (-2201 (((-485) $) 27 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3520 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-2610 (((-584 (-101)) $) NIL T ELT)) (-3247 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2202 (((-485) $) 30 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3328 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3960 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| (-101) (-1014)) ELT)) (-2305 (($ (-101) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| (-101) (-1014)) ELT)) (-3803 (((-101) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2200 (($ $ (-101)) NIL (|has| $ (-1036 (-101))) ELT)) (-1732 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-584 (-101)) (-584 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-2206 (((-584 (-101)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 12 T ELT)) (-3802 (((-101) $ (-485) (-101)) NIL T ELT) (((-101) $ (-485)) 23 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-695) (-1 (-85) (-101)) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-101))) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-101) (-554 (-474))) ELT)) (-3532 (($ (-584 (-101))) 41 T ELT)) (-3804 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-870 (-101)) $) 36 T ELT) (((-1074) $) 38 T ELT) (((-773) $) NIL (|has| (-101) (-553 (-773))) ELT)) (-1308 (((-695) $) 18 T ELT)) (-1309 (($ (-695)) 8 T ELT)) (-1266 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3058 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3959 (((-695) $) 15 T ELT))) -(((-102) (-13 (-19 (-101)) (-553 (-870 (-101))) (-553 (-1074)) (-10 -8 (-15 -1309 ($ (-695))) (-15 -1308 ((-695) $)) (-15 -1307 ((-695) $ (-695)))))) (T -102)) -((-1309 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1307 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1310 (($) 6 T CONST)) (-1312 (($) 7 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 14 T ELT)) (-1311 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT))) -(((-103) (-13 (-1014) (-10 -8 (-15 -1312 ($) -3954) (-15 -1311 ($) -3954) (-15 -1310 ($) -3954)))) (T -103)) -((-1312 (*1 *1) (-5 *1 (-103))) (-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103)))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) +((-1303 (*1 *1 *1 *1) (-4 *1 (-96))) (-1302 (*1 *1 *1 *1) (-4 *1 (-96))) (-3324 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-758) (-84) (-606) (-19 (-85)) (-10 -8 (-15 -1303 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -3324 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-84) . T) ((-554 (-774)) . T) ((-124 (-85)) . T) ((-555 (-475)) |has| (-85) (-555 (-475))) ((-241 (-486) (-85)) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-381 (-85)) . T) ((-430 (-85)) . T) ((-540 (-486) (-85)) . T) ((-457 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ((-13) . T) ((-595 (-85)) . T) ((-606) . T) ((-19 (-85)) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1037 (-85)) . T) ((-1131) . T)) +((-3329 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3403 (($ $) 16 T ELT)) (-3960 (((-696) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -3329 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3960 ((-696) |#1|)) (-15 -3403 (|#1| |#1|))) (-98 |#2|) (-1015)) (T -97)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 49 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 51 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) 52 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) 50 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3140 (($ $) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 70 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 67 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 66 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 59 T ELT)) (-2611 (((-585 |#1|) $) 65 T ELT)) (-3248 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 60 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3141 (($ $) 56 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 63 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) (($ $ #2#) 55 T ELT) (($ $ #3#) 53 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-1732 (((-696) |#1| $) 68 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 64 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 62 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 61 T ELT))) +(((-98 |#1|) (-113) (-1015)) (T -98)) +((-1304 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1015))))) +(-13 (-92 |t#1|) (-318 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -1304 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 18 T ELT)) (-3028 ((|#1| $ |#1|) 22 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 21 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3612 (($ |#1| $) 15 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 20 T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1305 (($ (-585 |#1|)) 16 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1305 ($ (-585 |#1|))) (-15 -3612 ($ |#1| $)))) (-758)) (T -99)) +((-1305 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-99 *3)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-758))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 31 T ELT)) (-3028 ((|#1| $ |#1|) 33 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 37 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 35 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 17 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 23 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) 26 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 21 T ELT)) (-3568 (($) 13 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1306 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1306 ($ |#1|)) (-15 -1306 ($ $ |#1| $)))) (-1015)) (T -100)) +((-1306 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015)))) (-1306 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 32 T ELT)) (-3139 (((-696)) 17 T ELT)) (-3727 (($) 9 T CONST)) (-2997 (($) 27 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2012 (((-832) $) 25 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 23 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1307 (($ (-696)) 8 T ELT)) (-3728 (($ $ $) 29 T ELT)) (-3729 (($ $ $) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 31 T ELT)) (-2569 (((-85) $ $) 14 T ELT)) (-2570 (((-85) $ $) 12 T ELT)) (-3059 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) 13 T ELT)) (-2688 (((-85) $ $) 11 T ELT)) (-2314 (($ $ $) 30 T ELT))) +(((-101) (-13 (-754) (-606) (-10 -8 (-15 -1307 ($ (-696))) (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3955)))) (T -101)) +((-1307 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-101)))) (-3729 (*1 *1 *1 *1) (-5 *1 (-101))) (-3728 (*1 *1 *1 *1) (-5 *1 (-101))) (-3727 (*1 *1) (-5 *1 (-101)))) +((-696) (|%ilt| |#1| 256)) +((-2571 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-101))) ELT)) (-1737 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-758)) ELT)) (-1735 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-1037 (-101))) ELT) (($ $) NIL (-12 (|has| $ (-1037 (-101))) (|has| (-101) (-758))) ELT)) (-2912 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-758)) ELT)) (-3791 (((-101) $ (-486) (-101)) 26 (|has| $ (-1037 (-101))) ELT) (((-101) $ (-1148 (-486)) (-101)) NIL (|has| $ (-1037 (-101))) ELT)) (-1308 (((-696) $ (-696)) 35 T ELT)) (-3713 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-101))) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-3409 (($ (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3845 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (|has| (-101) (-72)) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL T ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL T ELT)) (-1578 (((-101) $ (-486) (-101)) 25 (|has| $ (-1037 (-101))) ELT)) (-3115 (((-101) $ (-486)) 20 T ELT)) (-3422 (((-486) (-1 (-85) (-101)) $) NIL T ELT) (((-486) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-486) (-101) $ (-486)) NIL (|has| (-101) (-72)) ELT)) (-3617 (($ (-696) (-101)) 14 T ELT)) (-2202 (((-486) $) 27 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-3521 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-2611 (((-585 (-101)) $) NIL T ELT)) (-3248 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2203 (((-486) $) 30 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-3329 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3961 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| (-101) (-1015)) ELT)) (-2306 (($ (-101) $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| (-101) (-1015)) ELT)) (-3804 (((-101) $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2201 (($ $ (-101)) NIL (|has| $ (-1037 (-101))) ELT)) (-1733 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-585 (-101)) (-585 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-2207 (((-585 (-101)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 12 T ELT)) (-3803 (((-101) $ (-486) (-101)) NIL T ELT) (((-101) $ (-486)) 23 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-696) (-1 (-85) (-101)) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-101))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-101) (-555 (-475))) ELT)) (-3533 (($ (-585 (-101))) 41 T ELT)) (-3805 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-871 (-101)) $) 36 T ELT) (((-1075) $) 38 T ELT) (((-774) $) NIL (|has| (-101) (-554 (-774))) ELT)) (-1309 (((-696) $) 18 T ELT)) (-1310 (($ (-696)) 8 T ELT)) (-1267 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-3059 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-3960 (((-696) $) 15 T ELT))) +(((-102) (-13 (-19 (-101)) (-554 (-871 (-101))) (-554 (-1075)) (-10 -8 (-15 -1310 ($ (-696))) (-15 -1309 ((-696) $)) (-15 -1308 ((-696) $ (-696)))))) (T -102)) +((-1310 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-102)))) (-1308 (*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1311 (($) 6 T CONST)) (-1313 (($) 7 T CONST)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 14 T ELT)) (-1312 (($) 8 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1015) (-10 -8 (-15 -1313 ($) -3955) (-15 -1312 ($) -3955) (-15 -1311 ($) -3955)))) (T -103)) +((-1313 (*1 *1) (-5 *1 (-103))) (-1312 (*1 *1) (-5 *1 (-103))) (-1311 (*1 *1) (-5 *1 (-103)))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) (((-104) (-113)) (T -104)) -((-1313 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(-13 (-23) (-10 -8 (-15 -1313 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-1314 (((-1186) $ (-695)) 17 T ELT)) (-3421 (((-695) $) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +((-1314 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1314 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-1315 (((-1187) $ (-696)) 17 T ELT)) (-3422 (((-696) $) 18 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-105) (-113)) (T -105)) -((-3421 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) (-1314 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1186))))) -(-13 (-1014) (-10 -8 (-15 -3421 ((-695) $)) (-15 -1314 ((-1186) $ (-695))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-106) (-13 (-996) (-10 -8 (-15 -3235 ((-584 (-1050)) $))))) (T -106)) -((-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-106))))) -((-2570 (((-85) $ $) 49 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3158 (((-695) $) 58 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) 37 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1316 (((-85)) 61 T ELT)) (-1315 (((-85) (-85)) 63 T ELT)) (-2527 (((-85) $) 30 T ELT)) (-1317 (((-85) $) 57 T ELT)) (-3948 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 19 T CONST)) (-1318 (($ (-695)) 21 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) 40 T ELT)) (-3058 (((-85) $ $) 32 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 35 T ELT)) (-3839 (((-3 $ #1#) $ $) 42 T ELT)) (-3841 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-107) (-13 (-757) (-23) (-664) (-951 (-695)) (-10 -8 (-6 (-3999 "*")) (-15 -3839 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1318 ($ (-695))) (-15 -2527 ((-85) $)) (-15 -1317 ((-85) $)) (-15 -1316 ((-85))) (-15 -1315 ((-85) (-85)))))) (T -107)) -((-3839 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1319 (($ (-584 |#3|)) 63 T ELT)) (-3416 (($ $) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3726 (($) 17 T ELT)) (-3159 (((-3 |#3| "failed") $) 86 T ELT)) (-3158 ((|#3| $) NIL T ELT)) (-1323 (($ $ (-584 (-485))) 126 T ELT)) (-1320 (((-584 |#3|) $) 58 T ELT)) (-3110 (((-695) $) 68 T ELT)) (-3946 (($ $ $) 120 T ELT)) (-1321 (($) 67 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1322 (($) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $ (-485)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-485) (-485)) 73 T ELT) ((|#3| $ (-485) (-485) (-485)) 74 T ELT) ((|#3| $ (-485) (-485) (-485) (-485)) 75 T ELT) ((|#3| $ (-584 (-485))) 76 T ELT)) (-3950 (((-695) $) 69 T ELT)) (-1982 (($ $ (-485) $ (-485)) 121 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3948 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1057 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 96 T CONST)) (-2668 (($) 97 T CONST)) (-3058 (((-85) $ $) 107 T ELT)) (-3839 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3841 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-485)) 116 T ELT) (($ (-485) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-108 |#1| |#2| |#3|) (-13 (-405 |#3| (-695)) (-410 (-485) (-695)) (-241 (-485) |#3|) (-556 (-197 |#2| |#3|)) (-556 (-1057 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-15 -3110 ((-695) $)) (-15 -3802 (|#3| $)) (-15 -3802 (|#3| $ (-485) (-485))) (-15 -3802 (|#3| $ (-485) (-485) (-485))) (-15 -3802 (|#3| $ (-485) (-485) (-485) (-485))) (-15 -3802 (|#3| $ (-584 (-485)))) (-15 -3946 ($ $ $)) (-15 * ($ $ $)) (-15 -1982 ($ $ (-485) $ (-485))) (-15 -1982 ($ $ (-485) (-485))) (-15 -3416 ($ $)) (-15 -3416 ($ $ (-485) (-485))) (-15 -1323 ($ $ (-584 (-485)))) (-15 -1322 ($)) (-15 -1321 ($)) (-15 -1320 ((-584 |#3|) $)) (-15 -1319 ($ (-584 |#3|))) (-15 -3726 ($)))) (-485) (-695) (-146)) (T -108)) -((-3946 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3802 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3802 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-485)) (-14 *5 (-695)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1982 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1982 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-3416 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3416 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1322 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3726 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))) -((-2416 (((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3960 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) -(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3960 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-485) (-695) (-146) (-146)) (T -109)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-110) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -110)) -((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 11 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-111) (-13 (-996) (-10 -8 (-15 -1427 ((-161) $)) (-15 -3235 ((-584 (-1050)) $))))) (T -111)) -((-1427 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-111))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3544 (((-447) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-112) (-13 (-160) (-553 (-157)))) (T -112)) -NIL -((-1325 (((-584 (-158 (-112))) $) 13 T ELT)) (-1324 (((-584 (-158 (-112))) $) 14 T ELT)) (-1326 (((-584 (-750)) $) 10 T ELT)) (-1483 (((-112) $) 7 T ELT)) (-3948 (((-773) $) 16 T ELT))) -(((-113) (-13 (-553 (-773)) (-10 -8 (-15 -1483 ((-112) $)) (-15 -1326 ((-584 (-750)) $)) (-15 -1325 ((-584 (-158 (-112))) $)) (-15 -1324 ((-584 (-158 (-112))) $))))) (T -113)) -((-1483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3429 (($) 17 T CONST)) (-1806 (($) NIL (|has| (-117) (-320)) ELT)) (-3236 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3238 (($ $ $) NIL T ELT)) (-3237 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-117) (-320)) ELT)) (-3241 (($) NIL T ELT) (($ (-584 (-117))) NIL T ELT)) (-1571 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3712 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3407 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) 56 (|has| $ (-318 (-117))) ELT)) (-3408 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3844 (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT)) (-2996 (($) NIL (|has| (-117) (-320)) ELT)) (-3243 (((-85) $ $) NIL T ELT)) (-2533 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-2610 (((-584 (-117)) $) 65 T ELT)) (-3247 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2859 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-3328 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3960 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3431 (($) 18 T CONST)) (-2011 (((-831) $) NIL (|has| (-117) (-320)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 32 T ELT)) (-1275 (((-117) $) 57 T ELT)) (-3611 (($ (-117) $) 55 T ELT)) (-2401 (($ (-831)) NIL (|has| (-117) (-320)) ELT)) (-1329 (($) 16 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1276 (((-117) $) 58 T ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3770 (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 53 T ELT)) (-1330 (($) 15 T CONST)) (-3239 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1467 (($ (-584 (-117))) NIL T ELT) (($) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-117)) $) NIL T ELT) (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-1074) $) 39 T ELT) (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT) (((-584 (-117)) $) 37 T ELT)) (-3532 (($ (-584 (-117))) NIL T ELT)) (-1807 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3948 (((-773) $) 51 T ELT)) (-1331 (($ (-1074)) 14 T ELT) (($ (-584 (-117))) 48 T ELT)) (-1808 (((-695) $) NIL T ELT)) (-3242 (($) 54 T ELT) (($ (-584 (-117))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 (-117))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1327 (($) 21 T CONST)) (-1328 (($) 20 T CONST)) (-3058 (((-85) $ $) 26 T ELT)) (-3959 (((-695) $) 52 T ELT))) -(((-114) (-13 (-1014) (-554 (-1074)) (-369 (-117)) (-554 (-584 (-117))) (-10 -8 (-15 -1331 ($ (-1074))) (-15 -1331 ($ (-584 (-117)))) (-15 -1330 ($) -3954) (-15 -1329 ($) -3954) (-15 -3429 ($) -3954) (-15 -3431 ($) -3954) (-15 -1328 ($) -3954) (-15 -1327 ($) -3954)))) (T -114)) -((-1331 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) (-1330 (*1 *1) (-5 *1 (-114))) (-1329 (*1 *1) (-5 *1 (-114))) (-3429 (*1 *1) (-5 *1 (-114))) (-3431 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114)))) -((-3743 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3741 ((|#1| |#3|) 9 T ELT)) (-3742 ((|#3| |#3|) 15 T ELT))) -(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3741 (|#1| |#3|)) (-15 -3742 (|#3| |#3|)) (-15 -3743 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-324 |#2|)) (T -115)) -((-3743 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4))))) -((-1370 (($ $ $) 8 T ELT)) (-1368 (($ $) 7 T ELT)) (-3103 (($ $ $) 6 T ELT))) +((-3422 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-696)))) (-1315 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-696)) (-5 *2 (-1187))))) +(-13 (-1015) (-10 -8 (-15 -3422 ((-696) $)) (-15 -1315 ((-1187) $ (-696))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-997) (-10 -8 (-15 -3236 ((-585 (-1051)) $))))) (T -106)) +((-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-106))))) +((-2571 (((-85) $ $) 49 T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-696) #1="failed") $) 60 T ELT)) (-3159 (((-696) $) 58 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) 37 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1317 (((-85)) 61 T ELT)) (-1316 (((-85) (-85)) 63 T ELT)) (-2528 (((-85) $) 30 T ELT)) (-1318 (((-85) $) 57 T ELT)) (-3949 (((-774) $) 28 T ELT) (($ (-696)) 20 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 19 T CONST)) (-1319 (($ (-696)) 21 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) 40 T ELT)) (-3059 (((-85) $ $) 32 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 35 T ELT)) (-3840 (((-3 $ #1#) $ $) 42 T ELT)) (-3842 (($ $ $) 38 T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-696) $) 48 T ELT) (($ (-832) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-758) (-23) (-665) (-952 (-696)) (-10 -8 (-6 (-4000 "*")) (-15 -3840 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1319 ($ (-696))) (-15 -2528 ((-85) $)) (-15 -1318 ((-85) $)) (-15 -1317 ((-85))) (-15 -1316 ((-85) (-85)))))) (T -107)) +((-3840 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-107)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1317 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1320 (($ (-585 |#3|)) 63 T ELT)) (-3417 (($ $) 125 T ELT) (($ $ (-486) (-486)) 124 T ELT)) (-3727 (($) 17 T ELT)) (-3160 (((-3 |#3| "failed") $) 86 T ELT)) (-3159 ((|#3| $) NIL T ELT)) (-1324 (($ $ (-585 (-486))) 126 T ELT)) (-1321 (((-585 |#3|) $) 58 T ELT)) (-3111 (((-696) $) 68 T ELT)) (-3947 (($ $ $) 120 T ELT)) (-1322 (($) 67 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1323 (($) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#3| $ (-486)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-486) (-486)) 73 T ELT) ((|#3| $ (-486) (-486) (-486)) 74 T ELT) ((|#3| $ (-486) (-486) (-486) (-486)) 75 T ELT) ((|#3| $ (-585 (-486))) 76 T ELT)) (-3951 (((-696) $) 69 T ELT)) (-1983 (($ $ (-486) $ (-486)) 121 T ELT) (($ $ (-486) (-486)) 123 T ELT)) (-3949 (((-774) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1058 |#2| |#3|)) 105 T ELT) (($ (-585 |#3|)) 77 T ELT) (($ (-585 $)) 83 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 96 T CONST)) (-2669 (($) 97 T CONST)) (-3059 (((-85) $ $) 107 T ELT)) (-3840 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3842 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-486)) 116 T ELT) (($ (-486) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-406 |#3| (-696)) (-411 (-486) (-696)) (-241 (-486) |#3|) (-557 (-197 |#2| |#3|)) (-557 (-1058 |#2| |#3|)) (-557 (-585 |#3|)) (-557 (-585 $)) (-10 -8 (-15 -3111 ((-696) $)) (-15 -3803 (|#3| $)) (-15 -3803 (|#3| $ (-486) (-486))) (-15 -3803 (|#3| $ (-486) (-486) (-486))) (-15 -3803 (|#3| $ (-486) (-486) (-486) (-486))) (-15 -3803 (|#3| $ (-585 (-486)))) (-15 -3947 ($ $ $)) (-15 * ($ $ $)) (-15 -1983 ($ $ (-486) $ (-486))) (-15 -1983 ($ $ (-486) (-486))) (-15 -3417 ($ $)) (-15 -3417 ($ $ (-486) (-486))) (-15 -1324 ($ $ (-585 (-486)))) (-15 -1323 ($)) (-15 -1322 ($)) (-15 -1321 ((-585 |#3|) $)) (-15 -1320 ($ (-585 |#3|))) (-15 -3727 ($)))) (-486) (-696) (-146)) (T -108)) +((-3947 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 *2) (-4 *5 (-146)))) (-3803 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-486)) (-14 *4 (-696)))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3803 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3803 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-486))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-486)) (-14 *5 (-696)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1983 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-1983 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-3417 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-1324 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1323 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1322 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-585 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1320 (*1 *1 *2) (-12 (-5 *2 (-585 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 (-696)))) (-3727 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146))))) +((-2417 (((-108 |#1| |#2| |#4|) (-585 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3961 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-108 |#1| |#2| |#4|) (-585 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3961 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-486) (-696) (-146) (-146)) (T -109)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -110)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1428 (((-161) $) 11 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-997) (-10 -8 (-15 -1428 ((-161) $)) (-15 -3236 ((-585 (-1051)) $))))) (T -111)) +((-1428 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-111))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1426 (((-585 (-776)) $) NIL T ELT)) (-3545 (((-448) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1428 (((-161) $) NIL T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1427 (((-585 (-85)) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-160) (-554 (-157)))) (T -112)) +NIL +((-1326 (((-585 (-158 (-112))) $) 13 T ELT)) (-1325 (((-585 (-158 (-112))) $) 14 T ELT)) (-1327 (((-585 (-751)) $) 10 T ELT)) (-1484 (((-112) $) 7 T ELT)) (-3949 (((-774) $) 16 T ELT))) +(((-113) (-13 (-554 (-774)) (-10 -8 (-15 -1484 ((-112) $)) (-15 -1327 ((-585 (-751)) $)) (-15 -1326 ((-585 (-158 (-112))) $)) (-15 -1325 ((-585 (-158 (-112))) $))))) (T -113)) +((-1484 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-585 (-751))) (-5 *1 (-113)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3430 (($) 17 T CONST)) (-1807 (($) NIL (|has| (-117) (-320)) ELT)) (-3237 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3239 (($ $ $) NIL T ELT)) (-3238 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-117) (-320)) ELT)) (-3242 (($) NIL T ELT) (($ (-585 (-117))) NIL T ELT)) (-1572 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3713 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3408 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) 56 (|has| $ (-318 (-117))) ELT)) (-3409 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3845 (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT)) (-2997 (($) NIL (|has| (-117) (-320)) ELT)) (-3244 (((-85) $ $) NIL T ELT)) (-2534 (((-117) $) NIL (|has| (-117) (-758)) ELT)) (-2611 (((-585 (-117)) $) 65 T ELT)) (-3248 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2860 (((-117) $) NIL (|has| (-117) (-758)) ELT)) (-3329 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3961 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3432 (($) 18 T CONST)) (-2012 (((-832) $) NIL (|has| (-117) (-320)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 32 T ELT)) (-1276 (((-117) $) 57 T ELT)) (-3612 (($ (-117) $) 55 T ELT)) (-2402 (($ (-832)) NIL (|has| (-117) (-320)) ELT)) (-1330 (($) 16 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-1356 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1277 (((-117) $) 58 T ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3771 (($ $ (-585 (-117)) (-585 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 53 T ELT)) (-1331 (($) 15 T CONST)) (-3240 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1468 (($ (-585 (-117))) NIL T ELT) (($) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-117)) $) NIL T ELT) (((-696) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-1075) $) 39 T ELT) (((-475) $) NIL (|has| (-117) (-555 (-475))) ELT) (((-585 (-117)) $) 37 T ELT)) (-3533 (($ (-585 (-117))) NIL T ELT)) (-1808 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3949 (((-774) $) 51 T ELT)) (-1332 (($ (-1075)) 14 T ELT) (($ (-585 (-117))) 48 T ELT)) (-1809 (((-696) $) NIL T ELT)) (-3243 (($) 54 T ELT) (($ (-585 (-117))) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 (-117))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1328 (($) 21 T CONST)) (-1329 (($) 20 T CONST)) (-3059 (((-85) $ $) 26 T ELT)) (-3960 (((-696) $) 52 T ELT))) +(((-114) (-13 (-1015) (-555 (-1075)) (-369 (-117)) (-555 (-585 (-117))) (-10 -8 (-15 -1332 ($ (-1075))) (-15 -1332 ($ (-585 (-117)))) (-15 -1331 ($) -3955) (-15 -1330 ($) -3955) (-15 -3430 ($) -3955) (-15 -3432 ($) -3955) (-15 -1329 ($) -3955) (-15 -1328 ($) -3955)))) (T -114)) +((-1332 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-114)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-585 (-117))) (-5 *1 (-114)))) (-1331 (*1 *1) (-5 *1 (-114))) (-1330 (*1 *1) (-5 *1 (-114))) (-3430 (*1 *1) (-5 *1 (-114))) (-3432 (*1 *1) (-5 *1 (-114))) (-1329 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114)))) +((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3742 ((|#1| |#3|) 9 T ELT)) (-3743 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#1| |#3|)) (-15 -3743 (|#3| |#3|)) (-15 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-497) (-906 |#1|) (-324 |#2|)) (T -115)) +((-3744 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4))))) +((-1371 (($ $ $) 8 T ELT)) (-1369 (($ $) 7 T ELT)) (-3104 (($ $ $) 6 T ELT))) (((-116) (-113)) (T -116)) -((-1370 (*1 *1 *1 *1) (-4 *1 (-116))) (-1368 (*1 *1 *1) (-4 *1 (-116))) (-3103 (*1 *1 *1 *1) (-4 *1 (-116)))) -(-13 (-10 -8 (-15 -3103 ($ $ $)) (-15 -1368 ($ $)) (-15 -1370 ($ $ $)))) -((-2570 (((-85) $ $) NIL T ELT)) (-1339 (($) 30 T CONST)) (-1334 (((-85) $) 42 T ELT)) (-3429 (($ $) 52 T ELT)) (-1346 (($) 23 T CONST)) (-1519 (($) 21 T CONST)) (-3138 (((-695)) 13 T ELT)) (-2996 (($) 20 T ELT)) (-2581 (($) 22 T CONST)) (-1348 (((-695) $) 17 T ELT)) (-1345 (($) 24 T CONST)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1333 (((-85) $) 44 T ELT)) (-3431 (($ $) 53 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-1343 (($) 26 T CONST)) (-3244 (((-1074) $) 50 T ELT)) (-2401 (($ (-831)) 16 T ELT)) (-1340 (($) 29 T CONST)) (-1336 (((-85) $) 40 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1342 (($) 27 T CONST)) (-1338 (($) 31 T CONST)) (-1337 (((-85) $) 38 T ELT)) (-3948 (((-773) $) 33 T ELT)) (-1347 (($ (-695)) 14 T ELT) (($ (-1074)) 51 T ELT)) (-1344 (($) 25 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1341 (($) 28 T CONST)) (-1332 (((-85) $) 48 T ELT)) (-1335 (((-85) $) 46 T ELT)) (-2568 (((-85) $ $) 11 T ELT)) (-2569 (((-85) $ $) 9 T ELT)) (-3058 (((-85) $ $) 7 T ELT)) (-2686 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) 8 T ELT))) -(((-117) (-13 (-753) (-10 -8 (-15 -1348 ((-695) $)) (-15 -1347 ($ (-695))) (-15 -1347 ($ (-1074))) (-15 -1519 ($) -3954) (-15 -2581 ($) -3954) (-15 -1346 ($) -3954) (-15 -1345 ($) -3954) (-15 -1344 ($) -3954) (-15 -1343 ($) -3954) (-15 -1342 ($) -3954) (-15 -1341 ($) -3954) (-15 -1340 ($) -3954) (-15 -1339 ($) -3954) (-15 -1338 ($) -3954) (-15 -3429 ($ $)) (-15 -3431 ($ $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $))))) (T -117)) -((-1348 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) (-1519 (*1 *1) (-5 *1 (-117))) (-2581 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-3429 (*1 *1 *1) (-5 *1 (-117))) (-3431 (*1 *1 *1) (-5 *1 (-117))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-2704 (((-633 $) $) 47 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-1371 (*1 *1 *1 *1) (-4 *1 (-116))) (-1369 (*1 *1 *1) (-4 *1 (-116))) (-3104 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3104 ($ $ $)) (-15 -1369 ($ $)) (-15 -1371 ($ $ $)))) +((-2571 (((-85) $ $) NIL T ELT)) (-1340 (($) 30 T CONST)) (-1335 (((-85) $) 42 T ELT)) (-3430 (($ $) 52 T ELT)) (-1347 (($) 23 T CONST)) (-1520 (($) 21 T CONST)) (-3139 (((-696)) 13 T ELT)) (-2997 (($) 20 T ELT)) (-2582 (($) 22 T CONST)) (-1349 (((-696) $) 17 T ELT)) (-1346 (($) 24 T CONST)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1334 (((-85) $) 44 T ELT)) (-3432 (($ $) 53 T ELT)) (-2012 (((-832) $) 18 T ELT)) (-1344 (($) 26 T CONST)) (-3245 (((-1075) $) 50 T ELT)) (-2402 (($ (-832)) 16 T ELT)) (-1341 (($) 29 T CONST)) (-1337 (((-85) $) 40 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1343 (($) 27 T CONST)) (-1339 (($) 31 T CONST)) (-1338 (((-85) $) 38 T ELT)) (-3949 (((-774) $) 33 T ELT)) (-1348 (($ (-696)) 14 T ELT) (($ (-1075)) 51 T ELT)) (-1345 (($) 25 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1342 (($) 28 T CONST)) (-1333 (((-85) $) 48 T ELT)) (-1336 (((-85) $) 46 T ELT)) (-2569 (((-85) $ $) 11 T ELT)) (-2570 (((-85) $ $) 9 T ELT)) (-3059 (((-85) $ $) 7 T ELT)) (-2687 (((-85) $ $) 10 T ELT)) (-2688 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-754) (-10 -8 (-15 -1349 ((-696) $)) (-15 -1348 ($ (-696))) (-15 -1348 ($ (-1075))) (-15 -1520 ($) -3955) (-15 -2582 ($) -3955) (-15 -1347 ($) -3955) (-15 -1346 ($) -3955) (-15 -1345 ($) -3955) (-15 -1344 ($) -3955) (-15 -1343 ($) -3955) (-15 -1342 ($) -3955) (-15 -1341 ($) -3955) (-15 -1340 ($) -3955) (-15 -1339 ($) -3955) (-15 -3430 ($ $)) (-15 -3432 ($ $)) (-15 -1338 ((-85) $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $))))) (T -117)) +((-1349 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-117)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-117)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-117)))) (-1520 (*1 *1) (-5 *1 (-117))) (-2582 (*1 *1) (-5 *1 (-117))) (-1347 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-3430 (*1 *1 *1) (-5 *1 (-117))) (-3432 (*1 *1 *1) (-5 *1 (-117))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-2705 (((-634 $) $) 47 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-118) (-113)) (T -118)) -((-2704 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118))))) -(-13 (-962) (-10 -8 (-15 -2704 ((-633 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2451 ((|#1| (-631 |#1|) |#1|) 19 T ELT))) -(((-119 |#1|) (-10 -7 (-15 -2451 (|#1| (-631 |#1|) |#1|))) (-146)) (T -119)) -((-2451 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-2705 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118))))) +(-13 (-963) (-10 -8 (-15 -2705 ((-634 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2452 ((|#1| (-632 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2452 (|#1| (-632 |#1|) |#1|))) (-146)) (T -119)) +((-2452 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-120) (-113)) (T -120)) NIL -(-13 (-962)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-1351 (((-2 (|:| -2402 (-695)) (|:| -3956 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695)) 76 T ELT)) (-1350 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1349 (((-2 (|:| -3956 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1352 ((|#1| |#3| |#3|) 44 T ELT)) (-3770 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1353 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT))) -(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1349 ((-2 (|:| -3956 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1350 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-15 -1351 ((-2 (|:| -2402 (-695)) (|:| -3956 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695))) (-15 -1352 (|#1| |#3| |#3|)) (-15 -3770 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1135) (-1156 |#1|) (-1156 (-350 |#2|))) (T -121)) -((-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))) (-3770 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3)))) (-1350 (*1 *2 *3) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -3956 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5)))))) -((-2706 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 35 T ELT))) -(((-122 |#1| |#2|) (-10 -7 (-15 -2706 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)))) (-484) (-139 |#1|)) (T -122)) -((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) (-4 *4 (-484)) (-5 *1 (-122 *4 *5))))) -((-3712 (($ (-1 (-85) |#2|) $) 19 T ELT)) (-1354 (($ $) 24 T ELT)) (-3408 (($ (-1 (-85) |#2|) $) 17 T ELT) (($ |#2| $) 22 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 14 T ELT))) -(((-123 |#1| |#2|) (-10 -7 (-15 -1354 (|#1| |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -3712 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|))) (-124 |#2|) (-1130)) (T -123)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 37 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 35 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ (-1 (-85) |#1|) $) 38 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 36 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 39 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 34 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 40 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-124 |#1|) (-113) (-1130)) (T -124)) -((-3532 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) (-1355 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3408 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) (-1354 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72))))) -(-13 (-429 |t#1|) (-10 -8 (-15 -3532 ($ (-584 |t#1|))) (-15 -1355 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -3712 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3408 ($ |t#1| $)) (-15 -1354 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) 113 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-584 (-831))) 72 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1356 (($ (-831)) 58 T ELT)) (-3913 (((-107)) 23 T ELT)) (-3948 (((-773) $) 88 T ELT) (($ (-485)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3679 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3128 (((-695)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 48 T CONST)) (-2668 (($) 52 T CONST)) (-3058 (((-85) $ $) 34 T ELT)) (-3951 (($ $ |#2|) NIL T ELT)) (-3839 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3841 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-125 |#1| |#2| |#3|) (-13 (-962) (-38 |#2|) (-1188 |#2|) (-10 -8 (-15 -1356 ($ (-831))) (-15 -2895 ($ |#2| (-584 (-831)))) (-15 -3679 (|#2| $ (-584 (-831)))) (-15 -3469 ((-3 $ "failed") $)))) (-831) (-312) (-907 |#1| |#2|)) (T -125)) -((-3469 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312)) (-14 *4 (-907 *2 *3)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-907 *3 *4)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-4 *2 (-312)) (-14 *5 (-907 *4 *2)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-14 *5 (-907 *4 *2))))) -((-1358 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1357 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 96 T ELT)) (-1511 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 90 T ELT))) -(((-126) (-10 -7 (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1358 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179))))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))))))) (T -126)) -((-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) (-1358 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) (|:| |yValues| (-1002 *4)))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3183 (((-584 (-1050)) $) 20 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-127) (-13 (-996) (-10 -8 (-15 -3183 ((-584 (-1050)) $)) (-15 -3235 ((-1050) $))))) (T -127)) -((-3183 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-127)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127))))) -((-1411 (((-584 (-142 |#2|)) |#1| |#2|) 50 T ELT))) -(((-128 |#1| |#2|) (-10 -7 (-15 -1411 ((-584 (-142 |#2|)) |#1| |#2|))) (-1156 (-142 (-485))) (-13 (-312) (-756))) (T -128)) -((-1411 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-756)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1131) $) 13 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-129) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1131) $))))) (T -129)) -((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1360 (($) 38 T ELT)) (-3100 (($) 37 T ELT)) (-1359 (((-831)) 43 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2958 (((-485) $) 41 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3099 (($) 39 T ELT)) (-2957 (($ (-485)) 44 T ELT)) (-3948 (((-773) $) 50 T ELT)) (-3098 (($) 40 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-3841 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-179) $) 11 T ELT))) -(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-831) $)) (-15 * ($ (-179) $)) (-15 -3841 ($ $ $)) (-15 -3100 ($)) (-15 -1360 ($)) (-15 -3099 ($)) (-15 -3098 ($)) (-15 -2958 ((-485) $)) (-15 -1359 ((-831))) (-15 -2957 ($ (-485)))))) (T -130)) -((-3841 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3100 (*1 *1) (-5 *1 (-130))) (-1360 (*1 *1) (-5 *1 (-130))) (-3099 (*1 *1) (-5 *1 (-130))) (-3098 (*1 *1) (-5 *1 (-130))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) (-1359 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130))))) -((-1373 ((|#2| |#2| (-1005 |#2|)) 98 T ELT) ((|#2| |#2| (-1091)) 75 T ELT)) (-3946 ((|#2| |#2| (-1005 |#2|)) 97 T ELT) ((|#2| |#2| (-1091)) 74 T ELT)) (-1370 ((|#2| |#2| |#2|) 25 T ELT)) (-3597 (((-86) (-86)) 111 T ELT)) (-1367 ((|#2| (-584 |#2|)) 130 T ELT)) (-1364 ((|#2| (-584 |#2|)) 150 T ELT)) (-1363 ((|#2| (-584 |#2|)) 138 T ELT)) (-1361 ((|#2| |#2|) 136 T ELT)) (-1365 ((|#2| (-584 |#2|)) 124 T ELT)) (-1366 ((|#2| (-584 |#2|)) 125 T ELT)) (-1362 ((|#2| (-584 |#2|)) 148 T ELT)) (-1374 ((|#2| |#2| (-1091)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1368 ((|#2| |#2|) 21 T ELT)) (-3103 ((|#2| |#2| |#2|) 24 T ELT)) (-2255 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-131 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3103 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1374 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1005 |#2|))) (-15 -3946 (|#2| |#2| (-1091))) (-15 -3946 (|#2| |#2| (-1005 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -1362 (|#2| (-584 |#2|))) (-15 -1363 (|#2| (-584 |#2|))) (-15 -1364 (|#2| (-584 |#2|))) (-15 -1365 (|#2| (-584 |#2|))) (-15 -1366 (|#2| (-584 |#2|))) (-15 -1367 (|#2| (-584 |#2|)))) (-496) (-364 |#1|)) (T -131)) -((-1367 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3103 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4))))) -((-1372 ((|#1| |#1| |#1|) 66 T ELT)) (-1371 ((|#1| |#1| |#1|) 63 T ELT)) (-1370 ((|#1| |#1| |#1|) 57 T ELT)) (-2892 ((|#1| |#1|) 43 T ELT)) (-1369 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1368 ((|#1| |#1|) 47 T ELT)) (-3103 ((|#1| |#1| |#1|) 51 T ELT))) -(((-132 |#1|) (-10 -7 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-584 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|))) (-484)) (T -132)) -((-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-2892 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))) (-1368 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) -((-1373 (($ $ (-1091)) 12 T ELT) (($ $ (-1005 $)) 11 T ELT)) (-3946 (($ $ (-1091)) 10 T ELT) (($ $ (-1005 $)) 9 T ELT)) (-1370 (($ $ $) 8 T ELT)) (-1374 (($ $) 14 T ELT) (($ $ (-1091)) 13 T ELT)) (-1368 (($ $) 7 T ELT)) (-3103 (($ $ $) 6 T ELT))) +(-13 (-963)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-1352 (((-2 (|:| -2403 (-696)) (|:| -3957 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-696)) 76 T ELT)) (-1351 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-696))) "failed") |#3|) 56 T ELT)) (-1350 (((-2 (|:| -3957 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1353 ((|#1| |#3| |#3|) 44 T ELT)) (-3771 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1354 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-696))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1350 ((-2 (|:| -3957 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1351 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-696))) "failed") |#3|)) (-15 -1352 ((-2 (|:| -2403 (-696)) (|:| -3957 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-696))) (-15 -1353 (|#1| |#3| |#3|)) (-15 -3771 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1354 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-696))) |#3| |#3|))) (-1136) (-1157 |#1|) (-1157 (-350 |#2|))) (T -121)) +((-1354 (*1 *2 *3 *3) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-696)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5))))) (-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1157 *3)))) (-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1136)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1157 (-350 *4))))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-696)) (-4 *7 (-1157 *3)))) (-1351 (*1 *2 *3) (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-696)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5))))) (-1350 (*1 *2 *3) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3957 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5)))))) +((-2707 (((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2707 ((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|)))) (-485) (-139 |#1|)) (T -122)) +((-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-139 *4)) (-4 *4 (-485)) (-5 *1 (-122 *4 *5))))) +((-3713 (($ (-1 (-85) |#2|) $) 19 T ELT)) (-1355 (($ $) 24 T ELT)) (-3409 (($ (-1 (-85) |#2|) $) 17 T ELT) (($ |#2| $) 22 T ELT)) (-1356 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 14 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1355 (|#1| |#1|)) (-15 -3409 (|#1| |#2| |#1|)) (-15 -3713 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3409 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -1356 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|))) (-124 |#2|) (-1131)) (T -123)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 38 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 36 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ (-1 (-85) |#1|) $) 39 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 37 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 40 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 35 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 41 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-124 |#1|) (-113) (-1131)) (T -124)) +((-3533 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-124 *3)))) (-1356 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)))) (-3409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1131)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1131)))) (-3409 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) (-1355 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72))))) +(-13 (-430 |t#1|) (-10 -8 (-15 -3533 ($ (-585 |t#1|))) (-15 -1356 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3409 ($ (-1 (-85) |t#1|) $)) (-15 -3713 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3409 ($ |t#1| $)) (-15 -1355 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 113 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-585 (-832))) 72 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1357 (($ (-832)) 58 T ELT)) (-3914 (((-107)) 23 T ELT)) (-3949 (((-774) $) 88 T ELT) (($ (-486)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3680 ((|#2| $ (-585 (-832))) 75 T ELT)) (-3129 (((-696)) 20 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 48 T CONST)) (-2669 (($) 52 T CONST)) (-3059 (((-85) $ $) 34 T ELT)) (-3952 (($ $ |#2|) NIL T ELT)) (-3840 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3842 (($ $ $) 39 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-963) (-38 |#2|) (-1189 |#2|) (-10 -8 (-15 -1357 ($ (-832))) (-15 -2896 ($ |#2| (-585 (-832)))) (-15 -3680 (|#2| $ (-585 (-832)))) (-15 -3470 ((-3 $ "failed") $)))) (-832) (-312) (-908 |#1| |#2|)) (T -125)) +((-3470 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-832)) (-4 *3 (-312)) (-14 *4 (-908 *2 *3)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-908 *3 *4)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) (-4 *2 (-312)) (-14 *5 (-908 *4 *2)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-832))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) (-14 *5 (-908 *4 *2))))) +((-1359 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1358 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486))) 95 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838)) 96 T ELT)) (-1512 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-856 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486))) 89 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1512 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838))) (-15 -1512 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486)))) (-15 -1358 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838))) (-15 -1358 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486)))) (-15 -1359 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1512 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-856 (-179))))) (-15 -1512 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))))))) (T -126)) +((-1512 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 (-179))))))) (-1512 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)) (-5 *3 (-585 (-856 (-179)))))) (-1359 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 *4)))) (|:| |xValues| (-1003 *4)) (|:| |yValues| (-1003 *4)))) (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 *4)))))) (-1358 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3184 (((-585 (-1051)) $) 20 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 27 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-997) (-10 -8 (-15 -3184 ((-585 (-1051)) $)) (-15 -3236 ((-1051) $))))) (T -127)) +((-3184 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-127)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-127))))) +((-1412 (((-585 (-142 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1412 ((-585 (-142 |#2|)) |#1| |#2|))) (-1157 (-142 (-486))) (-13 (-312) (-757))) (T -128)) +((-1412 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1157 (-142 (-486)))) (-4 *4 (-13 (-312) (-757)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1132) $) 13 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1132) $))))) (T -129)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-129)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-129))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1361 (($) 38 T ELT)) (-3101 (($) 37 T ELT)) (-1360 (((-832)) 43 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2959 (((-486) $) 41 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3100 (($) 39 T ELT)) (-2958 (($ (-486)) 44 T ELT)) (-3949 (((-774) $) 50 T ELT)) (-3099 (($) 40 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 35 T ELT)) (-3842 (($ $ $) 32 T ELT)) (* (($ (-832) $) 42 T ELT) (($ (-179) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-832) $)) (-15 * ($ (-179) $)) (-15 -3842 ($ $ $)) (-15 -3101 ($)) (-15 -1361 ($)) (-15 -3100 ($)) (-15 -3099 ($)) (-15 -2959 ((-486) $)) (-15 -1360 ((-832))) (-15 -2958 ($ (-486)))))) (T -130)) +((-3842 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3101 (*1 *1) (-5 *1 (-130))) (-1361 (*1 *1) (-5 *1 (-130))) (-3100 (*1 *1) (-5 *1 (-130))) (-3099 (*1 *1) (-5 *1 (-130))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-130)))) (-1360 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-130))))) +((-1374 ((|#2| |#2| (-1006 |#2|)) 98 T ELT) ((|#2| |#2| (-1092)) 75 T ELT)) (-3947 ((|#2| |#2| (-1006 |#2|)) 97 T ELT) ((|#2| |#2| (-1092)) 74 T ELT)) (-1371 ((|#2| |#2| |#2|) 25 T ELT)) (-3598 (((-86) (-86)) 111 T ELT)) (-1368 ((|#2| (-585 |#2|)) 130 T ELT)) (-1365 ((|#2| (-585 |#2|)) 150 T ELT)) (-1364 ((|#2| (-585 |#2|)) 138 T ELT)) (-1362 ((|#2| |#2|) 136 T ELT)) (-1366 ((|#2| (-585 |#2|)) 124 T ELT)) (-1367 ((|#2| (-585 |#2|)) 125 T ELT)) (-1363 ((|#2| (-585 |#2|)) 148 T ELT)) (-1375 ((|#2| |#2| (-1092)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1369 ((|#2| |#2|) 21 T ELT)) (-3104 ((|#2| |#2| |#2|) 24 T ELT)) (-2256 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3104 (|#2| |#2| |#2|)) (-15 -1371 (|#2| |#2| |#2|)) (-15 -1369 (|#2| |#2|)) (-15 -1375 (|#2| |#2|)) (-15 -1375 (|#2| |#2| (-1092))) (-15 -1374 (|#2| |#2| (-1092))) (-15 -1374 (|#2| |#2| (-1006 |#2|))) (-15 -3947 (|#2| |#2| (-1092))) (-15 -3947 (|#2| |#2| (-1006 |#2|))) (-15 -1362 (|#2| |#2|)) (-15 -1363 (|#2| (-585 |#2|))) (-15 -1364 (|#2| (-585 |#2|))) (-15 -1365 (|#2| (-585 |#2|))) (-15 -1366 (|#2| (-585 |#2|))) (-15 -1367 (|#2| (-585 |#2|))) (-15 -1368 (|#2| (-585 |#2|)))) (-497) (-364 |#1|)) (T -131)) +((-1368 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3947 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)))) (-3947 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1375 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1369 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1371 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3104 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4))))) +((-1373 ((|#1| |#1| |#1|) 66 T ELT)) (-1372 ((|#1| |#1| |#1|) 63 T ELT)) (-1371 ((|#1| |#1| |#1|) 57 T ELT)) (-2893 ((|#1| |#1|) 43 T ELT)) (-1370 ((|#1| |#1| (-585 |#1|)) 55 T ELT)) (-1369 ((|#1| |#1|) 47 T ELT)) (-3104 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3104 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1|)) (-15 -1370 (|#1| |#1| (-585 |#1|))) (-15 -2893 (|#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|)) (-15 -1373 (|#1| |#1| |#1|))) (-485)) (T -132)) +((-1373 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-2893 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-485)) (-5 *1 (-132 *2)))) (-1369 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-3104 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) +((-1374 (($ $ (-1092)) 12 T ELT) (($ $ (-1006 $)) 11 T ELT)) (-3947 (($ $ (-1092)) 10 T ELT) (($ $ (-1006 $)) 9 T ELT)) (-1371 (($ $ $) 8 T ELT)) (-1375 (($ $) 14 T ELT) (($ $ (-1092)) 13 T ELT)) (-1369 (($ $) 7 T ELT)) (-3104 (($ $ $) 6 T ELT))) (((-133) (-113)) (T -133)) -((-1374 (*1 *1 *1) (-4 *1 (-133))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133))))) -(-13 (-116) (-10 -8 (-15 -1374 ($ $)) (-15 -1374 ($ $ (-1091))) (-15 -1373 ($ $ (-1091))) (-15 -1373 ($ $ (-1005 $))) (-15 -3946 ($ $ (-1091))) (-15 -3946 ($ $ (-1005 $))))) +((-1375 (*1 *1 *1) (-4 *1 (-133))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) (-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1375 ($ $)) (-15 -1375 ($ $ (-1092))) (-15 -1374 ($ $ (-1092))) (-15 -1374 ($ $ (-1006 $))) (-15 -3947 ($ $ (-1092))) (-15 -3947 ($ $ (-1006 $))))) (((-116) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-1375 (($ (-485)) 15 T ELT) (($ $ $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) -(((-134) (-13 (-1014) (-10 -8 (-15 -1375 ($ (-485))) (-15 -1375 ($ $ $))))) (T -134)) -((-1375 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))) (-1375 (*1 *1 *1 *1) (-5 *1 (-134)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-135) (-13 (-996) (-10 -8 (-15 -3235 ((-584 (-1050)) $))))) (T -135)) -((-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-135))))) -((-3597 (((-86) (-1091)) 103 T ELT))) -(((-136) (-10 -7 (-15 -3597 ((-86) (-1091))))) (T -136)) -((-3597 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136))))) -((-1596 ((|#3| |#3|) 19 T ELT))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1596 (|#3| |#3|))) (-962) (-1156 |#1|) (-1156 |#2|)) (T -137)) -((-1596 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1156 *4))))) -((-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 222 T ELT)) (-3332 ((|#2| $) 102 T ELT)) (-3494 (($ $) 255 T ELT)) (-3641 (($ $) 249 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 47 T ELT)) (-3492 (($ $) 253 T ELT)) (-3640 (($ $) 247 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2566 (($ $ $) 228 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3844 (($ (-1086 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1086 |#2|))) NIL T ELT)) (-3469 (((-3 $ #1#) $) 213 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 203 T ELT)) (-3025 (((-85) $) 198 T ELT)) (-3024 (((-350 (-485)) $) 201 T ELT)) (-3110 (((-831)) 96 T ELT)) (-2565 (($ $ $) 230 T ELT)) (-1376 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3629 (($) 244 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 192 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 197 T ELT)) (-3134 ((|#2| $) 100 T ELT)) (-2015 (((-1086 |#2|) $) 127 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3944 (($ $) 246 T ELT)) (-3081 (((-1086 |#2|) $) 126 T ELT)) (-2486 (($ $) 206 T ELT)) (-1378 (($) 103 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 95 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 64 T ELT)) (-3468 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3945 (($ $) 245 T ELT)) (-1608 (((-695) $) 225 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 234 T ELT)) (-3759 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3187 (((-1086 |#2|)) 120 T ELT)) (-3493 (($ $) 254 T ELT)) (-3636 (($ $) 248 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) 136 T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 116 T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3974 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT) (($ (-1086 |#2|)) NIL T ELT) (((-801 (-485)) $) 183 T ELT) (((-801 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-474) $) 179 T ELT)) (-3011 (($ $) 104 T ELT)) (-3948 (((-773) $) 143 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-2451 (((-1086 |#2|) $) 32 T ELT)) (-3128 (((-695)) 106 T CONST)) (-1266 (((-85) $ $) 13 T ELT)) (-3500 (($ $) 258 T ELT)) (-3488 (($ $) 252 T ELT)) (-3498 (($ $) 256 T ELT)) (-3486 (($ $) 250 T ELT)) (-2237 ((|#2| $) 241 T ELT)) (-3499 (($ $) 257 T ELT)) (-3487 (($ $) 251 T ELT)) (-3385 (($ $) 162 T ELT)) (-3058 (((-85) $ $) 110 T ELT)) (-3839 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3948 (|#1| |#1|)) (-15 -3468 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2065 ((-2 (|:| -1776 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -2881 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3974 ((-474) |#1|)) (-15 -3974 ((-142 (-179)) |#1|)) (-15 -3974 ((-142 (-330)) |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3629 (|#1|)) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -3026 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -1376 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3011 (|#1| |#1|)) (-15 -1378 (|#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3844 ((-3 |#1| #1#) (-350 (-1086 |#2|)))) (-15 -3081 ((-1086 |#2|) |#1|)) (-15 -3974 (|#1| (-1086 |#2|))) (-15 -3844 (|#1| (-1086 |#2|))) (-15 -3187 ((-1086 |#2|))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3974 ((-1086 |#2|) |#1|)) (-15 -3759 (|#2|)) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -2015 ((-1086 |#2|) |#1|)) (-15 -2451 ((-1086 |#2|) |#1|)) (-15 -3759 (|#2| (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -3134 (|#2| |#1|)) (-15 -3332 (|#2| |#1|)) (-15 -3110 ((-831))) (-15 -3948 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -3469 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) -((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3110 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3759 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3187 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2064 (($ $) 115 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2062 (((-85) $) 117 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-3494 (($ $) 250 (|has| |#1| (-1116)) ELT)) (-3641 (($ $) 233 (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3777 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3973 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3039 (($ $) 263 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2706 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3138 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3492 (($ $) 249 (|has| |#1| (-1116)) ELT)) (-3640 (($ $) 234 (|has| |#1| (-1116)) ELT)) (-3496 (($ $) 248 (|has| |#1| (-1116)) ELT)) (-3639 (($ $) 235 (|has| |#1| (-1116)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3844 (($ (-1086 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1086 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3645 ((|#1| $) 275 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 268 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 270 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 269 (|has| |#1| (-484)) ELT)) (-3110 (((-831)) 69 T ELT)) (-2996 (($) 111 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-258)) ELT)) (-2835 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3629 (($) 260 (|has| |#1| (-1116)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 283 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 282 (|has| |#1| (-797 (-330))) ELT)) (-3774 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 262 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3134 ((|#1| $) 66 T ELT)) (-3447 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-258)) ELT)) (-2015 (((-1086 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3944 (($ $) 257 (|has| |#1| (-1116)) ELT)) (-3081 (((-1086 |#1|) $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1895 (($ (-584 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3448 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-1378 (($) 279 T ELT)) (-3646 ((|#1| $) 276 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3146 (($ (-584 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3734 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-258)) ELT)) (-3945 (($ $) 258 (|has| |#1| (-1116)) ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 286 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 285 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-258)) ELT)) (-3802 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1769 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 146 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 156 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3187 (((-1086 |#1|)) 179 T ELT)) (-3497 (($ $) 247 (|has| |#1| (-1116)) ELT)) (-3638 (($ $) 236 (|has| |#1| (-1116)) ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3495 (($ $) 246 (|has| |#1| (-1116)) ELT)) (-3637 (($ $) 237 (|has| |#1| (-1116)) ELT)) (-3493 (($ $) 245 (|has| |#1| (-1116)) ELT)) (-3636 (($ $) 238 (|has| |#1| (-1116)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3974 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) (((-1086 |#1|) $) 195 T ELT) (($ (-1086 |#1|)) 177 T ELT) (((-801 (-485)) $) 281 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 280 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-934)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-934)) ELT) (((-474) $) 230 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 278 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 165 (OR (-2564 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 277 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) 112 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2704 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (OR (-2564 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-118))) ELT)) (-2451 (((-1086 |#1|) $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-3500 (($ $) 256 (|has| |#1| (-1116)) ELT)) (-3488 (($ $) 244 (|has| |#1| (-1116)) ELT)) (-2063 (((-85) $ $) 116 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3498 (($ $) 255 (|has| |#1| (-1116)) ELT)) (-3486 (($ $) 243 (|has| |#1| (-1116)) ELT)) (-3502 (($ $) 254 (|has| |#1| (-1116)) ELT)) (-3490 (($ $) 242 (|has| |#1| (-1116)) ELT)) (-2237 ((|#1| $) 272 (|has| |#1| (-1116)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 253 (|has| |#1| (-1116)) ELT)) (-3491 (($ $) 241 (|has| |#1| (-1116)) ELT)) (-3501 (($ $) 252 (|has| |#1| (-1116)) ELT)) (-3489 (($ $) 240 (|has| |#1| (-1116)) ELT)) (-3499 (($ $) 251 (|has| |#1| (-1116)) ELT)) (-3487 (($ $) 239 (|has| |#1| (-1116)) ELT)) (-3385 (($ $) 273 (|has| |#1| (-974)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 147 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 157 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-350 (-485))) 261 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) 259 (|has| |#1| (-1116)) ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT))) +((-2571 (((-85) $ $) NIL T ELT)) (-1376 (($ (-486)) 15 T ELT) (($ $ $) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 19 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1015) (-10 -8 (-15 -1376 ($ (-486))) (-15 -1376 ($ $ $))))) (T -134)) +((-1376 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-134)))) (-1376 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-997) (-10 -8 (-15 -3236 ((-585 (-1051)) $))))) (T -135)) +((-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-135))))) +((-3598 (((-86) (-1092)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3598 ((-86) (-1092))))) (T -136)) +((-3598 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1597 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1597 (|#3| |#3|))) (-963) (-1157 |#1|) (-1157 |#2|)) (T -137)) +((-1597 (*1 *2 *2) (-12 (-4 *3 (-963)) (-4 *4 (-1157 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1157 *4))))) +((-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 222 T ELT)) (-3333 ((|#2| $) 102 T ELT)) (-3495 (($ $) 255 T ELT)) (-3642 (($ $) 249 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 47 T ELT)) (-3493 (($ $) 253 T ELT)) (-3641 (($ $) 247 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2567 (($ $ $) 228 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 160 T ELT) (((-632 |#2|) (-632 $)) 154 T ELT)) (-3845 (($ (-1087 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1087 |#2|))) NIL T ELT)) (-3470 (((-3 $ #1#) $) 213 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 203 T ELT)) (-3026 (((-85) $) 198 T ELT)) (-3025 (((-350 (-486)) $) 201 T ELT)) (-3111 (((-832)) 96 T ELT)) (-2566 (($ $ $) 230 T ELT)) (-1377 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3630 (($) 244 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 192 T ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 197 T ELT)) (-3135 ((|#2| $) 100 T ELT)) (-2016 (((-1087 |#2|) $) 127 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3945 (($ $) 246 T ELT)) (-3082 (((-1087 |#2|) $) 126 T ELT)) (-2487 (($ $) 206 T ELT)) (-1379 (($) 103 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 95 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 64 T ELT)) (-3469 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3946 (($ $) 245 T ELT)) (-1609 (((-696) $) 225 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 234 T ELT)) (-3760 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3188 (((-1087 |#2|)) 120 T ELT)) (-3494 (($ $) 254 T ELT)) (-3637 (($ $) 248 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) 136 T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) 116 T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-3975 (((-1181 |#2|) $) NIL T ELT) (($ (-1181 |#2|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT) (($ (-1087 |#2|)) NIL T ELT) (((-802 (-486)) $) 183 T ELT) (((-802 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-475) $) 179 T ELT)) (-3012 (($ $) 104 T ELT)) (-3949 (((-774) $) 143 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT)) (-2452 (((-1087 |#2|) $) 32 T ELT)) (-3129 (((-696)) 106 T CONST)) (-1267 (((-85) $ $) 13 T ELT)) (-3501 (($ $) 258 T ELT)) (-3489 (($ $) 252 T ELT)) (-3499 (($ $) 256 T ELT)) (-3487 (($ $) 250 T ELT)) (-2238 ((|#2| $) 241 T ELT)) (-3500 (($ $) 257 T ELT)) (-3488 (($ $) 251 T ELT)) (-3386 (($ $) 162 T ELT)) (-3059 (((-85) $ $) 110 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 111 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-350 (-486))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3949 (|#1| |#1|)) (-15 -3469 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2066 ((-2 (|:| -1777 |#1|) (|:| -3985 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1609 ((-696) |#1|)) (-15 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3975 ((-475) |#1|)) (-15 -3975 ((-142 (-179)) |#1|)) (-15 -3975 ((-142 (-330)) |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3630 (|#1|)) (-15 ** (|#1| |#1| (-350 (-486)))) (-15 -2709 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2708 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2707 ((-3 (-585 (-1087 |#1|)) #1#) (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -3027 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -1377 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2238 (|#2| |#1|)) (-15 -3386 (|#1| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3012 (|#1| |#1|)) (-15 -1379 (|#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3845 ((-3 |#1| #1#) (-350 (-1087 |#2|)))) (-15 -3082 ((-1087 |#2|) |#1|)) (-15 -3975 (|#1| (-1087 |#2|))) (-15 -3845 (|#1| (-1087 |#2|))) (-15 -3188 ((-1087 |#2|))) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3975 ((-1087 |#2|) |#1|)) (-15 -3760 (|#2|)) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -2016 ((-1087 |#2|) |#1|)) (-15 -2452 ((-1087 |#2|) |#1|)) (-15 -3760 (|#2| (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3135 (|#2| |#1|)) (-15 -3333 (|#2| |#1|)) (-15 -3111 ((-832))) (-15 -3949 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3129 ((-696)) -3955) (-15 -3949 (|#1| (-486))) (-15 -3470 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -1267 ((-85) |#1| |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) +((-3129 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3111 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-832)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3760 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3188 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1087 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2065 (($ $) 115 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2063 (((-85) $) 117 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-3495 (($ $) 250 (|has| |#1| (-1117)) ELT)) (-3642 (($ $) 233 (|has| |#1| (-1117)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 167 (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3778 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3974 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3040 (($ $) 263 (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-2707 (((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-1610 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3139 (((-696)) 108 (|has| |#1| (-320)) ELT)) (-3493 (($ $) 249 (|has| |#1| (-1117)) ELT)) (-3641 (($ $) 234 (|has| |#1| (-1117)) ELT)) (-3497 (($ $) 248 (|has| |#1| (-1117)) ELT)) (-3640 (($ $) 235 (|has| |#1| (-1117)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 194 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 192 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3159 (((-486) $) 193 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 191 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 190 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT) (($ (-1181 |#1|)) 80 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 186 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 185 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 184 T ELT) (((-632 |#1|) (-632 $)) 183 T ELT)) (-3845 (($ (-1087 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1087 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 275 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 268 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 270 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 269 (|has| |#1| (-485)) ELT)) (-3111 (((-832)) 69 T ELT)) (-2997 (($) 111 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| |#1| (-258)) ELT)) (-2836 (($) 169 (|has| |#1| (-299)) ELT)) (-1682 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1377 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-975)) (|has| |#1| (-1117))) ELT)) (-3630 (($) 260 (|has| |#1| (-1117)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 283 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 282 (|has| |#1| (-798 (-330))) ELT)) (-3775 (((-832) $) 172 (|has| |#1| (-299)) ELT) (((-745 (-832)) $) 158 (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 262 (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-3135 ((|#1| $) 66 T ELT)) (-3448 (((-634 $) $) 162 (|has| |#1| (-299)) ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| |#1| (-258)) ELT)) (-2016 (((-1087 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2012 (((-832) $) 110 (|has| |#1| (-320)) ELT)) (-3945 (($ $) 257 (|has| |#1| (-1117)) ELT)) (-3082 (((-1087 |#1|) $) 176 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 188 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 187 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 182 T ELT) (((-632 |#1|) (-1181 $)) 181 T ELT)) (-1896 (($ (-585 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3449 (($) 163 (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| |#1| (-320)) ELT)) (-1379 (($) 279 T ELT)) (-3647 ((|#1| $) 276 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3147 (($ (-585 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 166 (|has| |#1| (-299)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3735 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 124 (|has| |#1| (-258)) ELT)) (-3946 (($ $) 258 (|has| |#1| (-1117)) ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 286 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 285 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1609 (((-696) $) 126 (|has| |#1| (-258)) ELT)) (-3803 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1770 (((-696) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 144 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 150 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) 149 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) 148 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) 146 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) 156 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3188 (((-1087 |#1|)) 179 T ELT)) (-3498 (($ $) 247 (|has| |#1| (-1117)) ELT)) (-3639 (($ $) 236 (|has| |#1| (-1117)) ELT)) (-1676 (($) 168 (|has| |#1| (-299)) ELT)) (-3496 (($ $) 246 (|has| |#1| (-1117)) ELT)) (-3638 (($ $) 237 (|has| |#1| (-1117)) ELT)) (-3494 (($ $) 245 (|has| |#1| (-1117)) ELT)) (-3637 (($ $) 238 (|has| |#1| (-1117)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 |#1|) $) 82 T ELT) (((-632 |#1|) (-1181 $)) 81 T ELT)) (-3975 (((-1181 |#1|) $) 79 T ELT) (($ (-1181 |#1|)) 78 T ELT) (((-1087 |#1|) $) 195 T ELT) (($ (-1087 |#1|)) 177 T ELT) (((-802 (-486)) $) 281 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 280 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-935)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-935)) ELT) (((-475) $) 230 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 278 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 165 (OR (-2565 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (|has| |#1| (-299))) ELT)) (-1378 (($ |#1| |#1|) 277 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-486))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) 112 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2705 (($ $) 164 (|has| |#1| (-299)) ELT) (((-634 $) $) 58 (OR (-2565 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (|has| |#1| (-118))) ELT)) (-2452 (((-1087 |#1|) $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-3501 (($ $) 256 (|has| |#1| (-1117)) ELT)) (-3489 (($ $) 244 (|has| |#1| (-1117)) ELT)) (-2064 (((-85) $ $) 116 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3499 (($ $) 255 (|has| |#1| (-1117)) ELT)) (-3487 (($ $) 243 (|has| |#1| (-1117)) ELT)) (-3503 (($ $) 254 (|has| |#1| (-1117)) ELT)) (-3491 (($ $) 242 (|has| |#1| (-1117)) ELT)) (-2238 ((|#1| $) 272 (|has| |#1| (-1117)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 253 (|has| |#1| (-1117)) ELT)) (-3492 (($ $) 241 (|has| |#1| (-1117)) ELT)) (-3502 (($ $) 252 (|has| |#1| (-1117)) ELT)) (-3490 (($ $) 240 (|has| |#1| (-1117)) ELT)) (-3500 (($ $) 251 (|has| |#1| (-1117)) ELT)) (-3488 (($ $) 239 (|has| |#1| (-1117)) ELT)) (-3386 (($ $) 273 (|has| |#1| (-975)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 142 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 153 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) 152 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) 151 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) 147 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) 157 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-350 (-486))) 261 (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT) (($ $ $) 259 (|has| |#1| (-1117)) ELT) (($ $ (-486)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-486)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) 139 (|has| |#1| (-312)) ELT))) (((-139 |#1|) (-113) (-146)) (T -139)) -((-3134 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1378 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3011 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))) -(-13 (-662 |t#1| (-1086 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-795 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1377) (-15 -1378 ($)) (-15 -3011 ($ $)) (-15 -1377 ($ |t#1| |t#1|)) (-15 -3646 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -3134 (|t#1| $)) (IF (|has| |t#1| (-496)) (PROGN (-6 (-496)) (-15 -3468 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3996)) (-6 -3996) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-142 (-179)))) (-6 (-554 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3385 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1116)) (PROGN (-6 (-1116)) (-15 -2237 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -1376 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-258)) (-6 (-822)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1116)) ((-66) |has| |#1| (-1116)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-553 (-773)) . T) ((-146) . T) ((-554 (-142 (-179))) |has| |#1| (-934)) ((-554 (-142 (-330))) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-554 (-1086 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1116)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1086 |#1|)) . T) ((-353 |#1| (-1086 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-433) |has| |#1| (-1116)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-662 |#1| (-1086 |#1|)) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) -12 (|has| |#1| (-258)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-299)) ((-1116) |has| |#1| (-1116)) ((-1119) |has| |#1| (-1116)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822))))) -((-3734 (((-348 |#2|) |#2|) 67 T ELT))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3734 ((-348 |#2|) |#2|))) (-258) (-1156 (-142 |#1|))) (T -140)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) -((-1381 (((-1050) (-1050) (-247)) 8 T ELT)) (-1379 (((-584 (-633 (-235))) (-1074)) 81 T ELT)) (-1380 (((-633 (-235)) (-1050)) 76 T ELT))) -(((-141) (-13 (-1130) (-10 -7 (-15 -1381 ((-1050) (-1050) (-247))) (-15 -1380 ((-633 (-235)) (-1050))) (-15 -1379 ((-584 (-633 (-235))) (-1074)))))) (T -141)) -((-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 15 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-1786 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3777 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3973 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3039 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3844 (($ (-1086 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1086 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3645 ((|#1| $) 20 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3110 (((-831)) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-258)) ELT)) (-2835 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3629 (($) NIL (|has| |#1| (-1116)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-3013 (($ $ (-485)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3134 ((|#1| $) 30 T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-2015 (((-1086 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3081 (((-1086 |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3448 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1378 (($) NIL T ELT)) (-3646 ((|#1| $) 21 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-258)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3734 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-258)) ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3759 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3974 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT) (($ (-1086 |#1|)) NIL T ELT) (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-934)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-934)) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 29 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 19 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2704 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-2451 (((-1086 |#1|) $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2237 ((|#1| $) NIL (|has| |#1| (-1116)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-974)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) NIL (|has| |#1| (-1116)) ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT))) +((-3135 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1379 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1378 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-3386 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1117)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-975)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486)))))) +(-13 (-663 |t#1| (-1087 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-796 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1378) (-15 -1379 ($)) (-15 -3012 ($ $)) (-15 -1378 ($ |t#1| |t#1|)) (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $)) (-15 -3135 (|t#1| $)) (IF (|has| |t#1| (-497)) (PROGN (-6 (-497)) (-15 -3469 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3997)) (-6 -3997) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-935)) (PROGN (-6 (-555 (-142 (-179)))) (-6 (-555 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3386 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1117)) (PROGN (-6 (-1117)) (-15 -2238 (|t#1| $)) (IF (|has| |t#1| (-917)) (-6 (-917)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -1377 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-823)) (IF (|has| |t#1| (-258)) (-6 (-823)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1117)) ((-66) |has| |#1| (-1117)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-554 (-774)) . T) ((-146) . T) ((-555 (-142 (-179))) |has| |#1| (-935)) ((-555 (-142 (-330))) |has| |#1| (-935)) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-555 (-1087 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1117)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1087 |#1|)) . T) ((-353 |#1| (-1087 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-434) |has| |#1| (-1117)) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-584 |#1|) . T) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-656 |#1|) . T) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-663 |#1| (-1087 |#1|)) . T) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-823) -12 (|has| |#1| (-258)) (|has| |#1| (-823))) ((-834) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-917) -12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-299)) ((-1117) |has| |#1| (-1117)) ((-1120) |has| |#1| (-1117)) ((-1131) . T) ((-1136) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823))))) +((-3735 (((-348 |#2|) |#2|) 67 T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3735 ((-348 |#2|) |#2|))) (-258) (-1157 (-142 |#1|))) (T -140)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) +((-1382 (((-1051) (-1051) (-247)) 8 T ELT)) (-1380 (((-585 (-634 (-235))) (-1075)) 81 T ELT)) (-1381 (((-634 (-235)) (-1051)) 76 T ELT))) +(((-141) (-13 (-1131) (-10 -7 (-15 -1382 ((-1051) (-1051) (-247))) (-15 -1381 ((-634 (-235)) (-1051))) (-15 -1380 ((-585 (-634 (-235))) (-1075)))))) (T -141)) +((-1382 (*1 *2 *2 *3) (-12 (-5 *2 (-1051)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-1051)) (-5 *2 (-634 (-235))) (-5 *1 (-141)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-634 (-235)))) (-5 *1 (-141))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 15 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-1787 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3642 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3778 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3974 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3040 (($ $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3845 (($ (-1087 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1087 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 20 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) NIL (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) NIL (|has| |#1| (-485)) ELT)) (-3111 (((-832)) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-258)) ELT)) (-2836 (($) NIL (|has| |#1| (-299)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1377 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1117))) ELT)) (-3630 (($) NIL (|has| |#1| (-1117)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| |#1| (-798 (-330))) ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-299)) ELT) (((-745 (-832)) $) NIL (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 17 T ELT)) (-3014 (($ $ (-486)) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-3135 ((|#1| $) 30 T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-299)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-258)) ELT)) (-2016 (((-1087 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3082 (((-1087 |#1|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3449 (($) NIL (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1379 (($) NIL T ELT)) (-3647 ((|#1| $) 21 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-258)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-299)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3735 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-258)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-258)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3760 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-1676 (($) NIL (|has| |#1| (-299)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3975 (((-1181 |#1|) $) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT) (((-1087 |#1|) $) NIL T ELT) (($ (-1087 |#1|)) NIL T ELT) (((-802 (-486)) $) NIL (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#1| (-555 (-802 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-935)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-935)) ELT) (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 29 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-299))) ELT)) (-1378 (($ |#1| |#1|) 19 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2705 (($ $) NIL (|has| |#1| (-299)) ELT) (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-2452 (((-1087 |#1|) $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-2238 ((|#1| $) NIL (|has| |#1| (-1117)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-975)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 23 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-350 (-486))) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT) (($ $ $) NIL (|has| |#1| (-1117)) ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-312)) ELT))) (((-142 |#1|) (-139 |#1|) (-146)) (T -142)) NIL -((-3960 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3960 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) -((-3974 (((-801 |#1|) |#3|) 22 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3974 ((-801 |#1|) |#3|))) (-1014) (-13 (-554 (-801 |#1|)) (-146)) (-139 |#2|)) (T -144)) -((-3974 (*1 *2 *3) (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-139 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1383 (((-85) $) 9 T ELT)) (-1382 (((-85) $ (-85)) 11 T ELT)) (-3616 (($) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3402 (($ $) 14 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-3704 (((-85) $) 8 T ELT)) (-3863 (((-85) $ (-85)) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-145) (-13 (-1014) (-10 -8 (-15 -3616 ($)) (-15 -3704 ((-85) $)) (-15 -1383 ((-85) $)) (-15 -3863 ((-85) $ (-85))) (-15 -1382 ((-85) $ (-85))) (-15 -3402 ($ $))))) (T -145)) -((-3616 (*1 *1) (-5 *1 (-145))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3402 (*1 *1 *1) (-5 *1 (-145)))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3961 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) +(((-143 |#1| |#2|) (-10 -7 (-15 -3961 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) +((-3975 (((-802 |#1|) |#3|) 22 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3975 ((-802 |#1|) |#3|))) (-1015) (-13 (-555 (-802 |#1|)) (-146)) (-139 |#2|)) (T -144)) +((-3975 (*1 *2 *3) (-12 (-4 *5 (-13 (-555 *2) (-146))) (-5 *2 (-802 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1015)) (-4 *3 (-139 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1384 (((-85) $) 9 T ELT)) (-1383 (((-85) $ (-85)) 11 T ELT)) (-3617 (($) 13 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3403 (($ $) 14 T ELT)) (-3949 (((-774) $) 18 T ELT)) (-3705 (((-85) $) 8 T ELT)) (-3864 (((-85) $ (-85)) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-145) (-13 (-1015) (-10 -8 (-15 -3617 ($)) (-15 -3705 ((-85) $)) (-15 -1384 ((-85) $)) (-15 -3864 ((-85) $ (-85))) (-15 -1383 ((-85) $ (-85))) (-15 -3403 ($ $))))) (T -145)) +((-3617 (*1 *1) (-5 *1 (-145))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3864 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1383 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3403 (*1 *1 *1) (-5 *1 (-145)))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-146) (-113)) (T -146)) NIL -(-13 (-962) (-82 $ $) (-10 -7 (-6 (-3999 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-1701 (($ $) 6 T ELT))) +(-13 (-963) (-82 $ $) (-10 -7 (-6 (-4000 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-1702 (($ $) 6 T ELT))) (((-147) (-113)) (T -147)) -((-1701 (*1 *1 *1) (-4 *1 (-147)))) -(-13 (-10 -8 (-15 -1701 ($ $)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) 79 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-1388 (($ $) 21 T ELT)) (-1392 (($ |#1| (-1070 |#1|)) 48 T ELT)) (-3469 (((-3 $ #1#) $) 123 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1389 (((-1070 |#1|) $) 86 T ELT)) (-1391 (((-1070 |#1|) $) 83 T ELT)) (-1390 (((-1070 |#1|) $) 84 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1385 (((-1070 |#1|) $) 93 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3771 (($ $ (-485)) 96 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1384 (((-1070 |#1|) $) 94 T ELT)) (-1386 (((-1070 (-350 |#1|)) $) 14 T ELT)) (-2618 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-2893 (($ $) 98 T ELT)) (-3948 (((-773) $) 139 T ELT) (($ (-485)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) 67 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-1387 (((-1070 (-350 |#1|)) $) 20 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 103 T CONST)) (-2668 (($) 28 T CONST)) (-3058 (((-85) $ $) 35 T ELT)) (-3951 (($ $ $) 121 T ELT)) (-3839 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3841 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT))) -(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2618 ($ (-350 |#1|))) (-15 -2618 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-15 -1392 ($ |#1| (-1070 |#1|))) (-15 -1391 ((-1070 |#1|) $)) (-15 -1390 ((-1070 |#1|) $)) (-15 -1389 ((-1070 |#1|) $)) (-15 -3131 (|#1| $)) (-15 -1388 ($ $)) (-15 -1387 ((-1070 (-350 |#1|)) $)) (-15 -1386 ((-1070 (-350 |#1|)) $)) (-15 -1385 ((-1070 |#1|) $)) (-15 -1384 ((-1070 |#1|) $)) (-15 -3771 ($ $ (-485))) (-15 -2893 ($ $)))) (-258)) (T -148)) -((-2618 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2618 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3131 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2893 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -((-1393 (($ (-78) $) 15 T ELT)) (-3223 (((-633 (-78)) (-447) $) 14 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1394 (((-584 (-78)) $) 8 T ELT))) -(((-149) (-13 (-553 (-773)) (-10 -8 (-15 -1394 ((-584 (-78)) $)) (-15 -1393 ($ (-78) $)) (-15 -3223 ((-633 (-78)) (-447) $))))) (T -149)) -((-1394 (*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149))))) -((-1407 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1401 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1400 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1399 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1644 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1408 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1406 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT))) -(((-150 |#1|) (-10 -7 (-15 -1395 ((-855 |#1|) (-855 |#1|))) (-15 -1396 ((-855 |#1|) (-855 |#1|))) (-15 -1397 ((-855 |#1|) (-855 |#1|))) (-15 -1398 ((-855 |#1|) (-855 |#1|))) (-15 -1399 ((-855 |#1|) (-855 |#1|))) (-15 -1400 ((-855 |#1|) (-855 |#1|))) (-15 -1401 ((-855 |#1|) (-855 |#1|))) (-15 -1644 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1406 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1407 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1408 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-13 (-312) (-1116) (-916))) (T -150)) -((-1408 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) -((-2451 ((|#2| |#3|) 28 T ELT))) -(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2451 (|#2| |#3|))) (-146) (-1156 |#1|) (-662 |#1| |#2|)) (T -151)) -((-2451 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-662 *4 *2))))) -((-2798 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT))) -(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-15 -2798 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1014) (-13 (-797 |#1|) (-146)) (-139 |#2|)) (T -152)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) -((-1410 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1409 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2078 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT))) -(((-153 |#1|) (-10 -7 (-15 -1409 ((-584 |#1|) |#1| (-584 |#1|))) (-15 -2078 (|#1| (-584 |#1|) (-584 |#1|))) (-15 -2078 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-15 -1410 ((-584 |#1|) (-584 |#1|) |#1|))) (-258)) (T -153)) -((-1410 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2078 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1409 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-154) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -154)) -((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154))))) -((-1419 (((-2 (|:| |start| |#2|) (|:| -1783 (-348 |#2|))) |#2|) 66 T ELT)) (-1418 ((|#1| |#1|) 58 T ELT)) (-1417 (((-142 |#1|) |#2|) 94 T ELT)) (-1416 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1415 ((|#2| |#2|) 91 T ELT)) (-1414 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3134 ((|#1| |#2|) 118 T ELT)) (-1413 ((|#2| |#2|) 131 T ELT)) (-3734 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1412 (((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1411 (((-584 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-142 |#1|)) |#2|) 43 T ELT))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1411 ((-584 (-142 |#1|)) |#2|)) (-15 -1411 ((-584 (-142 |#1|)) |#2| |#1|)) (-15 -1412 ((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85))) (-15 -1412 ((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|)) (-15 -3734 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3734 ((-348 |#2|) |#2| |#1|)) (-15 -3734 ((-348 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3134 (|#1| |#2|)) (-15 -1414 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1414 ((-348 |#2|) |#2| |#1|)) (-15 -1415 (|#2| |#2|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -1416 (|#1| |#2|)) (-15 -1417 ((-142 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1783 (-348 |#2|))) |#2|))) (-13 (-312) (-756)) (-1156 (-142 |#1|))) (T -155)) -((-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1783 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1418 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756))) (-4 *3 (-1156 *2)))) (-1416 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1416 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-1414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3134 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3734 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) -((-1420 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1421 (((-695) |#2|) 18 T ELT)) (-1422 ((|#2| |#2| |#2|) 20 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1420 ((-3 |#2| "failed") |#2|)) (-15 -1421 ((-695) |#2|)) (-15 -1422 (|#2| |#2| |#2|))) (-1130) (-617 |#1|)) (T -156)) -((-1422 (*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))) (-1420 (*1 *2 *2) (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3544 (((-447) $) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 10 T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1423 (((-633 $) (-447)) 17 T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 12 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-157) (-13 (-160) (-10 -8 (-15 -1423 ((-633 $) (-447)))))) (T -157)) -((-1423 (*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1483 ((|#1| $) 7 T ELT)) (-3948 (((-773) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1424 (((-584 (-1096)) $) 10 T ELT)) (-3058 (((-85) $ $) 12 T ELT))) -(((-158 |#1|) (-13 (-1014) (-10 -8 (-15 -1483 (|#1| $)) (-15 -1424 ((-584 (-1096)) $)))) (-160)) (T -158)) -((-1483 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -((-1425 (((-584 (-775)) $) 16 T ELT)) (-1427 (((-161) $) 8 T ELT)) (-1426 (((-584 (-85)) $) 13 T ELT)) (-2523 (((-55) $) 10 T ELT))) -(((-159 |#1|) (-10 -7 (-15 -1425 ((-584 (-775)) |#1|)) (-15 -1426 ((-584 (-85)) |#1|)) (-15 -1427 ((-161) |#1|)) (-15 -2523 ((-55) |#1|))) (-160)) (T -159)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-1425 (((-584 (-775)) $) 22 T ELT)) (-3544 (((-447) $) 19 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1427 (((-161) $) 24 T ELT)) (-2635 (((-85) $ (-447)) 17 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1426 (((-584 (-85)) $) 23 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2523 (((-55) $) 18 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +((-1702 (*1 *1 *1) (-4 *1 (-147)))) +(-13 (-10 -8 (-15 -1702 ($ $)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) 79 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-1389 (($ $) 21 T ELT)) (-1393 (($ |#1| (-1071 |#1|)) 48 T ELT)) (-3470 (((-3 $ #1#) $) 123 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1390 (((-1071 |#1|) $) 86 T ELT)) (-1392 (((-1071 |#1|) $) 83 T ELT)) (-1391 (((-1071 |#1|) $) 84 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1386 (((-1071 |#1|) $) 93 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3772 (($ $ (-486)) 96 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1385 (((-1071 |#1|) $) 94 T ELT)) (-1387 (((-1071 (-350 |#1|)) $) 14 T ELT)) (-2619 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1071 |#1|) (-1071 |#1|)) 38 T ELT)) (-2894 (($ $) 98 T ELT)) (-3949 (((-774) $) 139 T ELT) (($ (-486)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) 67 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-1388 (((-1071 (-350 |#1|)) $) 20 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 103 T CONST)) (-2669 (($) 28 T CONST)) (-3059 (((-85) $ $) 35 T ELT)) (-3952 (($ $ $) 121 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3842 (($ $ $) 107 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT))) +(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2619 ($ (-350 |#1|))) (-15 -2619 ($ |#1| (-1071 |#1|) (-1071 |#1|))) (-15 -1393 ($ |#1| (-1071 |#1|))) (-15 -1392 ((-1071 |#1|) $)) (-15 -1391 ((-1071 |#1|) $)) (-15 -1390 ((-1071 |#1|) $)) (-15 -3132 (|#1| $)) (-15 -1389 ($ $)) (-15 -1388 ((-1071 (-350 |#1|)) $)) (-15 -1387 ((-1071 (-350 |#1|)) $)) (-15 -1386 ((-1071 |#1|) $)) (-15 -1385 ((-1071 |#1|) $)) (-15 -3772 ($ $ (-486))) (-15 -2894 ($ $)))) (-258)) (T -148)) +((-2619 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2619 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3132 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2894 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) +((-1394 (($ (-78) $) 15 T ELT)) (-3224 (((-634 (-78)) (-448) $) 14 T ELT)) (-3949 (((-774) $) 18 T ELT)) (-1395 (((-585 (-78)) $) 8 T ELT))) +(((-149) (-13 (-554 (-774)) (-10 -8 (-15 -1395 ((-585 (-78)) $)) (-15 -1394 ($ (-78) $)) (-15 -3224 ((-634 (-78)) (-448) $))))) (T -149)) +((-1395 (*1 *2 *1) (-12 (-5 *2 (-585 (-78))) (-5 *1 (-149)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3224 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-149))))) +((-1408 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 38 T ELT)) (-1399 (((-856 |#1|) (-856 |#1|)) 22 T ELT)) (-1404 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 34 T ELT)) (-1397 (((-856 |#1|) (-856 |#1|)) 20 T ELT)) (-1402 (((-856 |#1|) (-856 |#1|)) 28 T ELT)) (-1401 (((-856 |#1|) (-856 |#1|)) 27 T ELT)) (-1400 (((-856 |#1|) (-856 |#1|)) 26 T ELT)) (-1405 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 35 T ELT)) (-1403 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 33 T ELT)) (-1645 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 32 T ELT)) (-1398 (((-856 |#1|) (-856 |#1|)) 21 T ELT)) (-1409 (((-1 (-856 |#1|) (-856 |#1|)) |#1| |#1|) 41 T ELT)) (-1396 (((-856 |#1|) (-856 |#1|)) 8 T ELT)) (-1407 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 37 T ELT)) (-1406 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 36 T ELT))) +(((-150 |#1|) (-10 -7 (-15 -1396 ((-856 |#1|) (-856 |#1|))) (-15 -1397 ((-856 |#1|) (-856 |#1|))) (-15 -1398 ((-856 |#1|) (-856 |#1|))) (-15 -1399 ((-856 |#1|) (-856 |#1|))) (-15 -1400 ((-856 |#1|) (-856 |#1|))) (-15 -1401 ((-856 |#1|) (-856 |#1|))) (-15 -1402 ((-856 |#1|) (-856 |#1|))) (-15 -1645 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1403 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1404 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1405 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1406 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1407 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1408 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1409 ((-1 (-856 |#1|) (-856 |#1|)) |#1| |#1|))) (-13 (-312) (-1117) (-917))) (T -150)) +((-1409 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1408 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1645 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) +((-2452 ((|#2| |#3|) 28 T ELT))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2452 (|#2| |#3|))) (-146) (-1157 |#1|) (-663 |#1| |#2|)) (T -151)) +((-2452 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1157 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-663 *4 *2))))) +((-2799 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 44 (|has| (-859 |#2|) (-798 |#1|)) ELT))) +(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-859 |#2|) (-798 |#1|)) (-15 -2799 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) |%noBranch|)) (-1015) (-13 (-798 |#1|) (-146)) (-139 |#2|)) (T -152)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *3 (-139 *6)) (-4 (-859 *6) (-798 *5)) (-4 *6 (-13 (-798 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) +((-1411 (((-585 |#1|) (-585 |#1|) |#1|) 41 T ELT)) (-1410 (((-585 |#1|) |#1| (-585 |#1|)) 20 T ELT)) (-2079 (((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|)) 36 T ELT) ((|#1| (-585 |#1|) (-585 |#1|)) 32 T ELT))) +(((-153 |#1|) (-10 -7 (-15 -1410 ((-585 |#1|) |#1| (-585 |#1|))) (-15 -2079 (|#1| (-585 |#1|) (-585 |#1|))) (-15 -2079 ((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|))) (-15 -1411 ((-585 |#1|) (-585 |#1|) |#1|))) (-258)) (T -153)) +((-1411 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2079 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1410 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3949 (((-774) $) 21 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-154) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3321 ((-1132) $))))) (T -154)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-154)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154))))) +((-1420 (((-2 (|:| |start| |#2|) (|:| -1784 (-348 |#2|))) |#2|) 66 T ELT)) (-1419 ((|#1| |#1|) 58 T ELT)) (-1418 (((-142 |#1|) |#2|) 94 T ELT)) (-1417 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1416 ((|#2| |#2|) 91 T ELT)) (-1415 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3135 ((|#1| |#2|) 118 T ELT)) (-1414 ((|#2| |#2|) 131 T ELT)) (-3735 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1413 (((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1598 |#1|))) |#2| |#2|) 152 T ELT) (((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1598 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1412 (((-585 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-585 (-142 |#1|)) |#2|) 43 T ELT))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1412 ((-585 (-142 |#1|)) |#2|)) (-15 -1412 ((-585 (-142 |#1|)) |#2| |#1|)) (-15 -1413 ((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1598 |#1|))) |#2| |#2| (-85))) (-15 -1413 ((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1598 |#1|))) |#2| |#2|)) (-15 -3735 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3735 ((-348 |#2|) |#2| |#1|)) (-15 -3735 ((-348 |#2|) |#2|)) (-15 -1414 (|#2| |#2|)) (-15 -3135 (|#1| |#2|)) (-15 -1415 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1415 ((-348 |#2|) |#2| |#1|)) (-15 -1416 (|#2| |#2|)) (-15 -1417 (|#1| |#2| |#1|)) (-15 -1417 (|#1| |#2|)) (-15 -1418 ((-142 |#1|) |#2|)) (-15 -1419 (|#1| |#1|)) (-15 -1420 ((-2 (|:| |start| |#2|) (|:| -1784 (-348 |#2|))) |#2|))) (-13 (-312) (-757)) (-1157 (-142 |#1|))) (T -155)) +((-1420 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-2 (|:| |start| *3) (|:| -1784 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1419 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1418 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-757))) (-4 *3 (-1157 *2)))) (-1417 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1417 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1416 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1157 (-142 *3))))) (-1415 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1415 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-3135 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1157 (-142 *3))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-3735 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1413 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1598 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1413 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-757))) (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1598 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1157 (-142 *5))))) (-1412 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1412 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) +((-1421 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1422 (((-696) |#2|) 18 T ELT)) (-1423 ((|#2| |#2| |#2|) 20 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1421 ((-3 |#2| "failed") |#2|)) (-15 -1422 ((-696) |#2|)) (-15 -1423 (|#2| |#2| |#2|))) (-1131) (-618 |#1|)) (T -156)) +((-1423 (*1 *2 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3)))) (-1422 (*1 *2 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-696)) (-5 *1 (-156 *4 *3)) (-4 *3 (-618 *4)))) (-1421 (*1 *2 *2) (|partial| -12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1426 (((-585 (-776)) $) NIL T ELT)) (-3545 (((-448) $) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1428 (((-161) $) 10 T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1424 (((-634 $) (-448)) 17 T ELT)) (-1427 (((-585 (-85)) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) 12 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-157) (-13 (-160) (-10 -8 (-15 -1424 ((-634 $) (-448)))))) (T -157)) +((-1424 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-157))) (-5 *1 (-157))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1484 ((|#1| $) 7 T ELT)) (-3949 (((-774) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-1097)) $) 10 T ELT)) (-3059 (((-85) $ $) 12 T ELT))) +(((-158 |#1|) (-13 (-1015) (-10 -8 (-15 -1484 (|#1| $)) (-15 -1425 ((-585 (-1097)) $)))) (-160)) (T -158)) +((-1484 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +((-1426 (((-585 (-776)) $) 16 T ELT)) (-1428 (((-161) $) 8 T ELT)) (-1427 (((-585 (-85)) $) 13 T ELT)) (-2524 (((-55) $) 10 T ELT))) +(((-159 |#1|) (-10 -7 (-15 -1426 ((-585 (-776)) |#1|)) (-15 -1427 ((-585 (-85)) |#1|)) (-15 -1428 ((-161) |#1|)) (-15 -2524 ((-55) |#1|))) (-160)) (T -159)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-1426 (((-585 (-776)) $) 22 T ELT)) (-3545 (((-448) $) 19 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1428 (((-161) $) 24 T ELT)) (-2636 (((-85) $ (-448)) 17 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1427 (((-585 (-85)) $) 23 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2524 (((-55) $) 18 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-160) (-113)) (T -160)) -((-1427 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775)))))) -(-13 (-748 (-447)) (-10 -8 (-15 -1427 ((-161) $)) (-15 -1426 ((-584 (-85)) $)) (-15 -1425 ((-584 (-775)) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-748 (-447)) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3948 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT))) -(((-161) (-13 (-1014) (-10 -8 (-15 -9 ($) -3954) (-15 -8 ($) -3954) (-15 -7 ($) -3954)))) (T -161)) +((-1428 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-85))))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-776)))))) +(-13 (-749 (-448)) (-10 -8 (-15 -1428 ((-161) $)) (-15 -1427 ((-585 (-85)) $)) (-15 -1426 ((-585 (-776)) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-749 (-448)) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3949 (((-774) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 10 T ELT))) +(((-161) (-13 (-1015) (-10 -8 (-15 -9 ($) -3955) (-15 -8 ($) -3955) (-15 -7 ($) -3955)))) (T -161)) ((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) -((-3644 ((|#2| |#2|) 28 T ELT)) (-3647 (((-85) |#2|) 19 T ELT)) (-3645 (((-265 |#1|) |#2|) 12 T ELT)) (-3646 (((-265 |#1|) |#2|) 14 T ELT)) (-3642 ((|#2| |#2| (-1091)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3648 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3643 ((|#2| |#2| (-1091)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-162 |#1| |#2|) (-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1091))) (-15 -3645 ((-265 |#1|) |#2|)) (-15 -3646 ((-265 |#1|) |#2|)) (-15 -3647 ((-85) |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3648 ((-142 (-265 |#1|)) |#2|))) (-13 (-496) (-951 (-485))) (-13 (-27) (-1116) (-364 (-142 |#1|)))) (T -162)) -((-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3))))))) -((-1431 (((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|))) 26 T ELT)) (-3948 (((-1180 (-631 (-350 (-858 |#1|)))) (-1180 (-631 |#1|))) 37 T ELT))) -(((-163 |#1|) (-10 -7 (-15 -1431 ((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|)))) (-15 -3948 ((-1180 (-631 (-350 (-858 |#1|)))) (-1180 (-631 |#1|))))) (-146)) (T -163)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-163 *4))))) -((-1439 (((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 93 T ELT)) (-1441 (((-1093 (-350 (-485))) (-584 (-485)) (-584 (-485))) 109 T ELT)) (-1432 (((-1093 (-350 (-485))) (-831)) 54 T ELT)) (-3856 (((-1093 (-350 (-485))) (-831)) 79 T ELT)) (-3770 (((-350 (-485)) (-1093 (-350 (-485)))) 89 T ELT)) (-1433 (((-1093 (-350 (-485))) (-695)) 37 T ELT)) (-1436 (((-1093 (-350 (-485))) (-831)) 66 T ELT)) (-1435 (((-1093 (-350 (-485))) (-831)) 61 T ELT)) (-1438 (((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 87 T ELT)) (-2893 (((-1093 (-350 (-485))) (-695)) 29 T ELT)) (-1437 (((-350 (-485)) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 91 T ELT)) (-1434 (((-1093 (-350 (-485))) (-831)) 35 T ELT)) (-1440 (((-1093 (-350 (-485))) (-584 (-831))) 103 T ELT))) -(((-164) (-10 -7 (-15 -2893 ((-1093 (-350 (-485))) (-695))) (-15 -1432 ((-1093 (-350 (-485))) (-831))) (-15 -1433 ((-1093 (-350 (-485))) (-695))) (-15 -1434 ((-1093 (-350 (-485))) (-831))) (-15 -1435 ((-1093 (-350 (-485))) (-831))) (-15 -1436 ((-1093 (-350 (-485))) (-831))) (-15 -3856 ((-1093 (-350 (-485))) (-831))) (-15 -1437 ((-350 (-485)) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -1438 ((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -3770 ((-350 (-485)) (-1093 (-350 (-485))))) (-15 -1439 ((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -1440 ((-1093 (-350 (-485))) (-584 (-831)))) (-15 -1441 ((-1093 (-350 (-485))) (-584 (-485)) (-584 (-485)))))) (T -164)) -((-1441 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -((-1443 (((-348 (-1086 (-485))) (-485)) 38 T ELT)) (-1442 (((-584 (-1086 (-485))) (-485)) 33 T ELT)) (-2803 (((-1086 (-485)) (-485)) 28 T ELT))) -(((-165) (-10 -7 (-15 -1442 ((-584 (-1086 (-485))) (-485))) (-15 -2803 ((-1086 (-485)) (-485))) (-15 -1443 ((-348 (-1086 (-485))) (-485))))) (T -165)) -((-1443 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1444 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3114 ((|#2| $ (-695)) 10 T ELT)) (-3616 (($) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 23 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT))) -(((-166 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3616 ($)) (-15 -3114 (|#2| $ (-695))) (-15 -1444 (|#2| $ (-695) |#2|)))) (-831) (-1014)) (T -166)) -((-3616 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) (-1444 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1964 (((-1186) $) 36 T ELT) (((-1186) $ (-831) (-831)) 40 T ELT)) (-3802 (($ $ (-903)) 19 T ELT) (((-203 (-1074)) $ (-1091)) 15 T ELT)) (-3619 (((-1186) $) 34 T ELT)) (-3948 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) 26 T ELT)) (-3841 (($ $ $) 22 T ELT))) -(((-167 |#1|) (-13 (-1014) (-556 (-584 |#1|)) (-10 -8 (-15 -3802 ($ $ (-903))) (-15 -3802 ((-203 (-1074)) $ (-1091))) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $)) (-15 -1964 ((-1186) $ (-831) (-831))))) (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))) (T -167)) -((-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ *3)) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3841 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) (-15 -1964 (*2 $)))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 10 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2853 (($ (-578 |#1|)) 11 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-168 |#1|) (-13 (-753) (-10 -8 (-15 -2853 ($ (-578 |#1|))))) (-584 (-1091))) (T -168)) -((-2853 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-168 *3))))) -((-1445 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1445 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) -((-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) -((-1449 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1448 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2372 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|)))) 79 T ELT)) (-1447 (((-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|))) |#2|) 72 T ELT)) (-1450 (((-85) |#2|) 70 T ELT)) (-3735 (((-348 |#2|) |#2|) 92 T ELT)) (-3734 (((-348 |#2|) |#2|) 91 T ELT)) (-2373 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1446 (((-2 (|:| |cont| |#1|) (|:| -1783 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85)) 86 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3734 ((-348 |#2|) |#2|)) (-15 -3735 ((-348 |#2|) |#2|)) (-15 -1446 ((-2 (|:| |cont| |#1|) (|:| -1783 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85))) (-15 -1447 ((-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|))) |#2|)) (-15 -2372 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|))))) (-15 -2373 (|#2| |#2| (-695) |#2|)) (-15 -1448 (|#2| |#2| (-695) |#2|)) (-15 -1449 (|#2| |#2| (-695) |#2|)) (-15 -1450 ((-85) |#2|))) (-299) (-1156 |#1|)) (T -170)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1449 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2373 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *5)))) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-1451 (($ (-350 (-485))) 9 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) -(((-171) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 10)) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -1451 ($ (-350 (-485))))))) (T -171)) -((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1029) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3180 (((-423) $) 11 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-172) (-13 (-996) (-10 -8 (-15 -3180 ((-423) $)) (-15 -3321 ((-1029) $)) (-15 -3235 ((-1050) $))))) (T -172)) -((-3180 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172))))) -((-3814 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)) (-1074)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|))) 25 T ELT)) (-1452 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-85)) 17 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3814 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)))) (-15 -3814 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|)) (-1074))) (-15 -1452 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -173)) -((-1452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1091)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-1116) (-872) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074)) (-4 *3 (-13 (-1116) (-872) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1116) (-872) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) -((-3814 (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1074)) 49 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1074)) 50 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|)))) 22 T ELT))) -(((-174 |#1|) (-10 -7 (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))))) (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1074))) (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))))) (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1074)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (T -174)) -((-3814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1074)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6)))) (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) -((-3844 (((-2 (|:| -2005 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|)) 26 T ELT)) (-3965 (((-584 (-265 |#2|)) (-265 |#2|) (-831)) 51 T ELT))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3844 ((-2 (|:| -2005 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|))) (-15 -3965 ((-584 (-265 |#2|)) (-265 |#2|) (-831)))) (-962) (-496)) (T -175)) -((-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962)))) (-3844 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1086 *4)) (|:| |deg| (-831)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) NIL T ELT)) (-3325 ((|#1| $) 31 T ELT)) (-3726 (($) NIL T CONST)) (-3004 (($ $) NIL T ELT)) (-2298 (($ $) 40 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3327 ((|#1| |#1| $) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3835 (((-695) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1494 ((|#1| |#1| $) 36 T ELT)) (-1493 ((|#1| |#1| $) 38 T ELT)) (-3611 (($ |#1| $) NIL T ELT)) (-2605 (((-695) $) 34 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1492 ((|#1| $) 32 T ELT)) (-1491 ((|#1| $) 30 T ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3006 ((|#1| |#1| $) NIL T ELT)) (-3405 (((-85) $) 9 T ELT)) (-3567 (($) NIL T ELT)) (-3005 ((|#1| $) NIL T ELT)) (-1497 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3324 (((-695) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 14 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1497 ($ (-584 |#1|))))) (-1014)) (T -176)) -((-1497 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1454 (($ (-265 |#1|)) 24 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2666 (((-85) $) NIL T ELT)) (-3159 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3158 (((-265 |#1|) $) NIL T ELT)) (-3961 (($ $) 32 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3960 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3176 (((-265 |#1|) $) NIL T ELT)) (-1456 (($ $) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) NIL T ELT)) (-1453 (($ $) 33 T ELT)) (-3950 (((-485) $) NIL T ELT)) (-3948 (((-773) $) 65 T ELT) (($ (-485)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3679 (((-265 |#1|) $ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 26 T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) 29 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) -(((-177 |#1| |#2|) (-13 (-561 (-265 |#1|)) (-951 (-265 |#1|)) (-10 -8 (-15 -3176 ((-265 |#1|) $)) (-15 -1456 ($ $)) (-15 -3961 ($ $)) (-15 -3679 ((-265 |#1|) $ $)) (-15 -2410 ($ (-695))) (-15 -1455 ((-85) $)) (-15 -2666 ((-85) $)) (-15 -3950 ((-485) $)) (-15 -3960 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1454 ($ (-265 |#1|))) (-15 -1453 ($ $)))) (-13 (-962) (-757)) (-584 (-1091))) (T -177)) -((-3176 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))) (-3679 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091)))))) -((-1457 (((-85) (-1074)) 26 T ELT)) (-1458 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85)) 35 T ELT)) (-1459 (((-3 (-85) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-85)) 84 T ELT))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1457 ((-85) (-1074))) (-15 -1458 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-29 |#1|))) (T -178)) -((-1459 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6)) (-4 *6 (-13 (-1116) (-29 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6)))) (-1459 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1091)) (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1458 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1116) (-29 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 86 T ELT)) (-3131 (((-485) $) 18 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3494 (($ $) 73 T ELT)) (-3641 (($ $) 61 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) 52 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 71 T ELT)) (-3640 (($ $) 59 T ELT)) (-3625 (((-485) $) 83 T ELT)) (-3496 (($ $) 76 T ELT)) (-3639 (($ $) 63 T ELT)) (-3726 (($) NIL T CONST)) (-3129 (($ $) NIL T ELT)) (-3159 (((-3 (-485) #1#) $) 116 T ELT) (((-3 (-350 (-485)) #1#) $) 113 T ELT)) (-3158 (((-485) $) 114 T ELT) (((-350 (-485)) $) 111 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 91 T ELT)) (-1748 (((-350 (-485)) $ (-695)) 106 T ELT) (((-350 (-485)) $ (-695) (-695)) 105 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1772 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-3188 (((-85) $) 107 T ELT)) (-3629 (($) 31 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-3774 (((-485) $) 25 T ELT)) (-1215 (((-85) $ $) 141 T ELT)) (-2411 (((-85) $) 87 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-3189 (((-85) $) 85 T ELT)) (-1460 (((-85) $) 140 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) 49 T ELT) (($) 21 (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-2859 (($ $ $) 48 T ELT) (($) 20 (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-1774 (((-485) $) 10 T ELT)) (-1747 (($ $) 16 T ELT)) (-1746 (($ $) 53 T ELT)) (-3944 (($ $) 58 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-1771 (((-831) (-485)) NIL (|has| $ (-6 -3988)) ELT)) (-3245 (((-1034) $) 89 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3132 (($ $) NIL T ELT)) (-3256 (($ (-485) (-485)) NIL T ELT) (($ (-485) (-485) (-831)) 98 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 11 T ELT)) (-1745 (($) 30 T ELT)) (-3945 (($ $) 57 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-3760 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1770 (((-831) (-485)) NIL (|has| $ (-6 -3988)) ELT)) (-3497 (($ $) 74 T ELT)) (-3638 (($ $) 64 T ELT)) (-3495 (($ $) 75 T ELT)) (-3637 (($ $) 62 T ELT)) (-3493 (($ $) 72 T ELT)) (-3636 (($ $) 60 T ELT)) (-3974 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-801 (-330)) $) NIL T ELT) (((-474) $) 38 T ELT)) (-3948 (((-773) $) 35 T ELT) (($ (-485)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 56 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (($ $) NIL T ELT)) (-1773 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-831)) 7 T ELT)) (-3500 (($ $) 79 T ELT)) (-3488 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 77 T ELT)) (-3486 (($ $) 65 T ELT)) (-3502 (($ $) 82 T ELT)) (-3490 (($ $) 70 T ELT)) (-3127 (((-85) $ $) 143 T ELT)) (-3503 (($ $) 80 T ELT)) (-3491 (($ $) 68 T ELT)) (-3501 (($ $) 81 T ELT)) (-3489 (($ $) 69 T ELT)) (-3499 (($ $) 78 T ELT)) (-3487 (($ $) 66 T ELT)) (-3385 (($ $) 108 T ELT)) (-2662 (($) 27 T CONST)) (-2668 (($) 28 T CONST)) (-3389 (($ $) 95 T ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3386 (($ $ $) 97 T ELT)) (-2568 (((-85) $ $) 42 T ELT)) (-2569 (((-85) $ $) 40 T ELT)) (-3058 (((-85) $ $) 50 T ELT)) (-2686 (((-85) $ $) 41 T ELT)) (-2687 (((-85) $ $) 39 T ELT)) (-3951 (($ $ $) 29 T ELT) (($ $ (-485)) 51 T ELT)) (-3839 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3841 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 54 T ELT) (($ $ (-350 (-485))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-179) (-13 (-347) (-190) (-1116) (-554 (-474)) (-10 -8 (-15 -3951 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -1745 ($)) (-15 -1747 ($ $)) (-15 -1746 ($ $)) (-15 -3488 ($ $ $)) (-15 -3389 ($ $)) (-15 -3386 ($ $ $)) (-15 -1748 ((-350 (-485)) $ (-695))) (-15 -1748 ((-350 (-485)) $ (-695) (-695))) (-15 -1460 ((-85) $))))) (T -179)) -((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) (-1745 (*1 *1) (-5 *1 (-179))) (-1747 (*1 *1 *1) (-5 *1 (-179))) (-1746 (*1 *1 *1) (-5 *1 (-179))) (-3488 (*1 *1 *1 *1) (-5 *1 (-179))) (-3389 (*1 *1 *1) (-5 *1 (-179))) (-3386 (*1 *1 *1 *1) (-5 *1 (-179))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) -((-3388 (((-142 (-179)) (-695) (-142 (-179))) 11 T ELT) (((-179) (-695) (-179)) 12 T ELT)) (-1461 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1462 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3387 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3393 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3395 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3394 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3389 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3386 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) -(((-180) (-10 -7 (-15 -3389 ((-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-695) (-179))) (-15 -3388 ((-142 (-179)) (-695) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179) (-179))) (-15 -3393 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3394 ((-142 (-179)) (-142 (-179)))) (-15 -3394 ((-179) (-179))) (-15 -3395 ((-179) (-179))) (-15 -3395 ((-142 (-179)) (-142 (-179)))) (-15 -1462 ((-179) (-179) (-179))) (-15 -1462 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) -((-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) (-3388 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695) (-695)) NIL T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3416 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3875 (($ |#1| |#1| |#1|) 33 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3849 (($ |#1| |#1| |#1|) 32 T ELT)) (-3335 (($ (-695) |#1|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-1463 (($ |#1|) 31 T ELT)) (-1464 (($ |#1|) 30 T ELT)) (-1465 (($ |#1|) 29 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3110 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3109 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-3108 (((-584 (-1180 |#1|)) $) NIL (|has| |#1| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-3616 (($ (-695) (-695) |#1|) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3329 ((|#1| $) NIL (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3596 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3592 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1466 (($) 12 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3468 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3334 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3330 ((|#1| $) NIL (|has| |#1| (-6 (-3999 #1#))) ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3948 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) 15 T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-181 |#1|) (-13 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 * ((-855 |#1|) $ (-855 |#1|))) (-15 -1466 ($)) (-15 -1465 ($ |#1|)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3849 ($ |#1| |#1| |#1|)) (-15 -3875 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1116))) (T -181)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) (-1466 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1465 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3849 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3875 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) -((-1571 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3407 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3058 (((-85) $ $) 26 T ELT))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -1467 (|#1| (-584 |#2|))) (-15 -1467 (|#1|))) (-183 |#2|) (-1014)) (T -182)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-183 |#1|) (-113) (-1014)) (T -183)) +((-3645 ((|#2| |#2|) 28 T ELT)) (-3648 (((-85) |#2|) 19 T ELT)) (-3646 (((-265 |#1|) |#2|) 12 T ELT)) (-3647 (((-265 |#1|) |#2|) 14 T ELT)) (-3643 ((|#2| |#2| (-1092)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3649 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3644 ((|#2| |#2| (-1092)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-162 |#1| |#2|) (-10 -7 (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1092))) (-15 -3644 (|#2| |#2|)) (-15 -3644 (|#2| |#2| (-1092))) (-15 -3646 ((-265 |#1|) |#2|)) (-15 -3647 ((-265 |#1|) |#2|)) (-15 -3648 ((-85) |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3649 ((-142 (-265 |#1|)) |#2|))) (-13 (-497) (-952 (-486))) (-13 (-27) (-1117) (-364 (-142 |#1|)))) (T -162)) +((-3649 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3644 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3))))))) +((-1432 (((-1181 (-632 (-859 |#1|))) (-1181 (-632 |#1|))) 26 T ELT)) (-3949 (((-1181 (-632 (-350 (-859 |#1|)))) (-1181 (-632 |#1|))) 37 T ELT))) +(((-163 |#1|) (-10 -7 (-15 -1432 ((-1181 (-632 (-859 |#1|))) (-1181 (-632 |#1|)))) (-15 -3949 ((-1181 (-632 (-350 (-859 |#1|)))) (-1181 (-632 |#1|))))) (-146)) (T -163)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) (-5 *2 (-1181 (-632 (-350 (-859 *4))))) (-5 *1 (-163 *4)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) (-5 *2 (-1181 (-632 (-859 *4)))) (-5 *1 (-163 *4))))) +((-1440 (((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486)))) 93 T ELT)) (-1442 (((-1094 (-350 (-486))) (-585 (-486)) (-585 (-486))) 109 T ELT)) (-1433 (((-1094 (-350 (-486))) (-832)) 54 T ELT)) (-3857 (((-1094 (-350 (-486))) (-832)) 79 T ELT)) (-3771 (((-350 (-486)) (-1094 (-350 (-486)))) 89 T ELT)) (-1434 (((-1094 (-350 (-486))) (-696)) 37 T ELT)) (-1437 (((-1094 (-350 (-486))) (-832)) 66 T ELT)) (-1436 (((-1094 (-350 (-486))) (-832)) 61 T ELT)) (-1439 (((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486)))) 87 T ELT)) (-2894 (((-1094 (-350 (-486))) (-696)) 29 T ELT)) (-1438 (((-350 (-486)) (-1094 (-350 (-486))) (-1094 (-350 (-486)))) 91 T ELT)) (-1435 (((-1094 (-350 (-486))) (-832)) 35 T ELT)) (-1441 (((-1094 (-350 (-486))) (-585 (-832))) 103 T ELT))) +(((-164) (-10 -7 (-15 -2894 ((-1094 (-350 (-486))) (-696))) (-15 -1433 ((-1094 (-350 (-486))) (-832))) (-15 -1434 ((-1094 (-350 (-486))) (-696))) (-15 -1435 ((-1094 (-350 (-486))) (-832))) (-15 -1436 ((-1094 (-350 (-486))) (-832))) (-15 -1437 ((-1094 (-350 (-486))) (-832))) (-15 -3857 ((-1094 (-350 (-486))) (-832))) (-15 -1438 ((-350 (-486)) (-1094 (-350 (-486))) (-1094 (-350 (-486))))) (-15 -1439 ((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486))))) (-15 -3771 ((-350 (-486)) (-1094 (-350 (-486))))) (-15 -1440 ((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486))))) (-15 -1441 ((-1094 (-350 (-486))) (-585 (-832)))) (-15 -1442 ((-1094 (-350 (-486))) (-585 (-486)) (-585 (-486)))))) (T -164)) +((-1442 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1440 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +((-1444 (((-348 (-1087 (-486))) (-486)) 38 T ELT)) (-1443 (((-585 (-1087 (-486))) (-486)) 33 T ELT)) (-2804 (((-1087 (-486)) (-486)) 28 T ELT))) +(((-165) (-10 -7 (-15 -1443 ((-585 (-1087 (-486))) (-486))) (-15 -2804 ((-1087 (-486)) (-486))) (-15 -1444 ((-348 (-1087 (-486))) (-486))))) (T -165)) +((-1444 (*1 *2 *3) (-12 (-5 *2 (-348 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-165)) (-5 *3 (-486)))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-585 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1445 ((|#2| $ (-696) |#2|) 11 T ELT)) (-3115 ((|#2| $ (-696)) 10 T ELT)) (-3617 (($) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 23 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 13 T ELT))) +(((-166 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3617 ($)) (-15 -3115 (|#2| $ (-696))) (-15 -1445 (|#2| $ (-696) |#2|)))) (-832) (-1015)) (T -166)) +((-3617 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-832)) (-4 *3 (-1015)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *2 (-1015)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)))) (-1445 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)) (-4 *2 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1965 (((-1187) $) 36 T ELT) (((-1187) $ (-832) (-832)) 40 T ELT)) (-3803 (($ $ (-904)) 19 T ELT) (((-203 (-1075)) $ (-1092)) 15 T ELT)) (-3620 (((-1187) $) 34 T ELT)) (-3949 (((-774) $) 31 T ELT) (($ (-585 |#1|)) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) 26 T ELT)) (-3842 (($ $ $) 22 T ELT))) +(((-167 |#1|) (-13 (-1015) (-557 (-585 |#1|)) (-10 -8 (-15 -3803 ($ $ (-904))) (-15 -3803 ((-203 (-1075)) $ (-1092))) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $)) (-15 -1965 ((-1187) $ (-832) (-832))))) (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))) (T -167)) +((-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-203 (-1075))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ *3)) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) (-15 -1965 (*2 $))))))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) (-15 -1965 (*2 $))))))) (-1965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) (-15 -1965 (*2 $)))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 10 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2854 (($ (-579 |#1|)) 11 T ELT)) (-3949 (((-774) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-168 |#1|) (-13 (-754) (-10 -8 (-15 -2854 ($ (-579 |#1|))))) (-585 (-1092))) (T -168)) +((-2854 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-168 *3))))) +((-1446 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1446 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) +((-1446 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1157 (-350 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) +((-1450 ((|#2| |#2| (-696) |#2|) 55 T ELT)) (-1449 ((|#2| |#2| (-696) |#2|) 51 T ELT)) (-2373 (((-585 |#2|) (-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|)))) 79 T ELT)) (-1448 (((-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|))) |#2|) 72 T ELT)) (-1451 (((-85) |#2|) 70 T ELT)) (-3736 (((-348 |#2|) |#2|) 92 T ELT)) (-3735 (((-348 |#2|) |#2|) 91 T ELT)) (-2374 ((|#2| |#2| (-696) |#2|) 49 T ELT)) (-1447 (((-2 (|:| |cont| |#1|) (|:| -1784 (-585 (-2 (|:| |irr| |#2|) (|:| -2397 (-486)))))) |#2| (-85)) 86 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -3735 ((-348 |#2|) |#2|)) (-15 -3736 ((-348 |#2|) |#2|)) (-15 -1447 ((-2 (|:| |cont| |#1|) (|:| -1784 (-585 (-2 (|:| |irr| |#2|) (|:| -2397 (-486)))))) |#2| (-85))) (-15 -1448 ((-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|))) |#2|)) (-15 -2373 ((-585 |#2|) (-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|))))) (-15 -2374 (|#2| |#2| (-696) |#2|)) (-15 -1449 (|#2| |#2| (-696) |#2|)) (-15 -1450 (|#2| |#2| (-696) |#2|)) (-15 -1451 ((-85) |#2|))) (-299) (-1157 |#1|)) (T -170)) +((-1451 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4)))) (-1450 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) (-1449 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) (-2374 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *5)))) (-4 *5 (-1157 *4)) (-4 *4 (-299)) (-5 *2 (-585 *5)) (-5 *1 (-170 *4 *5)))) (-1448 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4)))) (-1447 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1157 *5)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-486) $) NIL (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) NIL T ELT)) (-3133 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) NIL T ELT)) (-1452 (($ (-350 (-486))) 9 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 8 T ELT) (($ (-486)) NIL T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL T ELT) (((-919 10) $) 10 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3952 (($ $ $) NIL T ELT) (($ (-486) (-486)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT))) +(((-171) (-13 (-906 (-486)) (-554 (-350 (-486))) (-554 (-919 10)) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -1452 ($ (-350 (-486))))))) (T -171)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3322 (((-1030) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3181 (((-424) $) 11 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-172) (-13 (-997) (-10 -8 (-15 -3181 ((-424) $)) (-15 -3322 ((-1030) $)) (-15 -3236 ((-1051) $))))) (T -172)) +((-3181 (*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-172)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-172)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-172))))) +((-3815 (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1006 (-752 |#2|)) (-1075)) 29 T ELT) (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1006 (-752 |#2|))) 25 T ELT)) (-1453 (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1092) (-752 |#2|) (-752 |#2|) (-85)) 17 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3815 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1006 (-752 |#2|)))) (-15 -3815 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1006 (-752 |#2|)) (-1075))) (-15 -1453 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1092) (-752 |#2|) (-752 |#2|) (-85)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-29 |#1|))) (T -173)) +((-1453 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1092)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-4 *3 (-13 (-1117) (-873) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-752 *3)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-752 *3))) (-5 *5 (-1075)) (-4 *3 (-13 (-1117) (-873) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-752 *3))) (-4 *3 (-13 (-1117) (-873) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) +((-3815 (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|)))) (-1075)) 49 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|))) (-1075)) 50 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|)))) 22 T ELT))) +(((-174 |#1|) (-10 -7 (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|))))) (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|))) (-1075))) (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|)))))) (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|)))) (-1075)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (T -174)) +((-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-752 (-350 (-859 *6))))) (-5 *5 (-1075)) (-5 *3 (-350 (-859 *6))) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-752 (-350 (-859 *5))))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1006 (-752 (-265 *6)))) (-5 *5 (-1075)) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1006 (-752 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) +((-3845 (((-2 (|:| -2006 (-1087 |#1|)) (|:| |deg| (-832))) (-1087 |#1|)) 26 T ELT)) (-3966 (((-585 (-265 |#2|)) (-265 |#2|) (-832)) 51 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3845 ((-2 (|:| -2006 (-1087 |#1|)) (|:| |deg| (-832))) (-1087 |#1|))) (-15 -3966 ((-585 (-265 |#2|)) (-265 |#2|) (-832)))) (-963) (-497)) (T -175)) +((-3966 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *6 (-497)) (-5 *2 (-585 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-963)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -2006 (-1087 *4)) (|:| |deg| (-832)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1087 *4)) (-4 *5 (-497))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1497 ((|#1| $) NIL T ELT)) (-3326 ((|#1| $) 31 T ELT)) (-3727 (($) NIL T CONST)) (-3005 (($ $) NIL T ELT)) (-2299 (($ $) 40 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3836 (((-696) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1495 ((|#1| |#1| $) 36 T ELT)) (-1494 ((|#1| |#1| $) 38 T ELT)) (-3612 (($ |#1| $) NIL T ELT)) (-2606 (((-696) $) 34 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) NIL T ELT)) (-1493 ((|#1| $) 32 T ELT)) (-1492 ((|#1| $) 30 T ELT)) (-1277 ((|#1| $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3007 ((|#1| |#1| $) NIL T ELT)) (-3406 (((-85) $) 9 T ELT)) (-3568 (($) NIL T ELT)) (-3006 ((|#1| $) NIL T ELT)) (-1498 (($) NIL T ELT) (($ (-585 |#1|)) 17 T ELT)) (-3325 (((-696) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1496 ((|#1| $) 14 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1498 ($ (-585 |#1|))))) (-1015)) (T -176)) +((-1498 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-176 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1455 (($ (-265 |#1|)) 24 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2667 (((-85) $) NIL T ELT)) (-3160 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3159 (((-265 |#1|) $) NIL T ELT)) (-3962 (($ $) 32 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3961 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3177 (((-265 |#1|) $) NIL T ELT)) (-1457 (($ $) 31 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1456 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) NIL T ELT)) (-1454 (($ $) 33 T ELT)) (-3951 (((-486) $) NIL T ELT)) (-3949 (((-774) $) 65 T ELT) (($ (-486)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3680 (((-265 |#1|) $ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 26 T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) 29 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) +(((-177 |#1| |#2|) (-13 (-562 (-265 |#1|)) (-952 (-265 |#1|)) (-10 -8 (-15 -3177 ((-265 |#1|) $)) (-15 -1457 ($ $)) (-15 -3962 ($ $)) (-15 -3680 ((-265 |#1|) $ $)) (-15 -2411 ($ (-696))) (-15 -1456 ((-85) $)) (-15 -2667 ((-85) $)) (-15 -3951 ((-486) $)) (-15 -3961 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1455 ($ (-265 |#1|))) (-15 -1454 ($ $)))) (-13 (-963) (-758)) (-585 (-1092))) (T -177)) +((-3177 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-1457 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1092))))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1092))))) (-3680 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1092))))) (-1455 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1092))))) (-1454 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1092)))))) +((-1458 (((-85) (-1075)) 26 T ELT)) (-1459 (((-3 (-752 |#2|) #1="failed") (-552 |#2|) |#2| (-752 |#2|) (-752 |#2|) (-85)) 35 T ELT)) (-1460 (((-3 (-85) #1#) (-1087 |#2|) (-752 |#2|) (-752 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-859 |#1|) (-1092) (-752 |#2|) (-752 |#2|) (-85)) 84 T ELT))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1458 ((-85) (-1075))) (-15 -1459 ((-3 (-752 |#2|) #1="failed") (-552 |#2|) |#2| (-752 |#2|) (-752 |#2|) (-85))) (-15 -1460 ((-3 (-85) #1#) (-859 |#1|) (-1092) (-752 |#2|) (-752 |#2|) (-85))) (-15 -1460 ((-3 (-85) #1#) (-1087 |#2|) (-752 |#2|) (-752 |#2|) (-85)))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-29 |#1|))) (T -178)) +((-1460 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1087 *6)) (-5 *4 (-752 *6)) (-4 *6 (-13 (-1117) (-29 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *5 *6)))) (-1460 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-859 *6)) (-5 *4 (-1092)) (-5 *5 (-752 *7)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *7 (-13 (-1117) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1459 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-752 *4)) (-5 *3 (-552 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1117) (-29 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *6 *4)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1117) (-29 *4)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 86 T ELT)) (-3132 (((-486) $) 18 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3495 (($ $) 73 T ELT)) (-3642 (($ $) 61 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) 52 T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 71 T ELT)) (-3641 (($ $) 59 T ELT)) (-3626 (((-486) $) 83 T ELT)) (-3497 (($ $) 76 T ELT)) (-3640 (($ $) 63 T ELT)) (-3727 (($) NIL T CONST)) (-3130 (($ $) NIL T ELT)) (-3160 (((-3 (-486) #1#) $) 116 T ELT) (((-3 (-350 (-486)) #1#) $) 113 T ELT)) (-3159 (((-486) $) 114 T ELT) (((-350 (-486)) $) 111 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 91 T ELT)) (-1749 (((-350 (-486)) $ (-696)) 106 T ELT) (((-350 (-486)) $ (-696) (-696)) 105 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1773 (((-832)) 12 T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3989)) ELT)) (-3189 (((-85) $) 107 T ELT)) (-3630 (($) 31 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL T ELT)) (-3775 (((-486) $) 25 T ELT)) (-1216 (((-85) $ $) 141 T ELT)) (-2412 (((-85) $) 87 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3135 (($ $) NIL T ELT)) (-3190 (((-85) $) 85 T ELT)) (-1461 (((-85) $) 140 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) 49 T ELT) (($) 21 (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-2860 (($ $ $) 48 T ELT) (($) 20 (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-1775 (((-486) $) 10 T ELT)) (-1748 (($ $) 16 T ELT)) (-1747 (($ $) 53 T ELT)) (-3945 (($ $) 58 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-1772 (((-832) (-486)) NIL (|has| $ (-6 -3989)) ELT)) (-3246 (((-1035) $) 89 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3257 (($ (-486) (-486)) NIL T ELT) (($ (-486) (-486) (-832)) 98 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2403 (((-486) $) 11 T ELT)) (-1746 (($) 30 T ELT)) (-3946 (($ $) 57 T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-832)) NIL T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3989)) ELT)) (-3761 (($ $) 92 T ELT) (($ $ (-696)) NIL T ELT)) (-1771 (((-832) (-486)) NIL (|has| $ (-6 -3989)) ELT)) (-3498 (($ $) 74 T ELT)) (-3639 (($ $) 64 T ELT)) (-3496 (($ $) 75 T ELT)) (-3638 (($ $) 62 T ELT)) (-3494 (($ $) 72 T ELT)) (-3637 (($ $) 60 T ELT)) (-3975 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-802 (-330)) $) NIL T ELT) (((-475) $) 38 T ELT)) (-3949 (((-774) $) 35 T ELT) (($ (-486)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) 56 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-1774 (((-832)) 19 T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3989)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-832)) 7 T ELT)) (-3501 (($ $) 79 T ELT)) (-3489 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 77 T ELT)) (-3487 (($ $) 65 T ELT)) (-3503 (($ $) 82 T ELT)) (-3491 (($ $) 70 T ELT)) (-3128 (((-85) $ $) 143 T ELT)) (-3504 (($ $) 80 T ELT)) (-3492 (($ $) 68 T ELT)) (-3502 (($ $) 81 T ELT)) (-3490 (($ $) 69 T ELT)) (-3500 (($ $) 78 T ELT)) (-3488 (($ $) 66 T ELT)) (-3386 (($ $) 108 T ELT)) (-2663 (($) 27 T CONST)) (-2669 (($) 28 T CONST)) (-3390 (($ $) 95 T ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3387 (($ $ $) 97 T ELT)) (-2569 (((-85) $ $) 42 T ELT)) (-2570 (((-85) $ $) 40 T ELT)) (-3059 (((-85) $ $) 50 T ELT)) (-2687 (((-85) $ $) 41 T ELT)) (-2688 (((-85) $ $) 39 T ELT)) (-3952 (($ $ $) 29 T ELT) (($ $ (-486)) 51 T ELT)) (-3840 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3842 (($ $ $) 44 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 54 T ELT) (($ $ (-350 (-486))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-179) (-13 (-347) (-190) (-1117) (-555 (-475)) (-10 -8 (-15 -3952 ($ $ (-486))) (-15 ** ($ $ $)) (-15 -1746 ($)) (-15 -1748 ($ $)) (-15 -1747 ($ $)) (-15 -3489 ($ $ $)) (-15 -3390 ($ $)) (-15 -3387 ($ $ $)) (-15 -1749 ((-350 (-486)) $ (-696))) (-15 -1749 ((-350 (-486)) $ (-696) (-696))) (-15 -1461 ((-85) $))))) (T -179)) +((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-179)))) (-1746 (*1 *1) (-5 *1 (-179))) (-1748 (*1 *1 *1) (-5 *1 (-179))) (-1747 (*1 *1 *1) (-5 *1 (-179))) (-3489 (*1 *1 *1 *1) (-5 *1 (-179))) (-3390 (*1 *1 *1) (-5 *1 (-179))) (-3387 (*1 *1 *1 *1) (-5 *1 (-179))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) (-1749 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) +((-3389 (((-142 (-179)) (-696) (-142 (-179))) 11 T ELT) (((-179) (-696) (-179)) 12 T ELT)) (-1462 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1463 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3388 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3394 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3393 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3396 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3395 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3390 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) +(((-180) (-10 -7 (-15 -3390 ((-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1462 ((-179) (-179))) (-15 -1462 ((-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-696) (-179))) (-15 -3389 ((-142 (-179)) (-696) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179) (-179))) (-15 -3393 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3394 ((-179) (-179) (-179))) (-15 -3394 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3395 ((-142 (-179)) (-142 (-179)))) (-15 -3395 ((-179) (-179))) (-15 -3396 ((-179) (-179))) (-15 -3396 ((-142 (-179)) (-142 (-179)))) (-15 -1463 ((-179) (-179) (-179))) (-15 -1463 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) +((-1463 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1463 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-696)) (-5 *1 (-180)))) (-3389 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-696)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696) (-696)) NIL T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3417 (($ (-1181 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3876 (($ |#1| |#1| |#1|) 33 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2351 (($ $ (-486) (-486)) NIL T ELT)) (-2350 (($ $ (-486) (-486)) NIL T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-2348 (($ $ (-486) (-486) $) NIL T ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) NIL T ELT)) (-1259 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-1258 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-3850 (($ |#1| |#1| |#1|) 32 T ELT)) (-3336 (($ (-696) |#1|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3114 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-1464 (($ |#1|) 31 T ELT)) (-1465 (($ |#1|) 30 T ELT)) (-1466 (($ |#1|) 29 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3111 (((-696) $) NIL (|has| |#1| (-497)) ELT)) (-1578 ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-3115 ((|#1| $ (-486) (-486)) NIL T ELT)) (-3110 (((-696) $) NIL (|has| |#1| (-497)) ELT)) (-3109 (((-585 (-1181 |#1|)) $) NIL (|has| |#1| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-3617 (($ (-696) (-696) |#1|) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3330 ((|#1| $) NIL (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#1|))) 11 T ELT) (($ (-696) (-696) (-1 |#1| (-486) (-486))) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3597 (((-585 (-585 |#1|)) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3593 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1467 (($) 12 T ELT)) (-2353 (($ $ $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3469 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) NIL T ELT) ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486))) NIL T ELT)) (-3335 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3331 ((|#1| $) NIL (|has| |#1| (-6 (-4000 #1#))) ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3113 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-3949 (($ (-1181 |#1|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-486) $) NIL T ELT) (((-1181 |#1|) $ (-1181 |#1|)) 15 T ELT) (((-1181 |#1|) (-1181 |#1|) $) NIL T ELT) (((-856 |#1|) $ (-856 |#1|)) 21 T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-181 |#1|) (-13 (-629 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-856 |#1|) $ (-856 |#1|))) (-15 -1467 ($)) (-15 -1466 ($ |#1|)) (-15 -1465 ($ |#1|)) (-15 -1464 ($ |#1|)) (-15 -3850 ($ |#1| |#1| |#1|)) (-15 -3876 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1117))) (T -181)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117))) (-5 *1 (-181 *3)))) (-1467 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-1466 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-1465 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-3850 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-3876 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) +((-1572 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3408 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1468 (($) NIL T ELT) (($ (-585 |#2|)) 11 T ELT)) (-3059 (((-85) $ $) 26 T ELT))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -1572 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -1468 (|#1| (-585 |#2|))) (-15 -1468 (|#1|))) (-183 |#2|) (-1015)) (T -182)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 43 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 47 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 |#1|)) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 46 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-183 |#1|) (-113) (-1015)) (T -183)) NIL (-13 (-193 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1091)) 63 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#1| (-812 (-1091))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-695)) 53 (|has| |#1| (-189)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|) (-695)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1091)) 62 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-695)) 52 (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-184 |#1|) (-113) (-962)) (T -184)) -NIL -(-13 (-962) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2671 ((|#2| $) 9 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -2671 (|#2| |#1|))) (-186 |#2|) (-1130)) (T -185)) -NIL -((-3760 ((|#1| $) 7 T ELT)) (-2671 ((|#1| $) 6 T ELT))) -(((-186 |#1|) (-113) (-1130)) (T -186)) -((-3760 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -3760 (|t#1| $)) (-15 -2671 (|t#1| $)))) -(((-13) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $ (-695)) 44 T ELT) (($ $) 42 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-187 |#1|) (-113) (-962)) (T -187)) -NIL -(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-3760 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -2671 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-695))) (-15 -2671 (|#1| |#1|)) (-15 -3760 (|#1| |#1|))) (-189)) (T -188)) -NIL -((-3760 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2671 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-1 |#1| |#1|) (-696)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1092)) 63 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 61 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 60 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 59 (|has| |#1| (-813 (-1092))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-696)) 53 (|has| |#1| (-189)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|) (-696)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1092)) 62 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 58 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 57 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 56 (|has| |#1| (-813 (-1092))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-696)) 52 (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-184 |#1|) (-113) (-963)) (T -184)) +NIL +(-13 (-963) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-811 (-1092))) (-6 (-811 (-1092))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2672 ((|#2| $) 9 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2672 (|#2| |#1|))) (-186 |#2|) (-1131)) (T -185)) +NIL +((-3761 ((|#1| $) 7 T ELT)) (-2672 ((|#1| $) 6 T ELT))) +(((-186 |#1|) (-113) (-1131)) (T -186)) +((-3761 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3761 (|t#1| $)) (-15 -2672 (|t#1| $)))) +(((-13) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-696)) 43 T ELT) (($ $) 41 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $ (-696)) 44 T ELT) (($ $) 42 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-187 |#1|) (-113) (-963)) (T -187)) +NIL +(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-3761 (($ $) NIL T ELT) (($ $ (-696)) 9 T ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) 11 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -2672 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-696))) (-15 -2672 (|#1| |#1|)) (-15 -3761 (|#1| |#1|))) (-189)) (T -188)) +NIL +((-3761 (($ $) 7 T ELT) (($ $ (-696)) 10 T ELT)) (-2672 (($ $) 6 T ELT) (($ $ (-696)) 9 T ELT))) (((-189) (-113)) (T -189)) -((-3760 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))) -(-13 (-186 $) (-10 -8 (-15 -3760 ($ $ (-695))) (-15 -2671 ($ $ (-695))))) -(((-186 $) . T) ((-13) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-695)) 50 T ELT) (($ $) 48 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-695)) 51 T ELT) (($ $) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3761 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) (-2672 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696))))) +(-13 (-186 $) (-10 -8 (-15 -3761 ($ $ (-696))) (-15 -2672 ($ $ (-696))))) +(((-186 $) . T) ((-13) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-696)) 50 T ELT) (($ $) 48 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-696)) 51 T ELT) (($ $) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-190) (-113)) (T -190)) NIL -(-13 (-962) (-189)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-3726 (($) 30 T CONST)) (-3469 (((-3 $ "failed") $) 36 T ELT)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2668 (($) 39 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 40 T ELT) (($ $ (-695)) 37 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 41 T ELT))) +(-13 (-963) (-189)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-3727 (($) 30 T CONST)) (-3470 (((-3 $ "failed") $) 36 T ELT)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2412 (((-85) $) 38 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2669 (($) 39 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (** (($ $ (-832)) 40 T ELT) (($ $ (-696)) 37 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ $ $) 41 T ELT))) (((-191) (-113)) (T -191)) NIL -(-13 (-717) (-1062)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-1467 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3402 (($ $) 14 T ELT)) (-3532 (($ (-584 |#2|)) 10 T ELT)) (-3948 (((-773) $) 21 T ELT))) -(((-192 |#1| |#2|) (-10 -7 (-15 -3948 ((-773) |#1|)) (-15 -1467 (|#1| (-584 |#2|))) (-15 -1467 (|#1|)) (-15 -3532 (|#1| (-584 |#2|))) (-15 -3402 (|#1| |#1|))) (-193 |#2|) (-1014)) (T -192)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-193 |#1|) (-113) (-1014)) (T -193)) -((-1467 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3)))) (-3407 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1014)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1014))))) -(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1467 ($)) (-15 -1467 ($ (-584 |t#1|))) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3407 ($ |t#1| $)) (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -1571 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-1468 (((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-249 (-858 (-485)))) 42 T ELT))) -(((-194) (-10 -7 (-15 -1468 ((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-249 (-858 (-485))))))) (T -194)) -((-1468 (*1 *2 *3) (-12 (-5 *3 (-249 (-858 (-485)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695)))))) (-5 *1 (-194))))) -((-3138 (((-695)) 56 T ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3913 (((-107)) 62 T ELT)) (-3760 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3948 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-485)) 12 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) 15 T CONST)) (-3951 (($ $ |#3|) 59 T ELT))) -(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| (-485))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3948 ((-773) |#1|)) (-15 -3128 ((-695)) -3954) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -3948 (|#1| |#3|)) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-15 -3138 ((-695))) (-15 -3951 (|#1| |#1| |#3|)) (-15 -3913 ((-107))) (-15 -3948 ((-1180 |#3|) |#1|))) (-196 |#2| |#3|) (-695) (-1130)) (T -195)) -((-3913 (*1 *2) (-12 (-14 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3138 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3128 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) -((-2570 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) 71 (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) 127 (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#2|)) ELT)) (-2485 (($ $ $) 123 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ "failed") $ $) 74 (|has| |#2| (-104)) ELT)) (-3138 (((-695)) 112 (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) 46 (|has| $ (-1036 |#2|)) ELT)) (-3726 (($) 6 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 66 (-2564 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) 63 (-2564 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 60 (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) 65 (-2564 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) 62 (-2564 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 61 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 109 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 108 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 107 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 106 (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 139 (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 136 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 135 T ELT)) (-3469 (((-3 $ "failed") $) 86 (|has| |#2| (-962)) ELT)) (-2996 (($) 115 (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) 47 (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ (-485)) 45 T ELT)) (-3188 (((-85) $) 122 (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) 73 (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) 84 (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 116 (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) 134 T ELT)) (-3247 (((-85) |#2| $) 138 (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 117 (|has| |#2| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) 25 T ELT)) (-2011 (((-831) $) 114 (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) 111 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 110 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 105 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) 104 (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) 20 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-2401 (($ (-831)) 113 (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) 19 (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) 36 (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) 35 (|has| $ (-1036 |#2|)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 132 T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 21 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 39 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ (-485) |#2|) 44 T ELT) ((|#2| $ (-485)) 43 T ELT)) (-3838 ((|#2| $ $) 126 (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 128 T ELT)) (-3913 (((-107)) 125 (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) 102 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 100 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 96 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 95 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 94 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 92 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 91 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 90 (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) 137 (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) 133 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-1180 |#2|) $) 129 T ELT) (($ (-485)) 67 (OR (-2564 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) 64 (-2564 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 59 (|has| |#2| (-1014)) ELT) (((-773) $) 15 (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) 87 (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 131 T ELT)) (-3127 (((-85) $ $) 82 (|has| |#2| (-962)) ELT)) (-2662 (($) 70 (|has| |#2| (-23)) CONST)) (-2668 (($) 83 (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) 103 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 101 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 99 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 98 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 97 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 93 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 89 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 88 (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) 118 (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) 120 (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) 119 (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 121 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) 124 (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) 77 (|has| |#2| (-21)) ELT) (($ $) 76 (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) 68 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) 85 (|has| |#2| (-962)) ELT) (($ $ (-831)) 80 (|has| |#2| (-962)) ELT)) (* (($ $ $) 81 (|has| |#2| (-962)) ELT) (($ $ |#2|) 79 (|has| |#2| (-664)) ELT) (($ |#2| $) 78 (|has| |#2| (-664)) ELT) (($ (-485) $) 75 (|has| |#2| (-21)) ELT) (($ (-695) $) 72 (|has| |#2| (-23)) ELT) (($ (-831) $) 69 (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) 130 T ELT))) -(((-196 |#1| |#2|) (-113) (-695) (-1130)) (T -196)) -((-1469 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))) -(-13 (-539 (-485) |t#2|) (-318 |t#2|) (-553 (-1180 |t#2|)) (-10 -8 (-15 -1469 ($ (-1180 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3709 ($ (-831))) (-15 -3838 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1188 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-556 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-556 (-485)) OR (|has| |#2| (-962)) (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014)))) ((-556 |#2|) |has| |#2| (-1014)) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-553 (-773))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-553 (-1180 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-184 |#2|) |has| |#2| (-962)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-962))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-225 |#2|) |has| |#2| (-962)) ((-241 (-485) |#2|) . T) ((-243 (-485) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-962)) ((-355 |#2|) |has| |#2| (-1014)) ((-429 |#2|) . T) ((-539 (-485) |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-962)) ((-591 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-581 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1091)) OR (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-810 (-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) ((-812 (-1091)) OR (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-951 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-951 (-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ((-951 |#2|) |has| |#2| (-1014)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-962) |has| |#2| (-962)) ((-971) |has| |#2| (-962)) ((-1026) |has| |#2| (-962)) ((-1062) |has| |#2| (-962)) ((-1014) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1130) . T) ((-1188 |#2|) |has| |#2| (-312))) -((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#2|)) ELT)) (-2485 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 29 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2996 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ (-485)) 57 T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 20 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) 14 T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) 21 T ELT)) (-3838 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 18 T ELT)) (-3913 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#2|) $) 9 T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 12 (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2662 (($) 37 (|has| |#2| (-23)) CONST)) (-2668 (($) 41 (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 67 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-197 |#1| |#2|) (-196 |#1| |#2|) (-695) (-1130)) (T -197)) -NIL -((-3843 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3844 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3960 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) -(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3843 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3844 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3960 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-695) (-1130) (-1130)) (T -198)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) -((-1473 (((-485) (-584 (-1074))) 36 T ELT) (((-485) (-1074)) 29 T ELT)) (-1472 (((-1186) (-584 (-1074))) 40 T ELT) (((-1186) (-1074)) 39 T ELT)) (-1470 (((-1074)) 16 T ELT)) (-1471 (((-1074) (-485) (-1074)) 23 T ELT)) (-3775 (((-584 (-1074)) (-584 (-1074)) (-485) (-1074)) 37 T ELT) (((-1074) (-1074) (-485) (-1074)) 35 T ELT)) (-2622 (((-584 (-1074)) (-584 (-1074))) 15 T ELT) (((-584 (-1074)) (-1074)) 11 T ELT))) -(((-199) (-10 -7 (-15 -2622 ((-584 (-1074)) (-1074))) (-15 -2622 ((-584 (-1074)) (-584 (-1074)))) (-15 -1470 ((-1074))) (-15 -1471 ((-1074) (-485) (-1074))) (-15 -3775 ((-1074) (-1074) (-485) (-1074))) (-15 -3775 ((-584 (-1074)) (-584 (-1074)) (-485) (-1074))) (-15 -1472 ((-1186) (-1074))) (-15 -1472 ((-1186) (-584 (-1074)))) (-15 -1473 ((-485) (-1074))) (-15 -1473 ((-485) (-584 (-1074)))))) (T -199)) -((-1473 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) (-3775 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) (-3775 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1470 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074))))) -((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT))) -(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-201)) (T -200)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 55 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 59 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 56 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 58 T ELT) (($ $ (-350 (-485))) 57 T ELT))) +(-13 (-718) (-1063)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-718) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-1468 (($) 12 T ELT) (($ (-585 |#2|)) NIL T ELT)) (-3403 (($ $) 14 T ELT)) (-3533 (($ (-585 |#2|)) 10 T ELT)) (-3949 (((-774) $) 21 T ELT))) +(((-192 |#1| |#2|) (-10 -7 (-15 -3949 ((-774) |#1|)) (-15 -1468 (|#1| (-585 |#2|))) (-15 -1468 (|#1|)) (-15 -3533 (|#1| (-585 |#2|))) (-15 -3403 (|#1| |#1|))) (-193 |#2|) (-1015)) (T -192)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 43 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 47 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 |#1|)) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 46 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-193 |#1|) (-113) (-1015)) (T -193)) +((-1468 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1015)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-193 *3)))) (-3408 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1015)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1015)))) (-1572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1015))))) +(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1468 ($)) (-15 -1468 ($ (-585 |t#1|))) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3408 ($ |t#1| $)) (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -1572 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-1469 (((-2 (|:| |varOrder| (-585 (-1092))) (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) (|:| |hom| (-585 (-1181 (-696))))) (-249 (-859 (-486)))) 42 T ELT))) +(((-194) (-10 -7 (-15 -1469 ((-2 (|:| |varOrder| (-585 (-1092))) (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) (|:| |hom| (-585 (-1181 (-696))))) (-249 (-859 (-486))))))) (T -194)) +((-1469 (*1 *2 *3) (-12 (-5 *3 (-249 (-859 (-486)))) (-5 *2 (-2 (|:| |varOrder| (-585 (-1092))) (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) (|:| |hom| (-585 (-1181 (-696)))))) (-5 *1 (-194))))) +((-3139 (((-696)) 56 T ELT)) (-2281 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) 53 T ELT) (((-632 |#3|) (-632 $)) 44 T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3914 (((-107)) 62 T ELT)) (-3761 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3949 (((-1181 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-774) $) NIL T ELT) (($ (-486)) 12 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) 15 T CONST)) (-3952 (($ $ |#3|) 59 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3949 (|#1| (-350 (-486)))) (-15 -3949 (|#1| (-486))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3949 ((-774) |#1|)) (-15 -3129 ((-696)) -3955) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -3949 (|#1| |#3|)) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2281 ((-632 |#3|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 |#1|) (-1181 |#1|))) (-15 -3139 ((-696))) (-15 -3952 (|#1| |#1| |#3|)) (-15 -3914 ((-107))) (-15 -3949 ((-1181 |#3|) |#1|))) (-196 |#2| |#3|) (-696) (-1131)) (T -195)) +((-3914 (*1 *2) (-12 (-14 *4 (-696)) (-4 *5 (-1131)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3139 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3129 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) +((-2571 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) 72 (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) 128 (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) 124 (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ "failed") $ $) 75 (|has| |#2| (-104)) ELT)) (-3139 (((-696)) 113 (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) 47 (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) 6 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 67 (-2565 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) 64 (-2565 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) 66 (-2565 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) 63 (-2565 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) 62 (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) 110 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 109 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 108 (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) 107 (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 140 (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 136 T ELT)) (-3470 (((-3 $ "failed") $) 87 (|has| |#2| (-963)) ELT)) (-2997 (($) 116 (|has| |#2| (-320)) ELT)) (-1578 ((|#2| $ (-486) |#2|) 48 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) 46 T ELT)) (-3189 (((-85) $) 123 (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) 74 (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) 85 (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 117 (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) 135 T ELT)) (-3248 (((-85) |#2| $) 139 (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 118 (|has| |#2| (-758)) ELT)) (-3961 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-2012 (((-832) $) 115 (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) 112 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 111 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) 106 (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) 105 (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) 21 (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-2402 (($ (-832)) 114 (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) 20 (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) 37 (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#2|) 36 (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 133 T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ (-486) |#2|) 45 T ELT) ((|#2| $ (-486)) 44 T ELT)) (-3839 ((|#2| $ $) 127 (|has| |#2| (-963)) ELT)) (-1470 (($ (-1181 |#2|)) 129 T ELT)) (-3914 (((-107)) 126 (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) 103 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) 101 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 97 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) 96 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) 95 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) 93 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) 91 (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) 138 (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) 134 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-1181 |#2|) $) 130 T ELT) (($ (-486)) 68 (OR (-2565 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) 65 (-2565 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) 60 (|has| |#2| (-1015)) ELT) (((-774) $) 16 (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) 88 (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 132 T ELT)) (-3128 (((-85) $ $) 83 (|has| |#2| (-963)) ELT)) (-2663 (($) 71 (|has| |#2| (-23)) CONST)) (-2669 (($) 84 (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) 104 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) 102 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 100 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) 99 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) 98 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) 94 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) 89 (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) 119 (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) 121 (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) 120 (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 122 (|has| |#2| (-758)) ELT)) (-3952 (($ $ |#2|) 125 (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) 78 (|has| |#2| (-21)) ELT) (($ $) 77 (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) 69 (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) 86 (|has| |#2| (-963)) ELT) (($ $ (-832)) 81 (|has| |#2| (-963)) ELT)) (* (($ $ $) 82 (|has| |#2| (-963)) ELT) (($ $ |#2|) 80 (|has| |#2| (-665)) ELT) (($ |#2| $) 79 (|has| |#2| (-665)) ELT) (($ (-486) $) 76 (|has| |#2| (-21)) ELT) (($ (-696) $) 73 (|has| |#2| (-23)) ELT) (($ (-832) $) 70 (|has| |#2| (-25)) ELT)) (-3960 (((-696) $) 131 T ELT))) +(((-196 |#1| |#2|) (-113) (-696) (-1131)) (T -196)) +((-1470 (*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1131)) (-4 *1 (-196 *3 *4)))) (-3710 (*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-196 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1131)))) (-3839 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-963))))) +(-13 (-540 (-486) |t#2|) (-318 |t#2|) (-554 (-1181 |t#2|)) (-10 -8 (-15 -1470 ($ (-1181 |t#2|))) (IF (|has| |t#2| (-1015)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-963)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3710 ($ (-832))) (-15 -3839 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-665)) (-6 (-584 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-656 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#2| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#2| (-719)) (-6 (-719)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1189 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-557 (-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ((-557 (-486)) OR (|has| |#2| (-963)) (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015)))) ((-557 |#2|) |has| |#2| (-1015)) ((-554 (-774)) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-554 (-774))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-554 (-1181 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) (-12 (|has| |#2| (-190)) (|has| |#2| (-963)))) ((-184 |#2|) |has| |#2| (-963)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-963))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) (-12 (|has| |#2| (-190)) (|has| |#2| (-963)))) ((-225 |#2|) |has| |#2| (-963)) ((-241 (-486) |#2|) . T) ((-243 (-486) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-963)) ((-355 |#2|) |has| |#2| (-1015)) ((-381 |#2|) . T) ((-430 |#2|) . T) ((-540 (-486) |#2|) . T) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-590 (-486)) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-590 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-963)) ((-592 (-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ((-592 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-592 $) |has| |#2| (-963)) ((-584 |#2|) OR (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-582 (-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ((-582 |#2|) |has| |#2| (-963)) ((-656 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-665) |has| |#2| (-963)) ((-718) |has| |#2| (-719)) ((-719) |has| |#2| (-719)) ((-720) |has| |#2| (-719)) ((-723) |has| |#2| (-719)) ((-758) OR (|has| |#2| (-758)) (|has| |#2| (-719))) ((-761) OR (|has| |#2| (-758)) (|has| |#2| (-719))) ((-808 $ (-1092)) OR (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) ((-811 (-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) ((-813 (-1092)) OR (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) ((-952 (-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ((-952 (-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ((-952 |#2|) |has| |#2| (-1015)) ((-965 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-970 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-963) |has| |#2| (-963)) ((-972) |has| |#2| (-963)) ((-1027) |has| |#2| (-963)) ((-1063) |has| |#2| (-963)) ((-1015) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1131) . T) ((-1189 |#2|) |has| |#2| (-312))) +((-2571 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) 63 (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) 69 (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) 29 (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 59 (|has| |#2| (-963)) ELT)) (-2997 (($) NIL (|has| |#2| (-320)) ELT)) (-1578 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) 57 T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) 20 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) 14 T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) NIL (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) NIL (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) 21 T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1470 (($ (-1181 |#2|)) 18 T ELT)) (-3914 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1181 |#2|) $) 9 T ELT) (($ (-486)) NIL (OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) 12 (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2663 (($) 37 (|has| |#2| (-23)) CONST)) (-2669 (($) 41 (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 67 (|has| |#2| (-758)) ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) 47 (|has| |#2| (-963)) ELT) (($ $ |#2|) 45 (|has| |#2| (-665)) ELT) (($ |#2| $) 46 (|has| |#2| (-665)) ELT) (($ (-486) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-197 |#1| |#2|) (-196 |#1| |#2|) (-696) (-1131)) (T -197)) +NIL +((-3844 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3845 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3961 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) +(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3844 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3845 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3961 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-696) (-1131) (-1131)) (T -198)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-198 *5 *6 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-696)) (-4 *7 (-1131)) (-4 *5 (-1131)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) +((-1474 (((-486) (-585 (-1075))) 36 T ELT) (((-486) (-1075)) 29 T ELT)) (-1473 (((-1187) (-585 (-1075))) 40 T ELT) (((-1187) (-1075)) 39 T ELT)) (-1471 (((-1075)) 16 T ELT)) (-1472 (((-1075) (-486) (-1075)) 23 T ELT)) (-3776 (((-585 (-1075)) (-585 (-1075)) (-486) (-1075)) 37 T ELT) (((-1075) (-1075) (-486) (-1075)) 35 T ELT)) (-2623 (((-585 (-1075)) (-585 (-1075))) 15 T ELT) (((-585 (-1075)) (-1075)) 11 T ELT))) +(((-199) (-10 -7 (-15 -2623 ((-585 (-1075)) (-1075))) (-15 -2623 ((-585 (-1075)) (-585 (-1075)))) (-15 -1471 ((-1075))) (-15 -1472 ((-1075) (-486) (-1075))) (-15 -3776 ((-1075) (-1075) (-486) (-1075))) (-15 -3776 ((-585 (-1075)) (-585 (-1075)) (-486) (-1075))) (-15 -1473 ((-1187) (-1075))) (-15 -1473 ((-1187) (-585 (-1075)))) (-15 -1474 ((-486) (-1075))) (-15 -1474 ((-486) (-585 (-1075)))))) (T -199)) +((-1474 (*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-486)) (-5 *1 (-199)))) (-1474 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1187)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-199)))) (-3776 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 (-1075))) (-5 *3 (-486)) (-5 *4 (-1075)) (-5 *1 (-199)))) (-3776 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199)))) (-1472 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199)))) (-1471 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-199)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)))) (-2623 (*1 *2 *3) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)) (-5 *3 (-1075))))) +((** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 18 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-486)) $) 25 T ELT) (($ $ (-350 (-486))) NIL T ELT))) +(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-486))) (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-201)) (T -200)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 55 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 59 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 56 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-486)) $) 58 T ELT) (($ $ (-350 (-486))) 57 T ELT))) (((-201) (-113)) (T -201)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) (-2486 (*1 *1 *1) (-4 *1 (-201)))) -(-13 (-246) (-38 (-350 (-485))) (-10 -8 (-15 ** ($ $ (-485))) (-15 -2486 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-246) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-655 (-350 (-485))) . T) ((-664) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3799 (($ $) 53 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-1475 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-1474 (($ $ $) 48 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1477 (($ $) 52 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-1476 (($ $) 51 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 55 T ELT)) (-3180 (($ $) 54 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3402 (($ $) 9 T ELT)) (-3793 (($ $ $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-202 |#1|) (-113) (-1130)) (T -202)) -((-3800 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1474 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3800 (|t#1| $)) (-15 -3180 ($ $)) (-15 -3799 ($ $)) (-15 -1477 ($ $)) (-15 -1476 ($ $)) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3793 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -1474 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3799 (($ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3787 (($ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2911 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-3801 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1354 (($ $) 7 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3408 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3421 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3520 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3536 (($ |#1|) NIL T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3611 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3446 (((-85) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) ((|#1| $ (-485) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1478 (($ (-584 |#1|)) 22 T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3792 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3793 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3804 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3948 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 14 T ELT))) -(((-203 |#1|) (-13 (-609 |#1|) (-430 (-584 |#1|)) (-10 -8 (-15 -1478 ($ (-584 |#1|))) (-15 -3802 ($ $ "unique")) (-15 -3802 ($ $ "sort")) (-15 -3802 ((-695) $ "count")))) (-757)) (T -203)) -((-1478 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757))))) -((-1479 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT))) -(((-204 |#1|) (-10 -7 (-15 -1479 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-13 (-664) (-320) (-10 -7 (-15 ** (|#1| |#1| (-485)))))) (T -204)) -((-1479 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-695)) (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-695)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 54 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 53 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 52 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-695)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 55 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 51 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 50 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 49 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-205 |#1|) (-113) (-962)) (T -205)) -NIL -(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-809 |t#1| (-1091))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-655 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-809 |#1| (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1941 (($ $ (-584 (-485))) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-197 (-3959 |#1|) (-695)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-197 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 (((-197 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-197 (-3959 |#1|) (-695)) (-197 (-3959 |#1|) (-695))) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3950 (((-197 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-197 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-206 |#1| |#2|) (-13 (-862 |#2| (-197 (-3959 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1941 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -206)) -((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1091))) (-4 *4 (-962))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1480 (((-1186) $) 17 T ELT)) (-1482 (((-158 (-208)) $) 11 T ELT)) (-1481 (($ (-158 (-208))) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1483 (((-208) $) 7 T ELT)) (-3948 (((-773) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT))) -(((-207) (-13 (-1014) (-10 -8 (-15 -1483 ((-208) $)) (-15 -1482 ((-158 (-208)) $)) (-15 -1481 ($ (-158 (-208)))) (-15 -1480 ((-1186) $))))) (T -207)) -((-1483 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3544 (((-447) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1484 (((-282) $) 7 T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-208) (-13 (-160) (-553 (-157)) (-10 -8 (-15 -1484 ((-282) $))))) (T -208)) -((-1484 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 (((-1096) $ (-695)) 14 T ELT)) (-3948 (((-773) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT)) (-3959 (((-695) $) 11 T ELT))) -(((-209) (-13 (-1014) (-241 (-695) (-1096)) (-10 -8 (-15 -3959 ((-695) $))))) (T -209)) -((-3959 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3709 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#4|)) ELT)) (-2485 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#4| (-320)) ELT)) (-3790 ((|#4| $ (-485) |#4|) NIL (|has| $ (-1036 |#4|)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3158 ((|#4| $) NIL (|has| |#4| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-631 $) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2996 (($) NIL (|has| |#4| (-320)) ELT)) (-1577 ((|#4| $ (-485) |#4|) NIL (|has| $ (-1036 |#4|)) ELT)) (-3114 ((|#4| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#4| (-718)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#4| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2610 (((-584 |#4|) $) NIL T ELT)) (-3247 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-3960 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#4| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-1180 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#4| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#4| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#4|) NIL (|has| $ (-1036 |#4|)) ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-2206 (((-584 |#4|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#4| $ (-485) |#4|) NIL T ELT) ((|#4| $ (-485)) 12 T ELT)) (-3838 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1469 (($ (-1180 |#4|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3760 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3128 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#4| (-962)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL (|has| |#4| (-962)) CONST)) (-2671 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3951 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-591 |#2|)) (T -210)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3709 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#3|)) ELT)) (-2485 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3790 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3158 ((|#3| $) NIL (|has| |#3| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2996 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3114 ((|#3| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2610 (((-584 |#3|) $) NIL T ELT)) (-3247 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3960 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) 11 T ELT)) (-3838 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3760 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-1731 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3128 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL (|has| |#3| (-962)) CONST)) (-2671 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3951 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -211)) -NIL -((-1489 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1523 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1485 (($ $) 76 T ELT)) (-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3774 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1524 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1487 ((|#4| $) 69 T ELT)) (-1488 (((-85) $) 67 T ELT)) (-1486 (($ $) 75 T ELT)) (-3770 (($ $ (-584 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3760 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1490 (((-584 |#3|) $) 86 T ELT)) (-3950 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT))) -(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3948 (|#1| |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3770 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#3| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#3| |#1|)) (-15 -1524 ((-1 |#1| (-695)) |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1487 (|#4| |#1|)) (-15 -1488 ((-85) |#1|)) (-15 -1523 ((-695) |#1| |#3|)) (-15 -1489 ((-584 (-695)) |#1| |#3|)) (-15 -1523 ((-695) |#1|)) (-15 -1489 ((-584 (-695)) |#1|)) (-15 -3950 ((-695) |#1| |#3|)) (-15 -3774 ((-695) |#1|)) (-15 -3774 ((-695) |#1| |#3|)) (-15 -1490 ((-584 |#3|) |#1|)) (-15 -1524 ((-1 |#1| (-695)) |#3|)) (-15 -3948 (|#1| |#3|)) (-15 -3159 ((-3 |#3| #1="failed") |#1|)) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3950 ((-584 (-695)) |#1| (-584 |#4|))) (-15 -3950 ((-695) |#1| |#4|)) (-15 -3948 (|#1| |#4|)) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#4| |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#4| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3950 (|#5| |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3760 (|#1| |#1| |#4|)) (-15 -3760 (|#1| |#1| (-584 |#4|))) (-15 -3760 (|#1| |#1| |#4| (-695))) (-15 -3760 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-962) (-757) (-228 |#3|) (-718)) (T -212)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1489 (((-584 (-695)) $) 251 T ELT) (((-584 (-695)) $ |#2|) 249 T ELT)) (-1523 (((-695) $) 250 T ELT) (((-695) $ |#2|) 248 T ELT)) (-3083 (((-584 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-1485 (($ $) 244 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3758 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3961 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#4| $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ |#2|) 254 T ELT) (((-695) $) 253 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-2822 ((|#4| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1524 (((-1 $ (-695)) |#2|) 256 T ELT) (((-1 $ (-695)) $) 243 (|has| |#1| (-190)) ELT)) (-3084 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1487 ((|#3| $) 246 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1488 (((-85) $) 247 T ELT)) (-2825 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-1486 (($ $) 245 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3759 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-695)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 231 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 230 (|has| |#1| (-812 (-1091))) ELT)) (-1490 (((-584 |#2|) $) 255 T ELT)) (-3950 ((|#4| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT) (((-695) $ |#2|) 252 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-695)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 228 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 227 (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-213 |#1| |#2| |#3| |#4|) (-113) (-962) (-757) (-228 |t#2|) (-718)) (T -213)) -((-1524 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3774 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1524 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6))))) -(-13 (-862 |t#1| |t#4| |t#3|) (-184 |t#1|) (-951 |t#2|) (-10 -8 (-15 -1524 ((-1 $ (-695)) |t#2|)) (-15 -1490 ((-584 |t#2|) $)) (-15 -3774 ((-695) $ |t#2|)) (-15 -3774 ((-695) $)) (-15 -3950 ((-695) $ |t#2|)) (-15 -1489 ((-584 (-695)) $)) (-15 -1523 ((-695) $)) (-15 -1489 ((-584 (-695)) $ |t#2|)) (-15 -1523 ((-695) $ |t#2|)) (-15 -1488 ((-85) $)) (-15 -1487 (|t#3| $)) (-15 -1486 ($ $)) (-15 -1485 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-456 |t#2| |t#1|)) (-6 (-456 |t#2| $)) (-6 (-260 $)) (-15 -1524 ((-1 $ (-695)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#2| |#1|) |has| |#1| (-190)) ((-456 |#2| $) |has| |#1| (-190)) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-807 $ |#3|) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-810 |#3|) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822))) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) 61 T ELT)) (-3325 ((|#1| $) 40 T ELT)) (-3726 (($) 6 T CONST)) (-3004 (($ $) 67 T ELT)) (-2298 (($ $) 55 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-3327 ((|#1| |#1| $) 42 T ELT)) (-3326 ((|#1| $) 41 T ELT)) (-2610 (((-584 |#1|) $) 47 T ELT)) (-3247 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3835 (((-695) $) 68 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-1494 ((|#1| |#1| $) 59 T ELT)) (-1493 ((|#1| |#1| $) 58 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-2605 (((-695) $) 62 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) 69 T ELT)) (-1492 ((|#1| $) 57 T ELT)) (-1491 ((|#1| $) 56 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3006 ((|#1| |#1| $) 65 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3005 ((|#1| $) 66 T ELT)) (-1497 (($) 64 T ELT) (($ (-584 |#1|)) 63 T ELT)) (-3324 (((-695) $) 39 T ELT)) (-1731 (((-695) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 46 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 60 T ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3002 ((|#1| $) 70 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-214 |#1|) (-113) (-1130)) (T -214)) -((-1497 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1494 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(-13 (-1035 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1497 ($)) (-15 -1497 ($ (-584 |t#1|))) (-15 -2605 ((-695) $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| |t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -2298 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-909 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1035 |#1|) . T) ((-1130) . T)) -((-1498 (((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 75 T ELT) (((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 74 T ELT) (((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330))) 65 T ELT) (((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 64 T ELT) (((-1048 (-179)) (-790 |#1|) (-1005 (-330))) 56 T ELT) (((-1048 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 55 T ELT)) (-1505 (((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 78 T ELT) (((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 77 T ELT) (((-1184) |#1| (-1005 (-330)) (-1005 (-330))) 68 T ELT) (((-1184) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 67 T ELT) (((-1184) (-790 |#1|) (-1005 (-330))) 60 T ELT) (((-1184) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 59 T ELT) (((-1183) (-788 |#1|) (-1005 (-330))) 47 T ELT) (((-1183) (-788 |#1|) (-1005 (-330)) (-584 (-221))) 46 T ELT) (((-1183) |#1| (-1005 (-330))) 38 T ELT) (((-1183) |#1| (-1005 (-330)) (-584 (-221))) 36 T ELT))) -(((-215 |#1|) (-10 -7 (-15 -1505 ((-1183) |#1| (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) |#1| (-1005 (-330)))) (-15 -1505 ((-1183) (-788 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-788 |#1|) (-1005 (-330)))) (-15 -1505 ((-1184) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-790 |#1|) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-790 |#1|) (-1005 (-330)))) (-15 -1505 ((-1184) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1505 ((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))))) (-13 (-554 (-474)) (-1014))) (T -215)) -((-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))) -((-1499 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1498 (((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 178 T ELT) (((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 176 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 181 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 177 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 169 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 168 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 150 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 148 T ELT) (((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330))) 149 T ELT) (((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 146 T ELT)) (-1505 (((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 180 T ELT) (((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 179 T ELT) (((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 183 T ELT) (((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 182 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 171 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 170 T ELT) (((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 156 T ELT) (((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 155 T ELT) (((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330))) 154 T ELT) (((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 153 T ELT) (((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330))) 118 T ELT) (((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 117 T ELT) (((-1183) (-1 (-179) (-179)) (-1002 (-330))) 112 T ELT) (((-1183) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221))) 110 T ELT))) -(((-216) (-10 -7 (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1002 (-330)))) (-15 -1505 ((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1505 ((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1505 ((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1499 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) -((-1499 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))) -((-1505 (((-1183) (-249 |#2|) (-1091) (-1091) (-584 (-221))) 102 T ELT))) -(((-217 |#1| |#2|) (-10 -7 (-15 -1505 ((-1183) (-249 |#2|) (-1091) (-1091) (-584 (-221))))) (-13 (-496) (-757) (-951 (-485))) (-364 |#1|)) (T -217)) -((-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183)) (-5 *1 (-217 *6 *7))))) -((-1502 (((-485) (-485)) 71 T ELT)) (-1503 (((-485) (-485)) 72 T ELT)) (-1504 (((-179) (-179)) 73 T ELT)) (-1501 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179))) 70 T ELT)) (-1500 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85)) 68 T ELT))) -(((-218) (-10 -7 (-15 -1500 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85))) (-15 -1501 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -1502 ((-485) (-485))) (-15 -1503 ((-485) (-485))) (-15 -1504 ((-179) (-179))))) (T -218)) -((-1504 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *2 (-1184)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218))))) -((-3948 (((-1005 (-330)) (-1005 (-265 |#1|))) 16 T ELT))) -(((-219 |#1|) (-10 -7 (-15 -3948 ((-1005 (-330)) (-1005 (-265 |#1|))))) (-13 (-757) (-496) (-554 (-330)))) (T -219)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330)))) (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4))))) -((-1505 (((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221))) 23 T ELT) (((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179))) 24 T ELT) (((-1183) (-584 (-855 (-179))) (-584 (-221))) 16 T ELT) (((-1183) (-584 (-855 (-179)))) 17 T ELT) (((-1183) (-584 (-179)) (-584 (-179)) (-584 (-221))) 20 T ELT) (((-1183) (-584 (-179)) (-584 (-179))) 21 T ELT))) -(((-220) (-10 -7 (-15 -1505 ((-1183) (-584 (-179)) (-584 (-179)))) (-15 -1505 ((-1183) (-584 (-179)) (-584 (-179)) (-584 (-221)))) (-15 -1505 ((-1183) (-584 (-855 (-179))))) (-15 -1505 ((-1183) (-584 (-855 (-179))) (-584 (-221)))) (-15 -1505 ((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)))) (-15 -1505 ((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221)))))) (T -220)) -((-1505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3883 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1518 (($ (-831)) 81 T ELT)) (-1517 (($ (-831)) 80 T ELT)) (-1776 (($ (-584 (-330))) 87 T ELT)) (-1521 (($ (-330)) 66 T ELT)) (-1520 (($ (-831)) 82 T ELT)) (-1514 (($ (-85)) 33 T ELT)) (-3885 (($ (-1074)) 28 T ELT)) (-1513 (($ (-1074)) 29 T ELT)) (-1519 (($ (-1048 (-179))) 76 T ELT)) (-1932 (($ (-584 (-1002 (-330)))) 72 T ELT)) (-1507 (($ (-584 (-1002 (-330)))) 68 T ELT) (($ (-584 (-1002 (-350 (-485))))) 71 T ELT)) (-1510 (($ (-330)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1506 (((-85) (-584 $) (-1091)) 100 T ELT)) (-1522 (((-3 (-51) "failed") (-584 $) (-1091)) 102 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1509 (($ (-330)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3226 (($ (-1 (-855 (-179)) (-855 (-179)))) 65 T ELT)) (-2267 (($ (-1 (-855 (-179)) (-855 (-179)))) 83 T ELT)) (-1508 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3948 (((-773) $) 93 T ELT)) (-1511 (($ (-85)) 34 T ELT) (($ (-584 (-1002 (-330)))) 60 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1927 (($ (-85)) 35 T ELT)) (-3058 (((-85) $ $) 97 T ELT))) -(((-221) (-13 (-1014) (-10 -8 (-15 -1927 ($ (-85))) (-15 -1511 ($ (-85))) (-15 -3883 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3885 ($ (-1074))) (-15 -1513 ($ (-1074))) (-15 -1514 ($ (-85))) (-15 -1511 ($ (-584 (-1002 (-330))))) (-15 -3226 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1510 ($ (-330))) (-15 -1510 ($ (-784))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-784))) (-15 -1508 ($ (-1 (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1521 ($ (-330))) (-15 -1507 ($ (-584 (-1002 (-330))))) (-15 -1507 ($ (-584 (-1002 (-350 (-485)))))) (-15 -1932 ($ (-584 (-1002 (-330))))) (-15 -1519 ($ (-1048 (-179)))) (-15 -1517 ($ (-831))) (-15 -1518 ($ (-831))) (-15 -1520 ($ (-831))) (-15 -2267 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1776 ($ (-584 (-330)))) (-15 -1522 ((-3 (-51) "failed") (-584 $) (-1091))) (-15 -1506 ((-85) (-584 $) (-1091)))))) (T -221)) -((-1927 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221)))) (-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221))))) -((-3883 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1518 (((-831) (-584 (-221)) (-831)) 52 T ELT)) (-1517 (((-831) (-584 (-221)) (-831)) 51 T ELT)) (-3853 (((-584 (-330)) (-584 (-221)) (-584 (-330))) 68 T ELT)) (-1521 (((-330) (-584 (-221)) (-330)) 57 T ELT)) (-1520 (((-831) (-584 (-221)) (-831)) 53 T ELT)) (-1514 (((-85) (-584 (-221)) (-85)) 27 T ELT)) (-3885 (((-1074) (-584 (-221)) (-1074)) 19 T ELT)) (-1513 (((-1074) (-584 (-221)) (-1074)) 26 T ELT)) (-1519 (((-1048 (-179)) (-584 (-221))) 46 T ELT)) (-1932 (((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330)))) 40 T ELT)) (-1515 (((-784) (-584 (-221)) (-784)) 32 T ELT)) (-1516 (((-784) (-584 (-221)) (-784)) 33 T ELT)) (-2267 (((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179)))) 63 T ELT)) (-1512 (((-85) (-584 (-221)) (-85)) 14 T ELT)) (-1927 (((-85) (-584 (-221)) (-85)) 13 T ELT))) -(((-222) (-10 -7 (-15 -1927 ((-85) (-584 (-221)) (-85))) (-15 -1512 ((-85) (-584 (-221)) (-85))) (-15 -3883 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3885 ((-1074) (-584 (-221)) (-1074))) (-15 -1513 ((-1074) (-584 (-221)) (-1074))) (-15 -1514 ((-85) (-584 (-221)) (-85))) (-15 -1515 ((-784) (-584 (-221)) (-784))) (-15 -1516 ((-784) (-584 (-221)) (-784))) (-15 -1932 ((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330))))) (-15 -1517 ((-831) (-584 (-221)) (-831))) (-15 -1518 ((-831) (-584 (-221)) (-831))) (-15 -1519 ((-1048 (-179)) (-584 (-221)))) (-15 -1520 ((-831) (-584 (-221)) (-831))) (-15 -1521 ((-330) (-584 (-221)) (-330))) (-15 -2267 ((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179))))) (-15 -3853 ((-584 (-330)) (-584 (-221)) (-584 (-330)))))) (T -222)) -((-3853 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1932 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3885 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3883 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1927 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -((-1522 (((-3 |#1| "failed") (-584 (-221)) (-1091)) 17 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -1522 ((-3 |#1| "failed") (-584 (-221)) (-1091)))) (-1130)) (T -223)) -((-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) (-4 *2 (-1130))))) -((-3760 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2671 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -2671 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -2671 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2671 (|#1| |#1| (-584 (-1091)))) (-15 -2671 (|#1| |#1| (-1091) (-695))) (-15 -2671 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2671 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -2671 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1130)) (T -224)) -NIL -((-3760 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 16 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 15 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 14 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 12 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2671 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 19 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 18 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 17 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 13 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) -(((-225 |#1|) (-113) (-1130)) (T -225)) -((-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -3760 ($ $ (-1 |t#1| |t#1|))) (-15 -3760 ($ $ (-1 |t#1| |t#1|) (-695))) (-15 -2671 ($ $ (-1 |t#1| |t#1|))) (-15 -2671 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-812 (-1091))) |%noBranch|))) -(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-3085 (((-1086 $) $ |#3|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 23 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3758 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#3|) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ELT)) (-3774 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) |#3|) NIL T ELT) (($ (-1086 $) |#3|) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) NIL T ELT)) (-2822 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1626 (($ (-1 (-470 |#3|) (-470 |#3|)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 |#3| #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 ((|#3| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3759 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 |#2|) $) NIL T ELT)) (-3950 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#1| |#2|)) 32 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-470 |#3|)) (-951 (-1040 |#1| |#2|))) (-962) (-757) (-228 |#2|)) (T -226)) -NIL -((-1523 (((-695) $) 37 T ELT)) (-3159 (((-3 |#2| "failed") $) 22 T ELT)) (-3158 ((|#2| $) 33 T ELT)) (-3760 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3948 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3058 (((-85) $ $) 26 T ELT)) (-2687 (((-85) $ $) 36 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -1523 ((-695) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3159 ((-3 |#2| "failed") |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -2687 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-228 |#2|) (-757)) (T -227)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-1523 (((-695) $) 26 T ELT)) (-3833 ((|#1| $) 27 T ELT)) (-3159 (((-3 |#1| "failed") $) 31 T ELT)) (-3158 ((|#1| $) 32 T ELT)) (-3774 (((-695) $) 28 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-1524 (($ |#1| (-695)) 29 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2671 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT))) -(((-228 |#1|) (-113) (-757)) (T -228)) -((-1524 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))) -(-13 (-757) (-189) (-951 |t#1|) (-10 -8 (-15 -1524 ($ |t#1| (-695))) (-15 -3774 ((-695) $)) (-15 -3833 (|t#1| $)) (-15 -1523 ((-695) $)))) -(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1526 (((-584 (-485)) $) 28 T ELT)) (-3950 (((-695) $) 26 T ELT)) (-3948 (((-773) $) 32 T ELT) (($ (-584 (-485))) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1525 (($ (-695)) 29 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 18 T ELT))) -(((-229) (-13 (-757) (-10 -8 (-15 -3948 ($ (-584 (-485)))) (-15 -3950 ((-695) $)) (-15 -1526 ((-584 (-485)) $)) (-15 -1525 ($ (-695)))))) (T -229)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229))))) -((-3494 ((|#2| |#2|) 77 T ELT)) (-3641 ((|#2| |#2|) 65 T ELT)) (-1555 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3492 ((|#2| |#2|) 75 T ELT)) (-3640 ((|#2| |#2|) 63 T ELT)) (-3496 ((|#2| |#2|) 79 T ELT)) (-3639 ((|#2| |#2|) 67 T ELT)) (-3629 ((|#2|) 46 T ELT)) (-3597 (((-86) (-86)) 97 T ELT)) (-3944 ((|#2| |#2|) 61 T ELT)) (-1556 (((-85) |#2|) 146 T ELT)) (-1545 ((|#2| |#2|) 193 T ELT)) (-1533 ((|#2| |#2|) 169 T ELT)) (-1528 ((|#2|) 59 T ELT)) (-1527 ((|#2|) 58 T ELT)) (-1543 ((|#2| |#2|) 189 T ELT)) (-1531 ((|#2| |#2|) 165 T ELT)) (-1547 ((|#2| |#2|) 197 T ELT)) (-1535 ((|#2| |#2|) 173 T ELT)) (-1530 ((|#2| |#2|) 161 T ELT)) (-1529 ((|#2| |#2|) 163 T ELT)) (-1548 ((|#2| |#2|) 199 T ELT)) (-1536 ((|#2| |#2|) 175 T ELT)) (-1546 ((|#2| |#2|) 195 T ELT)) (-1534 ((|#2| |#2|) 171 T ELT)) (-1544 ((|#2| |#2|) 191 T ELT)) (-1532 ((|#2| |#2|) 167 T ELT)) (-1551 ((|#2| |#2|) 205 T ELT)) (-1539 ((|#2| |#2|) 181 T ELT)) (-1549 ((|#2| |#2|) 201 T ELT)) (-1537 ((|#2| |#2|) 177 T ELT)) (-1553 ((|#2| |#2|) 209 T ELT)) (-1541 ((|#2| |#2|) 185 T ELT)) (-1554 ((|#2| |#2|) 211 T ELT)) (-1542 ((|#2| |#2|) 187 T ELT)) (-1552 ((|#2| |#2|) 207 T ELT)) (-1540 ((|#2| |#2|) 183 T ELT)) (-1550 ((|#2| |#2|) 203 T ELT)) (-1538 ((|#2| |#2|) 179 T ELT)) (-3945 ((|#2| |#2|) 62 T ELT)) (-3497 ((|#2| |#2|) 80 T ELT)) (-3638 ((|#2| |#2|) 68 T ELT)) (-3495 ((|#2| |#2|) 78 T ELT)) (-3637 ((|#2| |#2|) 66 T ELT)) (-3493 ((|#2| |#2|) 76 T ELT)) (-3636 ((|#2| |#2|) 64 T ELT)) (-2255 (((-85) (-86)) 95 T ELT)) (-3500 ((|#2| |#2|) 83 T ELT)) (-3488 ((|#2| |#2|) 71 T ELT)) (-3498 ((|#2| |#2|) 81 T ELT)) (-3486 ((|#2| |#2|) 69 T ELT)) (-3502 ((|#2| |#2|) 85 T ELT)) (-3490 ((|#2| |#2|) 73 T ELT)) (-3503 ((|#2| |#2|) 86 T ELT)) (-3491 ((|#2| |#2|) 74 T ELT)) (-3501 ((|#2| |#2|) 84 T ELT)) (-3489 ((|#2| |#2|) 72 T ELT)) (-3499 ((|#2| |#2|) 82 T ELT)) (-3487 ((|#2| |#2|) 70 T ELT))) -(((-230 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -3944 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3629 (|#2|)) (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -1527 (|#2|)) (-15 -1528 (|#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1556 ((-85) |#2|))) (-496) (-13 (-364 |#1|) (-916))) (T -230)) -((-1556 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-916))))) (-1555 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1528 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-916))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-916))))) (-3629 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) -((-1559 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091)) 151 T ELT)) (-1561 ((|#2| (-350 (-485)) |#2|) 49 T ELT)) (-1560 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1557 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091)) 143 T ELT)) (-1558 ((|#2| |#2| (-1091)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2445 ((|#2| |#2| (-1091)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-231 |#1| |#2|) (-10 -7 (-15 -2445 (|#2| |#2|)) (-15 -2445 (|#2| |#2| (-1091))) (-15 -1557 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091))) (-15 -1558 (|#2| |#2|)) (-15 -1558 (|#2| |#2| (-1091))) (-15 -1559 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091))) (-15 -1560 (|#2| |#2| (-551 |#2|))) (-15 -1561 (|#2| (-350 (-485)) |#2|))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -231)) -((-1561 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)))) (-1559 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091)) (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-1557 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2445 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) -((-2977 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3494 ((|#3| |#3|) 142 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3641 ((|#3| |#3|) 132 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3492 ((|#3| |#3|) 140 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3640 ((|#3| |#3|) 130 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3496 ((|#3| |#3|) 144 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3639 ((|#3| |#3|) 134 T ELT)) (-2960 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3944 ((|#3| |#3|) 129 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3945 ((|#3| |#3|) 128 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3497 ((|#3| |#3|) 145 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3638 ((|#3| |#3|) 135 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3495 ((|#3| |#3|) 143 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3637 ((|#3| |#3|) 133 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3493 ((|#3| |#3|) 141 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3636 ((|#3| |#3|) 131 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3500 ((|#3| |#3|) 148 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3488 ((|#3| |#3|) 152 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3498 ((|#3| |#3|) 146 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3486 ((|#3| |#3|) 136 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3502 ((|#3| |#3|) 150 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3490 ((|#3| |#3|) 138 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3503 ((|#3| |#3|) 151 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3491 ((|#3| |#3|) 139 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3501 ((|#3| |#3|) 149 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3489 ((|#3| |#3|) 153 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3499 ((|#3| |#3|) 147 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3487 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-485))) 47 (|has| |#1| (-312)) ELT))) -(((-232 |#1| |#2| |#3|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3945 (|#3| |#3|)) (-15 -3944 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)))) (-38 (-350 (-485))) (-1173 |#1|) (-1144 |#1| |#2|)) (T -232)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4))))) -((-2977 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3494 ((|#3| |#3|) 137 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3641 ((|#3| |#3|) 125 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3492 ((|#3| |#3|) 135 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3640 ((|#3| |#3|) 123 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3496 ((|#3| |#3|) 139 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3639 ((|#3| |#3|) 127 T ELT)) (-2960 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3944 ((|#3| |#3|) 111 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3945 ((|#3| |#3|) 122 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3497 ((|#3| |#3|) 140 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3638 ((|#3| |#3|) 128 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3495 ((|#3| |#3|) 138 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3637 ((|#3| |#3|) 126 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3493 ((|#3| |#3|) 136 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3636 ((|#3| |#3|) 124 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3500 ((|#3| |#3|) 143 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3488 ((|#3| |#3|) 131 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3498 ((|#3| |#3|) 141 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3486 ((|#3| |#3|) 129 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3502 ((|#3| |#3|) 145 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3490 ((|#3| |#3|) 133 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3503 ((|#3| |#3|) 146 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3491 ((|#3| |#3|) 134 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3501 ((|#3| |#3|) 144 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3489 ((|#3| |#3|) 132 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3499 ((|#3| |#3|) 142 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3487 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-485))) 44 (|has| |#1| (-312)) ELT))) -(((-233 |#1| |#2| |#3| |#4|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3945 (|#3| |#3|)) (-15 -3944 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)))) (-38 (-350 (-485))) (-1142 |#1|) (-1165 |#1| |#2|) (-897 |#2|)) (T -233)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))) -((-1564 (((-85) $) 20 T ELT)) (-1566 (((-1096) $) 9 T ELT)) (-3571 (((-3 (-447) #1="failed") $) 15 T ELT)) (-3570 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1563 (((-3 (-447) #1#) $) 21 T ELT)) (-1565 (((-3 (-1016) #1#) $) 19 T ELT)) (-3955 (((-85) $) 17 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1562 (((-85) $) 10 T ELT))) -(((-234) (-13 (-553 (-773)) (-10 -8 (-15 -1566 ((-1096) $)) (-15 -3955 ((-85) $)) (-15 -1565 ((-3 (-1016) #1="failed") $)) (-15 -1564 ((-85) $)) (-15 -1563 ((-3 (-447) #1#) $)) (-15 -1562 ((-85) $)) (-15 -3571 ((-3 (-447) #1#) $)) (-15 -3570 ((-3 (-584 $) #1#) $))))) (T -234)) -((-1566 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1565 (*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3571 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-3570 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234))))) -((-1568 (((-533) $) 10 T ELT)) (-1569 (((-523) $) 8 T ELT)) (-1567 (((-247) $) 12 T ELT)) (-1570 (($ (-523) (-533) (-247)) NIL T ELT)) (-3948 (((-773) $) 19 T ELT))) -(((-235) (-13 (-553 (-773)) (-10 -8 (-15 -1570 ($ (-523) (-533) (-247))) (-15 -1569 ((-523) $)) (-15 -1568 ((-533) $)) (-15 -1567 ((-247) $))))) (T -235)) -((-1570 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -((-3712 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1354 (($ $) 38 T ELT)) (-3407 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3408 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2858 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2305 (($ |#2| $ (-485)) 20 T ELT) (($ $ $ (-485)) 22 T ELT)) (-2306 (($ $ (-485)) 11 T ELT) (($ $ (-1147 (-485))) 14 T ELT)) (-3793 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3804 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT))) -(((-236 |#1| |#2|) (-10 -7 (-15 -2858 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -2858 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3793 (|#1| |#1| |#1|)) (-15 -3793 (|#1| |#1| |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3712 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -1354 (|#1| |#1|))) (-237 |#2|) (-1130)) (T -236)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 46 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 83 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 81 (|has| |#1| (-72)) ELT)) (-1354 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 87 T ELT) (($ |#1| $) 82 (|has| |#1| (-72)) ELT)) (-3408 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 45 T ELT)) (-3616 (($ (-695) |#1|) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2858 (($ (-1 (-85) |#1| |#1|) $ $) 84 T ELT) (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 59 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3611 (($ |#1| $ (-485)) 86 T ELT) (($ $ $ (-485)) 85 T ELT)) (-2305 (($ |#1| $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 67 T ELT)) (-2200 (($ $ |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 39 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 44 T ELT) ((|#1| $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT)) (-1572 (($ $ (-485)) 89 T ELT) (($ $ (-1147 (-485))) 88 T ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 66 T ELT)) (-3793 (($ $ |#1|) 91 T ELT) (($ $ $) 90 T ELT)) (-3804 (($ $ |#1|) 63 T ELT) (($ |#1| $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-237 |#1|) (-113) (-1130)) (T -237)) -((-3793 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3611 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3611 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-2858 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))) -(-13 (-594 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -3793 ($ $ |t#1|)) (-15 -3793 ($ $ $)) (-15 -1572 ($ $ (-485))) (-15 -1572 ($ $ (-1147 (-485)))) (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3611 ($ |t#1| $ (-485))) (-15 -3611 ($ $ $ (-485))) (-15 -2858 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1571 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3407 ($ |t#1| $)) (-15 -2369 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-15 -2858 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-486)))) (-2487 (*1 *1 *1) (-4 *1 (-201)))) +(-13 (-246) (-38 (-350 (-486))) (-10 -8 (-15 ** ($ $ (-486))) (-15 -2487 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-246) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-656 (-350 (-486))) . T) ((-665) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3800 (($ $) 54 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-1476 (($ $ $) 50 (|has| $ (-1037 |#1|)) ELT)) (-1475 (($ $ $) 49 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1478 (($ $) 53 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1477 (($ $) 52 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 56 T ELT)) (-3181 (($ $) 55 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3794 (($ $ $) 51 (|has| $ (-1037 |#1|)) ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-202 |#1|) (-113) (-1131)) (T -202)) +((-3801 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1478 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1476 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131))))) +(-13 (-925 |t#1|) (-10 -8 (-15 -3801 (|t#1| $)) (-15 -3181 ($ $)) (-15 -3800 ($ $)) (-15 -1478 ($ $)) (-15 -1477 ($ $)) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3794 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -1475 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) $) NIL (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2912 (($ $) 10 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-3802 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1355 (($ $) 7 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3409 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3422 (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) (-1 (-85) |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3537 (($ |#1|) NIL T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3612 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) ((|#1| $ (-486) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-696) $ "count") 16 T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-1573 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-1479 (($ (-585 |#1|)) 22 T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3794 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3949 (($ (-585 |#1|)) 17 T ELT) (((-585 |#1|) $) 18 T ELT) (((-774) $) 21 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 14 T ELT))) +(((-203 |#1|) (-13 (-610 |#1|) (-431 (-585 |#1|)) (-10 -8 (-15 -1479 ($ (-585 |#1|))) (-15 -3803 ($ $ "unique")) (-15 -3803 ($ $ "sort")) (-15 -3803 ((-696) $ "count")))) (-758)) (T -203)) +((-1479 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-203 *3)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-758)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-758)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-696)) (-5 *1 (-203 *4)) (-4 *4 (-758))))) +((-1480 (((-3 (-696) "failed") |#1| |#1| (-696)) 40 T ELT))) +(((-204 |#1|) (-10 -7 (-15 -1480 ((-3 (-696) "failed") |#1| |#1| (-696)))) (-13 (-665) (-320) (-10 -7 (-15 ** (|#1| |#1| (-486)))))) (T -204)) +((-1480 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-696)) (-4 *3 (-13 (-665) (-320) (-10 -7 (-15 ** (*3 *3 (-486)))))) (-5 *1 (-204 *3))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-696)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 56 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 54 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 53 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 52 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1 |#1| |#1|) (-696)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-696)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 55 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 51 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 50 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 49 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1 |#1| |#1|) (-696)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-205 |#1|) (-113) (-963)) (T -205)) +NIL +(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-813 (-1092))) (-6 (-810 |t#1| (-1092))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-656 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-808 $ (-1092)) |has| |#1| (-813 (-1092))) ((-810 |#1| (-1092)) |has| |#1| (-813 (-1092))) ((-813 (-1092)) |has| |#1| (-813 (-1092))) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1942 (($ $ (-585 (-486))) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1626 (($ $ |#2| (-197 (-3960 |#1|) (-696)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1087 $) (-775 |#1|)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-197 (-3960 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 (((-197 (-3960 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1627 (($ (-1 (-197 (-3960 |#1|) (-696)) (-197 (-3960 |#1|) (-696))) $) NIL T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3951 (((-197 (-3960 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-197 (-3960 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-206 |#1| |#2|) (-13 (-863 |#2| (-197 (-3960 |#1|) (-696)) (-775 |#1|)) (-10 -8 (-15 -1942 ($ $ (-585 (-486)))))) (-585 (-1092)) (-963)) (T -206)) +((-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-206 *3 *4)) (-14 *3 (-585 (-1092))) (-4 *4 (-963))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1481 (((-1187) $) 17 T ELT)) (-1483 (((-158 (-208)) $) 11 T ELT)) (-1482 (($ (-158 (-208))) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1484 (((-208) $) 7 T ELT)) (-3949 (((-774) $) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 15 T ELT))) +(((-207) (-13 (-1015) (-10 -8 (-15 -1484 ((-208) $)) (-15 -1483 ((-158 (-208)) $)) (-15 -1482 ($ (-158 (-208)))) (-15 -1481 ((-1187) $))))) (T -207)) +((-1484 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-207))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1426 (((-585 (-776)) $) NIL T ELT)) (-3545 (((-448) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1428 (((-161) $) NIL T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1485 (((-282) $) 7 T ELT)) (-1427 (((-585 (-85)) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-208) (-13 (-160) (-554 (-157)) (-10 -8 (-15 -1485 ((-282) $))))) (T -208)) +((-1485 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 (((-1097) $ (-696)) 14 T ELT)) (-3949 (((-774) $) 20 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT)) (-3960 (((-696) $) 11 T ELT))) +(((-209) (-13 (-1015) (-241 (-696) (-1097)) (-10 -8 (-15 -3960 ((-696) $))))) (T -209)) +((-3960 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-209))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3710 (($ (-832)) NIL (|has| |#4| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#4|)) ELT)) (-2486 (($ $ $) NIL (|has| |#4| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#4| (-320)) ELT)) (-3791 ((|#4| $ (-486) |#4|) NIL (|has| $ (-1037 |#4|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1015)) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015))) ELT)) (-3159 ((|#4| $) NIL (|has| |#4| (-1015)) ELT) (((-486) $) NIL (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015))) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#4|)) (|:| |vec| (-1181 |#4|))) (-632 $) (-1181 $)) NIL (|has| |#4| (-963)) ELT) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#4| (-963)) ELT)) (-2997 (($) NIL (|has| |#4| (-320)) ELT)) (-1578 ((|#4| $ (-486) |#4|) NIL (|has| $ (-1037 |#4|)) ELT)) (-3115 ((|#4| $ (-486)) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#4| (-719)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL (|has| |#4| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#4| (-758)) ELT)) (-2611 (((-585 |#4|) $) NIL T ELT)) (-3248 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#4| (-758)) ELT)) (-3961 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#4| (-320)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#4|)) (|:| |vec| (-1181 |#4|))) (-1181 $) $) NIL (|has| |#4| (-963)) ELT) (((-632 |#4|) (-1181 $)) NIL (|has| |#4| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#4| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#4| $) NIL (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#4|) NIL (|has| $ (-1037 |#4|)) ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-2207 (((-585 |#4|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#4| $ (-486) |#4|) NIL T ELT) ((|#4| $ (-486)) 12 T ELT)) (-3839 ((|#4| $ $) NIL (|has| |#4| (-963)) ELT)) (-1470 (($ (-1181 |#4|)) NIL T ELT)) (-3914 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3761 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963)) ELT) (($ $ (-1 |#4| |#4|) (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1181 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1015)) ELT) (((-774) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) (|has| |#4| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015))) ELT)) (-3129 (((-696)) NIL (|has| |#4| (-963)) CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#4| (-963)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL (|has| |#4| (-963)) CONST)) (-2672 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963)) ELT) (($ $ (-1 |#4| |#4|) (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT)) (-2569 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-3952 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-832)) NIL (|has| |#4| (-963)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-665)) ELT) (($ |#4| $) NIL (|has| |#4| (-665)) ELT) (($ $ $) NIL (|has| |#4| (-963)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-592 |#2|) (-592 |#3|)) (-832) (-963) (-1039 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-592 |#2|)) (T -210)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3710 (($ (-832)) NIL (|has| |#3| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#3|)) ELT)) (-2486 (($ $ $) NIL (|has| |#3| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#3| (-320)) ELT)) (-3791 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1015)) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT)) (-3159 ((|#3| $) NIL (|has| |#3| (-1015)) ELT) (((-486) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#3| (-963)) ELT)) (-2997 (($) NIL (|has| |#3| (-320)) ELT)) (-1578 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3115 ((|#3| $ (-486)) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-719)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL (|has| |#3| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-2611 (((-585 |#3|) $) NIL T ELT)) (-3248 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-3961 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#3| (-320)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-1181 $) $) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-1181 $)) NIL (|has| |#3| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#3| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#3| $) NIL (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2207 (((-585 |#3|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-486) |#3|) NIL T ELT) ((|#3| $ (-486)) 11 T ELT)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-963)) ELT)) (-1470 (($ (-1181 |#3|)) NIL T ELT)) (-3914 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3761 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT)) (-1732 (((-696) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1181 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1015)) ELT) (((-774) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT)) (-3129 (((-696)) NIL (|has| |#3| (-963)) CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#3| (-963)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL (|has| |#3| (-963)) CONST)) (-2672 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3952 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-832)) NIL (|has| |#3| (-963)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-665)) ELT) (($ |#3| $) NIL (|has| |#3| (-665)) ELT) (($ $ $) NIL (|has| |#3| (-963)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-592 |#2|)) (-696) (-963) (-592 |#2|)) (T -211)) +NIL +((-1490 (((-585 (-696)) $) 56 T ELT) (((-585 (-696)) $ |#3|) 59 T ELT)) (-1524 (((-696) $) 58 T ELT) (((-696) $ |#3|) 61 T ELT)) (-1486 (($ $) 76 T ELT)) (-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3775 (((-696) $ |#3|) 43 T ELT) (((-696) $) 38 T ELT)) (-1525 (((-1 $ (-696)) |#3|) 15 T ELT) (((-1 $ (-696)) $) 88 T ELT)) (-1488 ((|#4| $) 69 T ELT)) (-1489 (((-85) $) 67 T ELT)) (-1487 (($ $) 75 T ELT)) (-3771 (($ $ (-585 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-585 |#4|) (-585 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-585 |#4|) (-585 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-585 |#3|) (-585 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-585 |#3|) (-585 |#2|)) 97 T ELT)) (-3761 (($ $ (-585 |#4|) (-585 (-696))) NIL T ELT) (($ $ |#4| (-696)) NIL T ELT) (($ $ (-585 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-1491 (((-585 |#3|) $) 86 T ELT)) (-3951 ((|#5| $) NIL T ELT) (((-696) $ |#4|) NIL T ELT) (((-585 (-696)) $ (-585 |#4|)) NIL T ELT) (((-696) $ |#3|) 49 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT))) +(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3949 (|#1| |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3771 (|#1| |#1| (-585 |#3|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#3| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#3|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#3| |#1|)) (-15 -1525 ((-1 |#1| (-696)) |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1488 (|#4| |#1|)) (-15 -1489 ((-85) |#1|)) (-15 -1524 ((-696) |#1| |#3|)) (-15 -1490 ((-585 (-696)) |#1| |#3|)) (-15 -1524 ((-696) |#1|)) (-15 -1490 ((-585 (-696)) |#1|)) (-15 -3951 ((-696) |#1| |#3|)) (-15 -3775 ((-696) |#1|)) (-15 -3775 ((-696) |#1| |#3|)) (-15 -1491 ((-585 |#3|) |#1|)) (-15 -1525 ((-1 |#1| (-696)) |#3|)) (-15 -3949 (|#1| |#3|)) (-15 -3160 ((-3 |#3| #1="failed") |#1|)) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3951 ((-585 (-696)) |#1| (-585 |#4|))) (-15 -3951 ((-696) |#1| |#4|)) (-15 -3949 (|#1| |#4|)) (-15 -3160 ((-3 |#4| #1#) |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#4| |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#4| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3951 (|#5| |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -3761 (|#1| |#1| |#4|)) (-15 -3761 (|#1| |#1| (-585 |#4|))) (-15 -3761 (|#1| |#1| |#4| (-696))) (-15 -3761 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-963) (-758) (-228 |#3|) (-719)) (T -212)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1490 (((-585 (-696)) $) 251 T ELT) (((-585 (-696)) $ |#2|) 249 T ELT)) (-1524 (((-696) $) 250 T ELT) (((-696) $ |#2|) 248 T ELT)) (-3084 (((-585 |#3|) $) 123 T ELT)) (-3086 (((-1087 $) $ |#3|) 138 T ELT) (((-1087 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 100 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 125 T ELT) (((-696) $ (-585 |#3|)) 124 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 113 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 111 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 110 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-1486 (($ $) 244 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-486)) #2#) $) 178 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 176 (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3159 ((|#1| $) 180 T ELT) (((-350 (-486)) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 177 (|has| |#1| (-952 (-486))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3759 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3962 (($ $) 171 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 148 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 193 (|has| |#1| (-393)) ELT) (($ $ |#3|) 118 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 122 T ELT)) (-3726 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| |#4| $) 189 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 97 (-12 (|has| |#3| (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 96 (-12 (|has| |#3| (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ |#2|) 254 T ELT) (((-696) $) 253 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3087 (($ (-1087 |#1|) |#3|) 130 T ELT) (($ (-1087 $) |#3|) 129 T ELT)) (-2824 (((-585 $) $) 139 T ELT)) (-3940 (((-85) $) 169 T ELT)) (-2896 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-696)) 132 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 131 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 133 T ELT)) (-2823 ((|#4| $) 187 T ELT) (((-696) $ |#3|) 135 T ELT) (((-585 (-696)) $ (-585 |#3|)) 134 T ELT)) (-1627 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1525 (((-1 $ (-696)) |#2|) 256 T ELT) (((-1 $ (-696)) $) 243 (|has| |#1| (-190)) ELT)) (-3085 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 145 T ELT) (((-632 |#1|) (-1181 $)) 144 T ELT)) (-2897 (($ $) 166 T ELT)) (-3177 ((|#1| $) 165 T ELT)) (-1488 ((|#3| $) 246 T ELT)) (-1896 (($ (-585 $)) 107 (|has| |#1| (-393)) ELT) (($ $ $) 106 (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1489 (((-85) $) 247 T ELT)) (-2826 (((-3 (-585 $) #3#) $) 127 T ELT)) (-2825 (((-3 (-585 $) #3#) $) 128 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #3#) $) 126 T ELT)) (-1487 (($ $) 245 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 183 T ELT)) (-1801 ((|#1| $) 184 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 108 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 105 (|has| |#1| (-393)) ELT) (($ $ $) 104 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 112 (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-585 |#3|) (-585 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3760 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-696)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 234 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 232 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 231 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 230 (|has| |#1| (-813 (-1092))) ELT)) (-1491 (((-585 |#2|) $) 255 T ELT)) (-3951 ((|#4| $) 167 T ELT) (((-696) $ |#3|) 143 T ELT) (((-585 (-696)) $ (-585 |#3|)) 142 T ELT) (((-696) $ |#2|) 252 T ELT)) (-3975 (((-802 (-330)) $) 95 (-12 (|has| |#3| (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 94 (-12 (|has| |#3| (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 93 (-12 (|has| |#3| (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 192 (|has| |#1| (-393)) ELT) (($ $ |#3|) 119 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 117 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-486))) 91 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT) (($ $) 98 (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) 185 T ELT)) (-3680 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-696)) 141 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 140 T ELT)) (-2705 (((-634 $) $) 92 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1625 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-696)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 233 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 229 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 228 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 227 (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 174 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-213 |#1| |#2| |#3| |#4|) (-113) (-963) (-758) (-228 |t#2|) (-719)) (T -213)) +((-1525 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 *4)))) (-3775 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) (-3951 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1490 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) (-1524 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-85)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-719)) (-4 *2 (-228 *4)))) (-1487 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-228 *3)) (-4 *5 (-719)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-228 *3)) (-4 *5 (-719)))) (-1525 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *3 *4 *5 *6))))) +(-13 (-863 |t#1| |t#4| |t#3|) (-184 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1525 ((-1 $ (-696)) |t#2|)) (-15 -1491 ((-585 |t#2|) $)) (-15 -3775 ((-696) $ |t#2|)) (-15 -3775 ((-696) $)) (-15 -3951 ((-696) $ |t#2|)) (-15 -1490 ((-585 (-696)) $)) (-15 -1524 ((-696) $)) (-15 -1490 ((-585 (-696)) $ |t#2|)) (-15 -1524 ((-696) $ |t#2|)) (-15 -1489 ((-85) $)) (-15 -1488 (|t#3| $)) (-15 -1487 ($ $)) (-15 -1486 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-457 |t#2| |t#1|)) (-6 (-457 |t#2| $)) (-6 (-260 $)) (-15 -1525 ((-1 $ (-696)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393))) ((-457 |#2| |#1|) |has| |#1| (-190)) ((-457 |#2| $) |has| |#1| (-190)) ((-457 |#3| |#1|) . T) ((-457 |#3| $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-808 $ |#3|) . T) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-811 |#3|) . T) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-813 |#3|) . T) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ((-863 |#1| |#4| |#3|) . T) ((-823) |has| |#1| (-823)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-823))) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1497 ((|#1| $) 62 T ELT)) (-3326 ((|#1| $) 41 T ELT)) (-3727 (($) 6 T CONST)) (-3005 (($ $) 68 T ELT)) (-2299 (($ $) 56 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 49 T ELT)) (-3328 ((|#1| |#1| $) 43 T ELT)) (-3327 ((|#1| $) 42 T ELT)) (-2611 (((-585 |#1|) $) 48 T ELT)) (-3248 (((-85) |#1| $) 52 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3836 (((-696) $) 69 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-1495 ((|#1| |#1| $) 60 T ELT)) (-1494 ((|#1| |#1| $) 59 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-2606 (((-696) $) 63 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) 70 T ELT)) (-1493 ((|#1| $) 58 T ELT)) (-1492 ((|#1| $) 57 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3007 ((|#1| |#1| $) 66 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3006 ((|#1| $) 67 T ELT)) (-1498 (($) 65 T ELT) (($ (-585 |#1|)) 64 T ELT)) (-3325 (((-696) $) 40 T ELT)) (-1732 (((-696) |#1| $) 51 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 47 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1496 ((|#1| $) 61 T ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3003 ((|#1| $) 71 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-214 |#1|) (-113) (-1131)) (T -214)) +((-1498 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-214 *3)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1495 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1494 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(-13 (-1036 |t#1|) (-910 |t#1|) (-10 -8 (-15 -1498 ($)) (-15 -1498 ($ (-585 |t#1|))) (-15 -2606 ((-696) $)) (-15 -1497 (|t#1| $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| |t#1| $)) (-15 -1494 (|t#1| |t#1| $)) (-15 -1493 (|t#1| $)) (-15 -1492 (|t#1| $)) (-15 -2299 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-910 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1036 |#1|) . T) ((-1131) . T)) +((-1499 (((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330))) 75 T ELT) (((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 74 T ELT) (((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330))) 65 T ELT) (((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 64 T ELT) (((-1049 (-179)) (-791 |#1|) (-1006 (-330))) 56 T ELT) (((-1049 (-179)) (-791 |#1|) (-1006 (-330)) (-585 (-221))) 55 T ELT)) (-1506 (((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330))) 78 T ELT) (((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 77 T ELT) (((-1185) |#1| (-1006 (-330)) (-1006 (-330))) 68 T ELT) (((-1185) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 67 T ELT) (((-1185) (-791 |#1|) (-1006 (-330))) 60 T ELT) (((-1185) (-791 |#1|) (-1006 (-330)) (-585 (-221))) 59 T ELT) (((-1184) (-789 |#1|) (-1006 (-330))) 47 T ELT) (((-1184) (-789 |#1|) (-1006 (-330)) (-585 (-221))) 46 T ELT) (((-1184) |#1| (-1006 (-330))) 38 T ELT) (((-1184) |#1| (-1006 (-330)) (-585 (-221))) 36 T ELT))) +(((-215 |#1|) (-10 -7 (-15 -1506 ((-1184) |#1| (-1006 (-330)) (-585 (-221)))) (-15 -1506 ((-1184) |#1| (-1006 (-330)))) (-15 -1506 ((-1184) (-789 |#1|) (-1006 (-330)) (-585 (-221)))) (-15 -1506 ((-1184) (-789 |#1|) (-1006 (-330)))) (-15 -1506 ((-1185) (-791 |#1|) (-1006 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-791 |#1|) (-1006 (-330)))) (-15 -1499 ((-1049 (-179)) (-791 |#1|) (-1006 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-791 |#1|) (-1006 (-330)))) (-15 -1506 ((-1185) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) |#1| (-1006 (-330)) (-1006 (-330)))) (-15 -1499 ((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330)))) (-15 -1506 ((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330)))) (-15 -1499 ((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330))))) (-13 (-555 (-475)) (-1015))) (T -215)) +((-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *5)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *6)))) (-1506 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) (-1506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1506 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1185)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *5)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *6)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015)))))) +((-1500 (((-1 (-856 (-179)) (-179) (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1499 (((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330))) 178 T ELT) (((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 176 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 181 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 177 T ELT) (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 169 T ELT) (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 168 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330))) 150 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221))) 148 T ELT) (((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330))) 149 T ELT) (((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221))) 146 T ELT)) (-1506 (((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330))) 180 T ELT) (((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 179 T ELT) (((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 183 T ELT) (((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 182 T ELT) (((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 171 T ELT) (((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 170 T ELT) (((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330))) 156 T ELT) (((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221))) 155 T ELT) (((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330))) 154 T ELT) (((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221))) 153 T ELT) (((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330))) 118 T ELT) (((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221))) 117 T ELT) (((-1184) (-1 (-179) (-179)) (-1003 (-330))) 112 T ELT) (((-1184) (-1 (-179) (-179)) (-1003 (-330)) (-585 (-221))) 110 T ELT))) +(((-216) (-10 -7 (-15 -1506 ((-1184) (-1 (-179) (-179)) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1184) (-1 (-179) (-179)) (-1003 (-330)))) (-15 -1506 ((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330)))) (-15 -1506 ((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330)))) (-15 -1506 ((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330)))) (-15 -1499 ((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330)))) (-15 -1499 ((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330)))) (-15 -1506 ((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1499 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1506 ((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1499 ((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1506 ((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1506 ((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)))) (-15 -1499 ((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1499 ((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)))) (-15 -1500 ((-1 (-856 (-179)) (-179) (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) +((-1500 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))) +((-1506 (((-1184) (-249 |#2|) (-1092) (-1092) (-585 (-221))) 102 T ELT))) +(((-217 |#1| |#2|) (-10 -7 (-15 -1506 ((-1184) (-249 |#2|) (-1092) (-1092) (-585 (-221))))) (-13 (-497) (-758) (-952 (-486))) (-364 |#1|)) (T -217)) +((-1506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1092)) (-5 *5 (-585 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-758) (-952 (-486)))) (-5 *2 (-1184)) (-5 *1 (-217 *6 *7))))) +((-1503 (((-486) (-486)) 71 T ELT)) (-1504 (((-486) (-486)) 72 T ELT)) (-1505 (((-179) (-179)) 73 T ELT)) (-1502 (((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179))) 70 T ELT)) (-1501 (((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)) (-85)) 68 T ELT))) +(((-218) (-10 -7 (-15 -1501 ((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)) (-85))) (-15 -1502 ((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)))) (-15 -1503 ((-486) (-486))) (-15 -1504 ((-486) (-486))) (-15 -1505 ((-179) (-179))))) (T -218)) +((-1505 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1504 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) (-5 *2 (-1185)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) (-5 *5 (-85)) (-5 *2 (-1185)) (-5 *1 (-218))))) +((-3949 (((-1006 (-330)) (-1006 (-265 |#1|))) 16 T ELT))) +(((-219 |#1|) (-10 -7 (-15 -3949 ((-1006 (-330)) (-1006 (-265 |#1|))))) (-13 (-758) (-497) (-555 (-330)))) (T -219)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-1006 (-265 *4))) (-4 *4 (-13 (-758) (-497) (-555 (-330)))) (-5 *2 (-1006 (-330))) (-5 *1 (-219 *4))))) +((-1506 (((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179)) (-585 (-221))) 23 T ELT) (((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179))) 24 T ELT) (((-1184) (-585 (-856 (-179))) (-585 (-221))) 16 T ELT) (((-1184) (-585 (-856 (-179)))) 17 T ELT) (((-1184) (-585 (-179)) (-585 (-179)) (-585 (-221))) 20 T ELT) (((-1184) (-585 (-179)) (-585 (-179))) 21 T ELT))) +(((-220) (-10 -7 (-15 -1506 ((-1184) (-585 (-179)) (-585 (-179)))) (-15 -1506 ((-1184) (-585 (-179)) (-585 (-179)) (-585 (-221)))) (-15 -1506 ((-1184) (-585 (-856 (-179))))) (-15 -1506 ((-1184) (-585 (-856 (-179))) (-585 (-221)))) (-15 -1506 ((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179)))) (-15 -1506 ((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179)) (-585 (-221)))))) (T -220)) +((-1506 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-220)))) (-1506 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1185)) (-5 *1 (-220)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1506 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1506 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1184)) (-5 *1 (-220))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3884 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1519 (($ (-832)) 81 T ELT)) (-1518 (($ (-832)) 80 T ELT)) (-1777 (($ (-585 (-330))) 87 T ELT)) (-1522 (($ (-330)) 66 T ELT)) (-1521 (($ (-832)) 82 T ELT)) (-1515 (($ (-85)) 33 T ELT)) (-3886 (($ (-1075)) 28 T ELT)) (-1514 (($ (-1075)) 29 T ELT)) (-1520 (($ (-1049 (-179))) 76 T ELT)) (-1933 (($ (-585 (-1003 (-330)))) 72 T ELT)) (-1508 (($ (-585 (-1003 (-330)))) 68 T ELT) (($ (-585 (-1003 (-350 (-486))))) 71 T ELT)) (-1511 (($ (-330)) 38 T ELT) (($ (-785)) 42 T ELT)) (-1507 (((-85) (-585 $) (-1092)) 100 T ELT)) (-1523 (((-3 (-51) "failed") (-585 $) (-1092)) 102 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1510 (($ (-330)) 43 T ELT) (($ (-785)) 44 T ELT)) (-3227 (($ (-1 (-856 (-179)) (-856 (-179)))) 65 T ELT)) (-2268 (($ (-1 (-856 (-179)) (-856 (-179)))) 83 T ELT)) (-1509 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3949 (((-774) $) 93 T ELT)) (-1512 (($ (-85)) 34 T ELT) (($ (-585 (-1003 (-330)))) 60 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1928 (($ (-85)) 35 T ELT)) (-3059 (((-85) $ $) 97 T ELT))) +(((-221) (-13 (-1015) (-10 -8 (-15 -1928 ($ (-85))) (-15 -1512 ($ (-85))) (-15 -3884 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3886 ($ (-1075))) (-15 -1514 ($ (-1075))) (-15 -1515 ($ (-85))) (-15 -1512 ($ (-585 (-1003 (-330))))) (-15 -3227 ($ (-1 (-856 (-179)) (-856 (-179))))) (-15 -1511 ($ (-330))) (-15 -1511 ($ (-785))) (-15 -1510 ($ (-330))) (-15 -1510 ($ (-785))) (-15 -1509 ($ (-1 (-179) (-179)))) (-15 -1509 ($ (-1 (-179) (-179) (-179)))) (-15 -1509 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1522 ($ (-330))) (-15 -1508 ($ (-585 (-1003 (-330))))) (-15 -1508 ($ (-585 (-1003 (-350 (-486)))))) (-15 -1933 ($ (-585 (-1003 (-330))))) (-15 -1520 ($ (-1049 (-179)))) (-15 -1518 ($ (-832))) (-15 -1519 ($ (-832))) (-15 -1521 ($ (-832))) (-15 -2268 ($ (-1 (-856 (-179)) (-856 (-179))))) (-15 -1777 ($ (-585 (-330)))) (-15 -1523 ((-3 (-51) "failed") (-585 $) (-1092))) (-15 -1507 ((-85) (-585 $) (-1092)))))) (T -221)) +((-1928 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) (-3227 (*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-350 (-486))))) (-5 *1 (-221)))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-221)))) (-1523 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-85)) (-5 *1 (-221))))) +((-3884 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-585 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1519 (((-832) (-585 (-221)) (-832)) 52 T ELT)) (-1518 (((-832) (-585 (-221)) (-832)) 51 T ELT)) (-3854 (((-585 (-330)) (-585 (-221)) (-585 (-330))) 68 T ELT)) (-1522 (((-330) (-585 (-221)) (-330)) 57 T ELT)) (-1521 (((-832) (-585 (-221)) (-832)) 53 T ELT)) (-1515 (((-85) (-585 (-221)) (-85)) 27 T ELT)) (-3886 (((-1075) (-585 (-221)) (-1075)) 19 T ELT)) (-1514 (((-1075) (-585 (-221)) (-1075)) 26 T ELT)) (-1520 (((-1049 (-179)) (-585 (-221))) 46 T ELT)) (-1933 (((-585 (-1003 (-330))) (-585 (-221)) (-585 (-1003 (-330)))) 40 T ELT)) (-1516 (((-785) (-585 (-221)) (-785)) 32 T ELT)) (-1517 (((-785) (-585 (-221)) (-785)) 33 T ELT)) (-2268 (((-1 (-856 (-179)) (-856 (-179))) (-585 (-221)) (-1 (-856 (-179)) (-856 (-179)))) 63 T ELT)) (-1513 (((-85) (-585 (-221)) (-85)) 14 T ELT)) (-1928 (((-85) (-585 (-221)) (-85)) 13 T ELT))) +(((-222) (-10 -7 (-15 -1928 ((-85) (-585 (-221)) (-85))) (-15 -1513 ((-85) (-585 (-221)) (-85))) (-15 -3884 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-585 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3886 ((-1075) (-585 (-221)) (-1075))) (-15 -1514 ((-1075) (-585 (-221)) (-1075))) (-15 -1515 ((-85) (-585 (-221)) (-85))) (-15 -1516 ((-785) (-585 (-221)) (-785))) (-15 -1517 ((-785) (-585 (-221)) (-785))) (-15 -1933 ((-585 (-1003 (-330))) (-585 (-221)) (-585 (-1003 (-330))))) (-15 -1518 ((-832) (-585 (-221)) (-832))) (-15 -1519 ((-832) (-585 (-221)) (-832))) (-15 -1520 ((-1049 (-179)) (-585 (-221)))) (-15 -1521 ((-832) (-585 (-221)) (-832))) (-15 -1522 ((-330) (-585 (-221)) (-330))) (-15 -2268 ((-1 (-856 (-179)) (-856 (-179))) (-585 (-221)) (-1 (-856 (-179)) (-856 (-179))))) (-15 -3854 ((-585 (-330)) (-585 (-221)) (-585 (-330)))))) (T -222)) +((-3854 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-330))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-2268 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-222)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1933 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-3886 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-3884 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1928 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +((-1523 (((-3 |#1| "failed") (-585 (-221)) (-1092)) 17 T ELT))) +(((-223 |#1|) (-10 -7 (-15 -1523 ((-3 |#1| "failed") (-585 (-221)) (-1092)))) (-1131)) (T -223)) +((-1523 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *1 (-223 *2)) (-4 *2 (-1131))))) +((-3761 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) 11 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) 19 T ELT) (($ $ (-696)) NIL T ELT) (($ $) 16 T ELT)) (-2672 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-696)) 14 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -2672 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -2672 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -2672 (|#1| |#1| (-585 (-1092)))) (-15 -2672 (|#1| |#1| (-1092) (-696))) (-15 -2672 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -2672 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -2672 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1131)) (T -224)) +NIL +((-3761 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 22 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 16 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 15 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 14 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092)) 12 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-696)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2672 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 20 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 19 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 18 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 17 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092)) 13 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-696)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) +(((-225 |#1|) (-113) (-1131)) (T -225)) +((-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) (-2672 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3761 ($ $ (-1 |t#1| |t#1|))) (-15 -3761 ($ $ (-1 |t#1| |t#1|) (-696))) (-15 -2672 ($ $ (-1 |t#1| |t#1|))) (-15 -2672 ($ $ (-1 |t#1| |t#1|) (-696))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-813 (-1092))) (-6 (-813 (-1092))) |%noBranch|))) +(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-808 $ (-1092)) |has| |#1| (-813 (-1092))) ((-813 (-1092)) |has| |#1| (-813 (-1092))) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1490 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ |#2|) NIL T ELT)) (-1524 (((-696) $) NIL T ELT) (((-696) $ |#2|) NIL T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-3086 (((-1087 $) $ |#3|) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 |#3|)) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1486 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1041 |#1| |#2|) #1#) $) 23 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1041 |#1| |#2|) $) NIL T ELT)) (-3759 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ |#3|) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-471 |#3|) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ELT)) (-3775 (((-696) $ |#2|) NIL T ELT) (((-696) $) 10 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) |#3|) NIL T ELT) (($ (-1087 $) |#3|) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 |#3|)) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) NIL T ELT)) (-2823 (((-471 |#3|) $) NIL T ELT) (((-696) $ |#3|) NIL T ELT) (((-585 (-696)) $ (-585 |#3|)) NIL T ELT)) (-1627 (($ (-1 (-471 |#3|) (-471 |#3|)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1525 (((-1 $ (-696)) |#2|) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3085 (((-3 |#3| #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1488 ((|#3| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1489 (((-85) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-585 |#3|) (-585 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-585 |#3|) (-585 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3760 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1491 (((-585 |#2|) $) NIL T ELT)) (-3951 (((-471 |#3|) $) NIL T ELT) (((-696) $ |#3|) NIL T ELT) (((-585 (-696)) $ (-585 |#3|)) NIL T ELT) (((-696) $ |#2|) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ |#3|) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1041 |#1| |#2|)) 32 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 |#3|)) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-471 |#3|)) (-952 (-1041 |#1| |#2|))) (-963) (-758) (-228 |#2|)) (T -226)) +NIL +((-1524 (((-696) $) 37 T ELT)) (-3160 (((-3 |#2| "failed") $) 22 T ELT)) (-3159 ((|#2| $) 33 T ELT)) (-3761 (($ $ (-696)) 18 T ELT) (($ $) 14 T ELT)) (-3949 (((-774) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3059 (((-85) $ $) 26 T ELT)) (-2688 (((-85) $ $) 36 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -1524 ((-696) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -3160 ((-3 |#2| "failed") |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -2688 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-228 |#2|) (-758)) (T -227)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-1524 (((-696) $) 26 T ELT)) (-3834 ((|#1| $) 27 T ELT)) (-3160 (((-3 |#1| "failed") $) 31 T ELT)) (-3159 ((|#1| $) 32 T ELT)) (-3775 (((-696) $) 28 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-1525 (($ |#1| (-696)) 29 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-696)) 35 T ELT) (($ $) 33 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2672 (($ $ (-696)) 36 T ELT) (($ $) 34 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT))) +(((-228 |#1|) (-113) (-758)) (T -228)) +((-1525 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-228 *2)) (-4 *2 (-758)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-758)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696))))) +(-13 (-758) (-189) (-952 |t#1|) (-10 -8 (-15 -1525 ($ |t#1| (-696))) (-15 -3775 ((-696) $)) (-15 -3834 (|t#1| $)) (-15 -1524 ((-696) $)))) +(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1527 (((-585 (-486)) $) 28 T ELT)) (-3951 (((-696) $) 26 T ELT)) (-3949 (((-774) $) 32 T ELT) (($ (-585 (-486))) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1526 (($ (-696)) 29 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 18 T ELT))) +(((-229) (-13 (-758) (-10 -8 (-15 -3949 ($ (-585 (-486)))) (-15 -3951 ((-696) $)) (-15 -1527 ((-585 (-486)) $)) (-15 -1526 ($ (-696)))))) (T -229)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-229)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-229))))) +((-3495 ((|#2| |#2|) 77 T ELT)) (-3642 ((|#2| |#2|) 65 T ELT)) (-1556 (((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3493 ((|#2| |#2|) 75 T ELT)) (-3641 ((|#2| |#2|) 63 T ELT)) (-3497 ((|#2| |#2|) 79 T ELT)) (-3640 ((|#2| |#2|) 67 T ELT)) (-3630 ((|#2|) 46 T ELT)) (-3598 (((-86) (-86)) 97 T ELT)) (-3945 ((|#2| |#2|) 61 T ELT)) (-1557 (((-85) |#2|) 146 T ELT)) (-1546 ((|#2| |#2|) 193 T ELT)) (-1534 ((|#2| |#2|) 169 T ELT)) (-1529 ((|#2|) 59 T ELT)) (-1528 ((|#2|) 58 T ELT)) (-1544 ((|#2| |#2|) 189 T ELT)) (-1532 ((|#2| |#2|) 165 T ELT)) (-1548 ((|#2| |#2|) 197 T ELT)) (-1536 ((|#2| |#2|) 173 T ELT)) (-1531 ((|#2| |#2|) 161 T ELT)) (-1530 ((|#2| |#2|) 163 T ELT)) (-1549 ((|#2| |#2|) 199 T ELT)) (-1537 ((|#2| |#2|) 175 T ELT)) (-1547 ((|#2| |#2|) 195 T ELT)) (-1535 ((|#2| |#2|) 171 T ELT)) (-1545 ((|#2| |#2|) 191 T ELT)) (-1533 ((|#2| |#2|) 167 T ELT)) (-1552 ((|#2| |#2|) 205 T ELT)) (-1540 ((|#2| |#2|) 181 T ELT)) (-1550 ((|#2| |#2|) 201 T ELT)) (-1538 ((|#2| |#2|) 177 T ELT)) (-1554 ((|#2| |#2|) 209 T ELT)) (-1542 ((|#2| |#2|) 185 T ELT)) (-1555 ((|#2| |#2|) 211 T ELT)) (-1543 ((|#2| |#2|) 187 T ELT)) (-1553 ((|#2| |#2|) 207 T ELT)) (-1541 ((|#2| |#2|) 183 T ELT)) (-1551 ((|#2| |#2|) 203 T ELT)) (-1539 ((|#2| |#2|) 179 T ELT)) (-3946 ((|#2| |#2|) 62 T ELT)) (-3498 ((|#2| |#2|) 80 T ELT)) (-3639 ((|#2| |#2|) 68 T ELT)) (-3496 ((|#2| |#2|) 78 T ELT)) (-3638 ((|#2| |#2|) 66 T ELT)) (-3494 ((|#2| |#2|) 76 T ELT)) (-3637 ((|#2| |#2|) 64 T ELT)) (-2256 (((-85) (-86)) 95 T ELT)) (-3501 ((|#2| |#2|) 83 T ELT)) (-3489 ((|#2| |#2|) 71 T ELT)) (-3499 ((|#2| |#2|) 81 T ELT)) (-3487 ((|#2| |#2|) 69 T ELT)) (-3503 ((|#2| |#2|) 85 T ELT)) (-3491 ((|#2| |#2|) 73 T ELT)) (-3504 ((|#2| |#2|) 86 T ELT)) (-3492 ((|#2| |#2|) 74 T ELT)) (-3502 ((|#2| |#2|) 84 T ELT)) (-3490 ((|#2| |#2|) 72 T ELT)) (-3500 ((|#2| |#2|) 82 T ELT)) (-3488 ((|#2| |#2|) 70 T ELT))) +(((-230 |#1| |#2|) (-10 -7 (-15 -3946 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -3630 (|#2|)) (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -1528 (|#2|)) (-15 -1529 (|#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1556 ((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1557 ((-85) |#2|))) (-497) (-13 (-364 |#1|) (-917))) (T -230)) +((-1557 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-917))))) (-1556 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-917))) (-4 *4 (-497)) (-5 *1 (-230 *4 *2)))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1529 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) (-1528 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-917))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-917))))) (-3630 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) +((-1560 (((-3 |#2| "failed") (-585 (-552 |#2|)) |#2| (-1092)) 151 T ELT)) (-1562 ((|#2| (-350 (-486)) |#2|) 49 T ELT)) (-1561 ((|#2| |#2| (-552 |#2|)) 144 T ELT)) (-1558 (((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-552 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1092)) 143 T ELT)) (-1559 ((|#2| |#2| (-1092)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2446 ((|#2| |#2| (-1092)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-231 |#1| |#2|) (-10 -7 (-15 -2446 (|#2| |#2|)) (-15 -2446 (|#2| |#2| (-1092))) (-15 -1558 ((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-552 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1092))) (-15 -1559 (|#2| |#2|)) (-15 -1559 (|#2| |#2| (-1092))) (-15 -1560 ((-3 |#2| "failed") (-585 (-552 |#2|)) |#2| (-1092))) (-15 -1561 (|#2| |#2| (-552 |#2|))) (-15 -1562 (|#2| (-350 (-486)) |#2|))) (-13 (-497) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -231)) +((-1562 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-1561 (*1 *2 *2 *3) (-12 (-5 *3 (-552 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)))) (-1560 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-1092)) (-4 *2 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *5 *2)))) (-1559 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-585 (-552 *3))) (|:| |vals| (-585 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) +((-2978 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3495 ((|#3| |#3|) 142 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3642 ((|#3| |#3|) 132 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3493 ((|#3| |#3|) 140 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3641 ((|#3| |#3|) 130 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3497 ((|#3| |#3|) 144 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3640 ((|#3| |#3|) 134 T ELT)) (-2961 (((-3 |#3| #1#) |#3| (-696)) 41 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3945 ((|#3| |#3|) 129 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3946 ((|#3| |#3|) 128 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3498 ((|#3| |#3|) 145 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3639 ((|#3| |#3|) 135 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3496 ((|#3| |#3|) 143 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3638 ((|#3| |#3|) 133 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3494 ((|#3| |#3|) 141 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3637 ((|#3| |#3|) 131 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3501 ((|#3| |#3|) 148 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3489 ((|#3| |#3|) 152 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3499 ((|#3| |#3|) 146 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3487 ((|#3| |#3|) 136 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3503 ((|#3| |#3|) 150 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3491 ((|#3| |#3|) 138 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3504 ((|#3| |#3|) 151 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3492 ((|#3| |#3|) 139 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3502 ((|#3| |#3|) 149 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3490 ((|#3| |#3|) 153 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3500 ((|#3| |#3|) 147 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3488 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-486))) 47 (|has| |#1| (-312)) ELT))) +(((-232 |#1| |#2| |#3|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-486)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)) (-15 -3504 (|#3| |#3|)))) (-38 (-350 (-486))) (-1174 |#1|) (-1145 |#1| |#2|)) (T -232)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1174 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1145 *4 *5)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4))))) +((-2978 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3495 ((|#3| |#3|) 137 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3642 ((|#3| |#3|) 125 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3493 ((|#3| |#3|) 135 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3641 ((|#3| |#3|) 123 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3497 ((|#3| |#3|) 139 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3640 ((|#3| |#3|) 127 T ELT)) (-2961 (((-3 |#3| #1#) |#3| (-696)) 38 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3945 ((|#3| |#3|) 111 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3946 ((|#3| |#3|) 122 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3498 ((|#3| |#3|) 140 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3639 ((|#3| |#3|) 128 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3496 ((|#3| |#3|) 138 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3638 ((|#3| |#3|) 126 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3494 ((|#3| |#3|) 136 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3637 ((|#3| |#3|) 124 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3501 ((|#3| |#3|) 143 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3489 ((|#3| |#3|) 131 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3499 ((|#3| |#3|) 141 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3487 ((|#3| |#3|) 129 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3503 ((|#3| |#3|) 145 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3491 ((|#3| |#3|) 133 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3504 ((|#3| |#3|) 146 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3492 ((|#3| |#3|) 134 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3502 ((|#3| |#3|) 144 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3490 ((|#3| |#3|) 132 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3500 ((|#3| |#3|) 142 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3488 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-486))) 44 (|has| |#1| (-312)) ELT))) +(((-233 |#1| |#2| |#3| |#4|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-486)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)) (-15 -3504 (|#3| |#3|)))) (-38 (-350 (-486))) (-1143 |#1|) (-1166 |#1| |#2|) (-898 |#2|)) (T -233)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1143 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1166 *4 *5)) (-4 *6 (-898 *5)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4))))) +((-1565 (((-85) $) 20 T ELT)) (-1567 (((-1097) $) 9 T ELT)) (-3572 (((-3 (-448) #1="failed") $) 15 T ELT)) (-3571 (((-3 (-585 $) #1#) $) NIL T ELT)) (-1564 (((-3 (-448) #1#) $) 21 T ELT)) (-1566 (((-3 (-1017) #1#) $) 19 T ELT)) (-3956 (((-85) $) 17 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1563 (((-85) $) 10 T ELT))) +(((-234) (-13 (-554 (-774)) (-10 -8 (-15 -1567 ((-1097) $)) (-15 -3956 ((-85) $)) (-15 -1566 ((-3 (-1017) #1="failed") $)) (-15 -1565 ((-85) $)) (-15 -1564 ((-3 (-448) #1#) $)) (-15 -1563 ((-85) $)) (-15 -3572 ((-3 (-448) #1#) $)) (-15 -3571 ((-3 (-585 $) #1#) $))))) (T -234)) +((-1567 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-234)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1566 (*1 *2 *1) (|partial| -12 (-5 *2 (-1017)) (-5 *1 (-234)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3572 (*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234)))) (-3571 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-234))) (-5 *1 (-234))))) +((-1569 (((-534) $) 10 T ELT)) (-1570 (((-524) $) 8 T ELT)) (-1568 (((-247) $) 12 T ELT)) (-1571 (($ (-524) (-534) (-247)) NIL T ELT)) (-3949 (((-774) $) 19 T ELT))) +(((-235) (-13 (-554 (-774)) (-10 -8 (-15 -1571 ($ (-524) (-534) (-247))) (-15 -1570 ((-524) $)) (-15 -1569 ((-534) $)) (-15 -1568 ((-247) $))))) (T -235)) +((-1571 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-524)) (-5 *3 (-534)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-524)) (-5 *1 (-235)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-534)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) +((-3713 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1355 (($ $) 38 T ELT)) (-3408 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3409 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2859 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2306 (($ |#2| $ (-486)) 20 T ELT) (($ $ $ (-486)) 22 T ELT)) (-2307 (($ $ (-486)) 11 T ELT) (($ $ (-1148 (-486))) 14 T ELT)) (-3794 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3805 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-585 $)) NIL T ELT))) +(((-236 |#1| |#2|) (-10 -7 (-15 -2859 (|#1| |#1| |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -2859 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -2307 (|#1| |#1| (-1148 (-486)))) (-15 -2307 (|#1| |#1| (-486))) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -3409 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3713 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3409 (|#1| |#2| |#1|)) (-15 -1355 (|#1| |#1|))) (-237 |#2|) (-1131)) (T -236)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) 84 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 82 (|has| |#1| (-72)) ELT)) (-1355 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ (-1 (-85) |#1|) $) 88 T ELT) (($ |#1| $) 83 (|has| |#1| (-72)) ELT)) (-3409 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-1578 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2859 (($ (-1 (-85) |#1| |#1|) $ $) 85 T ELT) (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 93 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3612 (($ |#1| $ (-486)) 87 T ELT) (($ $ $ (-486)) 86 T ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-1573 (($ $ (-486)) 90 T ELT) (($ $ (-1148 (-486))) 89 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3794 (($ $ |#1|) 92 T ELT) (($ $ $) 91 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-237 |#1|) (-113) (-1131)) (T -237)) +((-3794 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-3612 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-237 *2)) (-4 *2 (-1131)))) (-3612 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-2859 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-1572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-3408 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) (-2859 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-758))))) +(-13 (-595 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -3794 ($ $ |t#1|)) (-15 -3794 ($ $ $)) (-15 -1573 ($ $ (-486))) (-15 -1573 ($ $ (-1148 (-486)))) (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -3612 ($ |t#1| $ (-486))) (-15 -3612 ($ $ $ (-486))) (-15 -2859 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1572 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3408 ($ |t#1| $)) (-15 -2370 ($ $))) |%noBranch|) (IF (|has| |t#1| (-758)) (-15 -2859 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) ((** (($ $ $) 10 T ELT))) (((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238)) NIL -((-3944 (($ $) 6 T ELT)) (-3945 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-3945 (($ $) 6 T ELT)) (-3946 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-239) (-113)) (T -239)) -((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3945 (*1 *1 *1) (-4 *1 (-239))) (-3944 (*1 *1 *1) (-4 *1 (-239)))) -(-13 (-10 -8 (-15 -3944 ($ $)) (-15 -3945 ($ $)) (-15 ** ($ $ $)))) -((-1576 (((-584 (-1070 |#1|)) (-1070 |#1|) |#1|) 35 T ELT)) (-1573 ((|#2| |#2| |#1|) 39 T ELT)) (-1575 ((|#2| |#2| |#1|) 41 T ELT)) (-1574 ((|#2| |#2| |#1|) 40 T ELT))) -(((-240 |#1| |#2|) (-10 -7 (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 (|#2| |#2| |#1|)) (-15 -1576 ((-584 (-1070 |#1|)) (-1070 |#1|) |#1|))) (-312) (-1173 |#1|)) (T -240)) -((-1576 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) -((-3802 ((|#2| $ |#1|) 6 T ELT))) -(((-241 |#1| |#2|) (-113) (-1130) (-1130)) (T -241)) -((-3802 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -3802 (|t#2| $ |t#1|)))) -(((-13) . T) ((-1130) . T)) -((-1577 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3114 ((|#3| $ |#2|) 10 T ELT))) -(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1577 (|#3| |#1| |#2| |#3|)) (-15 -3114 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1014) (-1130)) (T -242)) -NIL -((-3790 ((|#2| $ |#1| |#2|) 10 (|has| $ (-1036 |#2|)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 9 (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) 11 T ELT)) (-3802 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-243 |#1| |#2|) (-113) (-1014) (-1130)) (T -243)) -((-3802 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-3114 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-1577 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130))))) -(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3802 (|t#2| $ |t#1| |t#2|)) (-15 -3114 (|t#2| $ |t#1|)) (IF (|has| $ (-1036 |t#2|)) (PROGN (-15 -3790 (|t#2| $ |t#1| |t#2|)) (-15 -1577 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-241 |#1| |#2|) . T) ((-13) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 44 T ELT)) (-2064 (($ $) 41 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) 35 T ELT)) (-3844 (($ |#2| |#3|) 18 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 ((|#3| $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 19 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) 36 T ELT)) (-3802 ((|#2| $ |#2|) 46 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 23 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 31 T CONST)) (-2668 (($) 39 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2616 (|#3| $)) (-15 -3948 (|#2| $)) (-15 -3844 ($ |#2| |#3|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3469 ((-3 $ #1#) $)) (-15 -2486 ($ $)))) (-146) (-1156 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) -((-3469 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2616 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3844 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2486 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-3127 (((-85) $ $) 10 T ELT))) -(((-245 |#1|) (-10 -7 (-15 -3127 ((-85) |#1| |#1|))) (-246)) (T -245)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3946 (*1 *1 *1) (-4 *1 (-239))) (-3945 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-10 -8 (-15 -3945 ($ $)) (-15 -3946 ($ $)) (-15 ** ($ $ $)))) +((-1577 (((-585 (-1071 |#1|)) (-1071 |#1|) |#1|) 35 T ELT)) (-1574 ((|#2| |#2| |#1|) 39 T ELT)) (-1576 ((|#2| |#2| |#1|) 41 T ELT)) (-1575 ((|#2| |#2| |#1|) 40 T ELT))) +(((-240 |#1| |#2|) (-10 -7 (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 (|#2| |#2| |#1|)) (-15 -1576 (|#2| |#2| |#1|)) (-15 -1577 ((-585 (-1071 |#1|)) (-1071 |#1|) |#1|))) (-312) (-1174 |#1|)) (T -240)) +((-1577 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-585 (-1071 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1071 *4)) (-4 *5 (-1174 *4)))) (-1576 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) +((-3803 ((|#2| $ |#1|) 6 T ELT))) +(((-241 |#1| |#2|) (-113) (-1131) (-1131)) (T -241)) +((-3803 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3803 (|t#2| $ |t#1|)))) +(((-13) . T) ((-1131) . T)) +((-1578 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3115 ((|#3| $ |#2|) 10 T ELT))) +(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1578 (|#3| |#1| |#2| |#3|)) (-15 -3115 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1015) (-1131)) (T -242)) +NIL +((-3791 ((|#2| $ |#1| |#2|) 10 (|has| $ (-1037 |#2|)) ELT)) (-1578 ((|#2| $ |#1| |#2|) 9 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 11 T ELT)) (-3803 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-243 |#1| |#2|) (-113) (-1015) (-1131)) (T -243)) +((-3803 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131)))) (-1578 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131))))) +(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3803 (|t#2| $ |t#1| |t#2|)) (-15 -3115 (|t#2| $ |t#1|)) (IF (|has| $ (-1037 |t#2|)) (PROGN (-15 -3791 (|t#2| $ |t#1| |t#2|)) (-15 -1578 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-241 |#1| |#2|) . T) ((-13) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 37 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 44 T ELT)) (-2065 (($ $) 41 T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) 35 T ELT)) (-3845 (($ |#2| |#3|) 18 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 ((|#3| $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 19 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1609 (((-696) $) 36 T ELT)) (-3803 ((|#2| $ |#2|) 46 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 23 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 31 T CONST)) (-2669 (($) 39 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2617 (|#3| $)) (-15 -3949 (|#2| $)) (-15 -3845 ($ |#2| |#3|)) (-15 -2404 ((-3 $ #1="failed") $ $)) (-15 -3470 ((-3 $ #1#) $)) (-15 -2487 ($ $)))) (-146) (-1157 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) +((-3470 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2617 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3845 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2487 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-3128 (((-85) $ $) 10 T ELT))) +(((-245 |#1|) (-10 -7 (-15 -3128 ((-85) |#1| |#1|))) (-246)) (T -245)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-246) (-113)) (T -246)) NIL -(-13 (-962) (-82 $ $) (-10 -7 (-6 -3990))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-1585 (((-584 (-998)) $) 10 T ELT)) (-1583 (($ (-447) (-447) (-1016) $) 19 T ELT)) (-1581 (($ (-447) (-584 (-877)) $) 23 T ELT)) (-1579 (($) 25 T ELT)) (-1584 (((-633 (-1016)) (-447) (-447) $) 18 T ELT)) (-1582 (((-584 (-877)) (-447) $) 22 T ELT)) (-3567 (($) 7 T ELT)) (-1580 (($) 24 T ELT)) (-3948 (((-773) $) 29 T ELT)) (-1578 (($) 26 T ELT))) -(((-247) (-13 (-553 (-773)) (-10 -8 (-15 -3567 ($)) (-15 -1585 ((-584 (-998)) $)) (-15 -1584 ((-633 (-1016)) (-447) (-447) $)) (-15 -1583 ($ (-447) (-447) (-1016) $)) (-15 -1582 ((-584 (-877)) (-447) $)) (-15 -1581 ($ (-447) (-584 (-877)) $)) (-15 -1580 ($)) (-15 -1579 ($)) (-15 -1578 ($))))) (T -247)) -((-3567 (*1 *1) (-5 *1 (-247))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247)))) (-1584 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247)))) (-1583 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247)))) (-1580 (*1 *1) (-5 *1 (-247))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247)))) -((-1589 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 103 T ELT)) (-1588 (((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1590 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 100 T ELT)) (-1587 (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|)))) 76 T ELT)) (-1586 (((-584 (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-350 (-858 |#1|)))) 75 T ELT)) (-2451 (((-858 |#1|) (-631 (-350 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1091)) 57 T ELT))) -(((-248 |#1|) (-10 -7 (-15 -2451 ((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1091))) (-15 -2451 ((-858 |#1|) (-631 (-350 (-858 |#1|))))) (-15 -1586 ((-584 (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-350 (-858 |#1|))))) (-15 -1587 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))))) (-15 -1588 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695))) (-15 -1588 ((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|))))) (-15 -1589 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|))))) (-15 -1590 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))))) (-392)) (T -248)) -((-1590 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1588 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-631 (-350 (-858 *6)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392)) (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))) (-5 *1 (-248 *4)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1596 (($ $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1605 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3726 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1594 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3530 ((|#1| $) 11 T ELT)) (-3469 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-664)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3531 ((|#1| $) 10 T ELT)) (-1595 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1593 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2486 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1591 (((-584 $) $) 85 (|has| |#1| (-496)) ELT)) (-3770 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 21 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3228 (($ |#1| |#1|) 9 T ELT)) (-3913 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 87 (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3011 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3948 (($ (-485)) NIL (|has| |#1| (-962)) ELT) (((-85) $) 37 (|has| |#1| (-1014)) ELT) (((-773) $) 36 (|has| |#1| (-1014)) ELT)) (-3128 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-2662 (($) 47 (|has| |#1| (-21)) CONST)) (-2668 (($) 57 (|has| |#1| (-664)) CONST)) (-2671 (($ $ (-1091)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3058 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1014)) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3839 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3841 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) NIL (|has| |#1| (-413)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1026)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1026)) ELT) (($ |#1| $) 54 (|has| |#1| (-1026)) ELT) (($ $ $) 53 (|has| |#1| (-1026)) ELT) (($ (-485) $) 70 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-25)) ELT))) -(((-249 |#1|) (-13 (-1130) (-10 -8 (-15 -3058 ($ |#1| |#1|)) (-15 -3228 ($ |#1| |#1|)) (-15 -1596 ($ $)) (-15 -3531 (|#1| $)) (-15 -3530 (|#1| $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-456 (-1091) |#1|)) (-6 (-456 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-553 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3770 ($ $ $)) (-15 -3770 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3841 ($ |#1| $)) (-15 -3841 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -1594 ($ $)) (-15 -3839 ($ |#1| $)) (-15 -3839 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -1593 ((-3 $ #1="failed") $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-15 -1593 ((-3 $ #1#) $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-496)) (-15 -1591 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1188 |#1|)) (-15 -3951 ($ $ $)) (-15 -2486 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1605 ($ $ $)) |%noBranch|))) (-1130)) (T -249)) -((-3058 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3228 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3531 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3770 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3839 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1593 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) (-4 *3 (-1130)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (-3951 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) (-2486 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130)))))) -((-3960 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) -(((-250 |#1| |#2|) (-10 -7 (-15 -3960 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1130) (-1130)) (T -250)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-251 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -251)) -NIL -((-1597 (((-262) (-1074) (-584 (-1074))) 17 T ELT) (((-262) (-1074) (-1074)) 16 T ELT) (((-262) (-584 (-1074))) 15 T ELT) (((-262) (-1074)) 14 T ELT))) -(((-252) (-10 -7 (-15 -1597 ((-262) (-1074))) (-15 -1597 ((-262) (-584 (-1074)))) (-15 -1597 ((-262) (-1074) (-1074))) (-15 -1597 ((-262) (-1074) (-584 (-1074)))))) (T -252)) -((-1597 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))) -((-1601 (((-584 (-551 $)) $) 27 T ELT)) (-1605 (($ $ (-249 $)) 78 T ELT) (($ $ (-584 (-249 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3159 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3158 (((-551 $) $) 127 T ELT)) (-2575 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1600 (((-584 (-86)) $) 35 T ELT)) (-3597 (((-86) (-86)) 89 T ELT)) (-2675 (((-85) $) 151 T ELT)) (-3960 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2236 (($ (-86) $) 59 T ELT) (($ (-86) (-584 $)) 111 T ELT)) (-2635 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1091)) 132 T ELT)) (-2605 (((-695) $) 44 T ELT)) (-1599 (((-85) $ $) 57 T ELT) (((-85) $ (-1091)) 49 T ELT)) (-2676 (((-85) $) 149 T ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1091) (-1 $ $)) 72 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-584 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3802 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-584 $)) 124 T ELT)) (-1604 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2592 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2255 (((-85) (-86)) 21 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -2675 ((-85) |#1|)) (-15 -2676 ((-85) |#1|)) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-15 -1599 ((-85) |#1| (-1091))) (-15 -1599 ((-85) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-15 -2236 (|#1| (-86) (-584 |#1|))) (-15 -2236 (|#1| (-86) |#1|)) (-15 -2635 ((-85) |#1| (-1091))) (-15 -2635 ((-85) |#1| (-86))) (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -1600 ((-584 (-86)) |#1|)) (-15 -1601 ((-584 (-551 |#1|)) |#1|)) (-15 -1603 ((-3 (-551 |#1|) #1="failed") |#1|)) (-15 -2605 ((-695) |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2575 (|#1| (-584 |#1|))) (-15 -2575 (|#1| |#1|)) (-15 -2592 (|#1| (-584 |#1|))) (-15 -2592 (|#1| |#1|)) (-15 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1605 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3802 (|#1| (-86) (-584 |#1|))) (-15 -3802 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3770 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3159 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3158 ((-551 |#1|) |#1|))) (-254)) (T -253)) -((-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) -((-2570 (((-85) $ $) 7 T ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3159 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3158 (((-551 $) $) 68 T ELT)) (-2575 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1600 (((-584 (-86)) $) 41 T ELT)) (-3597 (((-86) (-86)) 40 T ELT)) (-2675 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2635 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2605 (((-695) $) 45 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-2676 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3802 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3187 (($ $) 22 (|has| $ (-962)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2592 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(-13 (-963) (-82 $ $) (-10 -7 (-6 -3991))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-1586 (((-585 (-999)) $) 10 T ELT)) (-1584 (($ (-448) (-448) (-1017) $) 19 T ELT)) (-1582 (($ (-448) (-585 (-878)) $) 23 T ELT)) (-1580 (($) 25 T ELT)) (-1585 (((-634 (-1017)) (-448) (-448) $) 18 T ELT)) (-1583 (((-585 (-878)) (-448) $) 22 T ELT)) (-3568 (($) 7 T ELT)) (-1581 (($) 24 T ELT)) (-3949 (((-774) $) 29 T ELT)) (-1579 (($) 26 T ELT))) +(((-247) (-13 (-554 (-774)) (-10 -8 (-15 -3568 ($)) (-15 -1586 ((-585 (-999)) $)) (-15 -1585 ((-634 (-1017)) (-448) (-448) $)) (-15 -1584 ($ (-448) (-448) (-1017) $)) (-15 -1583 ((-585 (-878)) (-448) $)) (-15 -1582 ($ (-448) (-585 (-878)) $)) (-15 -1581 ($)) (-15 -1580 ($)) (-15 -1579 ($))))) (T -247)) +((-3568 (*1 *1) (-5 *1 (-247))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-585 (-999))) (-5 *1 (-247)))) (-1585 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-1017))) (-5 *1 (-247)))) (-1584 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-247)))) (-1583 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-585 (-878))) (-5 *1 (-247)))) (-1582 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-247)))) (-1581 (*1 *1) (-5 *1 (-247))) (-1580 (*1 *1) (-5 *1 (-247))) (-1579 (*1 *1) (-5 *1 (-247)))) +((-1590 (((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |geneigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|)))) 103 T ELT)) (-1589 (((-585 (-632 (-350 (-859 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|)))))) (-632 (-350 (-859 |#1|)))) 98 T ELT) (((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|))) (-696) (-696)) 42 T ELT)) (-1591 (((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|)))) 100 T ELT)) (-1588 (((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|)))) 76 T ELT)) (-1587 (((-585 (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (-632 (-350 (-859 |#1|)))) 75 T ELT)) (-2452 (((-859 |#1|) (-632 (-350 (-859 |#1|)))) 56 T ELT) (((-859 |#1|) (-632 (-350 (-859 |#1|))) (-1092)) 57 T ELT))) +(((-248 |#1|) (-10 -7 (-15 -2452 ((-859 |#1|) (-632 (-350 (-859 |#1|))) (-1092))) (-15 -2452 ((-859 |#1|) (-632 (-350 (-859 |#1|))))) (-15 -1587 ((-585 (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (-632 (-350 (-859 |#1|))))) (-15 -1588 ((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|))))) (-15 -1589 ((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|))) (-696) (-696))) (-15 -1589 ((-585 (-632 (-350 (-859 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|)))))) (-632 (-350 (-859 |#1|))))) (-15 -1590 ((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |geneigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|))))) (-15 -1591 ((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|)))))) (-393)) (T -248)) +((-1591 (*1 *2 *3) (-12 (-4 *4 (-393)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4)))))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-393)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) (|:| |geneigvec| (-585 (-632 (-350 (-859 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4)))))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 *4)))) (-4 *5 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-632 (-350 (-859 *5)))))) (-1589 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-859 *6)) (-1082 (-1092) (-859 *6)))) (-5 *5 (-696)) (-4 *6 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-632 (-350 (-859 *6)))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) (-4 *5 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-632 (-350 (-859 *5)))))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-4 *4 (-393)) (-5 *2 (-585 (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4))))) (-5 *1 (-248 *4)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-5 *2 (-859 *4)) (-5 *1 (-248 *4)) (-4 *4 (-393)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-859 *5)))) (-5 *4 (-1092)) (-5 *2 (-859 *5)) (-5 *1 (-248 *5)) (-4 *5 (-393))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3191 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1597 (($ $) 12 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1606 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3727 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-665))) CONST)) (-1595 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1593 (((-3 $ #1#) $) 62 (|has| |#1| (-665)) ELT)) (-3531 ((|#1| $) 11 T ELT)) (-3470 (((-3 $ #1#) $) 60 (|has| |#1| (-665)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-665)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3532 ((|#1| $) 10 T ELT)) (-1596 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1594 (((-3 $ #1#) $) 61 (|has| |#1| (-665)) ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2487 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-414))) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1592 (((-585 $) $) 85 (|has| |#1| (-497)) ELT)) (-3771 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-1092) |#1|) 17 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 21 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3229 (($ |#1| |#1|) 9 T ELT)) (-3914 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 87 (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-811 (-1092))) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-3949 (($ (-486)) NIL (|has| |#1| (-963)) ELT) (((-85) $) 37 (|has| |#1| (-1015)) ELT) (((-774) $) 36 (|has| |#1| (-1015)) ELT)) (-3129 (((-696)) 67 (|has| |#1| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-963)) ELT)) (-2663 (($) 47 (|has| |#1| (-21)) CONST)) (-2669 (($) 57 (|has| |#1| (-665)) CONST)) (-2672 (($ $ (-1092)) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-811 (-1092))) ELT)) (-3059 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1015)) ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-414))) ELT)) (-3840 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3842 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-486)) NIL (|has| |#1| (-414)) ELT) (($ $ (-696)) NIL (|has| |#1| (-665)) ELT) (($ $ (-832)) NIL (|has| |#1| (-1027)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1027)) ELT) (($ |#1| $) 54 (|has| |#1| (-1027)) ELT) (($ $ $) 53 (|has| |#1| (-1027)) ELT) (($ (-486) $) 70 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-25)) ELT))) +(((-249 |#1|) (-13 (-1131) (-10 -8 (-15 -3059 ($ |#1| |#1|)) (-15 -3229 ($ |#1| |#1|)) (-15 -1597 ($ $)) (-15 -3532 (|#1| $)) (-15 -3531 (|#1| $)) (-15 -3961 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457 (-1092) |#1|)) (-6 (-457 (-1092) |#1|)) |%noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-6 (-554 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3771 ($ $ $)) (-15 -3771 ($ $ (-585 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3842 ($ |#1| $)) (-15 -3842 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1596 ($ $)) (-15 -1595 ($ $)) (-15 -3840 ($ |#1| $)) (-15 -3840 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-665)) (PROGN (-6 (-665)) (-15 -1594 ((-3 $ #1="failed") $)) (-15 -1593 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-414)) (PROGN (-6 (-414)) (-15 -1594 ((-3 $ #1#) $)) (-15 -1593 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-6 (-963)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-656 |#1|)) |%noBranch|) (IF (|has| |#1| (-497)) (-15 -1592 ((-585 $) $)) |%noBranch|) (IF (|has| |#1| (-811 (-1092))) (-6 (-811 (-1092))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1189 |#1|)) (-15 -3952 ($ $ $)) (-15 -2487 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1606 ($ $ $)) |%noBranch|))) (-1131)) (T -249)) +((-3059 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3229 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3532 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3531 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-249 *3)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)) (-5 *1 (-249 *2)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1015)) (-4 *3 (-1131)) (-5 *1 (-249 *3)))) (-3842 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) (-3842 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-3840 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-1594 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131)))) (-1593 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-585 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-497)) (-4 *3 (-1131)))) (-1606 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) (-3952 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131))))) (-2487 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131)))))) +((-3961 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) +(((-250 |#1| |#2|) (-10 -7 (-15 -3961 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1131) (-1131)) (T -250)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-251 |#1| |#2|) (-1109 |#1| |#2|) (-1015) (-1015)) (T -251)) +NIL +((-1598 (((-262) (-1075) (-585 (-1075))) 17 T ELT) (((-262) (-1075) (-1075)) 16 T ELT) (((-262) (-585 (-1075))) 15 T ELT) (((-262) (-1075)) 14 T ELT))) +(((-252) (-10 -7 (-15 -1598 ((-262) (-1075))) (-15 -1598 ((-262) (-585 (-1075)))) (-15 -1598 ((-262) (-1075) (-1075))) (-15 -1598 ((-262) (-1075) (-585 (-1075)))))) (T -252)) +((-1598 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1075))) (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1598 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252))))) +((-1602 (((-585 (-552 $)) $) 27 T ELT)) (-1606 (($ $ (-249 $)) 78 T ELT) (($ $ (-585 (-249 $))) 140 T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3160 (((-3 (-552 $) #1="failed") $) 128 T ELT)) (-3159 (((-552 $) $) 127 T ELT)) (-2576 (($ $) 17 T ELT) (($ (-585 $)) 54 T ELT)) (-1601 (((-585 (-86)) $) 35 T ELT)) (-3598 (((-86) (-86)) 89 T ELT)) (-2676 (((-85) $) 151 T ELT)) (-3961 (($ (-1 $ $) (-552 $)) 87 T ELT)) (-1604 (((-3 (-552 $) #1#) $) 95 T ELT)) (-2237 (($ (-86) $) 59 T ELT) (($ (-86) (-585 $)) 111 T ELT)) (-2636 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1092)) 132 T ELT)) (-2606 (((-696) $) 44 T ELT)) (-1600 (((-85) $ $) 57 T ELT) (((-85) $ (-1092)) 49 T ELT)) (-2677 (((-85) $) 149 T ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 81 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) 67 T ELT) (($ $ (-1092) (-1 $ $)) 72 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 80 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-585 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3803 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-585 $)) 124 T ELT)) (-1605 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2593 (($ $) 15 T ELT) (($ (-585 $)) 53 T ELT)) (-2256 (((-85) (-86)) 21 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -2676 ((-85) |#1|)) (-15 -2677 ((-85) |#1|)) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| |#1|)))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| |#1|)))) (-15 -1600 ((-85) |#1| (-1092))) (-15 -1600 ((-85) |#1| |#1|)) (-15 -3961 (|#1| (-1 |#1| |#1|) (-552 |#1|))) (-15 -2237 (|#1| (-86) (-585 |#1|))) (-15 -2237 (|#1| (-86) |#1|)) (-15 -2636 ((-85) |#1| (-1092))) (-15 -2636 ((-85) |#1| (-86))) (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -1601 ((-585 (-86)) |#1|)) (-15 -1602 ((-585 (-552 |#1|)) |#1|)) (-15 -1604 ((-3 (-552 |#1|) #1="failed") |#1|)) (-15 -2606 ((-696) |#1|)) (-15 -1605 (|#1| |#1| |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -2576 (|#1| (-585 |#1|))) (-15 -2576 (|#1| |#1|)) (-15 -2593 (|#1| (-585 |#1|))) (-15 -2593 (|#1| |#1|)) (-15 -1606 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -1606 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -1606 (|#1| |#1| (-249 |#1|))) (-15 -3803 (|#1| (-86) (-585 |#1|))) (-15 -3803 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -3771 (|#1| |#1| (-552 |#1|) |#1|)) (-15 -3160 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -3159 ((-552 |#1|) |#1|))) (-254)) (T -253)) +((-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) +((-2571 (((-85) $ $) 7 T ELT)) (-1602 (((-585 (-552 $)) $) 42 T ELT)) (-1606 (($ $ (-249 $)) 54 T ELT) (($ $ (-585 (-249 $))) 53 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 52 T ELT)) (-3160 (((-3 (-552 $) "failed") $) 67 T ELT)) (-3159 (((-552 $) $) 68 T ELT)) (-2576 (($ $) 49 T ELT) (($ (-585 $)) 48 T ELT)) (-1601 (((-585 (-86)) $) 41 T ELT)) (-3598 (((-86) (-86)) 40 T ELT)) (-2676 (((-85) $) 20 (|has| $ (-952 (-486))) ELT)) (-1599 (((-1087 $) (-552 $)) 23 (|has| $ (-963)) ELT)) (-3961 (($ (-1 $ $) (-552 $)) 34 T ELT)) (-1604 (((-3 (-552 $) "failed") $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1603 (((-585 (-552 $)) $) 43 T ELT)) (-2237 (($ (-86) $) 36 T ELT) (($ (-86) (-585 $)) 35 T ELT)) (-2636 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1092)) 37 T ELT)) (-2606 (((-696) $) 45 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1600 (((-85) $ $) 33 T ELT) (((-85) $ (-1092)) 32 T ELT)) (-2677 (((-85) $) 21 (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) 65 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 64 T ELT) (($ $ (-585 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-585 $) (-585 $)) 60 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 31 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 30 T ELT) (($ $ (-1092) (-1 $ (-585 $))) 29 T ELT) (($ $ (-1092) (-1 $ $)) 28 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 27 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-585 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3803 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-585 $)) 55 T ELT)) (-1605 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3188 (($ $) 22 (|has| $ (-963)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-552 $)) 66 T ELT)) (-2593 (($ $) 51 T ELT) (($ (-585 $)) 50 T ELT)) (-2256 (((-85) (-86)) 39 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-254) (-113)) (T -254)) -((-3802 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-2592 (*1 *1 *1) (-4 *1 (-254))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-2575 (*1 *1 *1) (-4 *1 (-254))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1) (-4 *1 (-254))) (-1604 (*1 *1 *1 *1) (-4 *1 (-254))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695)))) (-1603 (*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86))))) (-3597 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2255 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-2236 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1599 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1086 *1)))) (-3187 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))) -(-13 (-1014) (-951 (-551 $)) (-456 (-551 $) $) (-260 $) (-10 -8 (-15 -3802 ($ (-86) $)) (-15 -3802 ($ (-86) $ $)) (-15 -3802 ($ (-86) $ $ $)) (-15 -3802 ($ (-86) $ $ $ $)) (-15 -3802 ($ (-86) (-584 $))) (-15 -1605 ($ $ (-249 $))) (-15 -1605 ($ $ (-584 (-249 $)))) (-15 -1605 ($ $ (-584 (-551 $)) (-584 $))) (-15 -2592 ($ $)) (-15 -2592 ($ (-584 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-584 $))) (-15 -1604 ($ $)) (-15 -1604 ($ $ $)) (-15 -2605 ((-695) $)) (-15 -1603 ((-3 (-551 $) "failed") $)) (-15 -1602 ((-584 (-551 $)) $)) (-15 -1601 ((-584 (-551 $)) $)) (-15 -1600 ((-584 (-86)) $)) (-15 -3597 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -2635 ((-85) $ (-86))) (-15 -2635 ((-85) $ (-1091))) (-15 -2236 ($ (-86) $)) (-15 -2236 ($ (-86) (-584 $))) (-15 -3960 ($ (-1 $ $) (-551 $))) (-15 -1599 ((-85) $ $)) (-15 -1599 ((-85) $ (-1091))) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-1 $ $)))) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-1 $ (-584 $))))) (-15 -3770 ($ $ (-1091) (-1 $ (-584 $)))) (-15 -3770 ($ $ (-1091) (-1 $ $))) (-15 -3770 ($ $ (-584 (-86)) (-584 (-1 $ $)))) (-15 -3770 ($ $ (-584 (-86)) (-584 (-1 $ (-584 $))))) (-15 -3770 ($ $ (-86) (-1 $ (-584 $)))) (-15 -3770 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -1598 ((-1086 $) (-551 $))) (-15 -3187 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-485))) (PROGN (-15 -2676 ((-85) $)) (-15 -2675 ((-85) $))) |%noBranch|))) -(((-72) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-260 $) . T) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-13) . T) ((-951 (-551 $)) . T) ((-1014) . T) ((-1130) . T)) -((-3960 ((|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)) 18 T ELT))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3960 (|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)))) (-254) (-1130)) (T -255)) -((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-254)) (-4 *2 (-1130)) (-5 *1 (-255 *6 *2))))) -((-3960 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT))) -(((-256 |#1| |#2|) (-10 -7 (-15 -3960 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-254) (-254)) (T -256)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) -((-1609 (((-85) $ $) 14 T ELT)) (-2566 (($ $ $) 18 T ELT)) (-2565 (($ $ $) 17 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 50 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3146 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3468 (((-3 $ #1#) $ $) 21 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 55 T ELT))) -(((-257 |#1|) (-10 -7 (-15 -1606 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-15 -1607 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1609 ((-85) |#1| |#1|)) (-15 -2742 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-15 -2743 ((-2 (|:| -3956 (-584 |#1|)) (|:| -2410 |#1|)) (-584 |#1|))) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) "failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *1))) (-4 *1 (-254)))) (-1606 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-552 *1))) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-2593 (*1 *1 *1) (-4 *1 (-254))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) (-2576 (*1 *1 *1) (-4 *1 (-254))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1) (-4 *1 (-254))) (-1605 (*1 *1 *1 *1) (-4 *1 (-254))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-696)))) (-1604 (*1 *2 *1) (|partial| -12 (-5 *2 (-552 *1)) (-4 *1 (-254)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-585 (-86))))) (-3598 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2256 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) (-2237 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-3961 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-552 *1)) (-4 *1 (-254)))) (-1600 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1600 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-552 *1)) (-4 *1 (-963)) (-4 *1 (-254)) (-5 *2 (-1087 *1)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-254)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85))))) +(-13 (-1015) (-952 (-552 $)) (-457 (-552 $) $) (-260 $) (-10 -8 (-15 -3803 ($ (-86) $)) (-15 -3803 ($ (-86) $ $)) (-15 -3803 ($ (-86) $ $ $)) (-15 -3803 ($ (-86) $ $ $ $)) (-15 -3803 ($ (-86) (-585 $))) (-15 -1606 ($ $ (-249 $))) (-15 -1606 ($ $ (-585 (-249 $)))) (-15 -1606 ($ $ (-585 (-552 $)) (-585 $))) (-15 -2593 ($ $)) (-15 -2593 ($ (-585 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-585 $))) (-15 -1605 ($ $)) (-15 -1605 ($ $ $)) (-15 -2606 ((-696) $)) (-15 -1604 ((-3 (-552 $) "failed") $)) (-15 -1603 ((-585 (-552 $)) $)) (-15 -1602 ((-585 (-552 $)) $)) (-15 -1601 ((-585 (-86)) $)) (-15 -3598 ((-86) (-86))) (-15 -2256 ((-85) (-86))) (-15 -2636 ((-85) $ (-86))) (-15 -2636 ((-85) $ (-1092))) (-15 -2237 ($ (-86) $)) (-15 -2237 ($ (-86) (-585 $))) (-15 -3961 ($ (-1 $ $) (-552 $))) (-15 -1600 ((-85) $ $)) (-15 -1600 ((-85) $ (-1092))) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-1 $ $)))) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-1 $ (-585 $))))) (-15 -3771 ($ $ (-1092) (-1 $ (-585 $)))) (-15 -3771 ($ $ (-1092) (-1 $ $))) (-15 -3771 ($ $ (-585 (-86)) (-585 (-1 $ $)))) (-15 -3771 ($ $ (-585 (-86)) (-585 (-1 $ (-585 $))))) (-15 -3771 ($ $ (-86) (-1 $ (-585 $)))) (-15 -3771 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-963)) (PROGN (-15 -1599 ((-1087 $) (-552 $))) (-15 -3188 ($ $))) |%noBranch|) (IF (|has| $ (-952 (-486))) (PROGN (-15 -2677 ((-85) $)) (-15 -2676 ((-85) $))) |%noBranch|))) +(((-72) . T) ((-557 (-552 $)) . T) ((-554 (-774)) . T) ((-260 $) . T) ((-457 (-552 $) $) . T) ((-457 $ $) . T) ((-13) . T) ((-952 (-552 $)) . T) ((-1015) . T) ((-1131) . T)) +((-3961 ((|#2| (-1 |#2| |#1|) (-1075) (-552 |#1|)) 18 T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3961 (|#2| (-1 |#2| |#1|) (-1075) (-552 |#1|)))) (-254) (-1131)) (T -255)) +((-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1075)) (-5 *5 (-552 *6)) (-4 *6 (-254)) (-4 *2 (-1131)) (-5 *1 (-255 *6 *2))))) +((-3961 ((|#2| (-1 |#2| |#1|) (-552 |#1|)) 17 T ELT))) +(((-256 |#1| |#2|) (-10 -7 (-15 -3961 (|#2| (-1 |#2| |#1|) (-552 |#1|)))) (-254) (-254)) (T -256)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-552 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) +((-1610 (((-85) $ $) 14 T ELT)) (-2567 (($ $ $) 18 T ELT)) (-2566 (($ $ $) 17 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 50 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 67 T ELT)) (-3147 (($ $ $) 25 T ELT) (($ (-585 $)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3469 (((-3 $ #1#) $ $) 21 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 55 T ELT))) +(((-257 |#1|) (-10 -7 (-15 -1607 ((-3 (-585 |#1|) #1="failed") (-585 |#1|) |#1|)) (-15 -1608 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1608 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -1610 ((-85) |#1| |#1|)) (-15 -2743 ((-634 (-585 |#1|)) (-585 |#1|) |#1|)) (-15 -2744 ((-2 (|:| -3957 (-585 |#1|)) (|:| -2411 |#1|)) (-585 |#1|))) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1607 (((-3 (-585 $) "failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-258) (-113)) (T -258)) -((-1609 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695)))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-258)))) (-2565 (*1 *1 *1 *1) (-4 *1 (-258))) (-2566 (*1 *1 *1 *1) (-4 *1 (-258))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-258)))) (-1607 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258))))) -(-13 (-833) (-10 -8 (-15 -1609 ((-85) $ $)) (-15 -1608 ((-695) $)) (-15 -2881 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2565 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -1607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -1607 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1606 ((-3 (-584 $) "failed") (-584 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3770 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-584 (-249 |#2|))) NIL T ELT))) -(((-259 |#1| |#2|) (-10 -7 (-15 -3770 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3770 (|#1| |#1| (-249 |#2|))) (-15 -3770 (|#1| |#1| |#2| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-260 |#2|) (-1014)) (T -259)) -NIL -((-3770 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-584 (-249 |#1|))) 12 T ELT))) -(((-260 |#1|) (-113) (-1014)) (T -260)) -((-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014))))) -(-13 (-456 |t#1| |t#1|) (-10 -8 (-15 -3770 ($ $ (-249 |t#1|))) (-15 -3770 ($ $ (-584 (-249 |t#1|)))))) -(((-456 |#1| |#1|) . T)) -((-3770 ((|#1| (-1 |#1| (-485)) (-1093 (-350 (-485)))) 26 T ELT))) -(((-261 |#1|) (-10 -7 (-15 -3770 (|#1| (-1 |#1| (-485)) (-1093 (-350 (-485)))))) (-38 (-350 (-485)))) (T -261)) -((-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-350 (-485)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-485))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) -(((-262) (-1014)) (T -262)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3508 (((-485) $) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 10 T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-263) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3508 ((-485) $))))) (T -263)) -((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 60 T ELT)) (-3131 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1167 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3158 (((-1167 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1091) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-1167 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3447 (((-633 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3960 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3786 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-1180 $) $) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3132 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-1167 |#1| |#2| |#3| |#4|)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-249 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1091)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1091) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-1167 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-179) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (($ (-1161 |#2| |#3| |#4|)) 37 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3951 (($ $ $) 35 T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-264 |#1| |#2| |#3| |#4|) (-13 (-905 (-1167 |#1| |#2| |#3| |#4|)) (-951 (-1161 |#2| |#3| |#4|)) (-10 -8 (-15 -3786 ((-3 (-751 |#2|) "failed") $)) (-15 -3948 ($ (-1161 |#2| |#3| |#4|))))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -264)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4) (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3786 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) -((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-1217 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3190 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3083 (((-584 (-1091)) $) 365 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) NIL (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-3494 (($ $) 170 (|has| |#1| (-496)) ELT)) (-3641 (($ $) 146 (|has| |#1| (-496)) ELT)) (-1373 (($ $ (-1005 $)) 231 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 227 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 305 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-496)) ELT)) (-3640 (($ $) 142 (|has| |#1| (-496)) ELT)) (-1610 (($ $ (-485)) 68 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 174 (|has| |#1| (-496)) ELT)) (-3639 (($ $) 150 (|has| |#1| (-496)) ELT)) (-3726 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) (|has| |#1| (-1026))) CONST)) (-1218 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3185 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) 133 (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 48 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 (((-551 $) $) 12 T ELT) (((-1091) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-858 |#1|)) $) NIL (|has| |#1| (-496)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 316 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-3844 (($ $) 95 (|has| |#1| (-496)) ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3946 (($ $ (-1005 $)) 235 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-496)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3388 (($ $ $) 201 (|has| |#1| (-496)) ELT)) (-3629 (($) 136 (|has| |#1| (-496)) ELT)) (-1370 (($ $ $) 221 (|has| |#1| (-496)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 389 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 396 (|has| |#1| (-797 (-330))) ELT)) (-2575 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3597 (((-86) (-86)) 275 T ELT)) (-2411 (((-85) $) 27 (|has| |#1| (-1026)) ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2998 (($ $) 73 (|has| |#1| (-962)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1611 (((-85) $) 49 (|has| |#1| (-496)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3944 (($ $) 140 (|has| |#1| (-496)) ELT)) (-2258 (($ $) 246 (|has| |#1| (-496)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) 51 T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) 439 T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2824 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1091)) NIL (|has| |#1| (-962)) ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) 53 T ELT)) (-2486 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2834 (($ $ (-1091)) 250 (|has| |#1| (-496)) ELT) (($ $ (-1005 $)) 252 (|has| |#1| (-496)) ELT)) (-2605 (((-695) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 45 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 298 (|has| |#1| (-496)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-1374 (($ $ (-1091)) 225 (|has| |#1| (-496)) ELT) (($ $) 223 (|has| |#1| (-496)) ELT)) (-1368 (($ $) 217 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 303 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) 138 (|has| |#1| (-496)) ELT)) (-2676 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-554 (-474))) ELT) (($ $) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 363 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 362 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-2256 (($ $) 238 (|has| |#1| (-496)) ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2257 (($ $) 248 (|has| |#1| (-496)) ELT)) (-3387 (($ $) 199 (|has| |#1| (-496)) ELT)) (-3760 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2997 (($ $) 74 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 92 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 314 (|has| $ (-962)) ELT)) (-3497 (($ $) 176 (|has| |#1| (-496)) ELT)) (-3638 (($ $) 152 (|has| |#1| (-496)) ELT)) (-3495 (($ $) 172 (|has| |#1| (-496)) ELT)) (-3637 (($ $) 148 (|has| |#1| (-496)) ELT)) (-3493 (($ $) 168 (|has| |#1| (-496)) ELT)) (-3636 (($ $) 144 (|has| |#1| (-496)) ELT)) (-3974 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-496)) ELT) (((-474) $) 360 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3948 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1091)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (($ (-1040 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-485)) 36 (OR (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2592 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3103 (($ $ $) 219 (|has| |#1| (-496)) ELT)) (-3391 (($ $ $) 205 (|has| |#1| (-496)) ELT)) (-3393 (($ $ $) 209 (|has| |#1| (-496)) ELT)) (-3390 (($ $ $) 203 (|has| |#1| (-496)) ELT)) (-3392 (($ $ $) 207 (|has| |#1| (-496)) ELT)) (-2255 (((-85) (-86)) 10 T ELT)) (-1266 (((-85) $ $) 85 T ELT)) (-3500 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3488 (($ $) 158 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 178 (|has| |#1| (-496)) ELT)) (-3486 (($ $) 154 (|has| |#1| (-496)) ELT)) (-3502 (($ $) 186 (|has| |#1| (-496)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-496)) ELT)) (-1799 (($ (-1091) $) NIL T ELT) (($ (-1091) $ $) NIL T ELT) (($ (-1091) $ $ $) NIL T ELT) (($ (-1091) $ $ $ $) NIL T ELT) (($ (-1091) (-584 $)) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-3395 (($ $) 213 (|has| |#1| (-496)) ELT)) (-3394 (($ $) 211 (|has| |#1| (-496)) ELT)) (-3503 (($ $) 188 (|has| |#1| (-496)) ELT)) (-3491 (($ $) 164 (|has| |#1| (-496)) ELT)) (-3501 (($ $) 184 (|has| |#1| (-496)) ELT)) (-3489 (($ $) 160 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 180 (|has| |#1| (-496)) ELT)) (-3487 (($ $) 156 (|has| |#1| (-496)) ELT)) (-3385 (($ $) 191 (|has| |#1| (-496)) ELT)) (-2662 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) CONST)) (-2260 (($ $) 242 (|has| |#1| (-496)) ELT)) (-2668 (($) 25 (|has| |#1| (-1026)) CONST)) (-3389 (($ $) 193 (|has| |#1| (-496)) ELT) (($ $ $) 195 (|has| |#1| (-496)) ELT)) (-2261 (($ $) 240 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2259 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3386 (($ $ $) 197 (|has| |#1| (-496)) ELT)) (-3058 (((-85) $ $) 87 T ELT)) (-3951 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 105 (|has| |#1| (-496)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3839 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3841 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 311 (|has| |#1| (-496)) ELT) (($ $ (-485)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) NIL (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-496)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1026)) ELT) (($ (-485) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT))) -(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-496)) (PROGN (-6 (-29 |#1|)) (-6 (-1116)) (-6 (-133)) (-6 (-570)) (-6 (-1054)) (-15 -3844 ($ $)) (-15 -1611 ((-85) $)) (-15 -1610 ($ $ (-485))) (IF (|has| |#1| (-392)) (PROGN (-15 -2708 ((-348 (-1086 $)) (-1086 $))) (-15 -2709 ((-348 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-485))) (-6 (-951 (-48))) |%noBranch|)) |%noBranch|))) (-1014)) (T -265)) -((-3844 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))) -((-3960 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -3960 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1014) (-1014)) (T -266)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) -((-3731 (((-51) |#2| (-249 |#2|) (-695)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-695)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1091)) 26 T ELT)) (-3820 (((-51) |#2| (-249 |#2|) (-350 (-485))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-485))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1091)) 55 T ELT)) (-3784 (((-51) |#2| (-249 |#2|) (-350 (-485))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-485))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1091)) 50 T ELT)) (-3781 (((-51) |#2| (-249 |#2|) (-485)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-485)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1091)) 43 T ELT))) -(((-267 |#1| |#2|) (-10 -7 (-15 -3731 ((-51) (-1091))) (-15 -3731 ((-51) |#2|)) (-15 -3731 ((-51) |#2| (-695))) (-15 -3731 ((-51) |#2| (-249 |#2|))) (-15 -3731 ((-51) |#2| (-249 |#2|) (-695))) (-15 -3781 ((-51) (-1091))) (-15 -3781 ((-51) |#2|)) (-15 -3781 ((-51) |#2| (-485))) (-15 -3781 ((-51) |#2| (-249 |#2|))) (-15 -3781 ((-51) |#2| (-249 |#2|) (-485))) (-15 -3784 ((-51) (-1091))) (-15 -3784 ((-51) |#2|)) (-15 -3784 ((-51) |#2| (-350 (-485)))) (-15 -3784 ((-51) |#2| (-249 |#2|))) (-15 -3784 ((-51) |#2| (-249 |#2|) (-350 (-485)))) (-15 -3820 ((-51) (-1091))) (-15 -3820 ((-51) |#2|)) (-15 -3820 ((-51) |#2| (-350 (-485)))) (-15 -3820 ((-51) |#2| (-249 |#2|))) (-15 -3820 ((-51) |#2| (-249 |#2|) (-350 (-485))))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -267)) -((-3820 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3820 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3784 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3784 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4)))))) -((-1612 (((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 81 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 83 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 84 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) -(((-268 |#1| |#2|) (-10 -7 (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1612 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-496) (-554 (-474))) (-364 |#1|)) (T -268)) -((-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1612 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) -((-1614 (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1074)) 67 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485)) 68 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1074)) 64 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485)) 65 T ELT)) (-1613 (((-1 (-179) (-179)) (-179)) 66 T ELT))) -(((-269) (-10 -7 (-15 -1613 ((-1 (-179) (-179)) (-179))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1074))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1074))))) (T -269)) -((-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 26 T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 20 T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 36 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1615 (((-350 (-485)) $) 17 T ELT)) (-3092 (($ (-1161 |#1| |#2| |#3|)) 11 T ELT)) (-2402 (((-1161 |#1| |#2| |#3|) $) 12 T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 10 T ELT)) (-3948 (((-773) $) 42 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 34 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 28 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 37 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-270 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-717) (-10 -8 (-15 -3092 ($ (-1161 |#1| |#2| |#3|))) (-15 -2402 ((-1161 |#1| |#2| |#3|) $)) (-15 -1615 ((-350 (-485)) $)))) (-312) (-1091) |#1|) (T -270)) -((-3092 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3)))) -((-3013 (((-2 (|:| -2402 (-695)) (|:| -3956 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695)) 35 T ELT)) (-3944 (((-584 (-2 (|:| -3956 (-695)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT))) -(((-271 |#1|) (-10 -7 (-15 -3013 ((-2 (|:| -2402 (-695)) (|:| -3956 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695))) (-15 -3944 ((-584 (-2 (|:| -3956 (-695)) (|:| |logand| |#1|))) (-348 |#1|)))) (-496)) (T -271)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-496)) (-5 *2 (-584 (-2 (|:| -3956 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-496)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-695))))) -((-3083 (((-584 |#2|) (-1086 |#4|)) 45 T ELT)) (-1620 ((|#3| (-485)) 48 T ELT)) (-1618 (((-1086 |#4|) (-1086 |#3|)) 30 T ELT)) (-1619 (((-1086 |#4|) (-1086 |#4|) (-485)) 67 T ELT)) (-1617 (((-1086 |#3|) (-1086 |#4|)) 21 T ELT)) (-3950 (((-584 (-695)) (-1086 |#4|) (-584 |#2|)) 41 T ELT)) (-1616 (((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT))) -(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 ((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|))) (-15 -3950 ((-584 (-695)) (-1086 |#4|) (-584 |#2|))) (-15 -3083 ((-584 |#2|) (-1086 |#4|))) (-15 -1617 ((-1086 |#3|) (-1086 |#4|))) (-15 -1618 ((-1086 |#4|) (-1086 |#3|))) (-15 -1619 ((-1086 |#4|) (-1086 |#4|) (-485))) (-15 -1620 (|#3| (-485)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -272)) -((-1620 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 19 T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-485)))) $) 21 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-485) $ (-485)) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-485) (-485)) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-485) (-717)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3679 (((-485) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 30 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3841 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ (-485) |#1|) 28 T ELT))) -(((-273 |#1|) (-13 (-21) (-655 (-485)) (-274 |#1| (-485)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1014)) (T -273)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $) 34 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3138 (((-695) $) 35 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 39 T ELT)) (-3158 ((|#1| $) 40 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2300 ((|#1| $ (-485)) 32 T ELT)) (-1623 ((|#2| $ (-485)) 33 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1621 (($ $ $) 28 (|has| |#2| (-717)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3679 ((|#2| |#1| $) 31 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) -(((-274 |#1| |#2|) (-113) (-1014) (-104)) (T -274)) -((-3841 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014)))) (-3679 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717))))) -(-13 (-104) (-951 |t#1|) (-10 -8 (-15 -3841 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3138 ((-695) $)) (-15 -3776 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3945 |t#2|))) $)) (-15 -1623 (|t#2| $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -3679 (|t#2| |t#1| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-15 -1621 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-695) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3679 (((-695) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT))) -(((-275 |#1|) (-274 |#1| (-695)) (-1014)) (T -275)) -NIL -((-3505 (($ $) 72 T ELT)) (-1625 (($ $ |#2| |#3| $) 14 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1801 (((-85) $) 42 T ELT)) (-1800 ((|#2| $) 44 T ELT)) (-3468 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2819 ((|#2| $) 68 T ELT)) (-3819 (((-584 |#2|) $) 56 T ELT)) (-1624 (($ $ $ (-695)) 37 T ELT)) (-3951 (($ $ |#2|) 60 T ELT))) -(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3505 (|#1| |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1624 (|#1| |#1| |#1| (-695))) (-15 -1625 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1626 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3819 ((-584 |#2|) |#1|)) (-15 -1800 (|#2| |#1|)) (-15 -1801 ((-85) |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3951 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-962) (-717)) (T -276)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 107 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3158 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 105 T ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 93 (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 97 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 100 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT)) (-2822 ((|#2| $) 99 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 103 T ELT)) (-1800 ((|#1| $) 102 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-2819 ((|#1| $) 94 (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-485))) 77 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) 101 T ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 96 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-277 |#1| |#2|) (-113) (-962) (-717)) (T -277)) -((-1801 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1625 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1624 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-496)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392))))) -(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1801 ((-85) $)) (-15 -1800 (|t#1| $)) (-15 -3819 ((-584 |t#1|) $)) (-15 -2421 ((-695) $)) (-15 -2822 (|t#2| $)) (-15 -1626 ($ (-1 |t#2| |t#2|) $)) (-15 -1625 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1624 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-496)) (-15 -3468 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2819 (|t#1| $)) (-15 -3505 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-355 |#1|) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) NIL T ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-1988 (($ $ (-485)) NIL T ELT)) (-1989 (((-695) $) NIL T ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3611 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) NIL T ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3793 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1130)) (T -278)) -((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130))))) -((-3934 (((-85) $) 47 T ELT)) (-3931 (((-695)) 23 T ELT)) (-3332 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3138 (((-695)) 124 T ELT)) (-1796 (($ (-1180 |#2|)) 20 T ELT)) (-2012 (((-85) $) 136 T ELT)) (-3134 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2015 (((-1086 |#2|) $) NIL T ELT) (((-1086 $) $ (-831)) 111 T ELT)) (-1628 (((-1086 |#2|) $) 95 T ELT)) (-1627 (((-1086 |#2|) $) 91 T ELT) (((-3 (-1086 |#2|) "failed") $ $) 88 T ELT)) (-1629 (($ $ (-1086 |#2|)) 58 T ELT)) (-3932 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3913 (((-107)) 27 T ELT)) (-3950 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1630 (($) 130 T ELT)) (-3226 (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $)) 42 T ELT)) (-2704 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3935 (((-85) $) 45 T ELT))) -(((-279 |#1| |#2|) (-10 -7 (-15 -2704 ((-633 |#1|) |#1|)) (-15 -3138 ((-695))) (-15 -2704 (|#1| |#1|)) (-15 -1627 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -1627 ((-1086 |#2|) |#1|)) (-15 -1628 ((-1086 |#2|) |#1|)) (-15 -1629 (|#1| |#1| (-1086 |#2|))) (-15 -2012 ((-85) |#1|)) (-15 -1630 (|#1|)) (-15 -3332 (|#1| |#1| (-831))) (-15 -3134 (|#1| |#1| (-831))) (-15 -2015 ((-1086 |#1|) |#1| (-831))) (-15 -3332 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3950 ((-831) |#1|)) (-15 -3932 ((-831))) (-15 -2015 ((-1086 |#2|) |#1|)) (-15 -1796 (|#1| (-1180 |#2|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -3931 ((-695))) (-15 -3932 ((-744 (-831)))) (-15 -3950 ((-744 (-831)) |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3935 ((-85) |#1|)) (-15 -3913 ((-107)))) (-280 |#2|) (-312)) (T -279)) -((-3913 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3932 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3932 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3138 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3934 (((-85) $) 114 T ELT)) (-3931 (((-695)) 110 T ELT)) (-3332 ((|#1| $) 162 T ELT) (($ $ (-831)) 159 (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 144 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3138 (((-695)) 134 (|has| |#1| (-320)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 121 T ELT)) (-3158 ((|#1| $) 122 T ELT)) (-1796 (($ (-1180 |#1|)) 168 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 131 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2835 (($) 146 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-831) $) 149 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) 163 T ELT) (($ $ (-831)) 160 (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) 135 (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2015 (((-1086 |#1|) $) 167 T ELT) (((-1086 $) $ (-831)) 161 (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 132 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3448 (($) 136 (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 133 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 113 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (($) 155 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 143 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-3932 (((-744 (-831))) 111 T ELT) (((-831)) 165 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-695) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) 119 T ELT)) (-3760 (($ $ (-695)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) 112 T ELT) (((-831) $) 164 T ELT)) (-3187 (((-1086 |#1|)) 166 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) 158 (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 170 T ELT) (((-631 |#1|) (-1180 $)) 169 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 142 (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2704 (($ $) 141 (|has| |#1| (-320)) ELT) (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 172 T ELT) (((-1180 $) (-831)) 171 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3935 (((-85) $) 115 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3930 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +((-1610 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-696)))) (-2882 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-258)))) (-2566 (*1 *1 *1 *1) (-4 *1 (-258))) (-2567 (*1 *1 *1 *1) (-4 *1 (-258))) (-1608 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-258)))) (-1608 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1607 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-258))))) +(-13 (-834) (-10 -8 (-15 -1610 ((-85) $ $)) (-15 -1609 ((-696) $)) (-15 -2882 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2566 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -1608 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -1608 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1607 ((-3 (-585 $) "failed") (-585 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3771 (($ $ (-585 |#2|) (-585 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-585 (-249 |#2|))) NIL T ELT))) +(((-259 |#1| |#2|) (-10 -7 (-15 -3771 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3771 (|#1| |#1| (-249 |#2|))) (-15 -3771 (|#1| |#1| |#2| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#2|)))) (-260 |#2|) (-1015)) (T -259)) +NIL +((-3771 (($ $ (-585 |#1|) (-585 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-585 (-249 |#1|))) 12 T ELT))) +(((-260 |#1|) (-113) (-1015)) (T -260)) +((-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1015))))) +(-13 (-457 |t#1| |t#1|) (-10 -8 (-15 -3771 ($ $ (-249 |t#1|))) (-15 -3771 ($ $ (-585 (-249 |t#1|)))))) +(((-457 |#1| |#1|) . T)) +((-3771 ((|#1| (-1 |#1| (-486)) (-1094 (-350 (-486)))) 26 T ELT))) +(((-261 |#1|) (-10 -7 (-15 -3771 (|#1| (-1 |#1| (-486)) (-1094 (-350 (-486)))))) (-38 (-350 (-486)))) (T -261)) +((-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-486))) (-5 *4 (-1094 (-350 (-486)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-486))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) +(((-262) (-1015)) (T -262)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3509 (((-486) $) 13 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 10 T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-263) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3509 ((-486) $))))) (T -263)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-263)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-263))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 60 T ELT)) (-3132 (((-1168 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1168 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-3 (-1162 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3159 (((-1168 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1092) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-1162 |#2| |#3| |#4|) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-1168 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1168 |#1| |#2| |#3| |#4|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-1168 |#1| |#2| |#3| |#4|)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-1168 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3448 (((-634 $) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3961 (($ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3787 (((-3 (-752 |#2|) #1#) $) 80 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-1168 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1168 |#1| |#2| |#3| |#4|)))) (-1181 $) $) NIL T ELT) (((-632 (-1168 |#1| |#2| |#3| |#4|)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3133 (((-1168 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-1168 |#1| |#2| |#3| |#4|)) (-585 (-1168 |#1| |#2| |#3| |#4|))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1168 |#1| |#2| |#3| |#4|))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-585 (-249 (-1168 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-585 (-1092)) (-585 (-1168 |#1| |#2| |#3| |#4|))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-457 (-1092) (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1092) (-1168 |#1| |#2| |#3| |#4|)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-457 (-1092) (-1168 |#1| |#2| |#3| |#4|))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-1168 |#1| |#2| |#3| |#4|)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-241 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-1168 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-935)) ELT) (((-179) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3| |#4|) (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-1168 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1092)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-1092))) ELT) (($ (-1162 |#2| |#3| |#4|)) 37 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3| |#4|) (-823))) (|has| (-1168 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-1168 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3952 (($ $ $) 35 T ELT) (($ (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-1168 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1168 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-264 |#1| |#2| |#3| |#4|) (-13 (-906 (-1168 |#1| |#2| |#3| |#4|)) (-952 (-1162 |#2| |#3| |#4|)) (-10 -8 (-15 -3787 ((-3 (-752 |#2|) "failed") $)) (-15 -3949 ($ (-1162 |#2| |#3| |#4|))))) (-13 (-952 (-486)) (-582 (-486)) (-393)) (-13 (-27) (-1117) (-364 |#1|)) (-1092) |#2|) (T -264)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1162 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4) (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3787 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-752 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4)))) +((-2571 (((-85) $ $) NIL T ELT)) (-1217 (((-585 $) $ (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) $) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $) (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-1218 (($ $ (-1092)) NIL (|has| |#1| (-497)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-1087 $) (-1092)) NIL (|has| |#1| (-497)) ELT) (($ (-1087 $)) NIL (|has| |#1| (-497)) ELT) (($ (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-3191 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-3084 (((-585 (-1092)) $) 365 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) NIL (|has| |#1| (-497)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1602 (((-585 (-552 $)) $) NIL T ELT)) (-3495 (($ $) 170 (|has| |#1| (-497)) ELT)) (-3642 (($ $) 146 (|has| |#1| (-497)) ELT)) (-1374 (($ $ (-1006 $)) 231 (|has| |#1| (-497)) ELT) (($ $ (-1092)) 227 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-1606 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) 383 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 438 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 305 (-12 (|has| |#1| (-393)) (|has| |#1| (-497))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-497)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-497)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-497)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-497)) ELT)) (-3641 (($ $) 142 (|has| |#1| (-497)) ELT)) (-1611 (($ $ (-486)) 68 (|has| |#1| (-497)) ELT)) (-3497 (($ $) 174 (|has| |#1| (-497)) ELT)) (-3640 (($ $) 150 (|has| |#1| (-497)) ELT)) (-3727 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) (|has| |#1| (-1027))) CONST)) (-1219 (((-585 $) $ (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) $) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $) (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-3186 (($ $ (-1092)) NIL (|has| |#1| (-497)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-1087 $) (-1092)) 133 (|has| |#1| (-497)) ELT) (($ (-1087 $)) NIL (|has| |#1| (-497)) ELT) (($ (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 (-552 $) #1#) $) 18 T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-859 |#1|)) #1#) $) NIL (|has| |#1| (-497)) ELT) (((-3 (-859 |#1|) #1#) $) NIL (|has| |#1| (-963)) ELT) (((-3 (-350 (-486)) #1#) $) 48 (OR (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 (((-552 $) $) 12 T ELT) (((-1092) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-859 |#1|)) $) NIL (|has| |#1| (-497)) ELT) (((-859 |#1|) $) NIL (|has| |#1| (-963)) ELT) (((-350 (-486)) $) 316 (OR (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 124 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-632 $)) 114 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT)) (-3845 (($ $) 95 (|has| |#1| (-497)) ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#1| (-1027)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3947 (($ $ (-1006 $)) 235 (|has| |#1| (-497)) ELT) (($ $ (-1092)) 233 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-497)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3389 (($ $ $) 201 (|has| |#1| (-497)) ELT)) (-3630 (($) 136 (|has| |#1| (-497)) ELT)) (-1371 (($ $ $) 221 (|has| |#1| (-497)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 389 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 396 (|has| |#1| (-798 (-330))) ELT)) (-2576 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-1601 (((-585 (-86)) $) NIL T ELT)) (-3598 (((-86) (-86)) 275 T ELT)) (-2412 (((-85) $) 27 (|has| |#1| (-1027)) ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-2999 (($ $) 73 (|has| |#1| (-963)) ELT)) (-3001 (((-1041 |#1| (-552 $)) $) 90 (|has| |#1| (-963)) ELT)) (-1612 (((-85) $) 49 (|has| |#1| (-497)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-497)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-497)) ELT)) (-1599 (((-1087 $) (-552 $)) 276 (|has| $ (-963)) ELT)) (-3961 (($ (-1 $ $) (-552 $)) 434 T ELT)) (-1604 (((-3 (-552 $) #1#) $) NIL T ELT)) (-3945 (($ $) 140 (|has| |#1| (-497)) ELT)) (-2259 (($ $) 246 (|has| |#1| (-497)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL (|has| |#1| (-963)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1603 (((-585 (-552 $)) $) 51 T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) 439 T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL (|has| |#1| (-1027)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) #1#) $) NIL (|has| |#1| (-963)) ELT)) (-2825 (((-3 (-585 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1799 (((-3 (-2 (|:| -3957 (-486)) (|:| |var| (-552 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $) NIL (|has| |#1| (-1027)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-86)) NIL (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-1092)) NIL (|has| |#1| (-963)) ELT)) (-2636 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1092)) 53 T ELT)) (-2487 (($ $) NIL (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-2835 (($ $ (-1092)) 250 (|has| |#1| (-497)) ELT) (($ $ (-1006 $)) 252 (|has| |#1| (-497)) ELT)) (-2606 (((-696) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 45 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 298 (|has| |#1| (-497)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-1600 (((-85) $ $) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-1375 (($ $ (-1092)) 225 (|has| |#1| (-497)) ELT) (($ $) 223 (|has| |#1| (-497)) ELT)) (-1369 (($ $) 217 (|has| |#1| (-497)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 303 (-12 (|has| |#1| (-393)) (|has| |#1| (-497))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-497)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-497)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-497)) ELT)) (-3946 (($ $) 138 (|has| |#1| (-497)) ELT)) (-2677 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 433 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 376 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-555 (-475))) ELT) (($ $) NIL (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) $ (-1092)) 363 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 362 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ $)) NIL (|has| |#1| (-963)) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-497)) ELT)) (-2257 (($ $) 238 (|has| |#1| (-497)) ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-1605 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2258 (($ $) 248 (|has| |#1| (-497)) ELT)) (-3388 (($ $) 199 (|has| |#1| (-497)) ELT)) (-3761 (($ $ (-1092)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-963)) ELT)) (-2998 (($ $) 74 (|has| |#1| (-497)) ELT)) (-3000 (((-1041 |#1| (-552 $)) $) 92 (|has| |#1| (-497)) ELT)) (-3188 (($ $) 314 (|has| $ (-963)) ELT)) (-3498 (($ $) 176 (|has| |#1| (-497)) ELT)) (-3639 (($ $) 152 (|has| |#1| (-497)) ELT)) (-3496 (($ $) 172 (|has| |#1| (-497)) ELT)) (-3638 (($ $) 148 (|has| |#1| (-497)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-497)) ELT)) (-3637 (($ $) 144 (|has| |#1| (-497)) ELT)) (-3975 (((-802 (-486)) $) NIL (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#1| (-555 (-802 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-497)) ELT) (((-475) $) 360 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-3949 (((-774) $) 432 T ELT) (($ (-552 $)) 423 T ELT) (($ (-1092)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) ELT) (($ (-1041 |#1| (-552 $))) 94 (|has| |#1| (-963)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-497)) ELT) (($ (-859 (-350 |#1|))) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-859 (-350 |#1|)))) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-859 |#1|))) NIL (|has| |#1| (-497)) ELT) (($ (-859 |#1|)) NIL (|has| |#1| (-963)) ELT) (($ (-486)) 36 (OR (|has| |#1| (-952 (-486))) (|has| |#1| (-963))) ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-497)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL (|has| |#1| (-963)) CONST)) (-2593 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3104 (($ $ $) 219 (|has| |#1| (-497)) ELT)) (-3392 (($ $ $) 205 (|has| |#1| (-497)) ELT)) (-3394 (($ $ $) 209 (|has| |#1| (-497)) ELT)) (-3391 (($ $ $) 203 (|has| |#1| (-497)) ELT)) (-3393 (($ $ $) 207 (|has| |#1| (-497)) ELT)) (-2256 (((-85) (-86)) 10 T ELT)) (-1267 (((-85) $ $) 85 T ELT)) (-3501 (($ $) 182 (|has| |#1| (-497)) ELT)) (-3489 (($ $) 158 (|has| |#1| (-497)) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 178 (|has| |#1| (-497)) ELT)) (-3487 (($ $) 154 (|has| |#1| (-497)) ELT)) (-3503 (($ $) 186 (|has| |#1| (-497)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-497)) ELT)) (-1800 (($ (-1092) $) NIL T ELT) (($ (-1092) $ $) NIL T ELT) (($ (-1092) $ $ $) NIL T ELT) (($ (-1092) $ $ $ $) NIL T ELT) (($ (-1092) (-585 $)) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-963)) ELT)) (-3396 (($ $) 213 (|has| |#1| (-497)) ELT)) (-3395 (($ $) 211 (|has| |#1| (-497)) ELT)) (-3504 (($ $) 188 (|has| |#1| (-497)) ELT)) (-3492 (($ $) 164 (|has| |#1| (-497)) ELT)) (-3502 (($ $) 184 (|has| |#1| (-497)) ELT)) (-3490 (($ $) 160 (|has| |#1| (-497)) ELT)) (-3500 (($ $) 180 (|has| |#1| (-497)) ELT)) (-3488 (($ $) 156 (|has| |#1| (-497)) ELT)) (-3386 (($ $) 191 (|has| |#1| (-497)) ELT)) (-2663 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) CONST)) (-2261 (($ $) 242 (|has| |#1| (-497)) ELT)) (-2669 (($) 25 (|has| |#1| (-1027)) CONST)) (-3390 (($ $) 193 (|has| |#1| (-497)) ELT) (($ $ $) 195 (|has| |#1| (-497)) ELT)) (-2262 (($ $) 240 (|has| |#1| (-497)) ELT)) (-2672 (($ $ (-1092)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-963)) ELT)) (-2260 (($ $) 244 (|has| |#1| (-497)) ELT)) (-3387 (($ $ $) 197 (|has| |#1| (-497)) ELT)) (-3059 (((-85) $ $) 87 T ELT)) (-3952 (($ (-1041 |#1| (-552 $)) (-1041 |#1| (-552 $))) 105 (|has| |#1| (-497)) ELT) (($ $ $) 44 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-3840 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-3842 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-497)) ELT) (($ $ (-350 (-486))) 311 (|has| |#1| (-497)) ELT) (($ $ (-486)) 79 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT) (($ $ (-696)) 75 (|has| |#1| (-1027)) ELT) (($ $ (-832)) 83 (|has| |#1| (-1027)) ELT)) (* (($ (-350 (-486)) $) NIL (|has| |#1| (-497)) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-497)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-963)) ELT) (($ $ $) 38 (|has| |#1| (-1027)) ELT) (($ (-486) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (($ (-696) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (($ (-832) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT))) +(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-497)) (PROGN (-6 (-29 |#1|)) (-6 (-1117)) (-6 (-133)) (-6 (-571)) (-6 (-1055)) (-15 -3845 ($ $)) (-15 -1612 ((-85) $)) (-15 -1611 ($ $ (-486))) (IF (|has| |#1| (-393)) (PROGN (-15 -2709 ((-348 (-1087 $)) (-1087 $))) (-15 -2710 ((-348 (-1087 $)) (-1087 $)))) |%noBranch|) (IF (|has| |#1| (-952 (-486))) (-6 (-952 (-48))) |%noBranch|)) |%noBranch|))) (-1015)) (T -265)) +((-3845 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-497)) (-4 *2 (-1015)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015)))) (-2710 (*1 *2 *3) (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015))))) +((-3961 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -3961 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1015) (-1015)) (T -266)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) +((-3732 (((-51) |#2| (-249 |#2|) (-696)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-696)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1092)) 26 T ELT)) (-3821 (((-51) |#2| (-249 |#2|) (-350 (-486))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-486))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1092)) 55 T ELT)) (-3785 (((-51) |#2| (-249 |#2|) (-350 (-486))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-486))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1092)) 50 T ELT)) (-3782 (((-51) |#2| (-249 |#2|) (-486)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-486)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1092)) 43 T ELT))) +(((-267 |#1| |#2|) (-10 -7 (-15 -3732 ((-51) (-1092))) (-15 -3732 ((-51) |#2|)) (-15 -3732 ((-51) |#2| (-696))) (-15 -3732 ((-51) |#2| (-249 |#2|))) (-15 -3732 ((-51) |#2| (-249 |#2|) (-696))) (-15 -3782 ((-51) (-1092))) (-15 -3782 ((-51) |#2|)) (-15 -3782 ((-51) |#2| (-486))) (-15 -3782 ((-51) |#2| (-249 |#2|))) (-15 -3782 ((-51) |#2| (-249 |#2|) (-486))) (-15 -3785 ((-51) (-1092))) (-15 -3785 ((-51) |#2|)) (-15 -3785 ((-51) |#2| (-350 (-486)))) (-15 -3785 ((-51) |#2| (-249 |#2|))) (-15 -3785 ((-51) |#2| (-249 |#2|) (-350 (-486)))) (-15 -3821 ((-51) (-1092))) (-15 -3821 ((-51) |#2|)) (-15 -3821 ((-51) |#2| (-350 (-486)))) (-15 -3821 ((-51) |#2| (-249 |#2|))) (-15 -3821 ((-51) |#2| (-249 |#2|) (-350 (-486))))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -267)) +((-3821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3821 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) (-3782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 *5) (-582 *5))) (-5 *5 (-486)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-4 *5 (-13 (-393) (-952 *4) (-582 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-696)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4)))))) +((-1613 (((-51) |#2| (-86) (-249 |#2|) (-585 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|))) 81 T ELT) (((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 |#2|)) 83 T ELT) (((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 |#2|)) 84 T ELT) (((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) +(((-268 |#1| |#2|) (-10 -7 (-15 -1613 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1613 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|))) (-15 -1613 ((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|)))) (-15 -1613 ((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 |#2|))) (-15 -1613 ((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 |#2|))) (-15 -1613 ((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|)))) (-15 -1613 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1613 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1613 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1613 ((-51) |#2| (-86) (-249 |#2|) (-585 |#2|)))) (-13 (-497) (-555 (-475))) (-364 |#1|)) (T -268)) +((-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-585 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1613 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1613 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1613 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-86))) (-5 *6 (-585 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1613 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 (-249 *8))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-585 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1613 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1613 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-585 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1613 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) +((-1615 (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486) (-1075)) 67 T ELT) (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486)) 68 T ELT) (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486) (-1075)) 64 T ELT) (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486)) 65 T ELT)) (-1614 (((-1 (-179) (-179)) (-179)) 66 T ELT))) +(((-269) (-10 -7 (-15 -1614 ((-1 (-179) (-179)) (-179))) (-15 -1615 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486))) (-15 -1615 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486) (-1075))) (-15 -1615 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486))) (-15 -1615 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486) (-1075))))) (T -269)) +((-1615 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-179)) (-5 *7 (-486)) (-5 *8 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1615 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-179)) (-5 *7 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1615 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-486)) (-5 *7 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1615 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 26 T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 20 T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 36 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) NIL T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1616 (((-350 (-486)) $) 17 T ELT)) (-3093 (($ (-1162 |#1| |#2| |#3|)) 11 T ELT)) (-2403 (((-1162 |#1| |#2| |#3|) $) 12 T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3951 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 10 T ELT)) (-3949 (((-774) $) 42 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 34 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 28 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 37 T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-270 |#1| |#2| |#3|) (-13 (-1164 |#1|) (-718) (-10 -8 (-15 -3093 ($ (-1162 |#1| |#2| |#3|))) (-15 -2403 ((-1162 |#1| |#2| |#3|) $)) (-15 -1616 ((-350 (-486)) $)))) (-312) (-1092) |#1|) (T -270)) +((-3093 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3)))) +((-3014 (((-2 (|:| -2403 (-696)) (|:| -3957 |#1|) (|:| |radicand| (-585 |#1|))) (-348 |#1|) (-696)) 35 T ELT)) (-3945 (((-585 (-2 (|:| -3957 (-696)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT))) +(((-271 |#1|) (-10 -7 (-15 -3014 ((-2 (|:| -2403 (-696)) (|:| -3957 |#1|) (|:| |radicand| (-585 |#1|))) (-348 |#1|) (-696))) (-15 -3945 ((-585 (-2 (|:| -3957 (-696)) (|:| |logand| |#1|))) (-348 |#1|)))) (-497)) (T -271)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-497)) (-5 *2 (-585 (-2 (|:| -3957 (-696)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-497)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *5) (|:| |radicand| (-585 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-696))))) +((-3084 (((-585 |#2|) (-1087 |#4|)) 45 T ELT)) (-1621 ((|#3| (-486)) 48 T ELT)) (-1619 (((-1087 |#4|) (-1087 |#3|)) 30 T ELT)) (-1620 (((-1087 |#4|) (-1087 |#4|) (-486)) 67 T ELT)) (-1618 (((-1087 |#3|) (-1087 |#4|)) 21 T ELT)) (-3951 (((-585 (-696)) (-1087 |#4|) (-585 |#2|)) 41 T ELT)) (-1617 (((-1087 |#3|) (-1087 |#4|) (-585 |#2|) (-585 |#3|)) 35 T ELT))) +(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1617 ((-1087 |#3|) (-1087 |#4|) (-585 |#2|) (-585 |#3|))) (-15 -3951 ((-585 (-696)) (-1087 |#4|) (-585 |#2|))) (-15 -3084 ((-585 |#2|) (-1087 |#4|))) (-15 -1618 ((-1087 |#3|) (-1087 |#4|))) (-15 -1619 ((-1087 |#4|) (-1087 |#3|))) (-15 -1620 ((-1087 |#4|) (-1087 |#4|) (-486))) (-15 -1621 (|#3| (-486)))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|)) (T -272)) +((-1621 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-963)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-863 *2 *4 *5)))) (-1620 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 *7)) (-5 *3 (-486)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1087 *6)) (-4 *6 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-1087 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *2 (-1087 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *2 (-585 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3951 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *8)) (-5 *4 (-585 *6)) (-4 *6 (-758)) (-4 *8 (-863 *7 *5 *6)) (-4 *5 (-719)) (-4 *7 (-963)) (-5 *2 (-585 (-696))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-758)) (-4 *8 (-963)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-1087 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 19 T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-486)))) $) 21 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-1624 (((-486) $ (-486)) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1623 (($ (-1 (-486) (-486)) $) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1622 (($ $ $) NIL (|has| (-486) (-718)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3680 (((-486) |#1| $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 30 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ (-486) |#1|) 28 T ELT))) +(((-273 |#1|) (-13 (-21) (-656 (-486)) (-274 |#1| (-486)) (-10 -7 (IF (|has| |#1| (-758)) (-6 (-758)) |%noBranch|))) (-1015)) (T -273)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 34 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3139 (((-696) $) 35 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 39 T ELT)) (-3159 ((|#1| $) 40 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2301 ((|#1| $ (-486)) 32 T ELT)) (-1624 ((|#2| $ (-486)) 33 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1622 (($ $ $) 28 (|has| |#2| (-718)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3680 ((|#2| |#1| $) 31 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) +(((-274 |#1| |#2|) (-113) (-1015) (-104)) (T -274)) +((-3842 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-696)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 *4)))))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1015)) (-4 *2 (-104)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1015)))) (-3680 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) (-1623 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) (-1622 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)) (-4 *3 (-718))))) +(-13 (-104) (-952 |t#1|) (-10 -8 (-15 -3842 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3139 ((-696) $)) (-15 -3777 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3946 |t#2|))) $)) (-15 -1624 (|t#2| $ (-486))) (-15 -2301 (|t#1| $ (-486))) (-15 -3680 (|t#2| |t#1| $)) (-15 -1623 ($ (-1 |t#2| |t#2|) $)) (-15 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-718)) (-15 -1622 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-696)))) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-1624 (((-696) $ (-486)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1623 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1622 (($ $ $) NIL (|has| (-696) (-718)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3680 (((-696) |#1| $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-696) |#1|) NIL T ELT))) +(((-275 |#1|) (-274 |#1| (-696)) (-1015)) (T -275)) +NIL +((-3506 (($ $) 72 T ELT)) (-1626 (($ $ |#2| |#3| $) 14 T ELT)) (-1627 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1802 (((-85) $) 42 T ELT)) (-1801 ((|#2| $) 44 T ELT)) (-3469 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2820 ((|#2| $) 68 T ELT)) (-3820 (((-585 |#2|) $) 56 T ELT)) (-1625 (($ $ $ (-696)) 37 T ELT)) (-3952 (($ $ |#2|) 60 T ELT))) +(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3506 (|#1| |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3469 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1625 (|#1| |#1| |#1| (-696))) (-15 -1626 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1627 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3820 ((-585 |#2|) |#1|)) (-15 -1801 (|#2| |#1|)) (-15 -1802 ((-85) |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3952 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-963) (-718)) (T -276)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 109 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 107 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3159 (((-486) $) 108 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 106 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 105 T ELT)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 93 (|has| |#1| (-393)) ELT)) (-1626 (($ $ |#1| |#2| $) 97 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 100 T ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| |#2|) 81 T ELT)) (-2823 ((|#2| $) 99 T ELT)) (-1627 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 103 T ELT)) (-1801 ((|#1| $) 102 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-497)) ELT)) (-3951 ((|#2| $) 84 T ELT)) (-2820 ((|#1| $) 94 (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 69 (|has| |#1| (-497)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-486))) 77 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) 101 T ELT)) (-3680 ((|#1| $ |#2|) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1625 (($ $ $ (-696)) 96 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-277 |#1| |#2|) (-113) (-963) (-718)) (T -277)) +((-1802 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-585 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-696)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-1626 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-1625 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *3 (-146)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-497)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)) (-4 *2 (-393)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-393))))) +(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1802 ((-85) $)) (-15 -1801 (|t#1| $)) (-15 -3820 ((-585 |t#1|) $)) (-15 -2422 ((-696) $)) (-15 -2823 (|t#2| $)) (-15 -1627 ($ (-1 |t#2| |t#2|) $)) (-15 -1626 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1625 ($ $ $ (-696))) |%noBranch|) (IF (|has| |t#1| (-497)) (-15 -3469 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-15 -2820 (|t#1| $)) (-15 -3506 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-246) |has| |#1| (-497)) ((-355 |#1|) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-1988 (((-85) (-85)) NIL T ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-1989 (($ $ (-486)) NIL T ELT)) (-1990 (((-696) $) NIL T ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3612 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1991 (($ (-585 |#1|)) NIL T ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1573 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3794 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1991 ($ (-585 |#1|))) (-15 -1990 ((-696) $)) (-15 -1989 ($ $ (-486))) (-15 -1988 ((-85) (-85))))) (-1131)) (T -278)) +((-1991 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-278 *3)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1131))))) +((-3935 (((-85) $) 47 T ELT)) (-3932 (((-696)) 23 T ELT)) (-3333 ((|#2| $) 51 T ELT) (($ $ (-832)) 123 T ELT)) (-3139 (((-696)) 124 T ELT)) (-1797 (($ (-1181 |#2|)) 20 T ELT)) (-2013 (((-85) $) 136 T ELT)) (-3135 ((|#2| $) 53 T ELT) (($ $ (-832)) 120 T ELT)) (-2016 (((-1087 |#2|) $) NIL T ELT) (((-1087 $) $ (-832)) 111 T ELT)) (-1629 (((-1087 |#2|) $) 95 T ELT)) (-1628 (((-1087 |#2|) $) 91 T ELT) (((-3 (-1087 |#2|) "failed") $ $) 88 T ELT)) (-1630 (($ $ (-1087 |#2|)) 58 T ELT)) (-3933 (((-745 (-832))) 30 T ELT) (((-832)) 48 T ELT)) (-3914 (((-107)) 27 T ELT)) (-3951 (((-745 (-832)) $) 32 T ELT) (((-832) $) 139 T ELT)) (-1631 (($) 130 T ELT)) (-3227 (((-1181 |#2|) $) NIL T ELT) (((-632 |#2|) (-1181 $)) 42 T ELT)) (-2705 (($ $) NIL T ELT) (((-634 $) $) 100 T ELT)) (-3936 (((-85) $) 45 T ELT))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2705 ((-634 |#1|) |#1|)) (-15 -3139 ((-696))) (-15 -2705 (|#1| |#1|)) (-15 -1628 ((-3 (-1087 |#2|) "failed") |#1| |#1|)) (-15 -1628 ((-1087 |#2|) |#1|)) (-15 -1629 ((-1087 |#2|) |#1|)) (-15 -1630 (|#1| |#1| (-1087 |#2|))) (-15 -2013 ((-85) |#1|)) (-15 -1631 (|#1|)) (-15 -3333 (|#1| |#1| (-832))) (-15 -3135 (|#1| |#1| (-832))) (-15 -2016 ((-1087 |#1|) |#1| (-832))) (-15 -3333 (|#2| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3951 ((-832) |#1|)) (-15 -3933 ((-832))) (-15 -2016 ((-1087 |#2|) |#1|)) (-15 -1797 (|#1| (-1181 |#2|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -3932 ((-696))) (-15 -3933 ((-745 (-832)))) (-15 -3951 ((-745 (-832)) |#1|)) (-15 -3935 ((-85) |#1|)) (-15 -3936 ((-85) |#1|)) (-15 -3914 ((-107)))) (-280 |#2|) (-312)) (T -279)) +((-3914 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3933 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-745 (-832))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3932 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3933 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-832)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3139 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3935 (((-85) $) 114 T ELT)) (-3932 (((-696)) 110 T ELT)) (-3333 ((|#1| $) 162 T ELT) (($ $ (-832)) 159 (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 144 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3139 (((-696)) 134 (|has| |#1| (-320)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 121 T ELT)) (-3159 ((|#1| $) 122 T ELT)) (-1797 (($ (-1181 |#1|)) 168 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 131 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-2836 (($) 146 (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-832) $) 149 (|has| |#1| (-320)) ELT) (((-745 (-832)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2015 (($) 157 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) 163 T ELT) (($ $ (-832)) 160 (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) 135 (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2016 (((-1087 |#1|) $) 167 T ELT) (((-1087 $) $ (-832)) 161 (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 132 (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 136 (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 133 (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) 113 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (($) 155 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 143 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-3933 (((-745 (-832))) 111 T ELT) (((-832)) 165 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-696) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-696) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) 119 T ELT)) (-3761 (($ $ (-696)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) 112 T ELT) (((-832) $) 164 T ELT)) (-3188 (((-1087 |#1|)) 166 T ELT)) (-1676 (($) 145 (|has| |#1| (-320)) ELT)) (-1631 (($) 158 (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 170 T ELT) (((-632 |#1|) (-1181 $)) 169 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 142 (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2705 (($ $) 141 (|has| |#1| (-320)) ELT) (((-634 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 172 T ELT) (((-1181 $) (-832)) 171 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3936 (((-85) $) 115 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3931 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-696)) 108 (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) (((-280 |#1|) (-113) (-312)) (T -280)) -((-2013 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3187 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3932 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) (-4 *1 (-280 *4)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1630 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2014 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2410 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3))))) -(-13 (-1199 |t#1|) (-951 |t#1|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -2013 ((-1180 $) (-831))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-631 |t#1|) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|))) (-15 -2015 ((-1086 |t#1|) $)) (-15 -3187 ((-1086 |t#1|))) (-15 -3932 ((-831))) (-15 -3950 ((-831) $)) (-15 -3134 (|t#1| $)) (-15 -3332 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2015 ((-1086 $) $ (-831))) (-15 -3134 ($ $ (-831))) (-15 -3332 ($ $ (-831))) (-15 -1630 ($)) (-15 -2014 ($)) (-15 -2012 ((-85) $)) (-15 -2410 ($)) (-15 -1629 ($ $ (-1086 |t#1|))) (-15 -1628 ((-1086 |t#1|) $)) (-15 -1627 ((-1086 |t#1|) $)) (-15 -1627 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1199 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-320)) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-1631 (((-85) $) 13 T ELT)) (-3640 (($ |#1|) 10 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3636 (($ |#1|) 12 T ELT)) (-3948 (((-773) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2237 ((|#1| $) 14 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT))) -(((-281 |#1|) (-13 (-757) (-10 -8 (-15 -3640 ($ |#1|)) (-15 -3636 ($ |#1|)) (-15 -1631 ((-85) $)) (-15 -2237 (|#1| $)))) (-757)) (T -281)) -((-3640 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-3636 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757)))) (-2237 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1632 (((-447) $) 20 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1633 (((-870 (-695)) $) 18 T ELT)) (-1635 (((-209) $) 7 T ELT)) (-3948 (((-773) $) 26 T ELT)) (-2207 (((-870 (-158 (-112))) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1634 (((-584 (-783 (-1096) (-695))) $) 12 T ELT)) (-3058 (((-85) $ $) 22 T ELT))) -(((-282) (-13 (-1014) (-10 -8 (-15 -1635 ((-209) $)) (-15 -1634 ((-584 (-783 (-1096) (-695))) $)) (-15 -1633 ((-870 (-695)) $)) (-15 -2207 ((-870 (-158 (-112))) $)) (-15 -1632 ((-447) $))))) (T -282)) -((-1635 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ $) 34 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1636 (((-1180 |#4|) $) 133 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 37 T ELT)) (-1637 (((-1180 |#4|) $) 125 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-485)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3437 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3058 (((-85) $ $) 21 T ELT)) (-3839 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 24 T ELT))) -(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1637 ((-1180 |#4|) $)) (-15 -1636 ((-1180 |#4|) $)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) -((-1637 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) -((-3960 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1156 |#5|) (-1156 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) -((-1638 (((-85) $) 14 T ELT))) -(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1638 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3844 (($ $) 35 T ELT)) (-1638 (((-85) $) 34 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (((-3 |#4| "failed") $) 33 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-485)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3437 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT))) -(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1156 |t#1|) (-1156 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) -((-1969 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1639 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1639 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3844 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2410 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1969 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1639 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1639 ($ |t#4|)) (-15 -1639 ($ |t#1| |t#1|)) (-15 -1639 ($ |t#1| |t#1| (-485))) (-15 -3437 ((-2 (|:| -2337 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3844 ($ $)) (-15 -1638 ((-85) $)) (-15 -2410 ((-3 |t#4| "failed") $)) (-15 -1639 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T)) -((-3770 (($ $ (-1091) |#2|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3802 (($ $ |#2|) 11 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3802 (|#1| |#1| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#2| |#2|)) (-15 -3770 (|#1| |#1| (-249 |#2|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 |#2|))) (-15 -3770 (|#1| |#1| (-1091) |#2|))) (-288 |#2|) (-1014)) (T -287)) -NIL -((-3960 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3770 (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 16 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3802 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) -(((-288 |#1|) (-113) (-1014)) (T -288)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014))))) -(-13 (-10 -8 (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-456 (-1091) |t#1|)) (-6 (-456 (-1091) |t#1|)) |%noBranch|))) -(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1130) |has| |#1| (-241 |#1| |#1|))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3158 (((-818 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3134 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3226 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) -(((-289 |#1| |#2|) (-280 (-818 |#1|)) (-831) (-831)) (T -289)) -NIL -((-1648 (((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1796 (($ (-1180 (-350 |#3|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#3|))) NIL T ELT) (($ (-1180 |#3|) |#3|) 172 T ELT)) (-1653 (((-1180 $) (-1180 $)) 156 T ELT)) (-1640 (((-584 (-584 |#2|))) 126 T ELT)) (-1665 (((-85) |#2| |#2|) 76 T ELT)) (-3505 (($ $) 148 T ELT)) (-3379 (((-695)) 171 T ELT)) (-1654 (((-1180 $) (-1180 $)) 219 T ELT)) (-1641 (((-584 (-858 |#2|)) (-1091)) 115 T ELT)) (-1657 (((-85) $) 168 T ELT)) (-1656 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1643 (((-3 |#3| #1="failed")) 52 T ELT)) (-1667 (((-695)) 183 T ELT)) (-3802 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1644 (((-3 |#3| #1#)) 71 T ELT)) (-3760 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1655 (((-1180 $) (-1180 $)) 162 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1666 (((-85)) 34 T ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -1640 ((-584 (-584 |#2|)))) (-15 -1641 ((-584 (-858 |#2|)) (-1091))) (-15 -1642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1643 ((-3 |#3| #1="failed"))) (-15 -1644 ((-3 |#3| #1#))) (-15 -3802 (|#2| |#1| |#2| |#2|)) (-15 -3505 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-85) |#1| |#3|)) (-15 -1656 ((-85) |#1| |#2|)) (-15 -1796 (|#1| (-1180 |#3|) |#3|)) (-15 -1648 ((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1653 ((-1180 |#1|) (-1180 |#1|))) (-15 -1654 ((-1180 |#1|) (-1180 |#1|))) (-15 -1655 ((-1180 |#1|) (-1180 |#1|))) (-15 -1656 ((-85) |#1|)) (-15 -1657 ((-85) |#1|)) (-15 -1665 ((-85) |#2| |#2|)) (-15 -1666 ((-85))) (-15 -1667 ((-695))) (-15 -3379 ((-695))) (-15 -3760 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-695))) (-15 -3760 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1796 (|#1| (-1180 (-350 |#3|)))) (-15 -1796 (|#1| (-1180 (-350 |#3|)) (-1180 |#1|)))) (-291 |#2| |#3| |#4|) (-1135) (-1156 |#2|) (-1156 (-350 |#3|))) (T -290)) -((-3379 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1667 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1644 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1640 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-631 (-350 |#2|)) (-1180 $)) 61 T ELT) (((-631 (-350 |#2|))) 77 T ELT)) (-3332 (((-350 |#2|) $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3973 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3138 (((-695)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) 242 T ELT)) (-1661 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1796 (($ (-1180 (-350 |#2|)) (-1180 $)) 63 T ELT) (($ (-1180 (-350 |#2|))) 80 T ELT) (($ (-1180 |#2|) |#2|) 224 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2566 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-631 (-350 |#2|)) $ (-1180 $)) 68 T ELT) (((-631 (-350 |#2|)) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) 184 T ELT) (((-631 (-350 |#2|)) (-631 $)) 183 T ELT)) (-1653 (((-1180 $) (-1180 $)) 230 T ELT)) (-3844 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1640 (((-584 (-584 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) 246 T ELT)) (-3110 (((-831)) 69 T ELT)) (-2996 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) 239 T ELT)) (-1659 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2565 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3505 (($ $) 217 T ELT)) (-2835 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1768 (($ $ (-695)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3725 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3774 (((-831) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3379 (((-695)) 249 T ELT)) (-1654 (((-1180 $) (-1180 $)) 231 T ELT)) (-3134 (((-350 |#2|) $) 66 T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) 212 (|has| |#1| (-312)) ELT)) (-3447 (((-633 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3081 ((|#3| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) 182 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 181 T ELT)) (-1895 (($ (-584 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1649 (((-631 (-350 |#2|))) 226 T ELT)) (-1651 (((-631 (-350 |#2|))) 228 T ELT)) (-2486 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 222 T ELT)) (-1650 (((-631 (-350 |#2|))) 227 T ELT)) (-1652 (((-631 (-350 |#2|))) 229 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1658 (((-1180 $)) 235 T ELT)) (-3920 (((-1180 $)) 236 T ELT)) (-1657 (((-85) $) 234 T ELT)) (-1656 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3448 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| "failed")) 214 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1667 (((-695)) 248 T ELT)) (-2410 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3146 (($ (-584 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3734 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3802 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1644 (((-3 |#2| "failed")) 215 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3759 (((-350 |#2|) (-1180 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1769 (((-695) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3760 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091)) 146 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 156 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3187 ((|#3|) 179 T ELT)) (-1675 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3226 (((-1180 (-350 |#2|)) $ (-1180 $)) 65 T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 (-350 |#2|)) $) 82 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 81 T ELT)) (-3974 (((-1180 (-350 |#2|)) $) 79 T ELT) (($ (-1180 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) 232 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2704 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2451 ((|#3| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1664 (((-85)) 245 T ELT)) (-1663 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1666 (((-85)) 247 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091)) 147 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 157 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| (-350 |#2|) (-312)) ELT))) -(((-291 |#1| |#2| |#3|) (-113) (-1135) (-1156 |t#1|) (-1156 (-350 |t#2|))) (T -291)) -((-3379 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) (-1667 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-3920 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1658 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))))) (-3802 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))))) (-1644 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-584 (-858 *4))))) (-1640 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3)))))) -(-13 (-662 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3379 ((-695))) (-15 -1667 ((-695))) (-15 -1666 ((-85))) (-15 -1665 ((-85) |t#1| |t#1|)) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1|)) (-15 -1663 ((-85) |t#2|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -3920 ((-1180 $))) (-15 -1658 ((-1180 $))) (-15 -1657 ((-85) $)) (-15 -1656 ((-85) $)) (-15 -1655 ((-1180 $) (-1180 $))) (-15 -1654 ((-1180 $) (-1180 $))) (-15 -1653 ((-1180 $) (-1180 $))) (-15 -1652 ((-631 (-350 |t#2|)))) (-15 -1651 ((-631 (-350 |t#2|)))) (-15 -1650 ((-631 (-350 |t#2|)))) (-15 -1649 ((-631 (-350 |t#2|)))) (-15 -1648 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1796 ($ (-1180 |t#2|) |t#2|)) (-15 -1647 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1646 ($ (-1180 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1656 ((-85) $ |t#1|)) (-15 -1656 ((-85) $ |t#2|)) (-15 -3760 ($ $ (-1 |t#2| |t#2|))) (-15 -3505 ($ $)) (-15 -3802 (|t#1| $ |t#1| |t#1|)) (-15 -1644 ((-3 |t#2| "failed"))) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1641 ((-584 (-858 |t#1|)) (-1091))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1640 ((-584 (-584 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-556 (-350 (-485))) OR (|has| (-350 |#2|) (-951 (-350 (-485)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-556 (-350 |#2|)) . T) ((-556 (-485)) . T) ((-556 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-392) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-496) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-589 (-350 |#2|)) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-591 (-350 |#2|)) . T) ((-591 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-583 (-350 |#2|)) . T) ((-583 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-581 (-350 |#2|)) . T) ((-581 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-655 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-655 (-350 |#2|)) . T) ((-655 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-662 (-350 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1091)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091))))) ((-810 (-1091)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) ((-812 (-1091)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091))))) ((-833) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-951 (-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) ((-951 (-350 |#2|)) . T) ((-951 (-485)) |has| (-350 |#2|) (-951 (-485))) ((-964 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-964 (-350 |#2|)) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-969 (-350 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| (-350 |#2|) (-299)) ((-1130) . T) ((-1135) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312)))) -((-3960 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 (|#8| (-1 |#5| |#1|) |#4|))) (-1135) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#5|) (-1156 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1156 (-350 *9)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3158 (((-818 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3134 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3226 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) -(((-293 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-831) (-831)) (T -293)) -((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 56 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 139 T ELT)) (-3158 ((|#1| $) 111 T ELT)) (-1796 (($ (-1180 |#1|)) 128 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 122 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 155 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) 60 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 62 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 115 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 165 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 172 T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 94 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 142 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) 57 T ELT)) (-2410 (($) 153 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 117 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) 120 T ELT)) (-1675 (($) 154 (|has| |#1| (-320)) ELT)) (-1630 (($) 162 (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 76 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 168 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 150 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 141 T ELT) (((-1180 $) (-831)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 66 T CONST)) (-2668 (($) 101 T CONST)) (-3930 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 64 T ELT)) (-3951 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3839 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-485)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-299) (-1086 |#1|)) (T -294)) -((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1086 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-299) (-831)) (T -295)) -((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) -((-1678 (((-695) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) 61 T ELT)) (-1669 (((-870 (-1034)) (-1086 |#1|)) 112 T ELT)) (-1670 (((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) (-1086 |#1|)) 103 T ELT)) (-1671 (((-631 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) 113 T ELT)) (-1672 (((-3 (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) "failed") (-831)) 13 T ELT)) (-1673 (((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) (-831)) 18 T ELT))) -(((-296 |#1|) (-10 -7 (-15 -1669 ((-870 (-1034)) (-1086 |#1|))) (-15 -1670 ((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) (-1086 |#1|))) (-15 -1671 ((-631 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1678 ((-695) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1672 ((-3 (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) "failed") (-831))) (-15 -1673 ((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) (-831)))) (-299)) (T -296)) -((-1673 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034))) (-5 *1 (-296 *4))))) -((-3948 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3948 (|#3| |#1|)) (-15 -3948 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) -((-3948 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3948 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) -((-1681 (((-85) $) 65 T ELT)) (-3774 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3447 (((-633 $) $) 21 T ELT)) (-3448 (($) 9 T CONST)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 120 T ELT)) (-1769 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3760 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1675 (($) 58 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 41 T ELT)) (-2704 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-298 |#1|) (-10 -7 (-15 -3774 ((-831) |#1|)) (-15 -1769 ((-695) |#1|)) (-15 -1681 ((-85) |#1|)) (-15 -1675 (|#1|)) (-15 -2705 ((-3 (-1180 |#1|) #1="failed") (-631 |#1|))) (-15 -2704 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -1769 ((-3 (-695) #1#) |#1| |#1|)) (-15 -3774 ((-744 (-831)) |#1|)) (-15 -2704 ((-633 |#1|) |#1|)) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-299)) (T -298)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 113 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3138 (((-695)) 123 T ELT)) (-3726 (($) 23 T CONST)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 126 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2835 (($) 111 T ELT)) (-1681 (((-85) $) 110 T ELT)) (-1768 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-744 (-831)) $) 99 T ELT) (((-831) $) 108 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3447 (((-633 $) $) 122 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2011 (((-831) $) 125 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3448 (($) 121 T CONST)) (-2401 (($ (-831)) 124 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 114 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-3 (-695) "failed") $ $) 98 T ELT) (((-695) $) 109 T ELT)) (-3760 (($ $) 120 T ELT) (($ $ (-695)) 118 T ELT)) (-1675 (($) 112 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 115 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2704 (((-633 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $) 119 T ELT) (($ $ (-695)) 117 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) +((-2014 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *4)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1181 *3)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) (-3188 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) (-3933 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1087 *1)) (-4 *1 (-280 *4)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1631 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2015 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2411 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1630 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3)))) (-1628 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3))))) +(-13 (-1200 |t#1|) (-952 |t#1|) (-10 -8 (-15 -2014 ((-1181 $))) (-15 -2014 ((-1181 $) (-832))) (-15 -3227 ((-1181 |t#1|) $)) (-15 -3227 ((-632 |t#1|) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|))) (-15 -2016 ((-1087 |t#1|) $)) (-15 -3188 ((-1087 |t#1|))) (-15 -3933 ((-832))) (-15 -3951 ((-832) $)) (-15 -3135 (|t#1| $)) (-15 -3333 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2016 ((-1087 $) $ (-832))) (-15 -3135 ($ $ (-832))) (-15 -3333 ($ $ (-832))) (-15 -1631 ($)) (-15 -2015 ($)) (-15 -2013 ((-85) $)) (-15 -2411 ($)) (-15 -1630 ($ $ (-1087 |t#1|))) (-15 -1629 ((-1087 |t#1|) $)) (-15 -1628 ((-1087 |t#1|) $)) (-15 -1628 ((-3 (-1087 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1200 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-320)) ((-1131) . T) ((-1136) . T) ((-1189 |#1|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-1632 (((-85) $) 13 T ELT)) (-3641 (($ |#1|) 10 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3637 (($ |#1|) 12 T ELT)) (-3949 (((-774) $) 19 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2238 ((|#1| $) 14 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 21 T ELT))) +(((-281 |#1|) (-13 (-758) (-10 -8 (-15 -3641 ($ |#1|)) (-15 -3637 ($ |#1|)) (-15 -1632 ((-85) $)) (-15 -2238 (|#1| $)))) (-758)) (T -281)) +((-3641 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) (-3637 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-758)))) (-2238 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1633 (((-448) $) 20 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1634 (((-871 (-696)) $) 18 T ELT)) (-1636 (((-209) $) 7 T ELT)) (-3949 (((-774) $) 26 T ELT)) (-2208 (((-871 (-158 (-112))) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1635 (((-585 (-784 (-1097) (-696))) $) 12 T ELT)) (-3059 (((-85) $ $) 22 T ELT))) +(((-282) (-13 (-1015) (-10 -8 (-15 -1636 ((-209) $)) (-15 -1635 ((-585 (-784 (-1097) (-696))) $)) (-15 -1634 ((-871 (-696)) $)) (-15 -2208 ((-871 (-158 (-112))) $)) (-15 -1633 ((-448) $))))) (T -282)) +((-1636 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-1097) (-696)))) (-5 *1 (-282)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-871 (-696))) (-5 *1 (-282)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-871 (-158 (-112)))) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-282))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ $) 34 T ELT)) (-1639 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1637 (((-1181 |#4|) $) 133 T ELT)) (-1970 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 37 T ELT)) (-1638 (((-1181 |#4|) $) 125 T ELT)) (-1640 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-486)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3438 (((-2 (|:| -2338 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3949 (((-774) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3059 (((-85) $ $) 21 T ELT)) (-3840 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 26 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 24 T ELT))) +(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1638 ((-1181 |#4|) $)) (-15 -1637 ((-1181 |#4|) $)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) +((-1638 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1637 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) +((-3961 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3961 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1157 |#5|) (-1157 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) +((-1639 (((-85) $) 14 T ELT))) +(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1639 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1157 |#2|) (-1157 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3845 (($ $) 35 T ELT)) (-1639 (((-85) $) 34 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1970 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (((-3 |#4| "failed") $) 33 T ELT)) (-1640 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-486)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3438 (((-2 (|:| -2338 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT))) +(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1157 |t#1|) (-1157 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) +((-1970 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1640 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1640 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1640 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-486)) (-4 *2 (-312)) (-4 *4 (-1157 *2)) (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2338 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2411 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1640 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1970 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1640 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1640 ($ |t#4|)) (-15 -1640 ($ |t#1| |t#1|)) (-15 -1640 ($ |t#1| |t#1| (-486))) (-15 -3438 ((-2 (|:| -2338 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3845 ($ $)) (-15 -1639 ((-85) $)) (-15 -2411 ((-3 |t#4| "failed") $)) (-15 -1640 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-1015) . T) ((-1131) . T)) +((-3771 (($ $ (-1092) |#2|) NIL T ELT) (($ $ (-585 (-1092)) (-585 |#2|)) 20 T ELT) (($ $ (-585 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL T ELT)) (-3803 (($ $ |#2|) 11 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3803 (|#1| |#1| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#2| |#2|)) (-15 -3771 (|#1| |#1| (-249 |#2|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 |#2|))) (-15 -3771 (|#1| |#1| (-1092) |#2|))) (-288 |#2|) (-1015)) (T -287)) +NIL +((-3961 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3771 (($ $ (-1092) |#1|) 17 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 16 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3803 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) +(((-288 |#1|) (-113) (-1015)) (T -288)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1015))))) +(-13 (-10 -8 (-15 -3961 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457 (-1092) |t#1|)) (-6 (-457 (-1092) |t#1|)) |%noBranch|))) +(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1131) |has| |#1| (-241 |#1| |#1|))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3159 (((-819 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-819 |#1|))) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1682 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3135 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-819 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1629 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1628 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-1087 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1630 (($ $ (-1087 (-819 |#1|))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-819 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-819 |#1|))) NIL T ELT)) (-1676 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1631 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3227 (((-1181 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) +(((-289 |#1| |#2|) (-280 (-819 |#1|)) (-832) (-832)) (T -289)) +NIL +((-1649 (((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1797 (($ (-1181 (-350 |#3|)) (-1181 $)) NIL T ELT) (($ (-1181 (-350 |#3|))) NIL T ELT) (($ (-1181 |#3|) |#3|) 172 T ELT)) (-1654 (((-1181 $) (-1181 $)) 156 T ELT)) (-1641 (((-585 (-585 |#2|))) 126 T ELT)) (-1666 (((-85) |#2| |#2|) 76 T ELT)) (-3506 (($ $) 148 T ELT)) (-3380 (((-696)) 171 T ELT)) (-1655 (((-1181 $) (-1181 $)) 219 T ELT)) (-1642 (((-585 (-859 |#2|)) (-1092)) 115 T ELT)) (-1658 (((-85) $) 168 T ELT)) (-1657 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1644 (((-3 |#3| #1="failed")) 52 T ELT)) (-1668 (((-696)) 183 T ELT)) (-3803 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1645 (((-3 |#3| #1#)) 71 T ELT)) (-3761 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-696)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-1656 (((-1181 $) (-1181 $)) 162 T ELT)) (-1643 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1667 (((-85)) 34 T ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -1641 ((-585 (-585 |#2|)))) (-15 -1642 ((-585 (-859 |#2|)) (-1092))) (-15 -1643 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1644 ((-3 |#3| #1="failed"))) (-15 -1645 ((-3 |#3| #1#))) (-15 -3803 (|#2| |#1| |#2| |#2|)) (-15 -3506 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1657 ((-85) |#1| |#3|)) (-15 -1657 ((-85) |#1| |#2|)) (-15 -1797 (|#1| (-1181 |#3|) |#3|)) (-15 -1649 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1654 ((-1181 |#1|) (-1181 |#1|))) (-15 -1655 ((-1181 |#1|) (-1181 |#1|))) (-15 -1656 ((-1181 |#1|) (-1181 |#1|))) (-15 -1657 ((-85) |#1|)) (-15 -1658 ((-85) |#1|)) (-15 -1666 ((-85) |#2| |#2|)) (-15 -1667 ((-85))) (-15 -1668 ((-696))) (-15 -3380 ((-696))) (-15 -3761 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-696))) (-15 -3761 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1797 (|#1| (-1181 (-350 |#3|)))) (-15 -1797 (|#1| (-1181 (-350 |#3|)) (-1181 |#1|)))) (-291 |#2| |#3| |#4|) (-1136) (-1157 |#2|) (-1157 (-350 |#3|))) (T -290)) +((-3380 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1668 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1667 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2 *3 *3) (-12 (-4 *3 (-1136)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1645 (*1 *2) (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1644 (*1 *2) (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-5 *2 (-585 (-859 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1641 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1649 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2065 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2063 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1787 (((-632 (-350 |#2|)) (-1181 $)) 61 T ELT) (((-632 (-350 |#2|))) 77 T ELT)) (-3333 (((-350 |#2|) $) 67 T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3974 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1610 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3139 (((-696)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1663 (((-85)) 242 T ELT)) (-1662 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 194 (|has| (-350 |#2|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 192 (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3159 (((-486) $) 193 (|has| (-350 |#2|) (-952 (-486))) ELT) (((-350 (-486)) $) 191 (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1797 (($ (-1181 (-350 |#2|)) (-1181 $)) 63 T ELT) (($ (-1181 (-350 |#2|))) 80 T ELT) (($ (-1181 |#2|) |#2|) 224 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2567 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-632 (-350 |#2|)) $ (-1181 $)) 68 T ELT) (((-632 (-350 |#2|)) $) 75 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 186 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 185 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-632 $) (-1181 $)) 184 T ELT) (((-632 (-350 |#2|)) (-632 $)) 183 T ELT)) (-1654 (((-1181 $) (-1181 $)) 230 T ELT)) (-3845 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1641 (((-585 (-585 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1666 (((-85) |#1| |#1|) 246 T ELT)) (-3111 (((-832)) 69 T ELT)) (-2997 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) 239 T ELT)) (-1660 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2566 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3506 (($ $) 217 T ELT)) (-2836 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1682 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1769 (($ $ (-696)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3726 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3775 (((-832) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-745 (-832)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3380 (((-696)) 249 T ELT)) (-1655 (((-1181 $) (-1181 $)) 231 T ELT)) (-3135 (((-350 |#2|) $) 66 T ELT)) (-1642 (((-585 (-859 |#1|)) (-1092)) 212 (|has| |#1| (-312)) ELT)) (-3448 (((-634 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2016 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2012 (((-832) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3082 ((|#3| $) 176 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 188 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 187 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-1181 $) $) 182 T ELT) (((-632 (-350 |#2|)) (-1181 $)) 181 T ELT)) (-1896 (($ (-585 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1650 (((-632 (-350 |#2|))) 226 T ELT)) (-1652 (((-632 (-350 |#2|))) 228 T ELT)) (-2487 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1647 (($ (-1181 |#2|) |#2|) 222 T ELT)) (-1651 (((-632 (-350 |#2|))) 227 T ELT)) (-1653 (((-632 (-350 |#2|))) 229 T ELT)) (-1646 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1648 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1659 (((-1181 $)) 235 T ELT)) (-3921 (((-1181 $)) 236 T ELT)) (-1658 (((-85) $) 234 T ELT)) (-1657 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3449 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1644 (((-3 |#2| "failed")) 214 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1668 (((-696)) 248 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3147 (($ (-585 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3735 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-696) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3803 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1645 (((-3 |#2| "failed")) 215 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3760 (((-350 |#2|) (-1181 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1770 (((-696) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3761 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 150 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092) (-696)) 149 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-585 (-1092))) 148 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092)) 146 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-696)) 156 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2410 (((-632 (-350 |#2|)) (-1181 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3188 ((|#3|) 179 T ELT)) (-1676 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3227 (((-1181 (-350 |#2|)) $ (-1181 $)) 65 T ELT) (((-632 (-350 |#2|)) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 (-350 |#2|)) $) 82 T ELT) (((-632 (-350 |#2|)) (-1181 $)) 81 T ELT)) (-3975 (((-1181 (-350 |#2|)) $) 79 T ELT) (($ (-1181 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1656 (((-1181 $) (-1181 $)) 232 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-486))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-952 (-350 (-486))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2705 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-634 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2452 ((|#3| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1665 (((-85)) 245 T ELT)) (-1664 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-2064 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-1643 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1667 (((-85)) 247 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 153 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092) (-696)) 152 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-585 (-1092))) 151 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092)) 147 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-696)) 157 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-486)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-486))) 139 (|has| (-350 |#2|) (-312)) ELT))) +(((-291 |#1| |#2| |#3|) (-113) (-1136) (-1157 |t#1|) (-1157 (-350 |t#2|))) (T -291)) +((-3380 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696)))) (-1668 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696)))) (-1667 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1666 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1665 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-1663 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-3921 (*1 *2) (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1659 (*1 *2) (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-1653 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1649 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3))))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1647 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3))))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-1657 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))))) (-3803 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))))) (-1645 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3)))) (-1644 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1136)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-585 (-859 *4))))) (-1641 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-585 (-585 *3)))))) +(-13 (-663 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3380 ((-696))) (-15 -1668 ((-696))) (-15 -1667 ((-85))) (-15 -1666 ((-85) |t#1| |t#1|)) (-15 -1665 ((-85))) (-15 -1664 ((-85) |t#1|)) (-15 -1664 ((-85) |t#2|)) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1|)) (-15 -1662 ((-85) |t#2|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -3921 ((-1181 $))) (-15 -1659 ((-1181 $))) (-15 -1658 ((-85) $)) (-15 -1657 ((-85) $)) (-15 -1656 ((-1181 $) (-1181 $))) (-15 -1655 ((-1181 $) (-1181 $))) (-15 -1654 ((-1181 $) (-1181 $))) (-15 -1653 ((-632 (-350 |t#2|)))) (-15 -1652 ((-632 (-350 |t#2|)))) (-15 -1651 ((-632 (-350 |t#2|)))) (-15 -1650 ((-632 (-350 |t#2|)))) (-15 -1649 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1797 ($ (-1181 |t#2|) |t#2|)) (-15 -1648 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1647 ($ (-1181 |t#2|) |t#2|)) (-15 -1646 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1657 ((-85) $ |t#1|)) (-15 -1657 ((-85) $ |t#2|)) (-15 -3761 ($ $ (-1 |t#2| |t#2|))) (-15 -3506 ($ $)) (-15 -3803 (|t#1| $ |t#1| |t#1|)) (-15 -1645 ((-3 |t#2| "failed"))) (-15 -1644 ((-3 |t#2| "failed"))) (-15 -1643 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1642 ((-585 (-859 |t#1|)) (-1092))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1641 ((-585 (-585 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-557 (-350 (-486))) OR (|has| (-350 |#2|) (-952 (-350 (-486)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-557 (-350 |#2|)) . T) ((-557 (-486)) . T) ((-557 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-554 (-774)) . T) ((-146) . T) ((-555 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-393) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-497) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-590 (-350 |#2|)) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-592 (-350 |#2|)) . T) ((-592 (-486)) |has| (-350 |#2|) (-582 (-486))) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-584 (-350 |#2|)) . T) ((-584 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-582 (-350 |#2|)) . T) ((-582 (-486)) |has| (-350 |#2|) (-582 (-486))) ((-656 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-656 (-350 |#2|)) . T) ((-656 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-663 (-350 |#2|) |#3|) . T) ((-665) . T) ((-808 $ (-1092)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092))))) ((-811 (-1092)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) ((-813 (-1092)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092))))) ((-834) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-952 (-350 (-486))) |has| (-350 |#2|) (-952 (-350 (-486)))) ((-952 (-350 |#2|)) . T) ((-952 (-486)) |has| (-350 |#2|) (-952 (-486))) ((-965 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-965 (-350 |#2|)) . T) ((-965 $) . T) ((-970 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-970 (-350 |#2|)) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| (-350 |#2|) (-299)) ((-1131) . T) ((-1136) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312)))) +((-3961 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3961 (|#8| (-1 |#5| |#1|) |#4|))) (-1136) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1136) (-1157 |#5|) (-1157 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1136)) (-4 *8 (-1136)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1157 (-350 *9)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3159 (((-819 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-819 |#1|))) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1682 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3135 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-819 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1629 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1628 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-1087 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1630 (($ $ (-1087 (-819 |#1|))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-819 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1669 (((-871 (-1035))) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-819 |#1|))) NIL T ELT)) (-1676 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1631 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3227 (((-1181 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) +(((-293 |#1| |#2|) (-13 (-280 (-819 |#1|)) (-10 -7 (-15 -1669 ((-871 (-1035)))))) (-832) (-832)) (T -293)) +((-1669 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-293 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 58 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 56 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 139 T ELT)) (-3159 ((|#1| $) 111 T ELT)) (-1797 (($ (-1181 |#1|)) 128 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 122 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 155 (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) 60 (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 62 T ELT)) (-2015 (($) 157 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) 115 T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 165 (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 172 T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 94 (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) 142 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1669 (((-871 (-1035))) 57 T ELT)) (-2411 (($) 153 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 117 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) 88 T ELT) (((-832)) 89 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) 120 T ELT)) (-1676 (($) 154 (|has| |#1| (-320)) ELT)) (-1631 (($) 162 (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 76 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) 168 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 150 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 141 T ELT) (((-1181 $) (-832)) 96 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) 66 T CONST)) (-2669 (($) 101 T CONST)) (-3931 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 64 T ELT)) (-3952 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3840 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 84 T ELT)) (** (($ $ (-832)) 174 T ELT) (($ $ (-696)) 175 T ELT) (($ $ (-486)) 173 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1669 ((-871 (-1035)))))) (-299) (-1087 |#1|)) (T -294)) +((-1669 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1087 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|)) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1669 (((-871 (-1035))) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-1676 (($) NIL (|has| |#1| (-320)) ELT)) (-1631 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1669 ((-871 (-1035)))))) (-299) (-832)) (T -295)) +((-1669 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) +((-1679 (((-696) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) 61 T ELT)) (-1670 (((-871 (-1035)) (-1087 |#1|)) 112 T ELT)) (-1671 (((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) (-1087 |#1|)) 103 T ELT)) (-1672 (((-632 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) 113 T ELT)) (-1673 (((-3 (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) "failed") (-832)) 13 T ELT)) (-1674 (((-3 (-1087 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) (-832)) 18 T ELT))) +(((-296 |#1|) (-10 -7 (-15 -1670 ((-871 (-1035)) (-1087 |#1|))) (-15 -1671 ((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) (-1087 |#1|))) (-15 -1672 ((-632 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1679 ((-696) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1673 ((-3 (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) "failed") (-832))) (-15 -1674 ((-3 (-1087 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) (-832)))) (-299)) (T -296)) +((-1674 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-3 (-1087 *4) (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1673 (*1 *2 *3) (|partial| -12 (-5 *3 (-832)) (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-696)) (-5 *1 (-296 *4)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-632 *4)) (-5 *1 (-296 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-871 (-1035))) (-5 *1 (-296 *4))))) +((-3949 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3949 (|#3| |#1|)) (-15 -3949 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) +((-3949 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3949 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) +((-1682 (((-85) $) 65 T ELT)) (-3775 (((-745 (-832)) $) 26 T ELT) (((-832) $) 69 T ELT)) (-3448 (((-634 $) $) 21 T ELT)) (-3449 (($) 9 T CONST)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 120 T ELT)) (-1770 (((-3 (-696) #1="failed") $ $) 98 T ELT) (((-696) $) 84 T ELT)) (-3761 (($ $) 8 T ELT) (($ $ (-696)) NIL T ELT)) (-1676 (($) 58 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 41 T ELT)) (-2705 (((-634 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-298 |#1|) (-10 -7 (-15 -3775 ((-832) |#1|)) (-15 -1770 ((-696) |#1|)) (-15 -1682 ((-85) |#1|)) (-15 -1676 (|#1|)) (-15 -2706 ((-3 (-1181 |#1|) #1="failed") (-632 |#1|))) (-15 -2705 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3449 (|#1|) -3955) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -1770 ((-3 (-696) #1#) |#1| |#1|)) (-15 -3775 ((-745 (-832)) |#1|)) (-15 -2705 ((-634 |#1|) |#1|)) (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|)))) (-299)) (T -298)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 113 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3139 (((-696)) 123 T ELT)) (-3727 (($) 23 T CONST)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 126 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-2836 (($) 111 T ELT)) (-1682 (((-85) $) 110 T ELT)) (-1769 (($ $) 97 T ELT) (($ $ (-696)) 96 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-745 (-832)) $) 99 T ELT) (((-832) $) 108 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3448 (((-634 $) $) 122 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2012 (((-832) $) 125 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 121 T CONST)) (-2402 (($ (-832)) 124 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 114 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-696) "failed") $ $) 98 T ELT) (((-696) $) 109 T ELT)) (-3761 (($ $) 120 T ELT) (($ $ (-696)) 118 T ELT)) (-1676 (($) 112 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 115 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-2705 (((-634 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $) 119 T ELT) (($ $ (-696)) 117 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) (((-299) (-113)) (T -299)) -((-2704 (*1 *1 *1) (-4 *1 (-299))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) (-1677 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695))))) (-1675 (*1 *1) (-4 *1 (-299))) (-2835 (*1 *1) (-4 *1 (-299))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831)))) (-1674 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-345) (-320) (-1067) (-190) (-10 -8 (-15 -2704 ($ $)) (-15 -2705 ((-3 (-1180 $) "failed") (-631 $))) (-15 -1677 ((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485)))))) (-15 -1676 ((-1103 (-831) (-695)) (-485))) (-15 -1675 ($)) (-15 -2835 ($)) (-15 -1681 ((-85) $)) (-15 -1769 ((-695) $)) (-15 -3774 ((-831) $)) (-15 -1674 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T)) -((-3921 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT))) -(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3920 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3921 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))) (-1156 |#1|) (-353 |#1| |#2|)) (T -300)) -((-3921 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3920 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3158 (((-818 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3134 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3404 (-818 |#1|)) (|:| -2401 (-1034)))))) NIL T ELT)) (-1679 (((-631 (-818 |#1|))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3226 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) -(((-301 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3404 (-818 |#1|)) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 (-818 |#1|)))) (-15 -1678 ((-695))))) (-831) (-831)) (T -301)) -((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 (-818 *3)) (|:| -2401 (-1034)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))) -((-2570 (((-85) $ $) 72 T ELT)) (-3190 (((-85) $) 87 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 168 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) 102 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 185 (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 126 T ELT)) (-3158 ((|#1| $) 104 T ELT)) (-1796 (($ (-1180 |#1|)) 70 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 180 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 169 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 112 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 212 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 146 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 216 T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 148 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 122 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) 96 T ELT)) (-1679 (((-631 |#1|)) 100 T ELT)) (-2410 (($) 109 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 171 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3187 (((-1086 |#1|)) 173 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 120 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 138 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 178 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 195 T ELT) (((-1180 $) (-831)) 115 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 184 T CONST)) (-2668 (($) 159 T CONST)) (-3930 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-695)) 113 (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 206 T ELT)) (-3951 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3839 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3841 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 |#1|))) (-15 -1678 ((-695))))) (-299) (-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (T -302)) -((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) NIL T ELT)) (-1679 (((-631 |#1|)) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 |#1|))) (-15 -1678 ((-695))))) (-299) (-831)) (T -303)) -((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 130 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 156 (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 104 T ELT)) (-3158 ((|#1| $) 101 T ELT)) (-1796 (($ (-1180 |#1|)) 96 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 93 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 52 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 131 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 76 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 108 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 158 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) 45 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 125 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3187 (((-1086 |#1|)) 99 T ELT)) (-1675 (($) 136 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 64 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 154 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 160 T CONST)) (-1266 (((-85) $ $) 162 T ELT)) (-2013 (((-1180 $)) 120 T ELT) (((-1180 $) (-831)) 59 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 122 T CONST)) (-2668 (($) 40 T CONST)) (-3930 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 118 T ELT)) (-3951 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3839 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3841 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-485)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1086 |#1|)) (T -304)) -NIL -((-1696 (((-870 (-1086 |#1|)) (-1086 |#1|)) 49 T ELT)) (-2996 (((-1086 |#1|) (-831) (-831)) 159 T ELT) (((-1086 |#1|) (-831)) 155 T ELT)) (-1681 (((-85) (-1086 |#1|)) 110 T ELT)) (-1683 (((-831) (-831)) 85 T ELT)) (-1684 (((-831) (-831)) 94 T ELT)) (-1682 (((-831) (-831)) 83 T ELT)) (-2012 (((-85) (-1086 |#1|)) 114 T ELT)) (-1691 (((-3 (-1086 |#1|) #1="failed") (-1086 |#1|)) 139 T ELT)) (-1694 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 144 T ELT)) (-1693 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 143 T ELT)) (-1692 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 142 T ELT)) (-1690 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 134 T ELT)) (-1695 (((-1086 |#1|) (-1086 |#1|)) 71 T ELT)) (-1686 (((-1086 |#1|) (-831)) 149 T ELT)) (-1689 (((-1086 |#1|) (-831)) 152 T ELT)) (-1688 (((-1086 |#1|) (-831)) 151 T ELT)) (-1687 (((-1086 |#1|) (-831)) 150 T ELT)) (-1685 (((-1086 |#1|) (-831)) 147 T ELT))) -(((-305 |#1|) (-10 -7 (-15 -1681 ((-85) (-1086 |#1|))) (-15 -2012 ((-85) (-1086 |#1|))) (-15 -1682 ((-831) (-831))) (-15 -1683 ((-831) (-831))) (-15 -1684 ((-831) (-831))) (-15 -1685 ((-1086 |#1|) (-831))) (-15 -1686 ((-1086 |#1|) (-831))) (-15 -1687 ((-1086 |#1|) (-831))) (-15 -1688 ((-1086 |#1|) (-831))) (-15 -1689 ((-1086 |#1|) (-831))) (-15 -1690 ((-3 (-1086 |#1|) #1="failed") (-1086 |#1|))) (-15 -1691 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1692 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1693 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1694 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -2996 ((-1086 |#1|) (-831))) (-15 -2996 ((-1086 |#1|) (-831) (-831))) (-15 -1695 ((-1086 |#1|) (-1086 |#1|))) (-15 -1696 ((-870 (-1086 |#1|)) (-1086 |#1|)))) (-299)) (T -305)) -((-1696 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1086 *4)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2996 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) -((-1697 ((|#1| (-1086 |#2|)) 60 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -1697 (|#1| (-1086 |#2|)))) (-13 (-345) (-10 -7 (-15 -3948 (|#1| |#2|)) (-15 -2011 ((-831) |#1|)) (-15 -2013 ((-1180 |#1|) (-831))) (-15 -3930 (|#1| |#1|)))) (-299)) (T -306)) -((-1697 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3948 (*2 *4)) (-15 -2011 ((-831) *2)) (-15 -2013 ((-1180 *2) (-831))) (-15 -3930 (*2 *2))))) (-5 *1 (-306 *2 *4))))) -((-2706 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT))) -(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -307)) -((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-308 |#1| |#2|) (-280 |#1|) (-299) (-831)) (T -308)) -NIL -((-2250 (((-85) (-584 (-858 |#1|))) 41 T ELT)) (-2252 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2251 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-858 |#1|)))) (-15 -2251 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-15 -2252 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-392) (-584 (-1091))) (T -309)) -((-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1091))))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1091))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1091)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-485) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2292 (($ (-1 (-485) (-485)) $) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 28 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-485)))) $) 30 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ |#1| (-485)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-310 |#1|) (-13 (-413) (-951 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-485))) (-15 -3138 ((-695) $)) (-15 -2301 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2292 ($ (-1 (-485) (-485)) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)) (-15 -1783 ((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-485)))) $)))) (-1014)) (T -310)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2301 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-485))))) (-5 *1 (-310 *3)) (-4 *3 (-1014))))) -((-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 13 T ELT)) (-2064 (($ $) 14 T ELT)) (-3973 (((-348 $) $) 31 T ELT)) (-3725 (((-85) $) 27 T ELT)) (-2486 (($ $) 19 T ELT)) (-3146 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3734 (((-348 $) $) 32 T ELT)) (-3468 (((-3 $ "failed") $ $) 21 T ELT)) (-1608 (((-695) $) 25 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 36 T ELT)) (-2063 (((-85) $ $) 16 T ELT)) (-3951 (($ $ $) 34 T ELT))) -(((-311 |#1|) (-10 -7 (-15 -3951 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -3725 ((-85) |#1|)) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -2881 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1776 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) +((-2705 (*1 *1 *1) (-4 *1 (-299))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-299)) (-5 *2 (-1181 *1)))) (-1678 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))))) (-1677 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-486)) (-5 *2 (-1104 (-832) (-696))))) (-1676 (*1 *1) (-4 *1 (-299))) (-2836 (*1 *1) (-4 *1 (-299))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-696)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-832)))) (-1675 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-345) (-320) (-1068) (-190) (-10 -8 (-15 -2705 ($ $)) (-15 -2706 ((-3 (-1181 $) "failed") (-632 $))) (-15 -1678 ((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486)))))) (-15 -1677 ((-1104 (-832) (-696)) (-486))) (-15 -1676 ($)) (-15 -2836 ($)) (-15 -1682 ((-85) $)) (-15 -1770 ((-696) $)) (-15 -3775 ((-832) $)) (-15 -1675 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) . T) ((-1131) . T) ((-1136) . T)) +((-3922 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 55 T ELT)) (-3921 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 53 T ELT))) +(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3921 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -3922 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $)))) (-1157 |#1|) (-353 |#1| |#2|)) (T -300)) +((-3922 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3921 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1679 (((-696)) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3159 (((-819 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-819 |#1|))) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1682 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3135 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-819 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1629 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1628 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-1087 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1630 (($ $ (-1087 (-819 |#1|))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-819 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1681 (((-1181 (-585 (-2 (|:| -3405 (-819 |#1|)) (|:| -2402 (-1035)))))) NIL T ELT)) (-1680 (((-632 (-819 |#1|))) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-819 |#1|))) NIL T ELT)) (-1676 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1631 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3227 (((-1181 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) +(((-301 |#1| |#2|) (-13 (-280 (-819 |#1|)) (-10 -7 (-15 -1681 ((-1181 (-585 (-2 (|:| -3405 (-819 |#1|)) (|:| -2402 (-1035))))))) (-15 -1680 ((-632 (-819 |#1|)))) (-15 -1679 ((-696))))) (-832) (-832)) (T -301)) +((-1681 (*1 *2) (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 (-819 *3)) (|:| -2402 (-1035)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-1680 (*1 *2) (-12 (-5 *2 (-632 (-819 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-1679 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832))))) +((-2571 (((-85) $ $) 72 T ELT)) (-3191 (((-85) $) 87 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 ((|#1| $) 105 T ELT) (($ $ (-832)) 103 (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 168 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1679 (((-696)) 102 T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 185 (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 126 T ELT)) (-3159 ((|#1| $) 104 T ELT)) (-1797 (($ (-1181 |#1|)) 70 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 180 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 169 (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 112 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) 107 T ELT) (($ $ (-832)) 106 (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) 212 T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 146 (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 216 T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 148 (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) 122 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1681 (((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) 96 T ELT)) (-1680 (((-632 |#1|)) 100 T ELT)) (-2411 (($) 109 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 171 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) 172 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) 74 T ELT)) (-3188 (((-1087 |#1|)) 173 T ELT)) (-1676 (($) 145 (|has| |#1| (-320)) ELT)) (-1631 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 120 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) 138 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 178 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 195 T ELT) (((-1181 $) (-832)) 115 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) 184 T CONST)) (-2669 (($) 159 T CONST)) (-3931 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-696)) 113 (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 206 T ELT)) (-3952 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3840 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3842 (($ $ $) 202 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 151 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1681 ((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1680 ((-632 |#1|))) (-15 -1679 ((-696))))) (-299) (-3 (-1087 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (T -302)) +((-1681 (*1 *2) (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) *2)))) (-1680 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035))))))))) (-1679 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1679 (((-696)) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|)) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1681 (((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) NIL T ELT)) (-1680 (((-632 |#1|)) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-1676 (($) NIL (|has| |#1| (-320)) ELT)) (-1631 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1681 ((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1680 ((-632 |#1|))) (-15 -1679 ((-696))))) (-299) (-832)) (T -303)) +((-1681 (*1 *2) (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832)))) (-1680 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832)))) (-1679 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 130 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 156 (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 104 T ELT)) (-3159 ((|#1| $) 101 T ELT)) (-1797 (($ (-1181 |#1|)) 96 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 93 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 52 (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 131 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) 48 T ELT) (($ $ (-832)) 53 (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) 76 T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 108 (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 106 (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) 158 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) 45 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 125 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) 155 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) 68 T ELT)) (-3188 (((-1087 |#1|)) 99 T ELT)) (-1676 (($) 136 (|has| |#1| (-320)) ELT)) (-1631 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 64 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) 154 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 160 T CONST)) (-1267 (((-85) $ $) 162 T ELT)) (-2014 (((-1181 $)) 120 T ELT) (((-1181 $) (-832)) 59 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) 122 T CONST)) (-2669 (($) 40 T CONST)) (-3931 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 118 T ELT)) (-3952 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3840 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3842 (($ $ $) 114 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 54 T ELT) (($ $ (-486)) 139 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1087 |#1|)) (T -304)) +NIL +((-1697 (((-871 (-1087 |#1|)) (-1087 |#1|)) 49 T ELT)) (-2997 (((-1087 |#1|) (-832) (-832)) 159 T ELT) (((-1087 |#1|) (-832)) 155 T ELT)) (-1682 (((-85) (-1087 |#1|)) 110 T ELT)) (-1684 (((-832) (-832)) 85 T ELT)) (-1685 (((-832) (-832)) 94 T ELT)) (-1683 (((-832) (-832)) 83 T ELT)) (-2013 (((-85) (-1087 |#1|)) 114 T ELT)) (-1692 (((-3 (-1087 |#1|) #1="failed") (-1087 |#1|)) 139 T ELT)) (-1695 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 144 T ELT)) (-1694 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 143 T ELT)) (-1693 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 142 T ELT)) (-1691 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 134 T ELT)) (-1696 (((-1087 |#1|) (-1087 |#1|)) 71 T ELT)) (-1687 (((-1087 |#1|) (-832)) 149 T ELT)) (-1690 (((-1087 |#1|) (-832)) 152 T ELT)) (-1689 (((-1087 |#1|) (-832)) 151 T ELT)) (-1688 (((-1087 |#1|) (-832)) 150 T ELT)) (-1686 (((-1087 |#1|) (-832)) 147 T ELT))) +(((-305 |#1|) (-10 -7 (-15 -1682 ((-85) (-1087 |#1|))) (-15 -2013 ((-85) (-1087 |#1|))) (-15 -1683 ((-832) (-832))) (-15 -1684 ((-832) (-832))) (-15 -1685 ((-832) (-832))) (-15 -1686 ((-1087 |#1|) (-832))) (-15 -1687 ((-1087 |#1|) (-832))) (-15 -1688 ((-1087 |#1|) (-832))) (-15 -1689 ((-1087 |#1|) (-832))) (-15 -1690 ((-1087 |#1|) (-832))) (-15 -1691 ((-3 (-1087 |#1|) #1="failed") (-1087 |#1|))) (-15 -1692 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -1693 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -1694 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -1695 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -2997 ((-1087 |#1|) (-832))) (-15 -2997 ((-1087 |#1|) (-832) (-832))) (-15 -1696 ((-1087 |#1|) (-1087 |#1|))) (-15 -1697 ((-871 (-1087 |#1|)) (-1087 |#1|)))) (-299)) (T -305)) +((-1697 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-871 (-1087 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1087 *4)))) (-1696 (*1 *2 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2997 (*1 *2 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1695 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) +((-1698 ((|#1| (-1087 |#2|)) 60 T ELT))) +(((-306 |#1| |#2|) (-10 -7 (-15 -1698 (|#1| (-1087 |#2|)))) (-13 (-345) (-10 -7 (-15 -3949 (|#1| |#2|)) (-15 -2012 ((-832) |#1|)) (-15 -2014 ((-1181 |#1|) (-832))) (-15 -3931 (|#1| |#1|)))) (-299)) (T -306)) +((-1698 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3949 (*2 *4)) (-15 -2012 ((-832) *2)) (-15 -2014 ((-1181 *2) (-832))) (-15 -3931 (*2 *2))))) (-5 *1 (-306 *2 *4))))) +((-2707 (((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|) 40 T ELT))) +(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2707 ((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|))) (-299) (-1157 |#1|) (-1157 |#2|)) (T -307)) +((-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|)) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-320)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-1629 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1630 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-1676 (($) NIL (|has| |#1| (-320)) ELT)) (-1631 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-308 |#1| |#2|) (-280 |#1|) (-299) (-832)) (T -308)) +NIL +((-2251 (((-85) (-585 (-859 |#1|))) 41 T ELT)) (-2253 (((-585 (-859 |#1|)) (-585 (-859 |#1|))) 53 T ELT)) (-2252 (((-3 (-585 (-859 |#1|)) "failed") (-585 (-859 |#1|))) 48 T ELT))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2251 ((-85) (-585 (-859 |#1|)))) (-15 -2252 ((-3 (-585 (-859 |#1|)) "failed") (-585 (-859 |#1|)))) (-15 -2253 ((-585 (-859 |#1|)) (-585 (-859 |#1|))))) (-393) (-585 (-1092))) (T -309)) +((-2253 (*1 *2 *2) (-12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) (-14 *4 (-585 (-1092))))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) (-14 *4 (-585 (-1092))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-585 (-1092)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2412 (((-85) $) 17 T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-2302 (((-486) $ (-486)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2293 (($ (-1 (-486) (-486)) $) 26 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 28 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-486)))) $) 30 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3949 (((-774) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ |#1| (-486)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-310 |#1|) (-13 (-414) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-486))) (-15 -3139 ((-696) $)) (-15 -2302 ((-486) $ (-486))) (-15 -2301 (|#1| $ (-486))) (-15 -2293 ($ (-1 (-486) (-486)) $)) (-15 -2292 ($ (-1 |#1| |#1|) $)) (-15 -1784 ((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-486)))) $)))) (-1015)) (T -310)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2302 (*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-486) (-486))) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-310 *3)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 (-486))))) (-5 *1 (-310 *3)) (-4 *3 (-1015))))) +((-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 13 T ELT)) (-2065 (($ $) 14 T ELT)) (-3974 (((-348 $) $) 31 T ELT)) (-3726 (((-85) $) 27 T ELT)) (-2487 (($ $) 19 T ELT)) (-3147 (($ $ $) 22 T ELT) (($ (-585 $)) NIL T ELT)) (-3735 (((-348 $) $) 32 T ELT)) (-3469 (((-3 $ "failed") $ $) 21 T ELT)) (-1609 (((-696) $) 25 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 36 T ELT)) (-2064 (((-85) $ $) 16 T ELT)) (-3952 (($ $ $) 34 T ELT))) +(((-311 |#1|) (-10 -7 (-15 -3952 (|#1| |#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3726 ((-85) |#1|)) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -1609 ((-696) |#1|)) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3147 (|#1| |#1| |#1|)) (-15 -2064 ((-85) |#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2066 ((-2 (|:| -1777 |#1|) (|:| -3985 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3469 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) (((-312) (-113)) (T -312)) -((-3951 (*1 *1 *1 *1) (-4 *1 (-312)))) -(-13 (-258) (-1135) (-201) (-10 -8 (-15 -3951 ($ $ $)) (-6 -3995) (-6 -3989))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-1698 ((|#1| $ |#1|) 35 T ELT)) (-1702 (($ $ (-1074)) 23 T ELT)) (-3621 (((-3 |#1| "failed") $) 34 T ELT)) (-1699 ((|#1| $) 32 T ELT)) (-1703 (($ (-338)) 22 T ELT) (($ (-338) (-1074)) 21 T ELT)) (-3544 (((-338) $) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT)) (-1701 (($ $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 19 T ELT))) -(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3621 ((-3 |#1| "failed") $)))) (-1014)) (T -313)) -((-3621 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014))))) -((-2570 (((-85) $ $) 7 T ELT)) (-1698 ((|#2| $ |#2|) 17 T ELT)) (-1702 (($ $ (-1074)) 22 T ELT)) (-1699 ((|#2| $) 18 T ELT)) (-1703 (($ |#1|) 24 T ELT) (($ |#1| (-1074)) 23 T ELT)) (-3544 ((|#1| $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1700 (((-1074) $) 19 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1701 (($ $) 21 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-314 |#1| |#2|) (-113) (-1014) (-1014)) (T -314)) -((-1703 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1698 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -1703 ($ |t#1|)) (-15 -1703 ($ |t#1| (-1074))) (-15 -1702 ($ $ (-1074))) (-15 -1701 ($ $)) (-15 -3544 (|t#1| $)) (-15 -1700 ((-1074) $)) (-15 -1699 (|t#2| $)) (-15 -1698 (|t#2| $ |t#2|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-3225 (((-1180 (-631 |#2|)) (-1180 $)) 67 T ELT)) (-1792 (((-631 |#2|) (-1180 $)) 139 T ELT)) (-1728 ((|#2| $) 36 T ELT)) (-1790 (((-631 |#2|) $ (-1180 $)) 142 T ELT)) (-2405 (((-3 $ #1="failed") $) 89 T ELT)) (-1726 ((|#2| $) 39 T ELT)) (-1706 (((-1086 |#2|) $) 98 T ELT)) (-1794 ((|#2| (-1180 $)) 122 T ELT)) (-1724 (((-1086 |#2|) $) 32 T ELT)) (-1718 (((-85)) 116 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) 132 T ELT)) (-3469 (((-3 $ #1#) $) 93 T ELT)) (-1711 (((-85)) 111 T ELT)) (-1709 (((-85)) 106 T ELT)) (-1713 (((-85)) 58 T ELT)) (-1793 (((-631 |#2|) (-1180 $)) 137 T ELT)) (-1729 ((|#2| $) 35 T ELT)) (-1791 (((-631 |#2|) $ (-1180 $)) 141 T ELT)) (-2406 (((-3 $ #1#) $) 87 T ELT)) (-1727 ((|#2| $) 38 T ELT)) (-1707 (((-1086 |#2|) $) 97 T ELT)) (-1795 ((|#2| (-1180 $)) 120 T ELT)) (-1725 (((-1086 |#2|) $) 30 T ELT)) (-1719 (((-85)) 115 T ELT)) (-1710 (((-85)) 108 T ELT)) (-1712 (((-85)) 56 T ELT)) (-1714 (((-85)) 103 T ELT)) (-1717 (((-85)) 117 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 128 T ELT)) (-1723 (((-85)) 113 T ELT)) (-1708 (((-584 (-1180 |#2|))) 102 T ELT)) (-1721 (((-85)) 114 T ELT)) (-1722 (((-85)) 112 T ELT)) (-1720 (((-85)) 51 T ELT)) (-1716 (((-85)) 118 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -1706 ((-1086 |#2|) |#1|)) (-15 -1707 ((-1086 |#2|) |#1|)) (-15 -1708 ((-584 (-1180 |#2|)))) (-15 -2405 ((-3 |#1| #1="failed") |#1|)) (-15 -2406 ((-3 |#1| #1#) |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1|)) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-1086 |#2|) |#1|)) (-15 -1725 ((-1086 |#2|) |#1|)) (-15 -1792 ((-631 |#2|) (-1180 |#1|))) (-15 -1793 ((-631 |#2|) (-1180 |#1|))) (-15 -1794 (|#2| (-1180 |#1|))) (-15 -1795 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1729 (|#2| |#1|)) (-15 -1790 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -1791 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -3225 ((-1180 (-631 |#2|)) (-1180 |#1|)))) (-316 |#2|) (-146)) (T -315)) -((-1723 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1776 (((-3 $ "failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3225 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3726 (($) 23 T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ "failed")) 49 (|has| |#1| (-496)) ELT)) (-1792 (((-631 |#1|) (-1180 $)) 76 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1790 (((-631 |#1|) $ (-1180 $)) 87 T ELT)) (-2405 (((-3 $ "failed") $) 56 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1794 ((|#1| (-1180 $)) 78 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 80 T ELT)) (-3469 (((-3 $ "failed") $) 58 (|has| |#1| (-496)) ELT)) (-3110 (((-831)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2435 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ "failed")) 50 (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) 77 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) 88 T ELT)) (-2406 (((-3 $ "failed") $) 57 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) 79 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT)) (-1896 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +((-3952 (*1 *1 *1 *1) (-4 *1 (-312)))) +(-13 (-258) (-1136) (-201) (-10 -8 (-15 -3952 ($ $ $)) (-6 -3996) (-6 -3990))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-1699 ((|#1| $ |#1|) 35 T ELT)) (-1703 (($ $ (-1075)) 23 T ELT)) (-3622 (((-3 |#1| "failed") $) 34 T ELT)) (-1700 ((|#1| $) 32 T ELT)) (-1704 (($ (-338)) 22 T ELT) (($ (-338) (-1075)) 21 T ELT)) (-3545 (((-338) $) 25 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1701 (((-1075) $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 20 T ELT)) (-1702 (($ $) 24 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 19 T ELT))) +(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3622 ((-3 |#1| "failed") $)))) (-1015)) (T -313)) +((-3622 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1015))))) +((-2571 (((-85) $ $) 7 T ELT)) (-1699 ((|#2| $ |#2|) 17 T ELT)) (-1703 (($ $ (-1075)) 22 T ELT)) (-1700 ((|#2| $) 18 T ELT)) (-1704 (($ |#1|) 24 T ELT) (($ |#1| (-1075)) 23 T ELT)) (-3545 ((|#1| $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1701 (((-1075) $) 19 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1702 (($ $) 21 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-314 |#1| |#2|) (-113) (-1015) (-1015)) (T -314)) +((-1704 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-1704 (*1 *1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1015)) (-4 *4 (-1015)))) (-1703 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-1702 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-1075)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-1699 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(-13 (-1015) (-10 -8 (-15 -1704 ($ |t#1|)) (-15 -1704 ($ |t#1| (-1075))) (-15 -1703 ($ $ (-1075))) (-15 -1702 ($ $)) (-15 -3545 (|t#1| $)) (-15 -1701 ((-1075) $)) (-15 -1700 (|t#2| $)) (-15 -1699 (|t#2| $ |t#2|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-3226 (((-1181 (-632 |#2|)) (-1181 $)) 67 T ELT)) (-1793 (((-632 |#2|) (-1181 $)) 139 T ELT)) (-1729 ((|#2| $) 36 T ELT)) (-1791 (((-632 |#2|) $ (-1181 $)) 142 T ELT)) (-2406 (((-3 $ #1="failed") $) 89 T ELT)) (-1727 ((|#2| $) 39 T ELT)) (-1707 (((-1087 |#2|) $) 98 T ELT)) (-1795 ((|#2| (-1181 $)) 122 T ELT)) (-1725 (((-1087 |#2|) $) 32 T ELT)) (-1719 (((-85)) 116 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) 132 T ELT)) (-3470 (((-3 $ #1#) $) 93 T ELT)) (-1712 (((-85)) 111 T ELT)) (-1710 (((-85)) 106 T ELT)) (-1714 (((-85)) 58 T ELT)) (-1794 (((-632 |#2|) (-1181 $)) 137 T ELT)) (-1730 ((|#2| $) 35 T ELT)) (-1792 (((-632 |#2|) $ (-1181 $)) 141 T ELT)) (-2407 (((-3 $ #1#) $) 87 T ELT)) (-1728 ((|#2| $) 38 T ELT)) (-1708 (((-1087 |#2|) $) 97 T ELT)) (-1796 ((|#2| (-1181 $)) 120 T ELT)) (-1726 (((-1087 |#2|) $) 30 T ELT)) (-1720 (((-85)) 115 T ELT)) (-1711 (((-85)) 108 T ELT)) (-1713 (((-85)) 56 T ELT)) (-1715 (((-85)) 103 T ELT)) (-1718 (((-85)) 117 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) 128 T ELT)) (-1724 (((-85)) 113 T ELT)) (-1709 (((-585 (-1181 |#2|))) 102 T ELT)) (-1722 (((-85)) 114 T ELT)) (-1723 (((-85)) 112 T ELT)) (-1721 (((-85)) 51 T ELT)) (-1717 (((-85)) 118 T ELT))) +(((-315 |#1| |#2|) (-10 -7 (-15 -1707 ((-1087 |#2|) |#1|)) (-15 -1708 ((-1087 |#2|) |#1|)) (-15 -1709 ((-585 (-1181 |#2|)))) (-15 -2406 ((-3 |#1| #1="failed") |#1|)) (-15 -2407 ((-3 |#1| #1#) |#1|)) (-15 -3470 ((-3 |#1| #1#) |#1|)) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-85))) (-15 -1725 ((-1087 |#2|) |#1|)) (-15 -1726 ((-1087 |#2|) |#1|)) (-15 -1793 ((-632 |#2|) (-1181 |#1|))) (-15 -1794 ((-632 |#2|) (-1181 |#1|))) (-15 -1795 (|#2| (-1181 |#1|))) (-15 -1796 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1729 (|#2| |#1|)) (-15 -1730 (|#2| |#1|)) (-15 -1791 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -1792 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -3226 ((-1181 (-632 |#2|)) (-1181 |#1|)))) (-316 |#2|) (-146)) (T -315)) +((-1724 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1723 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-585 (-1181 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1777 (((-3 $ "failed")) 48 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3226 (((-1181 (-632 |#1|)) (-1181 $)) 89 T ELT)) (-1731 (((-1181 $)) 92 T ELT)) (-3727 (($) 23 T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed")) 51 (|has| |#1| (-497)) ELT)) (-1705 (((-3 $ "failed")) 49 (|has| |#1| (-497)) ELT)) (-1793 (((-632 |#1|) (-1181 $)) 76 T ELT)) (-1729 ((|#1| $) 85 T ELT)) (-1791 (((-632 |#1|) $ (-1181 $)) 87 T ELT)) (-2406 (((-3 $ "failed") $) 56 (|has| |#1| (-497)) ELT)) (-2409 (($ $ (-832)) 37 T ELT)) (-1727 ((|#1| $) 83 T ELT)) (-1707 (((-1087 |#1|) $) 53 (|has| |#1| (-497)) ELT)) (-1795 ((|#1| (-1181 $)) 78 T ELT)) (-1725 (((-1087 |#1|) $) 74 T ELT)) (-1719 (((-85)) 68 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 80 T ELT)) (-3470 (((-3 $ "failed") $) 58 (|has| |#1| (-497)) ELT)) (-3111 (((-832)) 91 T ELT)) (-1716 (((-85)) 65 T ELT)) (-2436 (($ $ (-832)) 44 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-1712 (((-85)) 61 T ELT)) (-1710 (((-85)) 59 T ELT)) (-1714 (((-85)) 63 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed")) 52 (|has| |#1| (-497)) ELT)) (-1706 (((-3 $ "failed")) 50 (|has| |#1| (-497)) ELT)) (-1794 (((-632 |#1|) (-1181 $)) 77 T ELT)) (-1730 ((|#1| $) 86 T ELT)) (-1792 (((-632 |#1|) $ (-1181 $)) 88 T ELT)) (-2407 (((-3 $ "failed") $) 57 (|has| |#1| (-497)) ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-1728 ((|#1| $) 84 T ELT)) (-1708 (((-1087 |#1|) $) 54 (|has| |#1| (-497)) ELT)) (-1796 ((|#1| (-1181 $)) 79 T ELT)) (-1726 (((-1087 |#1|) $) 75 T ELT)) (-1720 (((-85)) 69 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1711 (((-85)) 60 T ELT)) (-1713 (((-85)) 62 T ELT)) (-1715 (((-85)) 64 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1718 (((-85)) 67 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 82 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 81 T ELT)) (-1897 (((-585 (-859 |#1|)) (-1181 $)) 90 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-1724 (((-85)) 73 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1709 (((-585 (-1181 |#1|))) 55 (|has| |#1| (-497)) ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-1722 (((-85)) 71 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-1723 (((-85)) 72 T ELT)) (-1721 (((-85)) 70 T ELT)) (-1717 (((-85)) 66 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) (((-316 |#1|) (-113) (-146)) (T -316)) -((-1730 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3)))) (-3110 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1790 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1723 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3469 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-584 (-1180 *3))))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1911 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1910 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1705 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1776 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) -(-13 (-684 |t#1|) (-10 -8 (-15 -1730 ((-1180 $))) (-15 -3110 ((-831))) (-15 -1896 ((-584 (-858 |t#1|)) (-1180 $))) (-15 -3225 ((-1180 (-631 |t#1|)) (-1180 $))) (-15 -1791 ((-631 |t#1|) $ (-1180 $))) (-15 -1790 ((-631 |t#1|) $ (-1180 $))) (-15 -1729 (|t#1| $)) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -3226 ((-1180 |t#1|) $ (-1180 $))) (-15 -3226 ((-631 |t#1|) (-1180 $) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|) (-1180 $))) (-15 -1795 (|t#1| (-1180 $))) (-15 -1794 (|t#1| (-1180 $))) (-15 -1793 ((-631 |t#1|) (-1180 $))) (-15 -1792 ((-631 |t#1|) (-1180 $))) (-15 -1725 ((-1086 |t#1|) $)) (-15 -1724 ((-1086 |t#1|) $)) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (IF (|has| |t#1| (-496)) (PROGN (-15 -3469 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -1708 ((-584 (-1180 |t#1|)))) (-15 -1707 ((-1086 |t#1|) $)) (-15 -1706 ((-1086 |t#1|) $)) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1910 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1705 ((-3 $ "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1776 ((-3 $ "failed"))) (-6 -3994)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-3844 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 35 T ELT)) (-3247 (((-85) |#2| $) 32 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3405 (((-85) $) 13 T ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) 27 T ELT) (((-695) |#2| $) 30 T ELT)) (-3948 (((-773) $) 43 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-3959 (((-695) $) 17 T ELT))) -(((-317 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3247 ((-85) |#2| |#1|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3959 ((-695) |#1|)) (-15 -3405 ((-85) |#1|))) (-318 |#2|) (-1130)) (T -317)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 36 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 33 (|has| |#1| (-72)) ELT)) (-2610 (((-584 |#1|) $) 38 T ELT)) (-3247 (((-85) |#1| $) 34 (|has| |#1| (-72)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 40 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 39 T ELT) (((-695) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 42 T ELT))) -(((-318 |#1|) (-113) (-1130)) (T -318)) -((-3959 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1733 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3844 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) (-3844 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) (-1731 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3247 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3844 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1130))))) -(-13 (-429 |t#1|) (-10 -8 (-15 -3959 ((-695) $)) (-15 -1733 ((-85) (-1 (-85) |t#1|) $)) (-15 -1732 ((-85) (-1 (-85) |t#1|) $)) (-15 -1731 ((-695) (-1 (-85) |t#1|) $)) (-15 -2610 ((-584 |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1731 ((-695) |t#1| $)) (-15 -3247 ((-85) |t#1| $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-2996 (($) 15 T ELT))) -(((-319 |#1|) (-10 -7 (-15 -2996 (|#1|))) (-320)) (T -319)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-695)) 20 T ELT)) (-2996 (($) 17 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2401 (($ (-831)) 19 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +((-1731 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-316 *3)))) (-3111 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-832)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1181 (-632 *4))))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3227 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1181 *4)))) (-3227 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3)))) (-1724 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1723 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3470 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-2407 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-585 (-1181 *3))))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3)))) (-1912 (*1 *2) (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) (-1911 (*1 *2) (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) (-1706 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146)))) (-1705 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146)))) (-1777 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146))))) +(-13 (-685 |t#1|) (-10 -8 (-15 -1731 ((-1181 $))) (-15 -3111 ((-832))) (-15 -1897 ((-585 (-859 |t#1|)) (-1181 $))) (-15 -3226 ((-1181 (-632 |t#1|)) (-1181 $))) (-15 -1792 ((-632 |t#1|) $ (-1181 $))) (-15 -1791 ((-632 |t#1|) $ (-1181 $))) (-15 -1730 (|t#1| $)) (-15 -1729 (|t#1| $)) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -3227 ((-1181 |t#1|) $ (-1181 $))) (-15 -3227 ((-632 |t#1|) (-1181 $) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|) (-1181 $))) (-15 -1796 (|t#1| (-1181 $))) (-15 -1795 (|t#1| (-1181 $))) (-15 -1794 ((-632 |t#1|) (-1181 $))) (-15 -1793 ((-632 |t#1|) (-1181 $))) (-15 -1726 ((-1087 |t#1|) $)) (-15 -1725 ((-1087 |t#1|) $)) (-15 -1724 ((-85))) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (IF (|has| |t#1| (-497)) (PROGN (-15 -3470 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -1709 ((-585 (-1181 |t#1|)))) (-15 -1708 ((-1087 |t#1|) $)) (-15 -1707 ((-1087 |t#1|) $)) (-15 -1912 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed"))) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed"))) (-15 -1706 ((-3 $ "failed"))) (-15 -1705 ((-3 $ "failed"))) (-15 -1777 ((-3 $ "failed"))) (-6 -3995)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-685 |#1|) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 35 T ELT)) (-3248 (((-85) |#2| $) 32 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3406 (((-85) $) 13 T ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) 27 T ELT) (((-696) |#2| $) 30 T ELT)) (-3949 (((-774) $) 43 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3059 (((-85) $ $) 37 T ELT)) (-3960 (((-696) $) 17 T ELT))) +(((-317 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3248 ((-85) |#2| |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1734 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3960 ((-696) |#1|)) (-15 -3406 ((-85) |#1|))) (-318 |#2|) (-1131)) (T -317)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-2611 (((-585 |#1|) $) 39 T ELT)) (-3248 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 40 T ELT) (((-696) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 43 T ELT))) +(((-318 |#1|) (-113) (-1131)) (T -318)) +((-3960 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-1734 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-1733 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-696)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3)))) (-3845 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) (-3845 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) (-1732 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-696)))) (-3248 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3845 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1131))))) +(-13 (-430 |t#1|) (-10 -8 (-15 -3960 ((-696) $)) (-15 -1734 ((-85) (-1 (-85) |t#1|) $)) (-15 -1733 ((-85) (-1 (-85) |t#1|) $)) (-15 -1732 ((-696) (-1 (-85) |t#1|) $)) (-15 -2611 ((-585 |t#1|) $)) (-15 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1732 ((-696) |t#1| $)) (-15 -3248 ((-85) |t#1| $)) (-15 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-2997 (($) 15 T ELT))) +(((-319 |#1|) (-10 -7 (-15 -2997 (|#1|))) (-320)) (T -319)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3139 (((-696)) 20 T ELT)) (-2997 (($) 17 T ELT)) (-2012 (((-832) $) 18 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2402 (($ (-832)) 19 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-320) (-113)) (T -320)) -((-3138 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831)))) (-2996 (*1 *1) (-4 *1 (-320)))) -(-13 (-1014) (-10 -8 (-15 -3138 ((-695))) (-15 -2401 ($ (-831))) (-15 -2011 ((-831) $)) (-15 -2996 ($)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-1786 (((-631 |#2|) (-1180 $)) 45 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) 39 T ELT)) (-1785 (((-631 |#2|) $ (-1180 $)) 47 T ELT)) (-3759 ((|#2| (-1180 $)) 13 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 27 T ELT))) -(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-631 |#2|) (-1180 |#1|))) (-15 -3759 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1180 |#1|)))) (-322 |#2| |#3|) (-146) (-1156 |#2|)) (T -321)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-831)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2704 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-322 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -322)) -((-3110 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-831)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1156 *4)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-146)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3110 ((-831))) (-15 -1785 ((-631 |t#1|) $ (-1180 $))) (-15 -3332 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -3226 ((-1180 |t#1|) $ (-1180 $))) (-15 -3226 ((-631 |t#1|) (-1180 $) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|) (-1180 $))) (-15 -3759 (|t#1| (-1180 $))) (-15 -1786 ((-631 |t#1|) (-1180 $))) (-15 -2451 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2015 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-1736 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1734 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2911 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2299 (($ $) 25 T ELT)) (-3421 (((-485) (-1 (-85) |#2|) $) NIL T ELT) (((-485) |#2| $) 11 T ELT) (((-485) |#2| $ (-485)) NIL T ELT)) (-3520 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-323 |#1| |#2|) (-10 -7 (-15 -1734 (|#1| |#1|)) (-15 -1734 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1736 ((-85) |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2911 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1130)) (T -323)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 46 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 109 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 45 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 104 T ELT)) (-3247 (((-85) |#1| $) 108 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 59 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 67 T ELT)) (-2200 (($ $ |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 39 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 44 T ELT) ((|#1| $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-1731 (((-695) |#1| $) 107 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 103 T ELT)) (-1735 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 66 T ELT)) (-3804 (($ $ |#1|) 63 T ELT) (($ |#1| $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2568 (((-85) $ $) 82 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 100 T ELT))) -(((-324 |#1|) (-113) (-1130)) (T -324)) -((-3520 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-1736 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3421 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) (-3421 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-485)))) (-3421 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-2911 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-85)))) (-1735 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)))) (-1734 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-1734 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))) -(-13 (-594 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3520 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2299 ($ $)) (-15 -2911 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1736 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3421 ((-485) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3421 ((-485) |t#1| $)) (-15 -3421 ((-485) |t#1| $ (-485)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-15 -3520 ($ $ $)) (-15 -2911 ($ $)) (-15 -1736 ((-85) $))) |%noBranch|) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -1735 ($ $ $ (-485))) (-15 -2298 ($ $)) (-15 -1734 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-15 -1734 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1130) . T)) -((-3843 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3844 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3960 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3844 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3843 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-324 |#1|) (-1130) (-324 |#3|)) (T -325)) -((-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3936 (((-584 |#1|) $) 43 T ELT)) (-3949 (($ $ (-695)) 44 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3938 (($ $) 45 T ELT)) (-3942 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 48 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3770 (($ $ |#1| $) 42 T ELT) (($ $ (-584 |#1|) (-584 $)) 41 T ELT)) (-3950 (((-695) $) 49 T ELT)) (-3532 (($ $ $) 40 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1196 |#1| |#2|) $) 51 T ELT) (((-1205 |#1| |#2|) $) 50 T ELT)) (-3956 ((|#2| (-1205 |#1| |#2|) $) 53 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-1737 (($ (-615 |#1|)) 46 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-326 |#1| |#2|) (-113) (-757) (-146)) (T -326)) -((-3956 (*1 *2 *3 *1) (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) (-3948 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1196 *3 *4)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1205 *3 *4)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) (-3942 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3941 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) (-3770 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146))))) -(-13 (-575 |t#2|) (-10 -8 (-15 -3956 (|t#2| (-1205 |t#1| |t#2|) $)) (-15 -3948 ($ |t#1|)) (-15 -3948 ((-1196 |t#1| |t#2|) $)) (-15 -3948 ((-1205 |t#1| |t#2|) $)) (-15 -3950 ((-695) $)) (-15 -3942 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -3941 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -1737 ($ (-615 |t#1|))) (-15 -3938 ($ $)) (-15 -3949 ($ $ (-695))) (-15 -3936 ((-584 |t#1|) $)) (-15 -3770 ($ $ |t#1| $)) (-15 -3770 ($ $ (-584 |t#1|) (-584 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T)) -((-1740 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1738 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1739 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) -(((-327 |#1| |#2|) (-10 -7 (-15 -1738 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1739 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1740 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1130) (-13 (-324 |#1|) (-1036 |#1|))) (T -327)) -((-1740 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1036 *4))))) (-1739 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1036 *4))))) (-1738 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1036 *4)))))) -((-2280 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 22 T ELT) (((-631 (-485)) (-631 $)) 14 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 |#2|) (-631 |#1|)))) (-329 |#2|) (-962)) (T -328)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 47 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-631 $)) 46 (|has| |#1| (-581 (-485))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 45 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-1180 $)) 44 (|has| |#1| (-581 (-485))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-329 |#1|) (-113) (-962)) (T -329)) -NIL -(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-485))) (-6 (-581 (-485))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 16 T ELT)) (-3131 (((-485) $) 44 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3773 (($ $) 120 T ELT)) (-3494 (($ $) 81 T ELT)) (-3641 (($ $) 72 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) 28 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 79 T ELT)) (-3640 (($ $) 67 T ELT)) (-3625 (((-485) $) 60 T ELT)) (-2443 (($ $ (-485)) 55 T ELT)) (-3496 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3129 (($ $) 122 T ELT)) (-3159 (((-3 (-485) #1#) $) 217 T ELT) (((-3 (-350 (-485)) #1#) $) 213 T ELT)) (-3158 (((-485) $) 215 T ELT) (((-350 (-485)) $) 211 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-1749 (((-485) $ $) 110 T ELT)) (-3469 (((-3 $ #1#) $) 125 T ELT)) (-1748 (((-350 (-485)) $ (-695)) 218 T ELT) (((-350 (-485)) $ (-695) (-695)) 210 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1772 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3988)) ELT)) (-3188 (((-85) $) 38 T ELT)) (-3629 (($) 22 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-1741 (((-1186) (-695)) 177 T ELT)) (-1742 (((-1186)) 182 T ELT) (((-1186) (-695)) 183 T ELT)) (-1744 (((-1186)) 184 T ELT) (((-1186) (-695)) 185 T ELT)) (-1743 (((-1186)) 180 T ELT) (((-1186) (-695)) 181 T ELT)) (-3774 (((-485) $) 50 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 21 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-2445 (($ $) 32 T ELT)) (-3134 (($ $) NIL T ELT)) (-3189 (((-85) $) 18 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-2859 (($ $ $) NIL T ELT) (($) NIL (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-1774 (((-485) $) 112 T ELT)) (-1747 (($) 90 T ELT) (($ $) 97 T ELT)) (-1746 (($) 96 T ELT) (($ $) 98 T ELT)) (-3944 (($ $) 84 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 127 T ELT)) (-1771 (((-831) (-485)) 27 (|has| $ (-6 -3988)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) 41 T ELT)) (-3132 (($ $) 119 T ELT)) (-3256 (($ (-485) (-485)) 115 T ELT) (($ (-485) (-485) (-831)) 116 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 113 T ELT)) (-1745 (($) 99 T ELT)) (-3945 (($ $) 78 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3988)) ELT)) (-3760 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1770 (((-831) (-485)) 31 (|has| $ (-6 -3988)) ELT)) (-3497 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3495 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3493 (($ $) 80 T ELT)) (-3636 (($ $) 71 T ELT)) (-3974 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-801 (-330)) $) NIL T ELT) (((-1074) $) 188 T ELT) (((-474) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3948 (((-773) $) 192 T ELT) (($ (-485)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 214 T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 205 T ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (($ $) 121 T ELT)) (-1773 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3988)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-831)) 111 T ELT)) (-3500 (($ $) 87 T ELT)) (-3488 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 85 T ELT)) (-3486 (($ $) 20 T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL T ELT)) (-3491 (($ $) NIL T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3499 (($ $) 86 T ELT)) (-3487 (($ $) 33 T ELT)) (-3385 (($ $) 39 T ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 24 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) 189 T ELT)) (-2569 (((-85) $ $) 26 T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 43 T ELT)) (-3951 (($ $ $) 29 T ELT) (($ $ (-485)) 23 T ELT)) (-3839 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3841 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 91 T ELT) (($ $ (-350 (-485))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-330) (-13 (-347) (-190) (-554 (-1074)) (-553 (-179)) (-1116) (-554 (-474)) (-558 (-179)) (-10 -8 (-15 -3951 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -2445 ($ $)) (-15 -1749 ((-485) $ $)) (-15 -2443 ($ $ (-485))) (-15 -1748 ((-350 (-485)) $ (-695))) (-15 -1748 ((-350 (-485)) $ (-695) (-695))) (-15 -1747 ($)) (-15 -1746 ($)) (-15 -1745 ($)) (-15 -3488 ($ $ $)) (-15 -1747 ($ $)) (-15 -1746 ($ $)) (-15 -1744 ((-1186))) (-15 -1744 ((-1186) (-695))) (-15 -1743 ((-1186))) (-15 -1743 ((-1186) (-695))) (-15 -1742 ((-1186))) (-15 -1742 ((-1186) (-695))) (-15 -1741 ((-1186) (-695))) (-6 -3988) (-6 -3980)))) (T -330)) -((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2445 (*1 *1 *1) (-5 *1 (-330))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1747 (*1 *1) (-5 *1 (-330))) (-1746 (*1 *1) (-5 *1 (-330))) (-1745 (*1 *1) (-5 *1 (-330))) (-3488 (*1 *1 *1 *1) (-5 *1 (-330))) (-1747 (*1 *1 *1) (-5 *1 (-330))) (-1746 (*1 *1 *1) (-5 *1 (-330))) (-1744 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1743 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1742 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))) -((-1750 (((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|) 52 T ELT) (((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|) 51 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|) 48 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|) 42 T ELT)) (-1751 (((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1091)) |#1|) 30 T ELT) (((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|) 18 T ELT))) -(((-331 |#1|) (-10 -7 (-15 -1750 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1750 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|)) (-15 -1750 ((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1750 ((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1751 ((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1751 ((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1091)) |#1|))) (-13 (-312) (-756))) (T -331)) -((-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-756))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485))))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756)))))) -((-3575 (((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|) 47 T ELT) (((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|) 46 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|) 43 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|) 37 T ELT)) (-1752 (((-584 |#1|) (-350 (-858 (-485))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1091)) |#1|) 30 T ELT))) -(((-332 |#1|) (-10 -7 (-15 -3575 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|)) (-15 -3575 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|)) (-15 -3575 ((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|)) (-15 -3575 ((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|)) (-15 -1752 ((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1091)) |#1|)) (-15 -1752 ((-584 |#1|) (-350 (-858 (-485))) |#1|))) (-13 (-756) (-312))) (T -332)) -((-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-1752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3948 (((-773) $) 34 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-450 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -333)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 29 T ELT)) (-3158 ((|#2| $) 31 T ELT)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) 13 T ELT)) (-2823 (((-584 $) $) 23 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ |#2| |#1|) 21 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1753 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2896 ((|#2| $) 18 T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3819 (((-584 |#1|) $) 20 T ELT)) (-3679 ((|#1| $ |#2|) 54 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-2667 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-757)) (T -334)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#2| "failed") $) 55 T ELT)) (-3158 ((|#2| $) 56 T ELT)) (-3961 (($ $) 41 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2421 (((-695) $) 45 T ELT)) (-2823 (((-584 $) $) 46 T ELT)) (-3939 (((-85) $) 49 T ELT)) (-3940 (($ |#2| |#1|) 50 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1753 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2896 ((|#2| $) 44 T ELT)) (-3176 ((|#1| $) 43 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3819 (((-584 |#1|) $) 47 T ELT)) (-3679 ((|#1| $ |#2|) 52 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2667 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) -(((-335 |#1| |#2|) (-113) (-962) (-1014)) (T -335)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)))) (-3940 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-2823 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))) -(-13 (-82 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3679 (|t#1| $ |t#2|)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -3940 ($ |t#2| |t#1|)) (-15 -3939 ((-85) $)) (-15 -2667 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3819 ((-584 |t#1|) $)) (-15 -2823 ((-584 $) $)) (-15 -2421 ((-695) $)) (-15 -2896 (|t#2| $)) (-15 -3176 (|t#1| $)) (-15 -1753 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3961 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-695) $) 40 T ELT)) (-3726 (($) 23 T CONST)) (-3941 (((-3 $ "failed") $ $) 43 T ELT)) (-3159 (((-3 |#1| "failed") $) 51 T ELT)) (-3158 ((|#1| $) 52 T ELT)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-1754 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2300 ((|#1| $ (-485)) 37 T ELT)) (-2301 (((-695) $ (-485)) 38 T ELT)) (-2533 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3942 (((-3 $ "failed") $ $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1755 (($ $ $) 45 T ELT)) (-1756 (($ $ $) 46 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) 39 T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) 31 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 33 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 32 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-336 |#1|) (-113) (-1014)) (T -336)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1755 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3942 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3941 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2881 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1754 (*1 *2 *1 *1) (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-695))))))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014))))) -(-13 (-664) (-951 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-695))) (-15 -1756 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3942 ((-3 $ "failed") $ $)) (-15 -3941 ((-3 $ "failed") $ $)) (-15 -2881 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1754 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3138 ((-695) $)) (-15 -1783 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3945 (-695)))) $)) (-15 -2301 ((-695) $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -2292 ($ (-1 (-695) (-695)) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|))) -(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695) $) 74 T ELT)) (-3726 (($) NIL T CONST)) (-3941 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1754 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3942 (((-3 $ #1#) $ $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1755 (($ $ $) 28 T ELT)) (-1756 (($ $ $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) 34 T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-337 |#1|) (-336 |#1|) (-1014)) (T -337)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-1757 (((-85) $) 25 T ELT)) (-1758 (((-85) $) 22 T ELT)) (-3616 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-3544 (((-1074) $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1762 (($ (-1074) (-1074) (-1074)) 14 T ELT)) (-1760 (((-1074) $) 17 T ELT)) (-1759 (((-85) $) 18 T ELT)) (-1761 (((-1074) $) 15 T ELT)) (-3948 (((-773) $) 12 T ELT) (($ (-1074)) 13 T ELT) (((-1074) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 7 T ELT))) +((-3139 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-696)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-320)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-832)))) (-2997 (*1 *1) (-4 *1 (-320)))) +(-13 (-1015) (-10 -8 (-15 -3139 ((-696))) (-15 -2402 ($ (-832))) (-15 -2012 ((-832) $)) (-15 -2997 ($)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-1787 (((-632 |#2|) (-1181 $)) 45 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) 39 T ELT)) (-1786 (((-632 |#2|) $ (-1181 $)) 47 T ELT)) (-3760 ((|#2| (-1181 $)) 13 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) 27 T ELT))) +(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-632 |#2|) (-1181 |#1|))) (-15 -3760 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1786 ((-632 |#2|) |#1| (-1181 |#1|)))) (-322 |#2| |#3|) (-146) (-1157 |#2|)) (T -321)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-832)) 69 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2705 (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-322 |#1| |#2|) (-113) (-146) (-1157 |t#1|)) (T -322)) +((-3111 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-832)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) (-3227 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) (-3227 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1157 *4)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1157 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1157 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3111 ((-832))) (-15 -1786 ((-632 |t#1|) $ (-1181 $))) (-15 -3333 (|t#1| $)) (-15 -3135 (|t#1| $)) (-15 -3227 ((-1181 |t#1|) $ (-1181 $))) (-15 -3227 ((-632 |t#1|) (-1181 $) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|) (-1181 $))) (-15 -3760 (|t#1| (-1181 $))) (-15 -1787 ((-632 |t#1|) (-1181 $))) (-15 -2452 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2016 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-1737 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1735 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2912 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2300 (($ $) 25 T ELT)) (-3422 (((-486) (-1 (-85) |#2|) $) NIL T ELT) (((-486) |#2| $) 11 T ELT) (((-486) |#2| $ (-486)) NIL T ELT)) (-3521 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-323 |#1| |#2|) (-10 -7 (-15 -1735 (|#1| |#1|)) (-15 -1735 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1737 ((-85) |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -3521 (|#1| |#1| |#1|)) (-15 -3422 ((-486) |#2| |#1| (-486))) (-15 -3422 ((-486) |#2| |#1|)) (-15 -3422 ((-486) (-1 (-85) |#2|) |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2912 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -3521 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1131)) (T -323)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1037 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 89 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 99 T ELT)) (-1355 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1578 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 96 T ELT) (((-486) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 94 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 105 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 82 (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 104 T ELT)) (-1736 (($ $ $ (-486)) 90 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2569 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 86 (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-324 |#1|) (-113) (-1131)) (T -324)) +((-3521 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-1737 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-3422 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-486)))) (-3422 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-486)))) (-3422 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) (-2912 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-758)) (-5 *2 (-85)))) (-1736 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-1735 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758))))) +(-13 (-595 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3521 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2300 ($ $)) (-15 -2912 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1737 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3422 ((-486) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3422 ((-486) |t#1| $)) (-15 -3422 ((-486) |t#1| $ (-486)))) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-6 (-758)) (-15 -3521 ($ $ $)) (-15 -2912 ($ $)) (-15 -1737 ((-85) $))) |%noBranch|) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -1736 ($ $ $ (-486))) (-15 -2299 ($ $)) (-15 -1735 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-758)) (-15 -1735 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1131) . T)) +((-3844 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3845 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3961 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3845 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3844 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1131) (-324 |#1|) (-1131) (-324 |#3|)) (T -325)) +((-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3937 (((-585 |#1|) $) 43 T ELT)) (-3950 (($ $ (-696)) 44 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3942 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 47 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3939 (($ $) 45 T ELT)) (-3943 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 48 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ |#1| $) 42 T ELT) (($ $ (-585 |#1|) (-585 $)) 41 T ELT)) (-3951 (((-696) $) 49 T ELT)) (-3533 (($ $ $) 40 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1197 |#1| |#2|) $) 51 T ELT) (((-1206 |#1| |#2|) $) 50 T ELT)) (-3957 ((|#2| (-1206 |#1| |#2|) $) 53 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-1738 (($ (-616 |#1|)) 46 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-326 |#1| |#2|) (-113) (-758) (-146)) (T -326)) +((-3957 (*1 *2 *3 *1) (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-758)) (-4 *2 (-146)))) (-3949 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-1197 *3 *4)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-1206 *3 *4)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-696)))) (-3943 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3942 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3939 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-585 *3)))) (-3771 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-758)) (-4 *5 (-146))))) +(-13 (-576 |t#2|) (-10 -8 (-15 -3957 (|t#2| (-1206 |t#1| |t#2|) $)) (-15 -3949 ($ |t#1|)) (-15 -3949 ((-1197 |t#1| |t#2|) $)) (-15 -3949 ((-1206 |t#1| |t#2|) $)) (-15 -3951 ((-696) $)) (-15 -3943 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -3942 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -1738 ($ (-616 |t#1|))) (-15 -3939 ($ $)) (-15 -3950 ($ $ (-696))) (-15 -3937 ((-585 |t#1|) $)) (-15 -3771 ($ $ |t#1| $)) (-15 -3771 ($ $ (-585 |t#1|) (-585 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-592 |#2|) . T) ((-576 |#2|) . T) ((-584 |#2|) . T) ((-656 |#2|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-1015) . T) ((-1131) . T)) +((-1741 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1739 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1740 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-327 |#1| |#2|) (-10 -7 (-15 -1739 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1740 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1741 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1131) (-13 (-324 |#1|) (-1037 |#1|))) (T -327)) +((-1741 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1037 *4))))) (-1740 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1037 *4))))) (-1739 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1037 *4)))))) +((-2281 (((-632 |#2|) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 22 T ELT) (((-632 (-486)) (-632 $)) 14 T ELT))) +(((-328 |#1| |#2|) (-10 -7 (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 |#2|) (-632 |#1|)))) (-329 |#2|) (-963)) (T -328)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2281 (((-632 |#1|) (-632 $)) 36 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 35 T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 47 (|has| |#1| (-582 (-486))) ELT) (((-632 (-486)) (-632 $)) 46 (|has| |#1| (-582 (-486))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2282 (((-632 |#1|) (-1181 $)) 38 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 37 T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 45 (|has| |#1| (-582 (-486))) ELT) (((-632 (-486)) (-1181 $)) 44 (|has| |#1| (-582 (-486))) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-329 |#1|) (-113) (-963)) (T -329)) +NIL +(-13 (-582 |t#1|) (-10 -7 (IF (|has| |t#1| (-582 (-486))) (-6 (-582 (-486))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 16 T ELT)) (-3132 (((-486) $) 44 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3774 (($ $) 120 T ELT)) (-3495 (($ $) 81 T ELT)) (-3642 (($ $) 72 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) 28 T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 79 T ELT)) (-3641 (($ $) 67 T ELT)) (-3626 (((-486) $) 60 T ELT)) (-2444 (($ $ (-486)) 55 T ELT)) (-3497 (($ $) NIL T ELT)) (-3640 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3130 (($ $) 122 T ELT)) (-3160 (((-3 (-486) #1#) $) 217 T ELT) (((-3 (-350 (-486)) #1#) $) 213 T ELT)) (-3159 (((-486) $) 215 T ELT) (((-350 (-486)) $) 211 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-1750 (((-486) $ $) 110 T ELT)) (-3470 (((-3 $ #1#) $) 125 T ELT)) (-1749 (((-350 (-486)) $ (-696)) 218 T ELT) (((-350 (-486)) $ (-696) (-696)) 210 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1773 (((-832)) 106 T ELT) (((-832) (-832)) 107 (|has| $ (-6 -3989)) ELT)) (-3189 (((-85) $) 38 T ELT)) (-3630 (($) 22 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL T ELT)) (-1742 (((-1187) (-696)) 177 T ELT)) (-1743 (((-1187)) 182 T ELT) (((-1187) (-696)) 183 T ELT)) (-1745 (((-1187)) 184 T ELT) (((-1187) (-696)) 185 T ELT)) (-1744 (((-1187)) 180 T ELT) (((-1187) (-696)) 181 T ELT)) (-3775 (((-486) $) 50 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 21 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-2446 (($ $) 32 T ELT)) (-3135 (($ $) NIL T ELT)) (-3190 (((-85) $) 18 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-2860 (($ $ $) NIL T ELT) (($) NIL (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-1775 (((-486) $) 112 T ELT)) (-1748 (($) 90 T ELT) (($ $) 97 T ELT)) (-1747 (($) 96 T ELT) (($ $) 98 T ELT)) (-3945 (($ $) 84 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 127 T ELT)) (-1772 (((-832) (-486)) 27 (|has| $ (-6 -3989)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) 41 T ELT)) (-3133 (($ $) 119 T ELT)) (-3257 (($ (-486) (-486)) 115 T ELT) (($ (-486) (-486) (-832)) 116 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2403 (((-486) $) 113 T ELT)) (-1746 (($) 99 T ELT)) (-3946 (($ $) 78 T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-832)) 108 T ELT) (((-832) (-832)) 109 (|has| $ (-6 -3989)) ELT)) (-3761 (($ $) 126 T ELT) (($ $ (-696)) NIL T ELT)) (-1771 (((-832) (-486)) 31 (|has| $ (-6 -3989)) ELT)) (-3498 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3496 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3494 (($ $) 80 T ELT)) (-3637 (($ $) 71 T ELT)) (-3975 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-802 (-330)) $) NIL T ELT) (((-1075) $) 188 T ELT) (((-475) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3949 (((-774) $) 192 T ELT) (($ (-486)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) 214 T ELT) (($ (-350 (-486))) NIL T ELT) (((-179) $) 205 T ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (($ $) 121 T ELT)) (-1774 (((-832)) 42 T ELT) (((-832) (-832)) 62 (|has| $ (-6 -3989)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-832)) 111 T ELT)) (-3501 (($ $) 87 T ELT)) (-3489 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 85 T ELT)) (-3487 (($ $) 20 T ELT)) (-3503 (($ $) NIL T ELT)) (-3491 (($ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3500 (($ $) 86 T ELT)) (-3488 (($ $) 33 T ELT)) (-3386 (($ $) 39 T ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 24 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) 189 T ELT)) (-2570 (((-85) $ $) 26 T ELT)) (-3059 (((-85) $ $) 37 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 43 T ELT)) (-3952 (($ $ $) 29 T ELT) (($ $ (-486)) 23 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3842 (($ $ $) 54 T ELT)) (** (($ $ (-832)) 65 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 91 T ELT) (($ $ (-350 (-486))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-832) $) 61 T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-330) (-13 (-347) (-190) (-555 (-1075)) (-554 (-179)) (-1117) (-555 (-475)) (-559 (-179)) (-10 -8 (-15 -3952 ($ $ (-486))) (-15 ** ($ $ $)) (-15 -2446 ($ $)) (-15 -1750 ((-486) $ $)) (-15 -2444 ($ $ (-486))) (-15 -1749 ((-350 (-486)) $ (-696))) (-15 -1749 ((-350 (-486)) $ (-696) (-696))) (-15 -1748 ($)) (-15 -1747 ($)) (-15 -1746 ($)) (-15 -3489 ($ $ $)) (-15 -1748 ($ $)) (-15 -1747 ($ $)) (-15 -1745 ((-1187))) (-15 -1745 ((-1187) (-696))) (-15 -1744 ((-1187))) (-15 -1744 ((-1187) (-696))) (-15 -1743 ((-1187))) (-15 -1743 ((-1187) (-696))) (-15 -1742 ((-1187) (-696))) (-6 -3989) (-6 -3981)))) (T -330)) +((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) (-2446 (*1 *1 *1) (-5 *1 (-330))) (-1750 (*1 *2 *1 *1) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) (-2444 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330)))) (-1749 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330)))) (-1748 (*1 *1) (-5 *1 (-330))) (-1747 (*1 *1) (-5 *1 (-330))) (-1746 (*1 *1) (-5 *1 (-330))) (-3489 (*1 *1 *1 *1) (-5 *1 (-330))) (-1748 (*1 *1 *1) (-5 *1 (-330))) (-1747 (*1 *1 *1) (-5 *1 (-330))) (-1745 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) (-1744 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) (-1743 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330))))) +((-1751 (((-585 (-249 (-859 (-142 |#1|)))) (-249 (-350 (-859 (-142 (-486))))) |#1|) 52 T ELT) (((-585 (-249 (-859 (-142 |#1|)))) (-350 (-859 (-142 (-486)))) |#1|) 51 T ELT) (((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-249 (-350 (-859 (-142 (-486)))))) |#1|) 48 T ELT) (((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-350 (-859 (-142 (-486))))) |#1|) 42 T ELT)) (-1752 (((-585 (-585 (-142 |#1|))) (-585 (-350 (-859 (-142 (-486))))) (-585 (-1092)) |#1|) 30 T ELT) (((-585 (-142 |#1|)) (-350 (-859 (-142 (-486)))) |#1|) 18 T ELT))) +(((-331 |#1|) (-10 -7 (-15 -1751 ((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-350 (-859 (-142 (-486))))) |#1|)) (-15 -1751 ((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-249 (-350 (-859 (-142 (-486)))))) |#1|)) (-15 -1751 ((-585 (-249 (-859 (-142 |#1|)))) (-350 (-859 (-142 (-486)))) |#1|)) (-15 -1751 ((-585 (-249 (-859 (-142 |#1|)))) (-249 (-350 (-859 (-142 (-486))))) |#1|)) (-15 -1752 ((-585 (-142 |#1|)) (-350 (-859 (-142 (-486)))) |#1|)) (-15 -1752 ((-585 (-585 (-142 |#1|))) (-585 (-350 (-859 (-142 (-486))))) (-585 (-1092)) |#1|))) (-13 (-312) (-757))) (T -331)) +((-1752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) (-5 *4 (-585 (-1092))) (-5 *2 (-585 (-585 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-757))))) (-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-142 (-486))))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 (-142 (-486)))))) (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-142 (-486))))) (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-350 (-859 (-142 (-486))))))) (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757)))))) +((-3576 (((-585 (-249 (-859 |#1|))) (-249 (-350 (-859 (-486)))) |#1|) 47 T ELT) (((-585 (-249 (-859 |#1|))) (-350 (-859 (-486))) |#1|) 46 T ELT) (((-585 (-585 (-249 (-859 |#1|)))) (-585 (-249 (-350 (-859 (-486))))) |#1|) 43 T ELT) (((-585 (-585 (-249 (-859 |#1|)))) (-585 (-350 (-859 (-486)))) |#1|) 37 T ELT)) (-1753 (((-585 |#1|) (-350 (-859 (-486))) |#1|) 20 T ELT) (((-585 (-585 |#1|)) (-585 (-350 (-859 (-486)))) (-585 (-1092)) |#1|) 30 T ELT))) +(((-332 |#1|) (-10 -7 (-15 -3576 ((-585 (-585 (-249 (-859 |#1|)))) (-585 (-350 (-859 (-486)))) |#1|)) (-15 -3576 ((-585 (-585 (-249 (-859 |#1|)))) (-585 (-249 (-350 (-859 (-486))))) |#1|)) (-15 -3576 ((-585 (-249 (-859 |#1|))) (-350 (-859 (-486))) |#1|)) (-15 -3576 ((-585 (-249 (-859 |#1|))) (-249 (-350 (-859 (-486)))) |#1|)) (-15 -1753 ((-585 (-585 |#1|)) (-585 (-350 (-859 (-486)))) (-585 (-1092)) |#1|)) (-15 -1753 ((-585 |#1|) (-350 (-859 (-486))) |#1|))) (-13 (-757) (-312))) (T -332)) +((-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-1753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-350 (-859 (-486))))) (-5 *4 (-585 (-1092))) (-5 *2 (-585 (-585 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 (-486))))) (-5 *2 (-585 (-249 (-859 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 (-249 (-859 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-350 (-859 (-486)))))) (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 (-486))))) (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) NIL T ELT)) (-3949 (((-774) $) 34 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-451 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-656 |#1|)) |%noBranch|))) (-963) (-761)) (T -333)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 29 T ELT)) (-3159 ((|#2| $) 31 T ELT)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2422 (((-696) $) 13 T ELT)) (-2824 (((-585 $) $) 23 T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ |#2| |#1|) 21 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2897 ((|#2| $) 18 T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3820 (((-585 |#1|) $) 20 T ELT)) (-3680 ((|#1| $ |#2|) 54 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-2668 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-963) (-758)) (T -334)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| "failed") $) 55 T ELT)) (-3159 ((|#2| $) 56 T ELT)) (-3962 (($ $) 41 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2422 (((-696) $) 45 T ELT)) (-2824 (((-585 $) $) 46 T ELT)) (-3940 (((-85) $) 49 T ELT)) (-3941 (($ |#2| |#1|) 50 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2897 ((|#2| $) 44 T ELT)) (-3177 ((|#1| $) 43 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3820 (((-585 |#1|) $) 47 T ELT)) (-3680 ((|#1| $ |#2|) 52 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2668 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) +(((-335 |#1| |#2|) (-113) (-963) (-1015)) (T -335)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)))) (-3941 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-85)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) (-2824 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-335 *3 *4)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-696)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015))))) +(-13 (-82 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3680 (|t#1| $ |t#2|)) (-15 -3961 ($ (-1 |t#1| |t#1|) $)) (-15 -3941 ($ |t#2| |t#1|)) (-15 -3940 ((-85) $)) (-15 -2668 ((-585 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3820 ((-585 |t#1|) $)) (-15 -2824 ((-585 $) $)) (-15 -2422 ((-696) $)) (-15 -2897 (|t#2| $)) (-15 -3177 (|t#1| $)) (-15 -1754 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3962 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-952 |#2|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3139 (((-696) $) 40 T ELT)) (-3727 (($) 23 T CONST)) (-3942 (((-3 $ "failed") $ $) 43 T ELT)) (-3160 (((-3 |#1| "failed") $) 51 T ELT)) (-3159 ((|#1| $) 52 T ELT)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-2301 ((|#1| $ (-486)) 37 T ELT)) (-2302 (((-696) $ (-486)) 38 T ELT)) (-2534 (($ $ $) 29 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 30 (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2293 (($ (-1 (-696) (-696)) $) 36 T ELT)) (-3943 (((-3 $ "failed") $ $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1756 (($ $ $) 45 T ELT)) (-1757 (($ $ $) 46 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-696)))) $) 39 T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-85) $ $) 31 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 33 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 32 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 34 (|has| |#1| (-758)) ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ |#1| (-696)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-336 |#1|) (-113) (-1015)) (T -336)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-1757 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-3943 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-3942 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-2882 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1755 (*1 *2 *1 *1) (-12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 (-696))))))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-336 *4)) (-4 *4 (-1015)) (-5 *2 (-696)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-696) (-696))) (-4 *1 (-336 *3)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1015))))) +(-13 (-665) (-952 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-696))) (-15 -1757 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -3943 ((-3 $ "failed") $ $)) (-15 -3942 ((-3 $ "failed") $ $)) (-15 -2882 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1755 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3139 ((-696) $)) (-15 -1784 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3946 (-696)))) $)) (-15 -2302 ((-696) $ (-486))) (-15 -2301 (|t#1| $ (-486))) (-15 -2293 ($ (-1 (-696) (-696)) $)) (-15 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|))) +(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-952 |#1|) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696) $) 74 T ELT)) (-3727 (($) NIL T CONST)) (-3942 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2412 (((-85) $) 17 T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-2302 (((-696) $ (-486)) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2293 (($ (-1 (-696) (-696)) $) 37 T ELT)) (-3943 (((-3 $ #1#) $ $) 60 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1756 (($ $ $) 28 T ELT)) (-1757 (($ $ $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-696)))) $) 34 T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3949 (((-774) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ |#1| (-696)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-337 |#1|) (-336 |#1|) (-1015)) (T -337)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-1758 (((-85) $) 25 T ELT)) (-1759 (((-85) $) 22 T ELT)) (-3617 (($ (-1075) (-1075) (-1075)) 26 T ELT)) (-3545 (((-1075) $) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1763 (($ (-1075) (-1075) (-1075)) 14 T ELT)) (-1761 (((-1075) $) 17 T ELT)) (-1760 (((-85) $) 18 T ELT)) (-1762 (((-1075) $) 15 T ELT)) (-3949 (((-774) $) 12 T ELT) (($ (-1075)) 13 T ELT) (((-1075) $) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 7 T ELT))) (((-338) (-339)) (T -338)) NIL -((-2570 (((-85) $ $) 7 T ELT)) (-1757 (((-85) $) 20 T ELT)) (-1758 (((-85) $) 21 T ELT)) (-3616 (($ (-1074) (-1074) (-1074)) 19 T ELT)) (-3544 (((-1074) $) 24 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1762 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-1760 (((-1074) $) 23 T ELT)) (-1759 (((-85) $) 22 T ELT)) (-1761 (((-1074) $) 25 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1074)) 28 T ELT) (((-1074) $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +((-2571 (((-85) $ $) 7 T ELT)) (-1758 (((-85) $) 20 T ELT)) (-1759 (((-85) $) 21 T ELT)) (-3617 (($ (-1075) (-1075) (-1075)) 19 T ELT)) (-3545 (((-1075) $) 24 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1763 (($ (-1075) (-1075) (-1075)) 26 T ELT)) (-1761 (((-1075) $) 23 T ELT)) (-1760 (((-85) $) 22 T ELT)) (-1762 (((-1075) $) 25 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-1075)) 28 T ELT) (((-1075) $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) (((-339) (-113)) (T -339)) -((-1762 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3616 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339))))) -(-13 (-1014) (-430 (-1074)) (-10 -8 (-15 -1762 ($ (-1074) (-1074) (-1074))) (-15 -1761 ((-1074) $)) (-15 -3544 ((-1074) $)) (-15 -1760 ((-1074) $)) (-15 -1759 ((-85) $)) (-15 -1758 ((-85) $)) (-15 -1757 ((-85) $)) (-15 -3616 ($ (-1074) (-1074) (-1074))))) -(((-72) . T) ((-556 (-1074)) . T) ((-553 (-773)) . T) ((-553 (-1074)) . T) ((-430 (-1074)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-1763 (((-773) $) 64 T ELT)) (-3726 (($) NIL T CONST)) (-2408 (($ $ (-831)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 38 T ELT)) (-3913 (((-695)) 18 T ELT)) (-1764 (((-773) $) 66 T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 41 T ELT)) (-3839 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3841 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-340 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3913 ((-695))) (-15 -1764 ((-773) $)) (-15 -1763 ((-773) $)) (-15 -2410 ($ (-695))))) (-695) (-695) (-146)) (T -340)) -((-3913 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) -((-3774 (((-695) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3774 ((-695) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341)) -((-3774 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1766 ((|#2| $) 38 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1767 (($ (-350 |#2|)) 93 T ELT)) (-1765 (((-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3760 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3974 (((-350 |#2|) $) 49 T ELT)) (-3532 (($ (-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3948 (((-773) $) 131 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3841 (($ |#2| $) 41 T ELT))) -(((-342 |#1| |#2|) (-13 (-1014) (-189) (-554 (-350 |#2|)) (-10 -8 (-15 -3841 ($ |#2| $)) (-15 -1767 ($ (-350 |#2|))) (-15 -1766 (|#2| $)) (-15 -1765 ((-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|))) $)) (-15 -3532 ($ (-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1156 |#1|)) (T -342)) -((-3841 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1156 *3)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1766 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1765 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1156 *3)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4)))) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) -((-2570 (((-85) $ $) 10 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 16 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 15 (|has| |#1| (-797 (-485))) ELT)) (-3244 (((-1074) $) 14 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3245 (((-1034) $) 13 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3948 (((-773) $) 12 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-1266 (((-85) $ $) 11 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3058 (((-85) $ $) 9 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT))) -(((-343 |#1|) (-113) (-1130)) (T -343)) -NIL -(-13 (-1130) (-10 -7 (IF (|has| |t#1| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|))) -(((-72) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-553 (-773)) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-13) . T) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-1014) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-1130) . T)) -((-1768 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT))) -(((-344 |#1|) (-10 -7 (-15 -1768 (|#1| |#1| (-695))) (-15 -1768 (|#1| |#1|))) (-345)) (T -344)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1768 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-744 (-831)) $) 99 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-3 (-695) "failed") $ $) 98 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2704 (((-633 $) $) 100 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) +((-1763 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3617 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339))))) +(-13 (-1015) (-431 (-1075)) (-10 -8 (-15 -1763 ($ (-1075) (-1075) (-1075))) (-15 -1762 ((-1075) $)) (-15 -3545 ((-1075) $)) (-15 -1761 ((-1075) $)) (-15 -1760 ((-85) $)) (-15 -1759 ((-85) $)) (-15 -1758 ((-85) $)) (-15 -3617 ($ (-1075) (-1075) (-1075))))) +(((-72) . T) ((-557 (-1075)) . T) ((-554 (-774)) . T) ((-554 (-1075)) . T) ((-431 (-1075)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-1764 (((-774) $) 64 T ELT)) (-3727 (($) NIL T CONST)) (-2409 (($ $ (-832)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) 38 T ELT)) (-3914 (((-696)) 18 T ELT)) (-1765 (((-774) $) 66 T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 41 T ELT)) (-3840 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3842 (($ $ $) 51 T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-340 |#1| |#2| |#3|) (-13 (-685 |#3|) (-10 -8 (-15 -3914 ((-696))) (-15 -1765 ((-774) $)) (-15 -1764 ((-774) $)) (-15 -2411 ($ (-696))))) (-696) (-696) (-146)) (T -340)) +((-3914 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) +((-3775 (((-696) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3775 ((-696) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341)) +((-3775 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-696)) (-5 *1 (-341 *4 *5 *6 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1767 ((|#2| $) 38 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1768 (($ (-350 |#2|)) 93 T ELT)) (-1766 (((-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3761 (($ $ (-696)) 36 T ELT) (($ $) 34 T ELT)) (-3975 (((-350 |#2|) $) 49 T ELT)) (-3533 (($ (-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3949 (((-774) $) 131 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2672 (($ $ (-696)) 37 T ELT) (($ $) 35 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3842 (($ |#2| $) 41 T ELT))) +(((-342 |#1| |#2|) (-13 (-1015) (-189) (-555 (-350 |#2|)) (-10 -8 (-15 -3842 ($ |#2| $)) (-15 -1768 ($ (-350 |#2|))) (-15 -1767 (|#2| $)) (-15 -1766 ((-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|))) $)) (-15 -3533 ($ (-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1157 |#1|)) (T -342)) +((-3842 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1157 *3)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1767 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1766 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1157 *3)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) +((-2571 (((-85) $ $) 10 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 16 (|has| |#1| (-798 (-330))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 15 (|has| |#1| (-798 (-486))) ELT)) (-3245 (((-1075) $) 14 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-3246 (((-1035) $) 13 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-3949 (((-774) $) 12 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-1267 (((-85) $ $) 11 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-3059 (((-85) $ $) 9 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT))) +(((-343 |#1|) (-113) (-1131)) (T -343)) +NIL +(-13 (-1131) (-10 -7 (IF (|has| |t#1| (-798 (-486))) (-6 (-798 (-486))) |%noBranch|) (IF (|has| |t#1| (-798 (-330))) (-6 (-798 (-330))) |%noBranch|))) +(((-72) OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ((-554 (-774)) OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ((-13) . T) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-1015) OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ((-1131) . T)) +((-1769 (($ $) 10 T ELT) (($ $ (-696)) 12 T ELT))) +(((-344 |#1|) (-10 -7 (-15 -1769 (|#1| |#1| (-696))) (-15 -1769 (|#1| |#1|))) (-345)) (T -344)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1769 (($ $) 97 T ELT) (($ $ (-696)) 96 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-745 (-832)) $) 99 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-696) "failed") $ $) 98 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-2705 (((-634 $) $) 100 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) (((-345) (-113)) (T -345)) -((-3774 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831))))) (-1769 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695)))) (-1768 (*1 *1 *1) (-4 *1 (-345))) (-1768 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695))))) -(-13 (-312) (-118) (-10 -8 (-15 -3774 ((-744 (-831)) $)) (-15 -1769 ((-3 (-695) "failed") $ $)) (-15 -1768 ($ $)) (-15 -1768 ($ $ (-695))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-3256 (($ (-485) (-485)) 11 T ELT) (($ (-485) (-485) (-831)) NIL T ELT)) (-2617 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT))) -(((-346 |#1|) (-10 -7 (-15 -2617 ((-831) (-831))) (-15 -2617 ((-831))) (-15 -3256 (|#1| (-485) (-485) (-831))) (-15 -3256 (|#1| (-485) (-485)))) (-347)) (T -346)) -((-2617 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3773 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3625 (((-485) $) 133 T ELT)) (-3726 (($) 23 T CONST)) (-3129 (($ $) 105 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3158 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-1772 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3988)) ELT)) (-3188 (((-85) $) 131 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-3774 (((-485) $) 155 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 115 T ELT)) (-3134 (($ $) 111 T ELT)) (-3189 (((-85) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2533 (($ $ $) 125 T ELT) (($) 143 (-12 (-2562 (|has| $ (-6 -3988))) (-2562 (|has| $ (-6 -3980)))) ELT)) (-2859 (($ $ $) 126 T ELT) (($) 142 (-12 (-2562 (|has| $ (-6 -3988))) (-2562 (|has| $ (-6 -3980)))) ELT)) (-1774 (((-485) $) 152 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-1771 (((-831) (-485)) 145 (|has| $ (-6 -3988)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3130 (($ $) 107 T ELT)) (-3132 (($ $) 109 T ELT)) (-3256 (($ (-485) (-485)) 157 T ELT) (($ (-485) (-485) (-831)) 156 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2402 (((-485) $) 153 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-2617 (((-831)) 150 T ELT) (((-831) (-831)) 147 (|has| $ (-6 -3988)) ELT)) (-1770 (((-831) (-485)) 144 (|has| $ (-6 -3988)) ELT)) (-3974 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3128 (((-695)) 40 T CONST)) (-3133 (($ $) 110 T ELT)) (-1773 (((-831)) 151 T ELT) (((-831) (-831)) 148 (|has| $ (-6 -3988)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2696 (((-831)) 154 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 134 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 127 T ELT)) (-2569 (((-85) $ $) 129 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 128 T ELT)) (-2687 (((-85) $ $) 130 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) +((-3775 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-745 (-832))))) (-1770 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-696)))) (-1769 (*1 *1 *1) (-4 *1 (-345))) (-1769 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-696))))) +(-13 (-312) (-118) (-10 -8 (-15 -3775 ((-745 (-832)) $)) (-15 -1770 ((-3 (-696) "failed") $ $)) (-15 -1769 ($ $)) (-15 -1769 ($ $ (-696))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-3257 (($ (-486) (-486)) 11 T ELT) (($ (-486) (-486) (-832)) NIL T ELT)) (-2618 (((-832)) 19 T ELT) (((-832) (-832)) NIL T ELT))) +(((-346 |#1|) (-10 -7 (-15 -2618 ((-832) (-832))) (-15 -2618 ((-832))) (-15 -3257 (|#1| (-486) (-486) (-832))) (-15 -3257 (|#1| (-486) (-486)))) (-347)) (T -346)) +((-2618 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 (((-486) $) 108 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3774 (($ $) 106 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 116 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3626 (((-486) $) 133 T ELT)) (-3727 (($) 23 T CONST)) (-3130 (($ $) 105 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 121 T ELT) (((-3 (-350 (-486)) #1#) $) 118 T ELT)) (-3159 (((-486) $) 122 T ELT) (((-350 (-486)) $) 119 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-1773 (((-832)) 149 T ELT) (((-832) (-832)) 146 (|has| $ (-6 -3989)) ELT)) (-3189 (((-85) $) 131 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 112 T ELT)) (-3775 (((-486) $) 155 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 115 T ELT)) (-3135 (($ $) 111 T ELT)) (-3190 (((-85) $) 132 T ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-2534 (($ $ $) 125 T ELT) (($) 143 (-12 (-2563 (|has| $ (-6 -3989))) (-2563 (|has| $ (-6 -3981)))) ELT)) (-2860 (($ $ $) 126 T ELT) (($) 142 (-12 (-2563 (|has| $ (-6 -3989))) (-2563 (|has| $ (-6 -3981)))) ELT)) (-1775 (((-486) $) 152 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-1772 (((-832) (-486)) 145 (|has| $ (-6 -3989)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3131 (($ $) 107 T ELT)) (-3133 (($ $) 109 T ELT)) (-3257 (($ (-486) (-486)) 157 T ELT) (($ (-486) (-486) (-832)) 156 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-2403 (((-486) $) 153 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-2618 (((-832)) 150 T ELT) (((-832) (-832)) 147 (|has| $ (-6 -3989)) ELT)) (-1771 (((-832) (-486)) 144 (|has| $ (-6 -3989)) ELT)) (-3975 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-802 (-330)) $) 113 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ (-486)) 120 T ELT) (($ (-350 (-486))) 117 T ELT)) (-3129 (((-696)) 40 T CONST)) (-3134 (($ $) 110 T ELT)) (-1774 (((-832)) 151 T ELT) (((-832) (-832)) 148 (|has| $ (-6 -3989)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2697 (((-832)) 154 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 134 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 127 T ELT)) (-2570 (((-85) $ $) 129 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 128 T ELT)) (-2688 (((-85) $ $) 130 T ELT)) (-3952 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 114 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) (((-347) (-113)) (T -347)) -((-3256 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347)))) (-3256 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-2696 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1773 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2617 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1772 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831)))) (-2533 (*1 *1) (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988))) (-2562 (|has| *1 (-6 -3980))))) (-2859 (*1 *1) (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988))) (-2562 (|has| *1 (-6 -3980)))))) -(-13 (-974) (-10 -8 (-6 -3772) (-15 -3256 ($ (-485) (-485))) (-15 -3256 ($ (-485) (-485) (-831))) (-15 -3774 ((-485) $)) (-15 -2696 ((-831))) (-15 -2402 ((-485) $)) (-15 -1774 ((-485) $)) (-15 -1773 ((-831))) (-15 -2617 ((-831))) (-15 -1772 ((-831))) (IF (|has| $ (-6 -3988)) (PROGN (-15 -1773 ((-831) (-831))) (-15 -2617 ((-831) (-831))) (-15 -1772 ((-831) (-831))) (-15 -1771 ((-831) (-485))) (-15 -1770 ((-831) (-485)))) |%noBranch|) (IF (|has| $ (-6 -3980)) |%noBranch| (IF (|has| $ (-6 -3988)) |%noBranch| (PROGN (-15 -2533 ($)) (-15 -2859 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-974) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 59 T ELT)) (-1775 (($ $) 77 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 189 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 48 T ELT)) (-1776 ((|#1| $) 16 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-1135)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-1135)) ELT)) (-1778 (($ |#1| (-485)) 42 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 73 T ELT)) (-3469 (((-3 $ #1#) $) 163 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 84 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 80 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 82 (|has| |#1| (-484)) ELT)) (-1779 (($ |#1| (-485)) 44 T ELT)) (-3725 (((-85) $) 209 (|has| |#1| (-1135)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 61 T ELT)) (-1838 (((-695) $) 51 T ELT)) (-1780 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-485)) 174 T ELT)) (-2300 ((|#1| $ (-485)) 173 T ELT)) (-1781 (((-485) $ (-485)) 172 T ELT)) (-1784 (($ |#1| (-485)) 41 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1835 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485))))) 78 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1782 (($ |#1| (-485)) 43 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1777 (($ |#1| (-485) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1783 (((-584 (-2 (|:| -3734 |#1|) (|:| -2402 (-485)))) $) 72 T ELT)) (-1952 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $) 12 T ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-1135)) ELT)) (-3468 (((-3 $ #1#) $ $) 175 T ELT)) (-2402 (((-485) $) 166 T ELT)) (-3965 ((|#1| $) 74 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 105 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) $) NIL (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-1091)) (-584 $)) 106 (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3802 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3974 (((-474) $) 39 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 112 (|has| |#1| (-934)) ELT) (((-179) $) 118 (|has| |#1| (-934)) ELT)) (-3948 (((-773) $) 145 T ELT) (($ (-485)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT)) (-3128 (((-695)) 66 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 53 T CONST)) (-2668 (($) 52 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 158 T ELT)) (-3839 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-348 |#1|) (-13 (-496) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3965 (|#1| $)) (-15 -2402 ((-485) $)) (-15 -1835 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))))) (-15 -1952 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $)) (-15 -1784 ($ |#1| (-485))) (-15 -1783 ((-584 (-2 (|:| -3734 |#1|) (|:| -2402 (-485)))) $)) (-15 -1782 ($ |#1| (-485))) (-15 -1781 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -1780 ((-3 #1# #2# #3# #4#) $ (-485))) (-15 -1838 ((-695) $)) (-15 -1779 ($ |#1| (-485))) (-15 -1778 ($ |#1| (-485))) (-15 -1777 ($ |#1| (-485) (-3 #1# #2# #3# #4#))) (-15 -1776 (|#1| $)) (-15 -1775 ($ $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-456 (-1091) $)) (-6 (-456 (-1091) $)) |%noBranch|))) (-496)) (T -348)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3)))) (-3965 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1835 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-485))))) (-4 *2 (-496)) (-5 *1 (-348 *2)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1781 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1780 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-496)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1777 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1776 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1775 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496))))) -((-3960 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT))) -(((-349 |#1| |#2|) (-10 -7 (-15 -3960 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-496) (-496)) (T -349)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 13 T ELT)) (-3131 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) 54 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-3158 ((|#1| $) 15 T ELT) (((-1091) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-350 (-485)) $) 51 (|has| |#1| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 32 T ELT)) (-2996 (($) NIL (|has| |#1| (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#1| $) 55 T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3189 (((-85) $) 22 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 82 T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3132 ((|#1| $) 26 (|has| |#1| (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 128 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#1| $) 57 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#1| (-934)) ELT) (((-179) $) NIL (|has| |#1| (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1091)) NIL (|has| |#1| (-951 (-1091))) ELT)) (-2704 (((-633 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 93 T CONST)) (-3133 ((|#1| $) 24 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 8 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 48 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3951 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3841 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-350 |#1|) (-13 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3984)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3995)) (-6 -3984) |%noBranch|) |%noBranch|) |%noBranch|))) (-496)) (T -350)) -NIL -((-3960 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT))) -(((-351 |#1| |#2|) (-10 -7 (-15 -3960 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-496) (-496)) (T -351)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))) -((-1786 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 24 T ELT)) (-1785 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2015 ((|#3| $) 69 T ELT)) (-3759 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 22 T ELT) (((-631 |#2|) (-1180 $)) 38 T ELT)) (-3974 (((-1180 |#2|) $) 11 T ELT) (($ (-1180 |#2|)) 13 T ELT)) (-2451 ((|#3| $) 55 T ELT))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-631 |#2|) |#1|)) (-15 -3759 (|#2|)) (-15 -1786 ((-631 |#2|))) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -1796 (|#1| (-1180 |#2|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -2015 (|#3| |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -1786 ((-631 |#2|) (-1180 |#1|))) (-15 -3759 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1180 |#1|)))) (-353 |#2| |#3|) (-146) (-1156 |#2|)) (T -352)) -((-1786 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3759 (*1 *2) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-831)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3974 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2704 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-353 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -353)) -((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) (-4 *1 (-353 *3 *4)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1156 *3)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1156 *3)))) (-1786 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3)))) (-3759 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3))))) -(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-631 |t#1|) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|))) (-15 -3974 ((-1180 |t#1|) $)) (-15 -3974 ($ (-1180 |t#1|))) (-15 -1786 ((-631 |t#1|))) (-15 -3759 (|t#1|)) (-15 -1785 ((-631 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) 27 T ELT) (((-3 (-485) #1#) $) 19 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) 24 T ELT) (((-485) $) 14 T ELT)) (-3948 (($ |#2|) NIL T ELT) (($ (-350 (-485))) 22 T ELT) (($ (-485)) 11 T ELT))) -(((-354 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| (-485))) (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|))) (-355 |#2|) (-1130)) (T -354)) -NIL -((-3159 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-485)) #1#) $) 16 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) 13 (|has| |#1| (-951 (-485))) ELT)) (-3158 ((|#1| $) 8 T ELT) (((-350 (-485)) $) 17 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 14 (|has| |#1| (-951 (-485))) ELT)) (-3948 (($ |#1|) 6 T ELT) (($ (-350 (-485))) 15 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ (-485)) 12 (|has| |#1| (-951 (-485))) ELT))) -(((-355 |#1|) (-113) (-1130)) (T -355)) -NIL -(-13 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-485))) |%noBranch|) (IF (|has| |t#1| (-951 (-350 (-485)))) (-6 (-951 (-350 (-485)))) |%noBranch|))) -(((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) |has| |#1| (-951 (-485))) ((-556 |#1|) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-1787 ((|#4| (-695) (-1180 |#4|)) 55 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3000 (((-1180 |#4|) $) 15 T ELT)) (-3134 ((|#2| $) 53 T ELT)) (-1788 (($ $) 156 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 103 T ELT)) (-1969 (($ (-1180 |#4|)) 102 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2999 ((|#1| $) 16 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 147 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 |#4|) $) 140 T ELT)) (-2668 (($) 11 T CONST)) (-3058 (((-85) $ $) 39 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-356 |#1| |#2| |#3| |#4|) (-13 (-413) (-10 -8 (-15 -1969 ($ (-1180 |#4|))) (-15 -2013 ((-1180 |#4|) $)) (-15 -3134 (|#2| $)) (-15 -3000 ((-1180 |#4|) $)) (-15 -2999 (|#1| $)) (-15 -1788 ($ $)) (-15 -1787 (|#4| (-695) (-1180 |#4|))))) (-258) (-905 |#1|) (-1156 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|))) (T -356)) -((-1969 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-3134 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2))))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1788 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1156 *6))))) -((-3960 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-905 |#1|) (-1156 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|)) (-258) (-905 |#5|) (-1156 |#6|) (-13 (-353 |#6| |#7|) (-951 |#6|))) (T -357)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6))) (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-951 *10)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3134 ((|#2| $) 69 T ELT)) (-1789 (($ (-1180 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 37 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 |#4|) $) 28 T ELT)) (-2668 (($) 26 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2013 ((-1180 |#4|) $)) (-15 -3134 (|#2| $)) (-15 -1789 ($ (-1180 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-15 -1789 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-905 |#1|) (-1156 |#2|) (-353 |#2| |#3|) (-1180 |#4|)) (T -358)) -((-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3134 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1180 *5)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))) -((-3960 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))) -((-1776 (((-3 $ #1="failed")) 99 T ELT)) (-3225 (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#2|))) 104 T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 97 T ELT)) (-1704 (((-3 $ #1#)) 96 T ELT)) (-1792 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1790 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1904 (((-1086 (-858 |#2|))) 64 T ELT)) (-1794 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 125 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 95 T ELT)) (-1705 (((-3 $ #1#)) 87 T ELT)) (-1793 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1791 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1908 (((-1086 (-858 |#2|))) 63 T ELT)) (-1795 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 124 T ELT) (((-631 |#2|) (-1180 $)) 133 T ELT)) (-3974 (((-1180 |#2|) $) 109 T ELT) (($ (-1180 |#2|)) 111 T ELT)) (-1896 (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2547 (($ (-631 |#2|) $) 103 T ELT))) -(((-360 |#1| |#2|) (-10 -7 (-15 -2547 (|#1| (-631 |#2|) |#1|)) (-15 -1904 ((-1086 (-858 |#2|)))) (-15 -1908 ((-1086 (-858 |#2|)))) (-15 -1790 ((-631 |#2|) |#1|)) (-15 -1791 ((-631 |#2|) |#1|)) (-15 -1792 ((-631 |#2|))) (-15 -1793 ((-631 |#2|))) (-15 -1794 (|#2|)) (-15 -1795 (|#2|)) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -1796 (|#1| (-1180 |#2|))) (-15 -1896 ((-584 (-858 |#2|)))) (-15 -3225 ((-1180 (-631 |#2|)))) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -1776 ((-3 |#1| #1="failed"))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1705 ((-3 |#1| #1#))) (-15 -1910 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1911 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1792 ((-631 |#2|) (-1180 |#1|))) (-15 -1793 ((-631 |#2|) (-1180 |#1|))) (-15 -1794 (|#2| (-1180 |#1|))) (-15 -1795 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1790 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -1791 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -3225 ((-1180 (-631 |#2|)) (-1180 |#1|))) (-15 -1896 ((-584 (-858 |#2|)) (-1180 |#1|)))) (-361 |#2|) (-146)) (T -360)) -((-3225 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1896 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1795 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1794 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1793 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1792 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1908 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1904 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1776 (((-3 $ #1="failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3225 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT) (((-1180 (-631 |#1|))) 115 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3726 (($) 23 T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) 49 (|has| |#1| (-496)) ELT)) (-1792 (((-631 |#1|) (-1180 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1790 (((-631 |#1|) $ (-1180 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2405 (((-3 $ #1#) $) 56 (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-858 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1794 ((|#1| (-1180 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 80 T ELT) (($ (-1180 |#1|)) 113 T ELT)) (-3469 (((-3 $ #1#) $) 58 (|has| |#1| (-496)) ELT)) (-3110 (((-831)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2435 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) 50 (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) 77 T ELT) (((-631 |#1|)) 108 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) 88 T ELT) (((-631 |#1|) $) 106 T ELT)) (-2406 (((-3 $ #1#) $) 57 (|has| |#1| (-496)) ELT)) (-1908 (((-1086 (-858 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3802 ((|#1| $ (-485)) 119 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT) (((-1180 |#1|) $) 117 T ELT) (((-631 |#1|) (-1180 $)) 116 T ELT)) (-3974 (((-1180 |#1|) $) 112 T ELT) (($ (-1180 |#1|)) 111 T ELT)) (-1896 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT) (((-584 (-858 |#1|))) 114 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 118 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2547 (($ (-631 |#1|) $) 102 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +((-3257 (*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-347)))) (-3257 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-832)) (-4 *1 (-347)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) (-2697 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) (-1774 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-2618 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-1773 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832)))) (-2534 (*1 *1) (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) (-2563 (|has| *1 (-6 -3981))))) (-2860 (*1 *1) (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) (-2563 (|has| *1 (-6 -3981)))))) +(-13 (-975) (-10 -8 (-6 -3773) (-15 -3257 ($ (-486) (-486))) (-15 -3257 ($ (-486) (-486) (-832))) (-15 -3775 ((-486) $)) (-15 -2697 ((-832))) (-15 -2403 ((-486) $)) (-15 -1775 ((-486) $)) (-15 -1774 ((-832))) (-15 -2618 ((-832))) (-15 -1773 ((-832))) (IF (|has| $ (-6 -3989)) (PROGN (-15 -1774 ((-832) (-832))) (-15 -2618 ((-832) (-832))) (-15 -1773 ((-832) (-832))) (-15 -1772 ((-832) (-486))) (-15 -1771 ((-832) (-486)))) |%noBranch|) (IF (|has| $ (-6 -3981)) |%noBranch| (IF (|has| $ (-6 -3989)) |%noBranch| (PROGN (-15 -2534 ($)) (-15 -2860 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-330)) . T) ((-555 (-802 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-330)) . T) ((-834) . T) ((-917) . T) ((-935) . T) ((-975) . T) ((-952 (-350 (-486))) . T) ((-952 (-486)) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 59 T ELT)) (-1776 (($ $) 77 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 189 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) 48 T ELT)) (-1777 ((|#1| $) 16 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-1136)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-1136)) ELT)) (-1779 (($ |#1| (-486)) 42 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 73 T ELT)) (-3470 (((-3 $ #1#) $) 163 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 84 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 80 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 82 (|has| |#1| (-485)) ELT)) (-1780 (($ |#1| (-486)) 44 T ELT)) (-3726 (((-85) $) 209 (|has| |#1| (-1136)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 61 T ELT)) (-1839 (((-696) $) 51 T ELT)) (-1781 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-486)) 174 T ELT)) (-2301 ((|#1| $ (-486)) 173 T ELT)) (-1782 (((-486) $ (-486)) 172 T ELT)) (-1785 (($ |#1| (-486)) 41 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1836 (($ |#1| (-585 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-486))))) 78 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1783 (($ |#1| (-486)) 43 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) 190 (|has| |#1| (-393)) ELT)) (-1778 (($ |#1| (-486) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1784 (((-585 (-2 (|:| -3735 |#1|) (|:| -2403 (-486)))) $) 72 T ELT)) (-1953 (((-585 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-486)))) $) 12 T ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-1136)) ELT)) (-3469 (((-3 $ #1#) $ $) 175 T ELT)) (-2403 (((-486) $) 166 T ELT)) (-3966 ((|#1| $) 74 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 105 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) $) NIL (|has| |#1| (-457 (-1092) $)) ELT) (($ $ (-585 (-1092)) (-585 $)) 106 (|has| |#1| (-457 (-1092) $)) ELT) (($ $ (-585 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-585 $) (-585 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3803 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3975 (((-475) $) 39 (|has| |#1| (-555 (-475))) ELT) (((-330) $) 112 (|has| |#1| (-935)) ELT) (((-179) $) 118 (|has| |#1| (-935)) ELT)) (-3949 (((-774) $) 145 T ELT) (($ (-486)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT)) (-3129 (((-696)) 66 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 53 T CONST)) (-2669 (($) 52 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 158 T ELT)) (-3840 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 179 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 124 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-348 |#1|) (-13 (-497) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3966 (|#1| $)) (-15 -2403 ((-486) $)) (-15 -1836 ($ |#1| (-585 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-486)))))) (-15 -1953 ((-585 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-486)))) $)) (-15 -1785 ($ |#1| (-486))) (-15 -1784 ((-585 (-2 (|:| -3735 |#1|) (|:| -2403 (-486)))) $)) (-15 -1783 ($ |#1| (-486))) (-15 -1782 ((-486) $ (-486))) (-15 -2301 (|#1| $ (-486))) (-15 -1781 ((-3 #1# #2# #3# #4#) $ (-486))) (-15 -1839 ((-696) $)) (-15 -1780 ($ |#1| (-486))) (-15 -1779 ($ |#1| (-486))) (-15 -1778 ($ |#1| (-486) (-3 #1# #2# #3# #4#))) (-15 -1777 (|#1| $)) (-15 -1776 ($ $)) (-15 -3961 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-393)) (-6 (-393)) |%noBranch|) (IF (|has| |#1| (-935)) (-6 (-935)) |%noBranch|) (IF (|has| |#1| (-1136)) (-6 (-1136)) |%noBranch|) (IF (|has| |#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-457 (-1092) $)) (-6 (-457 (-1092) $)) |%noBranch|))) (-497)) (T -348)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-497)) (-5 *1 (-348 *3)))) (-3966 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1836 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-486))))) (-4 *2 (-497)) (-5 *1 (-348 *2)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-486))))) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -2403 (-486))))) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1782 (*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1781 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-497)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1778 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-486)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1777 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1776 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) (-3027 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497))))) +((-3961 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT))) +(((-349 |#1| |#2|) (-10 -7 (-15 -3961 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-497) (-497)) (T -349)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 13 T ELT)) (-3132 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1092) #1#) $) NIL (|has| |#1| (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) 54 (|has| |#1| (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT)) (-3159 ((|#1| $) 15 T ELT) (((-1092) $) NIL (|has| |#1| (-952 (-1092))) ELT) (((-350 (-486)) $) 51 (|has| |#1| (-952 (-486))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 32 T ELT)) (-2997 (($) NIL (|has| |#1| (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| |#1| (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 38 T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 ((|#1| $) 55 T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3190 (((-85) $) 22 (|has| |#1| (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 82 T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3133 ((|#1| $) 26 (|has| |#1| (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 133 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 128 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#1| $) 57 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#1| (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT) (((-330) $) NIL (|has| |#1| (-935)) ELT) (((-179) $) NIL (|has| |#1| (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1092)) NIL (|has| |#1| (-952 (-1092))) ELT)) (-2705 (((-634 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 93 T CONST)) (-3134 ((|#1| $) 24 (|has| |#1| (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#1| (-742)) ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 8 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 48 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3952 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3842 (($ $ $) 35 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 122 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-350 |#1|) (-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3985)) (IF (|has| |#1| (-393)) (IF (|has| |#1| (-6 -3996)) (-6 -3985) |%noBranch|) |%noBranch|) |%noBranch|))) (-497)) (T -350)) +NIL +((-3961 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT))) +(((-351 |#1| |#2|) (-10 -7 (-15 -3961 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-497) (-497)) (T -351)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))) +((-1787 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-632 |#2|)) 18 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) NIL T ELT) (($ (-1181 |#2|)) 24 T ELT)) (-1786 (((-632 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) $) 40 T ELT)) (-2016 ((|#3| $) 69 T ELT)) (-3760 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) 22 T ELT) (((-632 |#2|) (-1181 $)) 38 T ELT)) (-3975 (((-1181 |#2|) $) 11 T ELT) (($ (-1181 |#2|)) 13 T ELT)) (-2452 ((|#3| $) 55 T ELT))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-632 |#2|) |#1|)) (-15 -3760 (|#2|)) (-15 -1787 ((-632 |#2|))) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -1797 (|#1| (-1181 |#2|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -2016 (|#3| |#1|)) (-15 -2452 (|#3| |#1|)) (-15 -1787 ((-632 |#2|) (-1181 |#1|))) (-15 -3760 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1786 ((-632 |#2|) |#1| (-1181 |#1|)))) (-353 |#2| |#3|) (-146) (-1157 |#2|)) (T -352)) +((-1787 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3760 (*1 *2) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT) (($ (-1181 |#1|)) 80 T ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-832)) 69 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 |#1|) $) 82 T ELT) (((-632 |#1|) (-1181 $)) 81 T ELT)) (-3975 (((-1181 |#1|) $) 79 T ELT) (($ (-1181 |#1|)) 78 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2705 (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-353 |#1| |#2|) (-113) (-146) (-1157 |t#1|)) (T -353)) +((-2014 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) (-4 *1 (-353 *3 *4)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1157 *3)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1157 *3)))) (-1787 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-632 *3)))) (-3760 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-632 *3))))) +(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2014 ((-1181 $))) (-15 -3227 ((-1181 |t#1|) $)) (-15 -3227 ((-632 |t#1|) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|))) (-15 -3975 ((-1181 |t#1|) $)) (-15 -3975 ($ (-1181 |t#1|))) (-15 -1787 ((-632 |t#1|))) (-15 -3760 (|t#1|)) (-15 -1786 ((-632 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) 27 T ELT) (((-3 (-486) #1#) $) 19 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) 24 T ELT) (((-486) $) 14 T ELT)) (-3949 (($ |#2|) NIL T ELT) (($ (-350 (-486))) 22 T ELT) (($ (-486)) 11 T ELT))) +(((-354 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| (-486))) (-15 -3160 ((-3 (-486) #1="failed") |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3949 (|#1| |#2|))) (-355 |#2|) (-1131)) (T -354)) +NIL +((-3160 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-486)) #1#) $) 16 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) 13 (|has| |#1| (-952 (-486))) ELT)) (-3159 ((|#1| $) 8 T ELT) (((-350 (-486)) $) 17 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 14 (|has| |#1| (-952 (-486))) ELT)) (-3949 (($ |#1|) 6 T ELT) (($ (-350 (-486))) 15 (|has| |#1| (-952 (-350 (-486)))) ELT) (($ (-486)) 12 (|has| |#1| (-952 (-486))) ELT))) +(((-355 |#1|) (-113) (-1131)) (T -355)) +NIL +(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-486))) (-6 (-952 (-486))) |%noBranch|) (IF (|has| |t#1| (-952 (-350 (-486)))) (-6 (-952 (-350 (-486)))) |%noBranch|))) +(((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) |has| |#1| (-952 (-486))) ((-557 |#1|) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-1788 ((|#4| (-696) (-1181 |#4|)) 55 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3001 (((-1181 |#4|) $) 15 T ELT)) (-3135 ((|#2| $) 53 T ELT)) (-1789 (($ $) 156 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 103 T ELT)) (-1970 (($ (-1181 |#4|)) 102 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3000 ((|#1| $) 16 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3949 (((-774) $) 147 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 |#4|) $) 140 T ELT)) (-2669 (($) 11 T CONST)) (-3059 (((-85) $ $) 39 T ELT)) (-3952 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-356 |#1| |#2| |#3| |#4|) (-13 (-414) (-10 -8 (-15 -1970 ($ (-1181 |#4|))) (-15 -2014 ((-1181 |#4|) $)) (-15 -3135 (|#2| $)) (-15 -3001 ((-1181 |#4|) $)) (-15 -3000 (|#1| $)) (-15 -1789 ($ $)) (-15 -1788 (|#4| (-696) (-1181 |#4|))))) (-258) (-906 |#1|) (-1157 |#2|) (-13 (-353 |#2| |#3|) (-952 |#2|))) (T -356)) +((-1970 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2014 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) (-3135 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-952 *2))))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3))))) (-1789 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-1181 *2)) (-4 *5 (-258)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-353 *6 *7) (-952 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1157 *6))))) +((-3961 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3961 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-906 |#1|) (-1157 |#2|) (-13 (-353 |#2| |#3|) (-952 |#2|)) (-258) (-906 |#5|) (-1157 |#6|) (-13 (-353 |#6| |#7|) (-952 |#6|))) (T -357)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-906 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-353 *6 *7) (-952 *6))) (-4 *9 (-258)) (-4 *10 (-906 *9)) (-4 *11 (-1157 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-952 *10)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3135 ((|#2| $) 69 T ELT)) (-1790 (($ (-1181 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-952 |#2|)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 37 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 |#4|) $) 28 T ELT)) (-2669 (($) 26 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-665) (-10 -8 (-15 -2014 ((-1181 |#4|) $)) (-15 -3135 (|#2| $)) (-15 -1790 ($ (-1181 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -1790 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-906 |#1|) (-1157 |#2|) (-353 |#2| |#3|) (-1181 |#4|)) (T -358)) +((-2014 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3135 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1181 *5)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))) +((-3961 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))) +((-1777 (((-3 $ #1="failed")) 99 T ELT)) (-3226 (((-1181 (-632 |#2|)) (-1181 $)) NIL T ELT) (((-1181 (-632 |#2|))) 104 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 97 T ELT)) (-1705 (((-3 $ #1#)) 96 T ELT)) (-1793 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-632 |#2|)) 115 T ELT)) (-1791 (((-632 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) $) 123 T ELT)) (-1905 (((-1087 (-859 |#2|))) 64 T ELT)) (-1795 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) NIL T ELT) (($ (-1181 |#2|)) 125 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 95 T ELT)) (-1706 (((-3 $ #1#)) 87 T ELT)) (-1794 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-632 |#2|)) 113 T ELT)) (-1792 (((-632 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) $) 121 T ELT)) (-1909 (((-1087 (-859 |#2|))) 63 T ELT)) (-1796 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) 124 T ELT) (((-632 |#2|) (-1181 $)) 133 T ELT)) (-3975 (((-1181 |#2|) $) 109 T ELT) (($ (-1181 |#2|)) 111 T ELT)) (-1897 (((-585 (-859 |#2|)) (-1181 $)) NIL T ELT) (((-585 (-859 |#2|))) 107 T ELT)) (-2548 (($ (-632 |#2|) $) 103 T ELT))) +(((-360 |#1| |#2|) (-10 -7 (-15 -2548 (|#1| (-632 |#2|) |#1|)) (-15 -1905 ((-1087 (-859 |#2|)))) (-15 -1909 ((-1087 (-859 |#2|)))) (-15 -1791 ((-632 |#2|) |#1|)) (-15 -1792 ((-632 |#2|) |#1|)) (-15 -1793 ((-632 |#2|))) (-15 -1794 ((-632 |#2|))) (-15 -1795 (|#2|)) (-15 -1796 (|#2|)) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -1797 (|#1| (-1181 |#2|))) (-15 -1897 ((-585 (-859 |#2|)))) (-15 -3226 ((-1181 (-632 |#2|)))) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -1777 ((-3 |#1| #1="failed"))) (-15 -1705 ((-3 |#1| #1#))) (-15 -1706 ((-3 |#1| #1#))) (-15 -1911 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#))) (-15 -1912 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#))) (-15 -1793 ((-632 |#2|) (-1181 |#1|))) (-15 -1794 ((-632 |#2|) (-1181 |#1|))) (-15 -1795 (|#2| (-1181 |#1|))) (-15 -1796 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1791 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -1792 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -3226 ((-1181 (-632 |#2|)) (-1181 |#1|))) (-15 -1897 ((-585 (-859 |#2|)) (-1181 |#1|)))) (-361 |#2|) (-146)) (T -360)) +((-3226 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1897 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1796 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1795 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1794 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1793 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1909 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1905 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1777 (((-3 $ #1="failed")) 48 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3226 (((-1181 (-632 |#1|)) (-1181 $)) 89 T ELT) (((-1181 (-632 |#1|))) 115 T ELT)) (-1731 (((-1181 $)) 92 T ELT)) (-3727 (($) 23 T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 51 (|has| |#1| (-497)) ELT)) (-1705 (((-3 $ #1#)) 49 (|has| |#1| (-497)) ELT)) (-1793 (((-632 |#1|) (-1181 $)) 76 T ELT) (((-632 |#1|)) 107 T ELT)) (-1729 ((|#1| $) 85 T ELT)) (-1791 (((-632 |#1|) $ (-1181 $)) 87 T ELT) (((-632 |#1|) $) 105 T ELT)) (-2406 (((-3 $ #1#) $) 56 (|has| |#1| (-497)) ELT)) (-1905 (((-1087 (-859 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2409 (($ $ (-832)) 37 T ELT)) (-1727 ((|#1| $) 83 T ELT)) (-1707 (((-1087 |#1|) $) 53 (|has| |#1| (-497)) ELT)) (-1795 ((|#1| (-1181 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1725 (((-1087 |#1|) $) 74 T ELT)) (-1719 (((-85)) 68 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 80 T ELT) (($ (-1181 |#1|)) 113 T ELT)) (-3470 (((-3 $ #1#) $) 58 (|has| |#1| (-497)) ELT)) (-3111 (((-832)) 91 T ELT)) (-1716 (((-85)) 65 T ELT)) (-2436 (($ $ (-832)) 44 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-1712 (((-85)) 61 T ELT)) (-1710 (((-85)) 59 T ELT)) (-1714 (((-85)) 63 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 52 (|has| |#1| (-497)) ELT)) (-1706 (((-3 $ #1#)) 50 (|has| |#1| (-497)) ELT)) (-1794 (((-632 |#1|) (-1181 $)) 77 T ELT) (((-632 |#1|)) 108 T ELT)) (-1730 ((|#1| $) 86 T ELT)) (-1792 (((-632 |#1|) $ (-1181 $)) 88 T ELT) (((-632 |#1|) $) 106 T ELT)) (-2407 (((-3 $ #1#) $) 57 (|has| |#1| (-497)) ELT)) (-1909 (((-1087 (-859 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-1728 ((|#1| $) 84 T ELT)) (-1708 (((-1087 |#1|) $) 54 (|has| |#1| (-497)) ELT)) (-1796 ((|#1| (-1181 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1726 (((-1087 |#1|) $) 75 T ELT)) (-1720 (((-85)) 69 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1711 (((-85)) 60 T ELT)) (-1713 (((-85)) 62 T ELT)) (-1715 (((-85)) 64 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1718 (((-85)) 67 T ELT)) (-3803 ((|#1| $ (-486)) 119 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 82 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 81 T ELT) (((-1181 |#1|) $) 117 T ELT) (((-632 |#1|) (-1181 $)) 116 T ELT)) (-3975 (((-1181 |#1|) $) 112 T ELT) (($ (-1181 |#1|)) 111 T ELT)) (-1897 (((-585 (-859 |#1|)) (-1181 $)) 90 T ELT) (((-585 (-859 |#1|))) 114 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-1724 (((-85)) 73 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 118 T ELT)) (-1709 (((-585 (-1181 |#1|))) 55 (|has| |#1| (-497)) ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-1722 (((-85)) 71 T ELT)) (-2548 (($ (-632 |#1|) $) 102 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-1723 (((-85)) 72 T ELT)) (-1721 (((-85)) 70 T ELT)) (-1717 (((-85)) 66 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) (((-361 |#1|) (-113) (-146)) (T -361)) -((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-361 *3)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-3225 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-631 *3))))) (-1896 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1795 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1794 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1793 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1792 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1908 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-858 *3))))) (-1904 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-858 *3))))) (-2547 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))) -(-13 (-316 |t#1|) (-241 (-485) |t#1|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-631 |t#1|) (-1180 $))) (-15 -3225 ((-1180 (-631 |t#1|)))) (-15 -1896 ((-584 (-858 |t#1|)))) (-15 -1796 ($ (-1180 |t#1|))) (-15 -3974 ((-1180 |t#1|) $)) (-15 -3974 ($ (-1180 |t#1|))) (-15 -1795 (|t#1|)) (-15 -1794 (|t#1|)) (-15 -1793 ((-631 |t#1|))) (-15 -1792 ((-631 |t#1|))) (-15 -1791 ((-631 |t#1|) $)) (-15 -1790 ((-631 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1908 ((-1086 (-858 |t#1|)))) (-15 -1904 ((-1086 (-858 |t#1|))))) |%noBranch|) (-15 -2547 ($ (-631 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-241 (-485) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-3136 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1797 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT))) -(((-362 |#1|) (-10 -7 (-15 -3136 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1797 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-496)) (T -362)) -((-1797 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3)))) (-3136 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4))))) -((-3083 (((-584 (-1091)) $) 81 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) 313 T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3159 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 84 T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-551 $) $) NIL T ELT) (((-1091) $) 28 T ELT) (((-485) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-350 (-485)) $) NIL T ELT)) (-3597 (((-86) (-86)) 47 T ELT)) (-2998 (($ $) 99 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1602 (((-584 (-551 $)) $) 269 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) 294 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1091)) 257 T ELT)) (-1801 (((-85) $) 17 T ELT)) (-1800 ((|#2| $) 19 T ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) 62 T ELT) (($ $ (-584 (-1091))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1091)) 65 T ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 72 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1091) (-695) (-1 $ $)) 104 T ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) 119 T ELT)) (-3760 (($ $ (-1091)) 278 T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2997 (($ $) 324 T ELT)) (-3974 (((-801 (-485)) $) 297 T ELT) (((-801 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-474) $) NIL T ELT)) (-3948 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1091)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#2| (-551 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-858 (-350 |#2|))) 368 T ELT) (($ (-350 (-858 (-350 |#2|)))) 341 T ELT) (($ (-350 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 373 T ELT)) (-3128 (((-695)) 88 T CONST)) (-2255 (((-85) (-86)) 42 T ELT)) (-1799 (($ (-1091) $) 31 T ELT) (($ (-1091) $ $) 32 T ELT) (($ (-1091) $ $ $) 33 T ELT) (($ (-1091) $ $ $ $) 34 T ELT) (($ (-1091) (-584 $)) 39 T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) -(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-831) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3159 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3948 (|#1| (-485))) (-15 -3128 ((-695)) -3954) (-15 * (|#1| |#2| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3948 (|#1| (-858 |#2|))) (-15 -3159 ((-3 (-858 |#2|) #1#) |#1|)) (-15 -3158 ((-858 |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 * (|#1| |#1| |#2|)) (-15 -3948 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3948 (|#1| (-350 (-858 |#2|)))) (-15 -3159 ((-3 (-350 (-858 |#2|)) #1#) |#1|)) (-15 -3158 ((-350 (-858 |#2|)) |#1|)) (-15 -3085 ((-350 (-1086 |#1|)) |#1| (-551 |#1|))) (-15 -3948 (|#1| (-350 (-858 (-350 |#2|))))) (-15 -3948 (|#1| (-858 (-350 |#2|)))) (-15 -3948 (|#1| (-350 |#2|))) (-15 -2997 (|#1| |#1|)) (-15 -3974 (|#1| (-348 |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-695) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-695) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-15 -2827 ((-3 (-2 (|:| |val| |#1|) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-1091))) (-15 -2826 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-86))) (-15 -2998 (|#1| |#1|)) (-15 -3948 (|#1| (-1040 |#2| (-551 |#1|)))) (-15 -1798 ((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2825 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 |#1|) (-1091))) (-15 -3770 (|#1| |#1| (-86) |#1| (-1091))) (-15 -3770 (|#1| |#1|)) (-15 -3770 (|#1| |#1| (-584 (-1091)))) (-15 -3770 (|#1| |#1| (-1091))) (-15 -1799 (|#1| (-1091) (-584 |#1|))) (-15 -1799 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-15 -1799 (|#1| (-1091) |#1| |#1| |#1|)) (-15 -1799 (|#1| (-1091) |#1| |#1|)) (-15 -1799 (|#1| (-1091) |#1|)) (-15 -3083 ((-584 (-1091)) |#1|)) (-15 -1800 (|#2| |#1|)) (-15 -1801 ((-85) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3948 (|#1| (-1091))) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -1602 ((-584 (-551 |#1|)) |#1|)) (-15 -1603 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1605 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3802 (|#1| (-86) (-584 |#1|))) (-15 -3802 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3770 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3948 (|#1| (-551 |#1|))) (-15 -3159 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3158 ((-551 |#1|) |#1|)) (-15 -3948 ((-773) |#1|))) (-364 |#2|) (-1014)) (T -363)) -((-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3128 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3083 (((-584 (-1091)) $) 222 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) 190 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 162 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 163 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 165 (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1313 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3777 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3973 (((-348 $) $) 183 (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) 173 (|has| |#1| (-496)) ELT)) (-3726 (($) 117 (OR (|has| |#1| (-1026)) (|has| |#1| (-25))) CONST)) (-3159 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1091) #1#) $) 235 T ELT) (((-3 (-485) #1#) $) 229 (|has| |#1| (-951 (-485))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 188 (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) 137 (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 111 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 (((-551 $) $) 68 T ELT) (((-1091) $) 236 T ELT) (((-485) $) 228 (|has| |#1| (-951 (-485))) ELT) ((|#1| $) 227 T ELT) (((-350 (-858 |#1|)) $) 189 (|has| |#1| (-496)) ELT) (((-858 |#1|) $) 138 (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 112 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2566 (($ $ $) 177 (|has| |#1| (-496)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 155 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 154 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 153 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 152 (|has| |#1| (-962)) ELT)) (-3469 (((-3 $ "failed") $) 119 (|has| |#1| (-1026)) ELT)) (-2565 (($ $ $) 176 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 171 (|has| |#1| (-496)) ELT)) (-3725 (((-85) $) 184 (|has| |#1| (-496)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 231 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 230 (|has| |#1| (-797 (-330))) ELT)) (-2575 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1215 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1600 (((-584 (-86)) $) 41 T ELT)) (-3597 (((-86) (-86)) 40 T ELT)) (-2411 (((-85) $) 118 (|has| |#1| (-1026)) ELT)) (-2675 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-2998 (($ $) 205 (|has| |#1| (-962)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 206 (|has| |#1| (-962)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 180 (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 157 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 156 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) 150 (|has| |#1| (-962)) ELT)) (-1895 (($ (-584 $)) 169 (|has| |#1| (-496)) ELT) (($ $ $) 168 (|has| |#1| (-496)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2825 (((-3 (-584 $) "failed") $) 211 (|has| |#1| (-1026)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $) 202 (|has| |#1| (-962)) ELT)) (-2824 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $) 210 (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86)) 204 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1091)) 203 (|has| |#1| (-962)) ELT)) (-2635 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2486 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2605 (((-695) $) 45 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 224 T ELT)) (-1800 ((|#1| $) 223 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 170 (|has| |#1| (-496)) ELT)) (-3146 (($ (-584 $)) 167 (|has| |#1| (-496)) ELT) (($ $ $) 166 (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-3734 (((-348 $) $) 181 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 178 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ "failed") $ $) 161 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 172 (|has| |#1| (-496)) ELT)) (-2676 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1091)) 216 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 215 (|has| |#1| (-554 (-474))) ELT) (($ $) 214 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 213 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 212 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 201 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 200 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) 198 (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) 174 (|has| |#1| (-496)) ELT)) (-3802 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 175 (|has| |#1| (-496)) ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3760 (($ $ (-1091)) 148 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 146 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 144 (|has| |#1| (-962)) ELT)) (-2997 (($ $) 195 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 196 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 22 (|has| $ (-962)) ELT)) (-3974 (((-801 (-485)) $) 233 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 232 (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-496)) ELT) (((-474) $) 113 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1091)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1040 |#1| (-551 $))) 207 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 192 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 191 (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) 187 (|has| |#1| (-496)) ELT) (($ $) 160 (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) 136 (|has| |#1| (-962)) ELT) (($ (-350 (-485))) 110 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ (-485)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485)))) ELT)) (-2704 (((-633 $) $) 158 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 140 (|has| |#1| (-962)) CONST)) (-2592 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 164 (|has| |#1| (-496)) ELT)) (-1799 (($ (-1091) $) 221 T ELT) (($ (-1091) $ $) 220 T ELT) (($ (-1091) $ $ $) 219 T ELT) (($ (-1091) $ $ $ $) 218 T ELT) (($ (-1091) (-584 $)) 217 T ELT)) (-3127 (((-85) $ $) 139 (|has| |#1| (-962)) ELT)) (-2662 (($) 128 (|has| |#1| (-25)) CONST)) (-2668 (($) 116 (|has| |#1| (-1026)) CONST)) (-2671 (($ $ (-1091)) 147 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 143 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 142 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 141 (|has| |#1| (-962)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 194 (|has| |#1| (-496)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3839 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) 186 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 185 (|has| |#1| (-496)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-962)) ELT) (($ (-485) $) 133 (|has| |#1| (-21)) ELT) (($ (-695) $) 130 (|has| |#1| (-25)) ELT) (($ (-831) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1026)) ELT))) -(((-364 |#1|) (-113) (-1014)) (T -364)) -((-1801 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091))))) (-1799 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3770 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) (-3770 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-554 (-474))))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-1798 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| -3956 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) (-3951 (*1 *1 *2 *2) (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) (-5 *2 (-350 (-1086 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026))))) -(-13 (-254) (-951 (-1091)) (-795 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1801 ((-85) $)) (-15 -1800 (|t#1| $)) (-15 -3083 ((-584 (-1091)) $)) (-15 -1799 ($ (-1091) $)) (-15 -1799 ($ (-1091) $ $)) (-15 -1799 ($ (-1091) $ $ $)) (-15 -1799 ($ (-1091) $ $ $ $)) (-15 -1799 ($ (-1091) (-584 $))) (IF (|has| |t#1| (-554 (-474))) (PROGN (-6 (-554 (-474))) (-15 -3770 ($ $ (-1091))) (-15 -3770 ($ $ (-584 (-1091)))) (-15 -3770 ($ $)) (-15 -3770 ($ $ (-86) $ (-1091))) (-15 -3770 ($ $ (-584 (-86)) (-584 $) (-1091)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-15 ** ($ $ (-695))) (-15 -2825 ((-3 (-584 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -1798 ((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1091))) (-6 (-329 |t#1|)) (-15 -3948 ($ (-1040 |t#1| (-551 $)))) (-15 -3000 ((-1040 |t#1| (-551 $)) $)) (-15 -2998 ($ $)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86))) (-15 -2826 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1091))) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $)) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $)))) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-15 -3770 ($ $ (-1091) (-695) (-1 $ (-584 $)))) (-15 -3770 ($ $ (-1091) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-312)) (-6 (-951 (-350 (-858 |t#1|)))) (-15 -3974 ($ (-348 $))) (-15 -2999 ((-1040 |t#1| (-551 $)) $)) (-15 -2997 ($ $)) (-15 -3951 ($ (-1040 |t#1| (-551 $)) (-1040 |t#1| (-551 $)))) (-15 -3948 ($ (-350 |t#1|))) (-15 -3948 ($ (-858 (-350 |t#1|)))) (-15 -3948 ($ (-350 (-858 (-350 |t#1|))))) (-15 -3085 ((-350 (-1086 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-350 (-485)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-485))) |has| |#1| (-496)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-496)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-496)) ((-104) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-496))) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485))) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) |has| |#1| (-496)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) |has| |#1| (-496)) ((-246) |has| |#1| (-496)) ((-258) |has| |#1| (-496)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-496)) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) |has| |#1| (-496)) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-496)) ((-589 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-591 (-350 (-485))) |has| |#1| (-496)) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-583 (-350 (-485))) |has| |#1| (-496)) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) |has| |#1| (-496)) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) |has| |#1| (-496)) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-496)) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) |has| |#1| (-496)) ((-969 (-350 (-485))) |has| |#1| (-496)) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) |has| |#1| (-496)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-971) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1026) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1062) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-496))) -((-3960 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-364 |#1|) (-962) (-364 |#3|)) (T -365)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) -((-1805 ((|#2| |#2|) 182 T ELT)) (-1802 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85)) 60 T ELT))) -(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1802 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85))) (-15 -1805 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -366)) -((-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-364 *3))) (-14 *4 (-1091)) (-14 *5 *2))) (-1802 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-14 *6 (-1091)) (-14 *7 *3)))) -((-1805 ((|#2| |#2|) 105 T ELT)) (-1803 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 52 T ELT)) (-1804 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 169 T ELT))) -(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1803 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1804 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1805 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|) (-10 -8 (-15 -3948 ($ |#3|)))) (-756) (-13 (-1159 |#2| |#3|) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $)))) (-897 |#4|) (-1091)) (T -367)) -((-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *2 (-13 (-27) (-1116) (-364 *3) (-10 -8 (-15 -3948 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-13 (-1159 *2 *4) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1091)))) (-1804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-14 *10 (-1091)))) (-1803 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-14 *10 (-1091))))) -((-1806 (($) 51 T ELT)) (-3236 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3238 (($ $ $) 46 T ELT)) (-3237 (((-85) $ $) 35 T ELT)) (-3138 (((-695)) 55 T ELT)) (-3241 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2996 (($) 66 T ELT)) (-3243 (((-85) $ $) 15 T ELT)) (-2533 ((|#2| $) 77 T ELT)) (-2859 ((|#2| $) 75 T ELT)) (-2011 (((-831) $) 70 T ELT)) (-3240 (($ $ $) 42 T ELT)) (-2401 (($ (-831)) 60 T ELT)) (-3239 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1731 (((-695) |#2| $) 31 T ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3532 (($ (-584 |#2|)) 27 T ELT)) (-1807 (($ $) 53 T ELT)) (-3948 (((-773) $) 40 T ELT)) (-1808 (((-695) $) 24 T ELT)) (-3242 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3058 (((-85) $ $) 19 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -3138 ((-695))) (-15 -2401 (|#1| (-831))) (-15 -2011 ((-831) |#1|)) (-15 -2996 (|#1|)) (-15 -2533 (|#2| |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1806 (|#1|)) (-15 -1807 (|#1| |#1|)) (-15 -1808 ((-695) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3243 ((-85) |#1| |#1|)) (-15 -3242 (|#1|)) (-15 -3242 (|#1| (-584 |#2|))) (-15 -3241 (|#1|)) (-15 -3241 (|#1| (-584 |#2|))) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3237 ((-85) |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#2| |#1|)) (-15 -3532 (|#1| (-584 |#2|)))) (-369 |#2|) (-1014)) (T -368)) -((-3138 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -((-2570 (((-85) $ $) 17 T ELT)) (-1806 (($) 60 (|has| |#1| (-320)) ELT)) (-3236 (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ $ $) 83 T ELT)) (-3238 (($ $ $) 81 T ELT)) (-3237 (((-85) $ $) 82 T ELT)) (-3138 (((-695)) 54 (|has| |#1| (-320)) ELT)) (-3241 (($ (-584 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 72 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 69 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 68 T ELT)) (-2996 (($) 57 (|has| |#1| (-320)) ELT)) (-3243 (((-85) $ $) 73 T ELT)) (-2533 ((|#1| $) 58 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 67 T ELT)) (-3247 (((-85) |#1| $) 71 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 59 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-2011 (((-831) $) 56 (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) 20 T ELT)) (-3240 (($ $ $) 78 T ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-2401 (($ (-831)) 55 (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) 19 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 65 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3239 (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-1731 (((-695) |#1| $) 70 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 66 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-1807 (($ $) 61 (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 15 T ELT)) (-1808 (((-695) $) 62 T ELT)) (-3242 (($ (-584 |#1|)) 75 T ELT) (($) 74 T ELT)) (-1266 (((-85) $ $) 18 T ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 64 T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-3959 (((-695) $) 63 T ELT))) -(((-369 |#1|) (-113) (-1014)) (T -369)) -((-1808 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1807 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320)))) (-1806 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))) -(-13 (-183 |t#1|) (-1012 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1808 ((-695) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1807 ($ $)) (-15 -1806 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2859 (|t#1| $)) (-15 -2533 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T)) -((-3843 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3844 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3960 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3844 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3843 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-369 |#1|) (-1014) (-369 |#3|)) (T -370)) -((-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))) -((-1809 (((-520 |#2|) |#2| (-1091)) 36 T ELT)) (-2101 (((-520 |#2|) |#2| (-1091)) 21 T ELT)) (-2150 ((|#2| |#2| (-1091)) 26 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2101 ((-520 |#2|) |#2| (-1091))) (-15 -1809 ((-520 |#2|) |#2| (-1091))) (-15 -2150 (|#2| |#2| (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-29 |#1|))) (T -371)) -((-2150 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) (-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1811 (($ |#2| |#1|) 37 T ELT)) (-1810 (($ |#2| |#1|) 35 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 16 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3984)) (IF (|has| |#1| (-6 -3984)) (-6 -3984) |%noBranch|) |%noBranch|) (-15 -3948 ($ |#1|)) (-15 -3948 ($ (-281 |#2|))) (-15 -1811 ($ |#2| |#1|)) (-15 -1810 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-485)))) (-13 (-757) (-21))) (T -372)) -((-3948 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485))))) (-4 *3 (-13 (-757) (-21))))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))))) (-1811 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21))))) (-1810 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21)))))) -((-3814 (((-3 |#2| (-584 |#2|)) |#2| (-1091)) 115 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -3814 ((-3 |#2| (-584 |#2|)) |#2| (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -373)) -((-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1116) (-872) (-29 *5)))))) -((-3388 ((|#2| |#2| |#2|) 31 T ELT)) (-3597 (((-86) (-86)) 43 T ELT)) (-1813 ((|#2| |#2|) 63 T ELT)) (-1812 ((|#2| |#2|) 66 T ELT)) (-3387 ((|#2| |#2|) 30 T ELT)) (-3391 ((|#2| |#2| |#2|) 33 T ELT)) (-3393 ((|#2| |#2| |#2|) 35 T ELT)) (-3390 ((|#2| |#2| |#2|) 32 T ELT)) (-3392 ((|#2| |#2| |#2|) 34 T ELT)) (-2255 (((-85) (-86)) 41 T ELT)) (-3395 ((|#2| |#2|) 37 T ELT)) (-3394 ((|#2| |#2|) 36 T ELT)) (-3385 ((|#2| |#2|) 25 T ELT)) (-3389 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3386 ((|#2| |#2| |#2|) 29 T ELT))) -(((-374 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -3385 (|#2| |#2|)) (-15 -3389 (|#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -1812 (|#2| |#2|)) (-15 -1813 (|#2| |#2|))) (-496) (-364 |#1|)) (T -374)) -((-1813 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4))))) -((-2835 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|)) 65 T ELT))) -(((-375 |#1| |#2|) (-10 -7 (-15 -2835 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-27)) (-15 -2835 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-496) (-120)) (-364 |#1|)) (T -375)) -((-2835 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-375 *4 *5))))) -((-1815 (((-1186)) 18 T ELT)) (-1814 (((-1086 (-350 (-485))) |#2| (-551 |#2|)) 40 T ELT) (((-350 (-485)) |#2|) 27 T ELT))) -(((-376 |#1| |#2|) (-10 -7 (-15 -1814 ((-350 (-485)) |#2|)) (-15 -1814 ((-1086 (-350 (-485))) |#2| (-551 |#2|))) (-15 -1815 ((-1186)))) (-13 (-496) (-951 (-485))) (-364 |#1|)) (T -376)) -((-1815 (*1 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-376 *5 *3)))) (-1814 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))) -((-3647 (((-85) $) 33 T ELT)) (-1816 (((-85) $) 35 T ELT)) (-3261 (((-85) $) 36 T ELT)) (-1818 (((-85) $) 39 T ELT)) (-1820 (((-85) $) 34 T ELT)) (-1819 (((-85) $) 38 T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1074)) 32 T ELT) (($ (-1091)) 30 T ELT) (((-1091) $) 24 T ELT) (((-1016) $) 23 T ELT)) (-1817 (((-85) $) 37 T ELT)) (-3058 (((-85) $ $) 17 T ELT))) -(((-377) (-13 (-553 (-773)) (-10 -8 (-15 -3948 ($ (-1074))) (-15 -3948 ($ (-1091))) (-15 -3948 ((-1091) $)) (-15 -3948 ((-1016) $)) (-15 -3647 ((-85) $)) (-15 -1820 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -1819 ((-85) $)) (-15 -1818 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -3058 ((-85) $ $))))) (T -377)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-377)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -((-1822 (((-3 (-348 (-1086 (-350 (-485)))) #1="failed") |#3|) 71 T ELT)) (-1821 (((-348 |#3|) |#3|) 34 T ELT)) (-1824 (((-3 (-348 (-1086 (-48))) #1#) |#3|) 29 (|has| |#2| (-951 (-48))) ELT)) (-1823 (((-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85))) |#3|) 37 T ELT))) -(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1821 ((-348 |#3|) |#3|)) (-15 -1822 ((-3 (-348 (-1086 (-350 (-485)))) #1="failed") |#3|)) (-15 -1823 ((-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85))) |#3|)) (IF (|has| |#2| (-951 (-48))) (-15 -1824 ((-3 (-348 (-1086 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1156 |#2|)) (T -378)) -((-1824 (*1 *2 *3) (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1823 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1822 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1821 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1834 (((-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1831 (($) 35 T ELT)) (-1828 (($) 41 T ELT)) (-1829 (($) 37 T ELT)) (-1826 (($) 39 T ELT)) (-1830 (($) 36 T ELT)) (-1827 (($) 38 T ELT)) (-1825 (($) 40 T ELT)) (-1832 (((-85) $) 8 T ELT)) (-1833 (((-584 (-858 (-485))) $) 19 T ELT)) (-3532 (($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-1091)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-858 (-485))) (-85)) 30 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-379) (-13 (-1014) (-10 -8 (-15 -3948 ($ (-377))) (-15 -1834 ((-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) $)) (-15 -1833 ((-584 (-858 (-485))) $)) (-15 -1832 ((-85) $)) (-15 -3532 ($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-1091)) (-85))) (-15 -3532 ($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-858 (-485))) (-85))) (-15 -1831 ($)) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($))))) (T -379)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) (-5 *1 (-379)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *3 (-584 (-1091))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1831 (*1 *1) (-5 *1 (-379))) (-1830 (*1 *1) (-5 *1 (-379))) (-1829 (*1 *1) (-5 *1 (-379))) (-1828 (*1 *1) (-5 *1 (-379))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379))) (-1825 (*1 *1) (-5 *1 (-379)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-1091) $) 8 T ELT)) (-3244 (((-1074) $) 17 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT))) -(((-380 |#1|) (-13 (-1014) (-10 -8 (-15 -3544 ((-1091) $)))) (-1091)) (T -380)) -((-3544 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-380 *3)) (-14 *3 *2)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1029) $) 7 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) -(((-381) (-13 (-1014) (-10 -8 (-15 -3321 ((-1029) $))))) (T -381)) -((-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381))))) -((-1840 (((-85)) 18 T ELT)) (-1841 (((-85) (-85)) 19 T ELT)) (-1842 (((-85)) 14 T ELT)) (-1843 (((-85) (-85)) 15 T ELT)) (-1845 (((-85)) 16 T ELT)) (-1846 (((-85) (-85)) 17 T ELT)) (-1837 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1838 (((-695) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485))))) 52 T ELT)) (-1836 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1839 (((-2 (|:| -2580 (-485)) (|:| -1783 (-584 |#1|))) |#1|) 94 T ELT)) (-1835 (((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485))))))) 176 T ELT)) (-3736 (((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 209 T ELT)) (-3735 (((-348 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-348 |#1|) |#1| (-695)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1857 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-85)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3734 (((-348 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-348 |#1|) |#1| (-695)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1844 (((-85) |#1|) 43 T ELT)) (-1856 (((-676 (-695)) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485))))) 99 T ELT)) (-1847 (((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)) 213 T ELT))) -(((-382 |#1|) (-10 -7 (-15 -1835 ((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))))) (-15 -1856 ((-676 (-695)) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))))) (-15 -1836 ((-831))) (-15 -1836 ((-831) (-831))) (-15 -1837 ((-831))) (-15 -1837 ((-831) (-831))) (-15 -1838 ((-695) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))))) (-15 -1839 ((-2 (|:| -2580 (-485)) (|:| -1783 (-584 |#1|))) |#1|)) (-15 -1840 ((-85))) (-15 -1841 ((-85) (-85))) (-15 -1842 ((-85))) (-15 -1843 ((-85) (-85))) (-15 -1844 ((-85) |#1|)) (-15 -1845 ((-85))) (-15 -1846 ((-85) (-85))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1| (-695))) (-15 -3734 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3734 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3734 ((-348 |#1|) |#1| (-695) (-695))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1| (-695))) (-15 -3735 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3735 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3735 ((-348 |#1|) |#1| (-695) (-695))) (-15 -1857 ((-3 |#1| #1="failed") (-831) |#1|)) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-695))) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-85))) (-15 -3736 ((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85))) (-15 -1847 ((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)))) (-1156 (-485))) (T -382)) -((-1847 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-3735 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1845 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1844 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1842 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1840 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2580 (-485)) (|:| -1783 (-584 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1837 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1836 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485))))))) (-4 *4 (-1156 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4))))) -((-1851 (((-485) |#2|) 52 T ELT) (((-485) |#2| (-695)) 51 T ELT)) (-1850 (((-485) |#2|) 64 T ELT)) (-1852 ((|#3| |#2|) 26 T ELT)) (-3134 ((|#3| |#2| (-831)) 15 T ELT)) (-3835 ((|#3| |#2|) 16 T ELT)) (-1853 ((|#3| |#2|) 9 T ELT)) (-2605 ((|#3| |#2|) 10 T ELT)) (-1849 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1848 (((-485) |#2|) 66 T ELT))) -(((-383 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-485) |#2|)) (-15 -1849 (|#3| |#2|)) (-15 -1849 (|#3| |#2| (-831))) (-15 -1850 ((-485) |#2|)) (-15 -1851 ((-485) |#2| (-695))) (-15 -1851 ((-485) |#2|)) (-15 -3134 (|#3| |#2| (-831))) (-15 -1852 (|#3| |#2|)) (-15 -1853 (|#3| |#2|)) (-15 -2605 (|#3| |#2|)) (-15 -3835 (|#3| |#2|))) (-962) (-1156 |#1|) (-13 (-347) (-951 |#1|) (-312) (-1116) (-239))) (T -383)) -((-3835 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))) (-1851 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1156 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1116) (-239))))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) -((-3356 ((|#2| (-1180 |#1|)) 42 T ELT)) (-1855 ((|#2| |#2| |#1|) 58 T ELT)) (-1854 ((|#2| |#2| |#1|) 49 T ELT)) (-2299 ((|#2| |#2|) 44 T ELT)) (-3175 (((-85) |#2|) 32 T ELT)) (-1858 (((-584 |#2|) (-831) (-348 |#2|)) 21 T ELT)) (-1857 ((|#2| (-831) (-348 |#2|)) 25 T ELT)) (-1856 (((-676 (-695)) (-348 |#2|)) 29 T ELT))) -(((-384 |#1| |#2|) (-10 -7 (-15 -3175 ((-85) |#2|)) (-15 -3356 (|#2| (-1180 |#1|))) (-15 -2299 (|#2| |#2|)) (-15 -1854 (|#2| |#2| |#1|)) (-15 -1855 (|#2| |#2| |#1|)) (-15 -1856 ((-676 (-695)) (-348 |#2|))) (-15 -1857 (|#2| (-831) (-348 |#2|))) (-15 -1858 ((-584 |#2|) (-831) (-348 |#2|)))) (-962) (-1156 |#1|)) (T -384)) -((-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-962)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))) (-1855 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-1854 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4)) (-5 *1 (-384 *4 *2)))) (-3175 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4))))) -((-1861 (((-695)) 59 T ELT)) (-1865 (((-695)) 29 (|has| |#1| (-347)) ELT) (((-695) (-695)) 28 (|has| |#1| (-347)) ELT)) (-1864 (((-485) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1863 (((-485) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1860 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1859 ((|#1| (-695) (-485)) 37 T ELT)) (-1862 (((-1186)) 61 T ELT))) -(((-385 |#1|) (-10 -7 (-15 -1859 (|#1| (-695) (-485))) (-15 -1860 ((-695) (-695))) (-15 -1860 ((-695))) (-15 -1861 ((-695))) (-15 -1862 ((-1186))) (IF (|has| |#1| (-347)) (PROGN (-15 -1863 ((-485) |#1|)) (-15 -1864 ((-485) |#1|)) (-15 -1865 ((-695) (-695))) (-15 -1865 ((-695)))) |%noBranch|)) (-962)) (T -385)) -((-1865 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1863 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1862 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1861 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1860 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962))))) -((-1866 (((-584 (-485)) (-485)) 76 T ELT)) (-3725 (((-85) (-142 (-485))) 84 T ELT)) (-3734 (((-348 (-142 (-485))) (-142 (-485))) 75 T ELT))) -(((-386) (-10 -7 (-15 -3734 ((-348 (-142 (-485))) (-142 (-485)))) (-15 -1866 ((-584 (-485)) (-485))) (-15 -3725 ((-85) (-142 (-485)))))) (T -386)) -((-3725 (*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386)))) (-1866 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485)))))) -((-2948 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2252 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT))) -(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2252 ((-584 |#4|) (-584 |#4|))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1074))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-312)) (-15 -2948 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387)) -((-2948 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2252 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6))))) -((-1867 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1868 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT))) -(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1867 (|#4| |#4| (-584 |#4|))) (-15 -1868 ((-584 |#4|) (-584 |#4|))) (-15 -1868 ((-584 |#4|) (-584 |#4|) (-1074))) (-15 -1868 ((-584 |#4|) (-584 |#4|) (-1074) (-1074)))) (-258) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -388)) -((-1868 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2))))) -((-1870 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1869 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT))) -(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1869 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1869 ((-584 (-584 |#4|)) (-584 |#4|) (-85))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-85)))) (-13 (-258) (-120)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -389)) -((-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1870 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) -((-1894 (((-695) |#4|) 12 T ELT)) (-1882 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)))) 39 T ELT)) (-1884 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1883 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1872 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1880 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1887 (((-1186) |#4|) 59 T ELT)) (-1890 (((-1186) (-584 |#4|)) 69 T ELT)) (-1888 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485)) 66 T ELT)) (-1891 (((-1186) (-485)) 110 T ELT)) (-1885 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1893 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695)) 31 T ELT)) (-1886 (((-485) |#4|) 109 T ELT)) (-1881 ((|#4| |#4|) 37 T ELT)) (-1873 (((-584 |#4|) (-584 |#4|) (-485) (-485)) 74 T ELT)) (-1889 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485)) 123 T ELT)) (-1892 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1874 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1879 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1878 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1875 (((-85) |#2| |#2|) 75 T ELT)) (-1877 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1876 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1871 ((|#4| |#4| (-584 |#4|)) 97 T ELT))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1871 (|#4| |#4| (-584 |#4|))) (-15 -1872 (|#4| |#4| (-584 |#4|))) (-15 -1873 ((-584 |#4|) (-584 |#4|) (-485) (-485))) (-15 -1874 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1875 ((-85) |#2| |#2|)) (-15 -1876 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1877 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1878 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1880 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-15 -1881 (|#4| |#4|)) (-15 -1882 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))))) (-15 -1883 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1884 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1885 ((-584 |#4|) (-584 |#4|))) (-15 -1886 ((-485) |#4|)) (-15 -1887 ((-1186) |#4|)) (-15 -1888 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485))) (-15 -1889 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485))) (-15 -1890 ((-1186) (-584 |#4|))) (-15 -1891 ((-1186) (-485))) (-15 -1892 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1893 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695))) (-15 -1894 ((-695) |#4|))) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -390)) -((-1894 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1892 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1889 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1888 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1884 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-757)))) (-1882 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1881 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1879 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1876 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1875 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1873 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1871 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2))))) -((-1895 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 45 T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT))) -(((-391 |#1|) (-10 -7 (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1895 (|#1| (-584 |#1|))) (-15 -1895 (|#1| |#1| |#1|)) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3146 (|#1| |#1| |#1|))) (-392)) (T -391)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-392) (-113)) (T -392)) -((-3146 (*1 *1 *1 *1) (-4 *1 (-392))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-1895 (*1 *1 *1 *1) (-4 *1 (-392))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-392))))) -(-13 (-496) (-10 -8 (-15 -3146 ($ $ $)) (-15 -3146 ($ (-584 $))) (-15 -1895 ($ $ $)) (-15 -1895 ($ (-584 $))) (-15 -2710 ((-1086 $) (-1086 $) (-1086 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 (-350 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-1180 (-631 (-350 (-858 |#1|))))) NIL T ELT)) (-1730 (((-1180 $)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1792 (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1728 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1790 (((-631 (-350 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1904 (((-1086 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1086 (-350 (-858 |#1|)))) 89 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1706 (((-1086 (-350 (-858 |#1|))) $) 87 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1794 (((-350 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1724 (((-1086 (-350 (-858 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1796 (($ (-1180 (-350 (-858 |#1|))) (-1180 $)) 111 T ELT) (($ (-1180 (-350 (-858 |#1|)))) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-3110 (((-831)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1793 (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1729 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1791 (((-631 (-350 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1908 (((-1086 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1086 (-350 (-858 |#1|)))) 88 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1707 (((-1086 (-350 (-858 |#1|))) $) 84 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1795 (((-350 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1725 (((-1086 (-350 (-858 |#1|))) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1898 (((-350 (-858 |#1|)) $ $) 75 (|has| |#1| (-496)) ELT)) (-1902 (((-350 (-858 |#1|)) $) 74 (|has| |#1| (-496)) ELT)) (-1901 (((-350 (-858 |#1|)) $) 101 (|has| |#1| (-496)) ELT)) (-1903 (((-1086 (-350 (-858 |#1|))) $) 93 (|has| |#1| (-496)) ELT)) (-1897 (((-350 (-858 |#1|))) 76 (|has| |#1| (-496)) ELT)) (-1900 (((-350 (-858 |#1|)) $ $) 64 (|has| |#1| (-496)) ELT)) (-1906 (((-350 (-858 |#1|)) $) 63 (|has| |#1| (-496)) ELT)) (-1905 (((-350 (-858 |#1|)) $) 100 (|has| |#1| (-496)) ELT)) (-1907 (((-1086 (-350 (-858 |#1|))) $) 92 (|has| |#1| (-496)) ELT)) (-1899 (((-350 (-858 |#1|))) 73 (|has| |#1| (-496)) ELT)) (-1909 (($) 107 T ELT) (($ (-1091)) 115 T ELT) (($ (-1180 (-1091))) 114 T ELT) (($ (-1180 $)) 102 T ELT) (($ (-1091) (-1180 $)) 113 T ELT) (($ (-1180 (-1091)) (-1180 $)) 112 T ELT)) (-1717 (((-85)) NIL T ELT)) (-3802 (((-350 (-858 |#1|)) $ (-485)) NIL T ELT)) (-3226 (((-1180 (-350 (-858 |#1|))) $ (-1180 $)) 104 T ELT) (((-631 (-350 (-858 |#1|))) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 (-858 |#1|))) $) 44 T ELT) (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT)) (-3974 (((-1180 (-350 (-858 |#1|))) $) NIL T ELT) (($ (-1180 (-350 (-858 |#1|)))) 41 T ELT)) (-1896 (((-584 (-858 (-350 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-584 (-858 (-350 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1180 $)) 105 (|has| |#1| (-496)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1180 (-350 (-858 |#1|)))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 66 T ELT)) (-1708 (((-584 (-1180 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2547 (($ (-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-858 |#1|))) NIL T ELT) (($ (-350 (-858 |#1|)) $) NIL T ELT) (($ (-1057 |#2| (-350 (-858 |#1|))) $) NIL T ELT))) -(((-393 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-858 |#1|))) (-591 (-1057 |#2| (-350 (-858 |#1|)))) (-10 -8 (-15 -3948 ($ (-1180 (-350 (-858 |#1|))))) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1="failed"))) (-15 -1910 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#))) (-15 -1909 ($)) (-15 -1909 ($ (-1091))) (-15 -1909 ($ (-1180 (-1091)))) (-15 -1909 ($ (-1180 $))) (-15 -1909 ($ (-1091) (-1180 $))) (-15 -1909 ($ (-1180 (-1091)) (-1180 $))) (IF (|has| |#1| (-496)) (PROGN (-15 -1908 ((-1086 (-350 (-858 |#1|))))) (-15 -1907 ((-1086 (-350 (-858 |#1|))) $)) (-15 -1906 ((-350 (-858 |#1|)) $)) (-15 -1905 ((-350 (-858 |#1|)) $)) (-15 -1904 ((-1086 (-350 (-858 |#1|))))) (-15 -1903 ((-1086 (-350 (-858 |#1|))) $)) (-15 -1902 ((-350 (-858 |#1|)) $)) (-15 -1901 ((-350 (-858 |#1|)) $)) (-15 -1900 ((-350 (-858 |#1|)) $ $)) (-15 -1899 ((-350 (-858 |#1|)))) (-15 -1898 ((-350 (-858 |#1|)) $ $)) (-15 -1897 ((-350 (-858 |#1|)))) (-15 -1896 ((-584 (-858 |#1|)) (-1180 $))) (-15 -1896 ((-584 (-858 |#1|))))) |%noBranch|))) (-146) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -393)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1180 (-350 (-858 *3)))) (-4 *3 (-146)) (-14 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))))) (-1911 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1910 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1) (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) (-14 *4 (-584 (-1091))) (-14 *5 (-1180 (-631 *2))))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) (-14 *7 (-1180 (-631 *4))))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) (-1908 (*1 *2) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1904 (*1 *2) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1900 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1899 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1898 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1897 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) (-1896 (*1 *2) (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 19 T ELT)) (-3083 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) 53 T ELT) (((-1086 |#2|) $) 140 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) 49 T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1941 (($ $ (-584 (-485))) 95 T ELT)) (-3961 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| |#3| $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 66 T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1086 $) (-774 |#1|)) 59 T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) 69 T ELT)) (-2895 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) 48 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 47 T ELT)) (-1800 ((|#2| $) 138 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3950 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) 175 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 32 T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-394 |#1| |#2| |#3|) (-13 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-15 -1941 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962) (-196 (-3959 |#1|) (-695))) (T -394)) -((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-196 (-3959 *3) (-695)))))) -((-1915 (((-85) |#1| (-584 |#2|)) 90 T ELT)) (-1913 (((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1914 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|))) 101 T ELT)) (-2038 ((|#2| |#2| |#1|) 35 T ELT)) (-1912 (((-695) |#2| (-584 |#2|)) 26 T ELT))) -(((-395 |#1| |#2|) (-10 -7 (-15 -2038 (|#2| |#2| |#1|)) (-15 -1912 ((-695) |#2| (-584 |#2|))) (-15 -1913 ((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-15 -1914 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|)))) (-15 -1915 ((-85) |#1| (-584 |#2|)))) (-258) (-1156 |#1|)) (T -395)) -((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5)))) (-1914 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4)))) (-1913 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))) (-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-695)) (-5 *1 (-395 *5 *3)))) (-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3))))) -((-3734 (((-348 |#5|) |#5|) 24 T ELT))) -(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3734 ((-348 |#5|) |#5|))) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))) (-718) (-496) (-496) (-862 |#4| |#2| |#1|)) (T -396)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4))))) -((-2702 ((|#3|) 43 T ELT)) (-2710 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 34 T ELT))) -(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2702 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -397)) -((-2702 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6))))) -((-3734 (((-348 (-1086 |#1|)) (-1086 |#1|)) 43 T ELT))) -(((-398 |#1|) (-10 -7 (-15 -3734 ((-348 (-1086 |#1|)) (-1086 |#1|)))) (-258)) (T -398)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1086 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1086 *4))))) -((-3731 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-695))) 44 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-695))) 43 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 29 T ELT)) (-3820 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 88 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 87 T ELT) (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 86 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 85 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 79 T ELT)) (-3784 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 74 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 72 T ELT)) (-3781 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 51 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 50 T ELT))) -(((-399 |#1| |#2|) (-10 -7 (-15 -3731 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3731 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3731 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-695)))) (-15 -3731 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-695)))) (-15 -3781 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3781 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3784 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3784 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3820 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3820 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3820 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3820 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3820 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3820 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -399)) -((-3820 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3820 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3820 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3820 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3820 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) (-3784 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3784 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3731 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-695))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-695))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6))))) -((-2038 ((|#2| |#2| |#1|) 15 T ELT)) (-1917 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1916 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT))) -(((-400 |#1| |#2|) (-10 -7 (-15 -1916 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-15 -1917 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1156 |#1|)) (T -400)) -((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3)))) (-1917 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3)))) (-1916 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-584 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 28 T ELT)) (-3709 (($ |#3|) 25 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) 32 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1918 (($ |#2| |#4| $) 33 T ELT)) (-2895 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2896 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1920 ((|#3| $) 19 T ELT)) (-1921 ((|#4| $) 17 T ELT)) (-3176 ((|#2| $) 29 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1919 (($ |#2| |#3| |#4|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 36 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3176 (|#2| $)) (-15 -2896 ((-651 |#3| |#4| |#5|) $)) (-15 -1921 (|#4| $)) (-15 -1920 (|#3| $)) (-15 -3961 ($ $)) (-15 -2895 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -3709 ($ |#3|)) (-15 -1919 ($ |#2| |#3| |#4|)) (-15 -1918 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-584 (-1091)) (-146) (-757) (-196 (-3959 |#1|) (-695)) (-1 (-85) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|)) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -401)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3176 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *5 (-196 (-3959 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2896 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1921 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2)) (-2 (|:| -2401 *5) (|:| -2402 *2)))) (-4 *2 (-196 (-3959 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1920 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3961 (*1 *1 *1) (-12 (-14 *2 (-584 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3959 *2) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3959 *4) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3709 (*1 *1 *2) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1919 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-584 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3959 *5) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4)) (-2 (|:| -2401 *3) (|:| -2402 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1918 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3959 *4) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3)) (-2 (|:| -2401 *5) (|:| -2402 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4)))))) -((-1922 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1922 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3948 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -402)) -((-1922 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3083 (((-584 |#3|) $) 40 T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1="failed") (-584 |#4|)) 48 T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3182 ((|#3| $) 46 T ELT)) (-2610 (((-584 |#4|) $) 14 T ELT)) (-3247 (((-85) |#4| $) 25 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 38 T ELT)) (-3567 (($) 17 T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 16 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT) (($ (-584 |#4|)) 50 T ELT)) (-3532 (($ (-584 |#4|)) 13 T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 37 T ELT) (((-584 |#4|) $) 49 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3058 (((-85) $ $) 29 T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-403 |#1| |#2| |#3| |#4|) (-13 (-890 |#1| |#2| |#3| |#4|) (-1036 |#4|) (-10 -8 (-15 -3974 ($ (-584 |#4|))))) (-962) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -403)) -((-3974 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6))))) -((-2662 (($) 11 T CONST)) (-2668 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -2668 (|#1|) -3954) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2662 (|#1|) -3954)) (-405 |#2| |#3|) (-146) (-23)) (T -404)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3159 (((-3 |#1| "failed") $) 30 T ELT)) (-3158 ((|#1| $) 31 T ELT)) (-3946 (($ $ $) 27 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 ((|#2| $) 23 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 22 T CONST)) (-2668 (($) 28 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-405 |#1| |#2|) (-113) (-146) (-23)) (T -405)) -((-2668 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3946 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-410 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-15 -2668 ($) -3954) (-15 -3946 ($ $ $)))) -(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-410 |#1| |#2|) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-1923 (((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831)) 26 T ELT)) (-1924 (((-1180 (-1180 (-485))) (-831)) 21 T ELT))) -(((-406) (-10 -7 (-15 -1923 ((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831))) (-15 -1924 ((-1180 (-1180 (-485))) (-831))))) (T -406)) -((-1924 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406))))) -((-2772 (((-485) (-485)) 32 T ELT) (((-485)) 24 T ELT)) (-2776 (((-485) (-485)) 28 T ELT) (((-485)) 20 T ELT)) (-2774 (((-485) (-485)) 30 T ELT) (((-485)) 22 T ELT)) (-1926 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1925 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1927 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) -(((-407) (-10 -7 (-15 -1925 ((-85))) (-15 -1926 ((-85))) (-15 -1925 ((-85) (-85))) (-15 -1926 ((-85) (-85))) (-15 -1927 ((-85))) (-15 -2774 ((-485))) (-15 -2776 ((-485))) (-15 -2772 ((-485))) (-15 -1927 ((-85) (-85))) (-15 -2774 ((-485) (-485))) (-15 -2776 ((-485) (-485))) (-15 -2772 ((-485) (-485))))) (T -407)) -((-2772 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-2772 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2776 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2774 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1927 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1926 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1925 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3853 (((-584 (-330)) $) 34 T ELT) (((-584 (-330)) $ (-584 (-330))) 145 T ELT)) (-1932 (((-584 (-1002 (-330))) $) 16 T ELT) (((-584 (-1002 (-330))) $ (-584 (-1002 (-330)))) 142 T ELT)) (-1929 (((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784))) 58 T ELT)) (-1933 (((-584 (-584 (-855 (-179)))) $) 137 T ELT)) (-3708 (((-1186) $ (-855 (-179)) (-784)) 162 T ELT)) (-1934 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-179))))) 148 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221))) 149 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3862 (((-485) $) 110 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1935 (($) 146 T ELT)) (-1928 (((-584 (-179)) (-584 (-584 (-855 (-179))))) 89 T ELT)) (-1931 (((-1186) $ (-584 (-855 (-179))) (-784) (-784) (-831)) 154 T ELT) (((-1186) $ (-855 (-179))) 156 T ELT) (((-1186) $ (-855 (-179)) (-784) (-784) (-831)) 155 T ELT)) (-3948 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-179))))) 163 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1930 (((-1186) $ (-855 (-179))) 161 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-408) (-13 (-1014) (-10 -8 (-15 -1935 ($)) (-15 -1934 ($ $)) (-15 -1934 ($ (-584 (-584 (-855 (-179)))))) (-15 -1934 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-15 -1934 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221)))) (-15 -1933 ((-584 (-584 (-855 (-179)))) $)) (-15 -3862 ((-485) $)) (-15 -1932 ((-584 (-1002 (-330))) $)) (-15 -1932 ((-584 (-1002 (-330))) $ (-584 (-1002 (-330))))) (-15 -3853 ((-584 (-330)) $)) (-15 -3853 ((-584 (-330)) $ (-584 (-330)))) (-15 -1931 ((-1186) $ (-584 (-855 (-179))) (-784) (-784) (-831))) (-15 -1931 ((-1186) $ (-855 (-179)))) (-15 -1931 ((-1186) $ (-855 (-179)) (-784) (-784) (-831))) (-15 -1930 ((-1186) $ (-855 (-179)))) (-15 -3708 ((-1186) $ (-855 (-179)) (-784))) (-15 -3948 ($ (-584 (-584 (-855 (-179)))))) (-15 -3948 ((-773) $)) (-15 -1929 ((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784)))) (-15 -1928 ((-584 (-179)) (-584 (-584 (-855 (-179))))))))) (T -408)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408)))) (-1935 (*1 *1) (-5 *1 (-408))) (-1934 (*1 *1 *1) (-5 *1 (-408))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1934 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-408)))) (-1934 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-1932 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-3853 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3708 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1929 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-408)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-408))))) -((-3839 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|))) (-410 |#2| |#3|) (-146) (-23)) (T -409)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 ((|#2| $) 23 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 22 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-410 |#1| |#2|) (-113) (-146) (-23)) (T -410)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2662 (*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-1014) (-10 -8 (-15 -3950 (|t#2| $)) (-15 -2662 ($) -3954) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3839 ($ $)) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-1937 (((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1936 (((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1938 (((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT))) -(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -1936 ((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1937 ((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1938 ((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1091)) (-392) (-392)) (T -411)) -((-1938 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))) (-1937 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392))))) -((-3469 (((-3 $ "failed") $) 11 T ELT)) (-3011 (($ $ $) 22 T ELT)) (-2437 (($ $ $) 23 T ELT)) (-3951 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 21 T ELT))) -(((-412 |#1|) (-10 -7 (-15 -2437 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3951 (|#1| |#1| |#1|)) (-15 -3469 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-413)) (T -412)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 30 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3011 (($ $ $) 27 T ELT)) (-2437 (($ $ $) 26 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-413) (-113)) (T -413)) -((-2486 (*1 *1 *1) (-4 *1 (-413))) (-3951 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485)))) (-3011 (*1 *1 *1 *1) (-4 *1 (-413))) (-2437 (*1 *1 *1 *1) (-4 *1 (-413)))) -(-13 (-664) (-10 -8 (-15 -2486 ($ $)) (-15 -3951 ($ $ $)) (-15 ** ($ $ (-485))) (-6 -3994) (-15 -3011 ($ $ $)) (-15 -2437 ($ $ $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 18 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 29 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 30 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 28 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 16 T ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1177 |#2|)) NIL T ELT) (($ (-1161 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 21 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-414 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1177 |#2|))) (-15 -3948 ($ (-1161 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -414)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 18 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-415 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|) |#2|) (T -415)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 44 T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 37 T ELT)) (-2610 (((-584 |#4|) $) 18 T ELT)) (-3247 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 41 T ELT)) (-3699 (((-584 |#4|) $) NIL T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 39 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3771 (($ $ |#4|) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 14 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 21 T ELT)) (-2912 (($ $ |#3|) 48 T ELT)) (-2914 (($ $ |#3|) 50 T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3935 (((-85) |#3| $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-416 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -416)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3629 (($) 17 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3974 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1086 (-485))) $) 18 T ELT) (((-474) $) 53 T ELT)) (-3948 (((-773) $) 51 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 37 T CONST)) (-2668 (($) 8 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-417) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))) (-934) (-553 (-179)) (-553 (-330)) (-554 (-350 (-1086 (-485)))) (-554 (-474)) (-10 -8 (-15 -3629 ($))))) (T -417)) -((-3629 (*1 *1) (-5 *1 (-417)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-418) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -418)) -((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418))))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 16 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) 13 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 19 T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) 15 T ELT))) -(((-419 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1074)) (T -419)) -NIL -((-1939 (((-485) (-485) (-485)) 19 T ELT)) (-1940 (((-85) (-485) (-485) (-485) (-485)) 28 T ELT)) (-3459 (((-1180 (-584 (-485))) (-695) (-695)) 42 T ELT))) -(((-420) (-10 -7 (-15 -1939 ((-485) (-485) (-485))) (-15 -1940 ((-85) (-485) (-485) (-485) (-485))) (-15 -3459 ((-1180 (-584 (-485))) (-695) (-695))))) (T -420)) -((-3459 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420)))) (-1940 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420)))) (-1939 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1941 (($ $ (-584 (-485))) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-422 (-3959 |#1|) (-695)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-422 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 (((-422 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-422 (-3959 |#1|) (-695)) (-422 (-3959 |#1|) (-695))) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3950 (((-422 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-422 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-421 |#1| |#2|) (-13 (-862 |#2| (-422 (-3959 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1941 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -421)) -((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1091))) (-4 *4 (-962))))) -((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#2|)) ELT)) (-2485 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2996 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ (-485)) 11 T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3838 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2662 (($) NIL (|has| |#2| (-23)) CONST)) (-2668 (($) NIL (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 17 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-422 |#1| |#2|) (-196 |#1| |#2|) (-695) (-718)) (T -422)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-1942 (((-584 (-786)) $) 16 T ELT)) (-3544 (((-447) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1943 (($ (-447) (-584 (-786))) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 23 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-423) (-13 (-996) (-10 -8 (-15 -1943 ($ (-447) (-584 (-786)))) (-15 -3544 ((-447) $)) (-15 -1942 ((-584 (-786)) $))))) (T -423)) -((-1943 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2858 (($ $ $) 48 T ELT)) (-3520 (($ $ $) 47 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 40 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 41 T ELT)) (-3611 (($ |#1| $) 18 T ELT)) (-1944 (($ (-584 |#1|)) 19 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 34 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 11 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 45 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 29 T ELT))) -(((-424 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -1944 ($ (-584 |#1|))))) (-757)) (T -424)) -((-1944 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ $) 71 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 117 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-485)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3437 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3948 (((-773) $) 110 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-3058 (((-85) $ $) 121 T ELT)) (-3839 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 77 T ELT))) -(((-425 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -425)) -NIL -((-1948 (((-485) (-584 (-485))) 53 T ELT)) (-1945 ((|#1| (-584 |#1|)) 94 T ELT)) (-1947 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1946 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3146 ((|#1| (-584 |#1|)) 96 T ELT)) (-2819 (((-584 (-485)) (-584 |#1|)) 56 T ELT))) -(((-426 |#1|) (-10 -7 (-15 -3146 (|#1| (-584 |#1|))) (-15 -1945 (|#1| (-584 |#1|))) (-15 -1946 ((-584 |#1|) (-584 |#1|))) (-15 -1947 ((-584 |#1|) (-584 |#1|))) (-15 -2819 ((-584 (-485)) (-584 |#1|))) (-15 -1948 ((-485) (-584 (-485))))) (-1156 (-485))) (T -426)) -((-1948 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) (-4 *4 (-1156 *2)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485))) (-5 *1 (-426 *4)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1946 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-1949 (($ (-350 (-485))) 9 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) -(((-427) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 16)) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -1949 ($ (-350 (-485))))))) (T -427)) -((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427))))) -((-3770 (($ $ (-584 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT))) -(((-428 |#1| |#2|) (-10 -7 (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#2| |#2|)) (-15 -3770 (|#1| |#1| (-249 |#2|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#2|))))) (-429 |#2|) (-1130)) (T -428)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-429 |#1|) (-113) (-1130)) (T -429)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1130))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3960 ($ (-1 |t#1| |t#1|) $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-3948 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-430 |#1|) (-113) (-1130)) (T -430)) -NIL -(-13 (-553 |t#1|) (-556 |t#1|)) -(((-556 |#1|) . T) ((-553 |#1|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1950 (($ (-1074)) 8 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 15 T ELT) (((-1074) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) -(((-431) (-13 (-1014) (-553 (-1074)) (-10 -8 (-15 -1950 ($ (-1074)))))) (T -431)) -((-1950 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-431))))) -((-3494 (($ $) 15 T ELT)) (-3492 (($ $) 24 T ELT)) (-3496 (($ $) 12 T ELT)) (-3497 (($ $) 10 T ELT)) (-3495 (($ $) 17 T ELT)) (-3493 (($ $) 22 T ELT))) -(((-432 |#1|) (-10 -7 (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|))) (-433)) (T -432)) -NIL -((-3494 (($ $) 11 T ELT)) (-3492 (($ $) 10 T ELT)) (-3496 (($ $) 9 T ELT)) (-3497 (($ $) 8 T ELT)) (-3495 (($ $) 7 T ELT)) (-3493 (($ $) 6 T ELT))) -(((-433) (-113)) (T -433)) -((-3494 (*1 *1 *1) (-4 *1 (-433))) (-3492 (*1 *1 *1) (-4 *1 (-433))) (-3496 (*1 *1 *1) (-4 *1 (-433))) (-3497 (*1 *1 *1) (-4 *1 (-433))) (-3495 (*1 *1 *1) (-4 *1 (-433))) (-3493 (*1 *1 *1) (-4 *1 (-433)))) -(-13 (-10 -8 (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3497 ($ $)) (-15 -3496 ($ $)) (-15 -3492 ($ $)) (-15 -3494 ($ $)))) -((-3734 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1156 |#1|) (-13 (-312) (-120) (-662 |#1| |#2|)) (-1156 |#3|)) (T -434)) -((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1951 (((-85) $ $) 72 T ELT)) (-1601 (((-584 (-551 $)) $) 49 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3185 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3159 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) 54 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3844 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2575 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3597 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 42 T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3000 (((-1040 (-485) (-551 $)) $) 37 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (((-1086 $) (-1086 $) (-551 $)) 86 T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-2605 (((-695) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3760 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-2999 (((-1040 (-485) (-551 $)) $) 20 T ELT)) (-3187 (($ $) NIL (|has| $ (-962)) ELT)) (-3974 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) 21 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2592 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) 92 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 22 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) 24 T ELT)) (-3951 (($ $ $) 44 T ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) -(((-435) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-15 -3000 ((-1040 (-485) (-551 $)) $)) (-15 -2999 ((-1040 (-485) (-551 $)) $)) (-15 -3844 ($ $)) (-15 -1951 ((-85) $ $)) (-15 -3134 ((-1086 $) (-1086 $) (-551 $))) (-15 -3134 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-15 -3134 ($ $ (-551 $))) (-15 -3134 ($ $ (-584 (-551 $))))))) (T -435)) -((-3000 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-3844 (*1 *1 *1) (-5 *1 (-435))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 19 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) 14 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 13 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) 9 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 16 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-436 |#1| |#2|) (-19 |#1|) (-1130) (-485)) (T -436)) -NIL -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) 44 T ELT)) (-1258 (($ $ (-485) |#2|) NIL T ELT)) (-1257 (($ $ (-485) |#3|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3113 ((|#2| $ (-485)) 53 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 43 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 38 T ELT)) (-3116 (((-695) $) 28 T ELT)) (-3616 (($ (-695) (-695) |#1|) 24 T ELT)) (-3115 (((-695) $) 30 T ELT)) (-3120 (((-485) $) 26 T ELT)) (-3118 (((-485) $) 27 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 29 T ELT)) (-3117 (((-485) $) 31 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3244 (((-1074) $) 48 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 61 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 33 T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) 41 T ELT) ((|#1| $ (-485) (-485) |#1|) 72 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) 59 T ELT)) (-3112 ((|#3| $ (-485)) 55 T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-437 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1130) (-324 |#1|) (-324 |#1|)) (T -437)) -NIL -((-1953 (((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1952 (((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2078 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1952 ((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695))) (-15 -1953 ((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-15 -2078 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -438)) -((-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1953 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1156 *6)))) (-1952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5))))) -((-1959 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1954 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1956 (((-695) (-695) (-695)) 34 T ELT)) (-1958 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1957 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1955 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-485)) 28 T ELT)) (-3331 ((|#1| (-631 |#1|)) 18 T ELT))) -(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -3331 (|#1| (-631 |#1|))) (-15 -1954 (|#1| (-631 |#1|) |#1| (-695))) (-15 -1955 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-485))) (-15 -1956 ((-695) (-695) (-695))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -1958 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1959 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))) (-1156 |#1|) (-353 |#1| |#2|)) (T -439)) -((-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1955 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-485)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1954 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 44 T ELT)) (-3323 (($ $ $) 41 T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-85))) ELT)) (-1736 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 (-85))) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1036 (-85))) ELT)) (-2911 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3790 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-1036 (-85))) ELT) (((-85) $ (-485) (-85)) 43 (|has| $ (-1036 (-85))) ELT)) (-3712 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-85))) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3408 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3844 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-1036 (-85))) ELT)) (-3114 (((-85) $ (-485)) NIL T ELT)) (-3421 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-72)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) 39 T ELT)) (-2562 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3616 (($ (-695) (-85)) 27 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2201 (((-485) $) 8 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL T ELT)) (-3520 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2610 (((-584 (-85)) $) NIL T ELT)) (-3247 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL T ELT)) (-3328 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3960 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-1036 (-85))) ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3770 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 29 T ELT)) (-3802 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) 22 T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-85)) $) NIL T ELT) (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-85))) ELT)) (-3402 (($ $) 30 T ELT)) (-3974 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3532 (($ (-584 (-85))) NIL T ELT)) (-3804 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3948 (((-773) $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) 37 T ELT)) (-2312 (($ $ $) 46 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 31 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 32 T ELT)) (-2313 (($ $ $) 45 T ELT)) (-3959 (((-695) $) 13 T ELT))) -(((-440 |#1|) (-96) (-485)) (T -440)) -NIL -((-1961 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|)) 35 T ELT)) (-1960 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22 T ELT)) (-1962 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|))) 46 T ELT)) (-1963 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1960 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -1960 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1961 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|))) (-15 -1962 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|)))) (-15 -1963 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1156 |#1|) (-1156 |#2|) (-962)) (T -441)) -((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6)) (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1964 (((-1186) $) 25 T ELT)) (-3802 (((-1074) $ (-1091)) 30 T ELT)) (-3619 (((-1186) $) 20 T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1074)) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 10 T ELT))) -(((-442) (-13 (-757) (-556 (-1074)) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))) (T -442)) -((-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442))))) -((-3743 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3741 ((|#1| |#4|) 10 T ELT)) (-3742 ((|#3| |#4|) 17 T ELT))) -(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 (|#1| |#4|)) (-15 -3742 (|#3| |#4|)) (-15 -3743 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-496) (-905 |#1|) (-324 |#1|) (-324 |#2|)) (T -443)) -((-3743 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4)) (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1974 (((-85) $ (-584 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3190 (((-85) $) 178 T ELT)) (-1966 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1965 (((-1081 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1091))) ELT)) (-1973 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2411 (((-85) $) 177 T ELT)) (-1970 (($ $) 132 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1975 (((-85) |#4| $) 130 T ELT)) (-1976 (((-85) $ $) 82 T ELT)) (-1969 (($ (-584 |#4|)) 106 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1968 (($ (-584 |#4|)) 175 T ELT)) (-1967 (((-85) $) 176 T ELT)) (-2252 (($ $) 85 T ELT)) (-2697 (((-584 |#4|) $) 73 T ELT)) (-1972 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1977 (((-85) |#4| $) 89 T ELT)) (-3913 (((-485) $ (-584 |#3|)) 134 T ELT) (((-485) $) 135 T ELT)) (-3948 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1971 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3058 (((-85) $ $) 84 T ELT)) (-3841 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-444 |#1| |#2| |#3| |#4|) (-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 -3841 ($ $ $)) (-15 -2411 ((-85) $)) (-15 -3190 ((-85) $)) (-15 -1977 ((-85) |#4| $)) (-15 -1976 ((-85) $ $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ (-584 |#3|))) (-15 -1974 ((-85) $)) (-15 -3240 ($ $ $)) (-15 -3240 ($ (-584 $))) (-15 -1973 ($ $ $)) (-15 -1973 ($ $ |#4|)) (-15 -2252 ($ $)) (-15 -1972 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-15 -1971 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3913 ((-485) $ (-584 |#3|))) (-15 -3913 ((-485) $)) (-15 -1970 ($ $)) (-15 -1969 ($ (-584 |#4|))) (-15 -1968 ($ (-584 |#4|))) (-15 -1967 ((-85) $)) (-15 -2697 ((-584 |#4|) $)) (-15 -3948 ($ (-584 |#4|))) (-15 -1966 ($ $ |#4|)) (-15 -1966 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1091))) (-15 -1965 ((-1081 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -444)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1977 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1973 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1973 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2252 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-444 *4 *5 *6 *7)))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-444 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3913 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3913 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1970 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1967 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1966 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091))) (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-249 (-858 *4))))) (-5 *1 (-444 *4 *5 *6 *7))))) -((-1978 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 178 T ELT)) (-1979 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 179 T ELT)) (-1980 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 129 T ELT)) (-3725 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) NIL T ELT)) (-1981 (((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 181 T ELT)) (-1982 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))) 197 T ELT))) -(((-445 |#1| |#2|) (-10 -7 (-15 -1978 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1979 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -3725 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1980 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1981 ((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1982 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))))) (-584 (-1091)) (-695)) (T -445)) -((-1982 (*1 *2 *2 *3) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *1 (-445 *4 *5)))) (-1981 (*1 *2 *3) (-12 (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-584 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))) (-5 *1 (-445 *4 *5)) (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))) -((-3802 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-446 |#1|) (-113) (-72)) (T -446)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3058 (|f| |x| |x|) |x|)))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1983 (($) 6 T ELT)) (-3948 (((-773) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-447) (-13 (-1014) (-10 -8 (-15 -1983 ($))))) (T -447)) -((-1983 (*1 *1) (-5 *1 (-447)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 15 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 20 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 25 T ELT))) -(((-448 |#1| |#2|) (-13 (-21) (-450 |#1| |#2|)) (-21) (-760)) (T -448)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 16 T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 13 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) 39 T ELT)) (-1215 (((-85) $ $) 44 T ELT)) (-2895 (($ |#1| |#2|) 36 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) 41 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 11 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) 30 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 35 T ELT))) -(((-449 |#1| |#2|) (-13 (-23) (-450 |#1| |#2|)) (-23) (-760)) (T -449)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 16 T ELT)) (-3961 (($ $) 17 T ELT)) (-2895 (($ |#1| |#2|) 20 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 18 T ELT)) (-3176 ((|#1| $) 19 T ELT)) (-3244 (((-1074) $) 15 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3245 (((-1034) $) 14 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 22 T ELT)) (-3948 (((-773) $) 13 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-450 |#1| |#2|) (-113) (-72) (-760)) (T -450)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) (-2895 (*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) (-5 *2 (-584 (-454 *3 *4)))))) -(-13 (-72) (-558 (-584 (-454 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1014)) (IF (|has| |t#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -2895 ($ |t#1| |t#2|)) (-15 -3176 (|t#1| $)) (-15 -1984 (|t#2| $)) (-15 -3961 ($ $)) (-15 -3776 ((-584 (-454 |t#1| |t#2|)) $)))) -(((-72) . T) ((-553 (-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-558 (-584 (-454 |#1| |#2|))) . T) ((-13) . T) ((-1014) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 29 T ELT)) (-3961 (($ $) 23 T ELT)) (-2895 (($ |#1| |#2|) 19 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 28 T ELT)) (-3176 ((|#1| $) 27 T ELT)) (-3244 (((-1074) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3245 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 30 T ELT)) (-1985 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3948 (((-773) $) 17 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-451 |#1| |#2|) (-13 (-450 |#1| |#2|) (-10 -8 (-15 -1985 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-760)) (T -451)) -((-1985 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-451 *4 *5)) (-4 *5 (-760))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) -(((-452 |#1| |#2|) (-13 (-717) (-450 |#1| |#2|)) (-717) (-760)) (T -452)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-2485 (($ $ $) 24 T ELT)) (-1313 (((-3 $ "failed") $ $) 20 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) -(((-453 |#1| |#2|) (-13 (-718) (-450 |#1| |#2|)) (-718) (-757)) (T -453)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-1986 (($ |#2| |#1|) 9 T ELT)) (-2401 ((|#2| $) 11 T ELT)) (-3948 (((-783 |#2| |#1|) $) 14 T ELT)) (-3679 ((|#1| $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-454 |#1| |#2|) (-13 (-72) (-553 (-783 |#2| |#1|)) (-10 -8 (-15 -1986 ($ |#2| |#1|)) (-15 -2401 (|#2| $)) (-15 -3679 (|#1| $)))) (-72) (-760)) (T -454)) -((-1986 (*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72)))) (-3679 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760))))) -((-3770 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3770 (|#1| |#1| |#2| |#3|)) (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-456 |#2| |#3|) (-1014) (-1130)) (T -455)) -NIL -((-3770 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-456 |#1| |#2|) (-113) (-1014) (-1130)) (T -456)) -((-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1130)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130))))) -(-13 (-10 -8 (-15 -3770 ($ $ |t#1| |t#2|)) (-15 -3770 ($ $ (-584 |t#1|) (-584 |t#2|))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 17 T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $) 19 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) 24 T ELT)) (-1623 ((|#2| $ (-485)) 22 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3679 ((|#2| |#1| $) 51 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 11 T CONST)) (-3058 (((-85) $ $) 30 T ELT)) (-3841 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-457 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1014) (-104) |#2|) (T -457)) -NIL -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) 32 T ELT)) (-3790 ((|#1| $ (-485) |#1|) 42 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) 83 (|has| |#1| (-72)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-1988 (($ $ (-485)) 19 T ELT)) (-1989 (((-695) $) 13 T ELT)) (-3616 (($ (-695) |#1|) 31 T ELT)) (-2201 (((-485) $) 29 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 28 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3611 (($ $ $ (-485)) 75 T ELT) (($ |#1| $ (-485)) 59 T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) 43 T ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 62 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 21 T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 55 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) 73 T ELT) (($ $ (-485)) 67 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) 63 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 53 T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3793 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 22 T ELT))) -(((-458 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1130) (-485)) (T -458)) -((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1992 (((-1050) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1991 (((-1050) $) 14 T ELT)) (-3924 (((-1050) $) 10 T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-459) (-13 (-996) (-10 -8 (-15 -3924 ((-1050) $)) (-15 -1992 ((-1050) $)) (-15 -1991 ((-1050) $))))) (T -459)) -((-3924 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-518 |#1|) #1#) $) NIL T ELT)) (-3158 (((-518 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-518 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3134 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-518 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1628 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1627 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-1086 (-518 |#1|)) #1#) $ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-518 |#1|))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-518 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-518 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3226 (((-1180 (-518 |#1|)) $) NIL T ELT) (((-631 (-518 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-518 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT) (($ (-518 |#1|) $) NIL T ELT))) -(((-460 |#1| |#2|) (-280 (-518 |#1|)) (-831) (-831)) (T -460)) -NIL -((-3111 ((|#4| |#4|) 38 T ELT)) (-3110 (((-695) |#4|) 45 T ELT)) (-3109 (((-695) |#4|) 46 T ELT)) (-3108 (((-584 |#3|) |#4|) 57 (|has| |#3| (-1036 |#1|)) ELT)) (-3592 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1993 ((|#4| |#4|) 61 T ELT)) (-3330 ((|#1| |#4|) 60 T ELT))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3111 (|#4| |#4|)) (-15 -3110 ((-695) |#4|)) (-15 -3109 ((-695) |#4|)) (IF (|has| |#3| (-1036 |#1|)) (-15 -3108 ((-584 |#3|) |#4|)) |%noBranch|) (-15 -3330 (|#1| |#4|)) (-15 -1993 (|#4| |#4|)) (-15 -3592 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -461)) -((-3592 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-4 *6 (-1036 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -((-3111 ((|#8| |#4|) 20 T ELT)) (-3108 (((-584 |#3|) |#4|) 29 (|has| |#7| (-1036 |#5|)) ELT)) (-3592 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-462 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3111 (|#8| |#4|)) (-15 -3592 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1036 |#5|)) (-15 -3108 ((-584 |#3|) |#4|)) |%noBranch|)) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -462)) -((-3108 (*1 *2 *3) (-12 (-4 *9 (-1036 *7)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3592 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1994 (((-584 (-1131)) $) 14 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (($ (-584 (-1131))) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-463) (-13 (-996) (-10 -8 (-15 -3948 ($ (-584 (-1131)))) (-15 -1994 ((-584 (-1131)) $))))) (T -463)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1995 (((-1050) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3452 (((-447) $) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 22 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-464) (-13 (-996) (-10 -8 (-15 -3452 ((-447) $)) (-15 -1995 ((-1050) $))))) (T -464)) -((-3452 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464))))) -((-2001 (((-633 (-1139)) $) 15 T ELT)) (-1997 (((-633 (-1137)) $) 38 T ELT)) (-1999 (((-633 (-1136)) $) 29 T ELT)) (-2002 (((-633 (-489)) $) 12 T ELT)) (-1998 (((-633 (-487)) $) 42 T ELT)) (-2000 (((-633 (-486)) $) 33 T ELT)) (-1996 (((-695) $ (-102)) 54 T ELT))) -(((-465 |#1|) (-10 -7 (-15 -1996 ((-695) |#1| (-102))) (-15 -1997 ((-633 (-1137)) |#1|)) (-15 -1998 ((-633 (-487)) |#1|)) (-15 -1999 ((-633 (-1136)) |#1|)) (-15 -2000 ((-633 (-486)) |#1|)) (-15 -2001 ((-633 (-1139)) |#1|)) (-15 -2002 ((-633 (-489)) |#1|))) (-466)) (T -465)) -NIL -((-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-466) (-113)) (T -466)) -((-2003 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1139))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1137))))) (-1996 (*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695))))) -(-13 (-147) (-10 -8 (-15 -2003 ((-633 (-101)) $)) (-15 -2002 ((-633 (-489)) $)) (-15 -2001 ((-633 (-1139)) $)) (-15 -2000 ((-633 (-486)) $)) (-15 -1999 ((-633 (-1136)) $)) (-15 -1998 ((-633 (-487)) $)) (-15 -1997 ((-633 (-1137)) $)) (-15 -1996 ((-695) $ (-102))))) +((-2014 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-361 *3)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-3226 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 (-632 *3))))) (-1897 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-585 (-859 *3))))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1796 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1795 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1794 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1793 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1909 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1087 (-859 *3))))) (-1905 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1087 (-859 *3))))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))) +(-13 (-316 |t#1|) (-241 (-486) |t#1|) (-10 -8 (-15 -2014 ((-1181 $))) (-15 -3227 ((-1181 |t#1|) $)) (-15 -3227 ((-632 |t#1|) (-1181 $))) (-15 -3226 ((-1181 (-632 |t#1|)))) (-15 -1897 ((-585 (-859 |t#1|)))) (-15 -1797 ($ (-1181 |t#1|))) (-15 -3975 ((-1181 |t#1|) $)) (-15 -3975 ($ (-1181 |t#1|))) (-15 -1796 (|t#1|)) (-15 -1795 (|t#1|)) (-15 -1794 ((-632 |t#1|))) (-15 -1793 ((-632 |t#1|))) (-15 -1792 ((-632 |t#1|) $)) (-15 -1791 ((-632 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1909 ((-1087 (-859 |t#1|)))) (-15 -1905 ((-1087 (-859 |t#1|))))) |%noBranch|) (-15 -2548 ($ (-632 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-241 (-486) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-685 |#1|) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-3137 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1798 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT))) +(((-362 |#1|) (-10 -7 (-15 -3137 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1798 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-497)) (T -362)) +((-1798 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-497)) (-5 *1 (-362 *3)))) (-3137 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-497)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4))))) +((-3084 (((-585 (-1092)) $) 81 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) 313 T ELT)) (-1606 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 277 T ELT)) (-3160 (((-3 (-552 $) #1="failed") $) NIL T ELT) (((-3 (-1092) #1#) $) 84 T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-859 |#2|)) #1#) $) 363 T ELT) (((-3 (-859 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-552 $) $) NIL T ELT) (((-1092) $) 28 T ELT) (((-486) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-859 |#2|)) $) 345 T ELT) (((-859 |#2|) $) 272 T ELT) (((-350 (-486)) $) NIL T ELT)) (-3598 (((-86) (-86)) 47 T ELT)) (-2999 (($ $) 99 T ELT)) (-1604 (((-3 (-552 $) #1#) $) 268 T ELT)) (-1603 (((-585 (-552 $)) $) 269 T ELT)) (-2826 (((-3 (-585 $) #1#) $) 287 T ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) #1#) $) 294 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 285 T ELT)) (-1799 (((-3 (-2 (|:| -3957 (-486)) (|:| |var| (-552 $))) #1#) $) 304 T ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-1092)) 257 T ELT)) (-1802 (((-85) $) 17 T ELT)) (-1801 ((|#2| $) 19 T ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 276 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 109 T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1092)) 62 T ELT) (($ $ (-585 (-1092))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1092)) 65 T ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 72 T ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) 120 T ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 282 T ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) 105 T ELT) (($ $ (-1092) (-696) (-1 $ $)) 104 T ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) 119 T ELT)) (-3761 (($ $ (-1092)) 278 T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-2998 (($ $) 324 T ELT)) (-3975 (((-802 (-486)) $) 297 T ELT) (((-802 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-475) $) NIL T ELT)) (-3949 (((-774) $) 279 T ELT) (($ (-552 $)) 93 T ELT) (($ (-1092)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1041 |#2| (-552 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-859 (-350 |#2|))) 368 T ELT) (($ (-350 (-859 (-350 |#2|)))) 341 T ELT) (($ (-350 (-859 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-859 |#2|)) 216 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) 373 T ELT)) (-3129 (((-696)) 88 T CONST)) (-2256 (((-85) (-86)) 42 T ELT)) (-1800 (($ (-1092) $) 31 T ELT) (($ (-1092) $ $) 32 T ELT) (($ (-1092) $ $ $) 33 T ELT) (($ (-1092) $ $ $ $) 34 T ELT) (($ (-1092) (-585 $)) 39 T ELT)) (* (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) +(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-832) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3160 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3949 (|#1| (-486))) (-15 -3129 ((-696)) -3955) (-15 * (|#1| |#2| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3949 (|#1| (-859 |#2|))) (-15 -3160 ((-3 (-859 |#2|) #1#) |#1|)) (-15 -3159 ((-859 |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 * (|#1| |#1| |#2|)) (-15 -3949 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3949 (|#1| (-350 (-859 |#2|)))) (-15 -3160 ((-3 (-350 (-859 |#2|)) #1#) |#1|)) (-15 -3159 ((-350 (-859 |#2|)) |#1|)) (-15 -3086 ((-350 (-1087 |#1|)) |#1| (-552 |#1|))) (-15 -3949 (|#1| (-350 (-859 (-350 |#2|))))) (-15 -3949 (|#1| (-859 (-350 |#2|)))) (-15 -3949 (|#1| (-350 |#2|))) (-15 -2998 (|#1| |#1|)) (-15 -3975 (|#1| (-348 |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-696) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-696) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-696)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-696)) (-585 (-1 |#1| |#1|)))) (-15 -2828 ((-3 (-2 (|:| |val| |#1|) (|:| -2403 (-486))) #1#) |#1|)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-486))) #1#) |#1| (-1092))) (-15 -2827 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-486))) #1#) |#1| (-86))) (-15 -2999 (|#1| |#1|)) (-15 -3949 (|#1| (-1041 |#2| (-552 |#1|)))) (-15 -1799 ((-3 (-2 (|:| -3957 (-486)) (|:| |var| (-552 |#1|))) #1#) |#1|)) (-15 -2825 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-486))) #1#) |#1|)) (-15 -2826 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 |#1|) (-1092))) (-15 -3771 (|#1| |#1| (-86) |#1| (-1092))) (-15 -3771 (|#1| |#1|)) (-15 -3771 (|#1| |#1| (-585 (-1092)))) (-15 -3771 (|#1| |#1| (-1092))) (-15 -1800 (|#1| (-1092) (-585 |#1|))) (-15 -1800 (|#1| (-1092) |#1| |#1| |#1| |#1|)) (-15 -1800 (|#1| (-1092) |#1| |#1| |#1|)) (-15 -1800 (|#1| (-1092) |#1| |#1|)) (-15 -1800 (|#1| (-1092) |#1|)) (-15 -3084 ((-585 (-1092)) |#1|)) (-15 -1801 (|#2| |#1|)) (-15 -1802 ((-85) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3949 (|#1| (-1092))) (-15 -3160 ((-3 (-1092) #1#) |#1|)) (-15 -3159 ((-1092) |#1|)) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| |#1|)))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| |#1|)))) (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -1603 ((-585 (-552 |#1|)) |#1|)) (-15 -1604 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -1606 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -1606 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -1606 (|#1| |#1| (-249 |#1|))) (-15 -3803 (|#1| (-86) (-585 |#1|))) (-15 -3803 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -3771 (|#1| |#1| (-552 |#1|) |#1|)) (-15 -3949 (|#1| (-552 |#1|))) (-15 -3160 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -3159 ((-552 |#1|) |#1|)) (-15 -3949 ((-774) |#1|))) (-364 |#2|) (-1015)) (T -363)) +((-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1015)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3129 (*1 *2) (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3084 (((-585 (-1092)) $) 222 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) 190 (|has| |#1| (-497)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 162 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 163 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 165 (|has| |#1| (-497)) ELT)) (-1602 (((-585 (-552 $)) $) 42 T ELT)) (-1314 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1606 (($ $ (-249 $)) 54 T ELT) (($ $ (-585 (-249 $))) 53 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 52 T ELT)) (-3778 (($ $) 182 (|has| |#1| (-497)) ELT)) (-3974 (((-348 $) $) 183 (|has| |#1| (-497)) ELT)) (-1610 (((-85) $ $) 173 (|has| |#1| (-497)) ELT)) (-3727 (($) 117 (OR (|has| |#1| (-1027)) (|has| |#1| (-25))) CONST)) (-3160 (((-3 (-552 $) #1="failed") $) 67 T ELT) (((-3 (-1092) #1#) $) 235 T ELT) (((-3 (-486) #1#) $) 229 (|has| |#1| (-952 (-486))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-859 |#1|)) #1#) $) 188 (|has| |#1| (-497)) ELT) (((-3 (-859 |#1|) #1#) $) 137 (|has| |#1| (-963)) ELT) (((-3 (-350 (-486)) #1#) $) 111 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 (((-552 $) $) 68 T ELT) (((-1092) $) 236 T ELT) (((-486) $) 228 (|has| |#1| (-952 (-486))) ELT) ((|#1| $) 227 T ELT) (((-350 (-859 |#1|)) $) 189 (|has| |#1| (-497)) ELT) (((-859 |#1|) $) 138 (|has| |#1| (-963)) ELT) (((-350 (-486)) $) 112 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2567 (($ $ $) 177 (|has| |#1| (-497)) ELT)) (-2281 (((-632 (-486)) (-632 $)) 155 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 154 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 153 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-632 $)) 152 (|has| |#1| (-963)) ELT)) (-3470 (((-3 $ "failed") $) 119 (|has| |#1| (-1027)) ELT)) (-2566 (($ $ $) 176 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 171 (|has| |#1| (-497)) ELT)) (-3726 (((-85) $) 184 (|has| |#1| (-497)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 231 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 230 (|has| |#1| (-798 (-330))) ELT)) (-2576 (($ $) 49 T ELT) (($ (-585 $)) 48 T ELT)) (-1216 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1601 (((-585 (-86)) $) 41 T ELT)) (-3598 (((-86) (-86)) 40 T ELT)) (-2412 (((-85) $) 118 (|has| |#1| (-1027)) ELT)) (-2676 (((-85) $) 20 (|has| $ (-952 (-486))) ELT)) (-2999 (($ $) 205 (|has| |#1| (-963)) ELT)) (-3001 (((-1041 |#1| (-552 $)) $) 206 (|has| |#1| (-963)) ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 180 (|has| |#1| (-497)) ELT)) (-1599 (((-1087 $) (-552 $)) 23 (|has| $ (-963)) ELT)) (-3961 (($ (-1 $ $) (-552 $)) 34 T ELT)) (-1604 (((-3 (-552 $) "failed") $) 44 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 157 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 156 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 151 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-1181 $)) 150 (|has| |#1| (-963)) ELT)) (-1896 (($ (-585 $)) 169 (|has| |#1| (-497)) ELT) (($ $ $) 168 (|has| |#1| (-497)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1603 (((-585 (-552 $)) $) 43 T ELT)) (-2237 (($ (-86) $) 36 T ELT) (($ (-86) (-585 $)) 35 T ELT)) (-2826 (((-3 (-585 $) "failed") $) 211 (|has| |#1| (-1027)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) "failed") $) 202 (|has| |#1| (-963)) ELT)) (-2825 (((-3 (-585 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1799 (((-3 (-2 (|:| -3957 (-486)) (|:| |var| (-552 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $) 210 (|has| |#1| (-1027)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-86)) 204 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-1092)) 203 (|has| |#1| (-963)) ELT)) (-2636 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1092)) 37 T ELT)) (-2487 (($ $) 121 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-2606 (((-696) $) 45 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 224 T ELT)) (-1801 ((|#1| $) 223 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 170 (|has| |#1| (-497)) ELT)) (-3147 (($ (-585 $)) 167 (|has| |#1| (-497)) ELT) (($ $ $) 166 (|has| |#1| (-497)) ELT)) (-1600 (((-85) $ $) 33 T ELT) (((-85) $ (-1092)) 32 T ELT)) (-3735 (((-348 $) $) 181 (|has| |#1| (-497)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-497)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 178 (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ "failed") $ $) 161 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 172 (|has| |#1| (-497)) ELT)) (-2677 (((-85) $) 21 (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) 65 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 64 T ELT) (($ $ (-585 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-585 $) (-585 $)) 60 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 31 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 30 T ELT) (($ $ (-1092) (-1 $ (-585 $))) 29 T ELT) (($ $ (-1092) (-1 $ $)) 28 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 27 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-585 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1092)) 216 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092))) 215 (|has| |#1| (-555 (-475))) ELT) (($ $) 214 (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) $ (-1092)) 213 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 212 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) 201 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 200 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) 199 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ $)) 198 (|has| |#1| (-963)) ELT)) (-1609 (((-696) $) 174 (|has| |#1| (-497)) ELT)) (-3803 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-585 $)) 55 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 175 (|has| |#1| (-497)) ELT)) (-1605 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3761 (($ $ (-1092)) 148 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 146 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 145 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 144 (|has| |#1| (-963)) ELT)) (-2998 (($ $) 195 (|has| |#1| (-497)) ELT)) (-3000 (((-1041 |#1| (-552 $)) $) 196 (|has| |#1| (-497)) ELT)) (-3188 (($ $) 22 (|has| $ (-963)) ELT)) (-3975 (((-802 (-486)) $) 233 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 232 (|has| |#1| (-555 (-802 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-497)) ELT) (((-475) $) 113 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $ $) 124 (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) 125 (|has| |#1| (-414)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-552 $)) 66 T ELT) (($ (-1092)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1041 |#1| (-552 $))) 207 (|has| |#1| (-963)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-497)) ELT) (($ (-859 (-350 |#1|))) 192 (|has| |#1| (-497)) ELT) (($ (-350 (-859 (-350 |#1|)))) 191 (|has| |#1| (-497)) ELT) (($ (-350 (-859 |#1|))) 187 (|has| |#1| (-497)) ELT) (($ $) 160 (|has| |#1| (-497)) ELT) (($ (-859 |#1|)) 136 (|has| |#1| (-963)) ELT) (($ (-350 (-486))) 110 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ (-486)) 109 (OR (|has| |#1| (-963)) (|has| |#1| (-952 (-486)))) ELT)) (-2705 (((-634 $) $) 158 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 140 (|has| |#1| (-963)) CONST)) (-2593 (($ $) 51 T ELT) (($ (-585 $)) 50 T ELT)) (-2256 (((-85) (-86)) 39 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 164 (|has| |#1| (-497)) ELT)) (-1800 (($ (-1092) $) 221 T ELT) (($ (-1092) $ $) 220 T ELT) (($ (-1092) $ $ $) 219 T ELT) (($ (-1092) $ $ $ $) 218 T ELT) (($ (-1092) (-585 $)) 217 T ELT)) (-3128 (((-85) $ $) 139 (|has| |#1| (-963)) ELT)) (-2663 (($) 128 (|has| |#1| (-25)) CONST)) (-2669 (($) 116 (|has| |#1| (-1027)) CONST)) (-2672 (($ $ (-1092)) 147 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 143 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 142 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 141 (|has| |#1| (-963)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ (-1041 |#1| (-552 $)) (-1041 |#1| (-552 $))) 194 (|has| |#1| (-497)) ELT) (($ $ $) 122 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-3840 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-486)) 123 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT) (($ $ (-696)) 120 (|has| |#1| (-1027)) ELT) (($ $ (-832)) 115 (|has| |#1| (-1027)) ELT)) (* (($ (-350 (-486)) $) 186 (|has| |#1| (-497)) ELT) (($ $ (-350 (-486))) 185 (|has| |#1| (-497)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-963)) ELT) (($ (-486) $) 133 (|has| |#1| (-21)) ELT) (($ (-696) $) 130 (|has| |#1| (-25)) ELT) (($ (-832) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1027)) ELT))) +(((-364 |#1|) (-113) (-1015)) (T -364)) +((-1802 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-1092))))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-585 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-555 (-475))))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1092))) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-555 (-475))))) (-3771 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-555 (-475))))) (-3771 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1092)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) (-4 *4 (-555 (-475))))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 *1)) (-5 *4 (-1092)) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-555 (-475))))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-364 *3)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-364 *3)))) (-1799 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| -3957 (-486)) (|:| |var| (-552 *1)))) (-4 *1 (-364 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-963)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) (-4 *1 (-364 *3)))) (-2999 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-963)))) (-2827 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) (-2827 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) (-2828 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 (-585 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-497)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) (-4 *1 (-364 *3)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-497)))) (-3952 (*1 *1 *2 *2) (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-859 (-350 *3))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-350 (-859 (-350 *3)))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-552 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) (-4 *4 (-497)) (-5 *2 (-350 (-1087 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-1027))))) +(-13 (-254) (-952 (-1092)) (-796 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1802 ((-85) $)) (-15 -1801 (|t#1| $)) (-15 -3084 ((-585 (-1092)) $)) (-15 -1800 ($ (-1092) $)) (-15 -1800 ($ (-1092) $ $)) (-15 -1800 ($ (-1092) $ $ $)) (-15 -1800 ($ (-1092) $ $ $ $)) (-15 -1800 ($ (-1092) (-585 $))) (IF (|has| |t#1| (-555 (-475))) (PROGN (-6 (-555 (-475))) (-15 -3771 ($ $ (-1092))) (-15 -3771 ($ $ (-585 (-1092)))) (-15 -3771 ($ $)) (-15 -3771 ($ $ (-86) $ (-1092))) (-15 -3771 ($ $ (-585 (-86)) (-585 $) (-1092)))) |%noBranch|) (IF (|has| |t#1| (-1027)) (PROGN (-6 (-665)) (-15 ** ($ $ (-696))) (-15 -2826 ((-3 (-585 $) "failed") $)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-414)) (-6 (-414)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2825 ((-3 (-585 $) "failed") $)) (-15 -1799 ((-3 (-2 (|:| -3957 (-486)) (|:| |var| (-552 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-6 (-963)) (-6 (-952 (-859 |t#1|))) (-6 (-811 (-1092))) (-6 (-329 |t#1|)) (-15 -3949 ($ (-1041 |t#1| (-552 $)))) (-15 -3001 ((-1041 |t#1| (-552 $)) $)) (-15 -2999 ($ $)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-86))) (-15 -2827 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-1092))) (-15 -2828 ((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) "failed") $)) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $)))) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $))))) (-15 -3771 ($ $ (-1092) (-696) (-1 $ (-585 $)))) (-15 -3771 ($ $ (-1092) (-696) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-6 (-312)) (-6 (-952 (-350 (-859 |t#1|)))) (-15 -3975 ($ (-348 $))) (-15 -3000 ((-1041 |t#1| (-552 $)) $)) (-15 -2998 ($ $)) (-15 -3952 ($ (-1041 |t#1| (-552 $)) (-1041 |t#1| (-552 $)))) (-15 -3949 ($ (-350 |t#1|))) (-15 -3949 ($ (-859 (-350 |t#1|)))) (-15 -3949 ($ (-350 (-859 (-350 |t#1|))))) (-15 -3086 ((-350 (-1087 $)) $ (-552 $))) (IF (|has| |t#1| (-952 (-486))) (-6 (-952 (-350 (-486)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-486))) |has| |#1| (-497)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-497)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-497)) ((-104) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-497))) ((-557 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-557 (-486)) OR (|has| |#1| (-963)) (|has| |#1| (-952 (-486))) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-557 (-552 $)) . T) ((-557 (-859 |#1|)) |has| |#1| (-963)) ((-557 (-1092)) . T) ((-557 |#1|) . T) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) |has| |#1| (-497)) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-201) |has| |#1| (-497)) ((-246) |has| |#1| (-497)) ((-258) |has| |#1| (-497)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-497)) ((-329 |#1|) |has| |#1| (-963)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-393) |has| |#1| (-497)) ((-414) |has| |#1| (-414)) ((-457 (-552 $) $) . T) ((-457 $ $) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-497)) ((-590 (-486)) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-590 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-592 (-350 (-486))) |has| |#1| (-497)) ((-592 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-592 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-592 $) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-584 (-350 (-486))) |has| |#1| (-497)) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-582 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-582 |#1|) |has| |#1| (-963)) ((-656 (-350 (-486))) |has| |#1| (-497)) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) OR (|has| |#1| (-1027)) (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-414)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-808 $ (-1092)) |has| |#1| (-963)) ((-811 (-1092)) |has| |#1| (-963)) ((-813 (-1092)) |has| |#1| (-963)) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-834) |has| |#1| (-497)) ((-952 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486))))) ((-952 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-552 $)) . T) ((-952 (-859 |#1|)) |has| |#1| (-963)) ((-952 (-1092)) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-497)) ((-965 |#1|) |has| |#1| (-146)) ((-965 $) |has| |#1| (-497)) ((-970 (-350 (-486))) |has| |#1| (-497)) ((-970 |#1|) |has| |#1| (-146)) ((-970 $) |has| |#1| (-497)) ((-963) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-972) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1027) OR (|has| |#1| (-1027)) (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-414)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1063) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-497))) +((-3961 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-364 |#1|) (-963) (-364 |#3|)) (T -365)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) +((-1806 ((|#2| |#2|) 182 T ELT)) (-1803 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85)) 60 T ELT))) +(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1803 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85))) (-15 -1806 (|#2| |#2|))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|)) (-1092) |#2|) (T -366)) +((-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1117) (-364 *3))) (-14 *4 (-1092)) (-14 *5 *2))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-14 *6 (-1092)) (-14 *7 *3)))) +((-1806 ((|#2| |#2|) 105 T ELT)) (-1804 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075)) 52 T ELT)) (-1805 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075)) 169 T ELT))) +(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1804 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075))) (-15 -1805 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075))) (-15 -1806 (|#2| |#2|))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|) (-10 -8 (-15 -3949 ($ |#3|)))) (-757) (-13 (-1160 |#2| |#3|) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $)))) (-898 |#4|) (-1092)) (T -367)) +((-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *2 (-13 (-27) (-1117) (-364 *3) (-10 -8 (-15 -3949 ($ *4))))) (-4 *4 (-757)) (-4 *5 (-13 (-1160 *2 *4) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1092)))) (-1805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3949 ($ *7))))) (-4 *7 (-757)) (-4 *8 (-13 (-1160 *3 *7) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) (-14 *10 (-1092)))) (-1804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3949 ($ *7))))) (-4 *7 (-757)) (-4 *8 (-13 (-1160 *3 *7) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) (-14 *10 (-1092))))) +((-1807 (($) 51 T ELT)) (-3237 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3239 (($ $ $) 46 T ELT)) (-3238 (((-85) $ $) 35 T ELT)) (-3139 (((-696)) 55 T ELT)) (-3242 (($ (-585 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2997 (($) 66 T ELT)) (-3244 (((-85) $ $) 15 T ELT)) (-2534 ((|#2| $) 77 T ELT)) (-2860 ((|#2| $) 75 T ELT)) (-2012 (((-832) $) 70 T ELT)) (-3241 (($ $ $) 42 T ELT)) (-2402 (($ (-832)) 60 T ELT)) (-3240 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1732 (((-696) |#2| $) 31 T ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3533 (($ (-585 |#2|)) 27 T ELT)) (-1808 (($ $) 53 T ELT)) (-3949 (((-774) $) 40 T ELT)) (-1809 (((-696) $) 24 T ELT)) (-3243 (($ (-585 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3059 (((-85) $ $) 19 T ELT))) +(((-368 |#1| |#2|) (-10 -7 (-15 -3139 ((-696))) (-15 -2402 (|#1| (-832))) (-15 -2012 ((-832) |#1|)) (-15 -2997 (|#1|)) (-15 -2534 (|#2| |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1807 (|#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1809 ((-696) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -3059 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3244 ((-85) |#1| |#1|)) (-15 -3243 (|#1|)) (-15 -3243 (|#1| (-585 |#2|))) (-15 -3242 (|#1|)) (-15 -3242 (|#1| (-585 |#2|))) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#2|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3238 ((-85) |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#2| |#1|)) (-15 -3533 (|#1| (-585 |#2|)))) (-369 |#2|) (-1015)) (T -368)) +((-3139 (*1 *2) (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +((-2571 (((-85) $ $) 18 T ELT)) (-1807 (($) 61 (|has| |#1| (-320)) ELT)) (-3237 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3239 (($ $ $) 82 T ELT)) (-3238 (((-85) $ $) 83 T ELT)) (-3139 (((-696)) 55 (|has| |#1| (-320)) ELT)) (-3242 (($ (-585 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1572 (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 43 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 73 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 70 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 69 T ELT)) (-2997 (($) 58 (|has| |#1| (-320)) ELT)) (-3244 (((-85) $ $) 74 T ELT)) (-2534 ((|#1| $) 59 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 68 T ELT)) (-3248 (((-85) |#1| $) 72 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 60 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-2012 (((-832) $) 57 (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) 21 T ELT)) (-3241 (($ $ $) 79 T ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-2402 (($ (-832)) 56 (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) 20 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 47 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3240 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 |#1|)) 44 T ELT)) (-1732 (((-696) |#1| $) 71 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 67 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 46 T ELT)) (-1808 (($ $) 62 (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) 16 T ELT)) (-1809 (((-696) $) 63 T ELT)) (-3243 (($ (-585 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1267 (((-85) $ $) 19 T ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 65 T ELT)) (-3059 (((-85) $ $) 17 T ELT)) (-3960 (((-696) $) 64 T ELT))) +(((-369 |#1|) (-113) (-1015)) (T -369)) +((-1809 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-320)))) (-1807 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1015)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758))))) +(-13 (-183 |t#1|) (-1013 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1809 ((-696) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1808 ($ $)) (-15 -1807 ($))) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-15 -2860 (|t#1| $)) (-15 -2534 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1037 |#1|) . T) ((-1131) . T)) +((-3844 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3845 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3961 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3845 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3844 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1015) (-369 |#1|) (-1015) (-369 |#3|)) (T -370)) +((-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1015)) (-4 *5 (-1015)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1015)) (-4 *2 (-1015)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))) +((-1810 (((-521 |#2|) |#2| (-1092)) 36 T ELT)) (-2102 (((-521 |#2|) |#2| (-1092)) 21 T ELT)) (-2151 ((|#2| |#2| (-1092)) 26 T ELT))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2102 ((-521 |#2|) |#2| (-1092))) (-15 -1810 ((-521 |#2|) |#2| (-1092))) (-15 -2151 (|#2| |#2| (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-29 |#1|))) (T -371)) +((-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1117) (-29 *4))))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5))))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1812 (($ |#2| |#1|) 37 T ELT)) (-1811 (($ |#2| |#1|) 35 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 16 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 36 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3985)) (IF (|has| |#1| (-6 -3985)) (-6 -3985) |%noBranch|) |%noBranch|) (-15 -3949 ($ |#1|)) (-15 -3949 ($ (-281 |#2|))) (-15 -1812 ($ |#2| |#1|)) (-15 -1811 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-486)))) (-13 (-758) (-21))) (T -372)) +((-3949 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-486))))) (-4 *3 (-13 (-758) (-21))))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-758) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))))) (-1812 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) (-4 *2 (-13 (-758) (-21))))) (-1811 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) (-4 *2 (-13 (-758) (-21)))))) +((-3815 (((-3 |#2| (-585 |#2|)) |#2| (-1092)) 115 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -3815 ((-3 |#2| (-585 |#2|)) |#2| (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-29 |#1|))) (T -373)) +((-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1117) (-873) (-29 *5)))))) +((-3389 ((|#2| |#2| |#2|) 31 T ELT)) (-3598 (((-86) (-86)) 43 T ELT)) (-1814 ((|#2| |#2|) 63 T ELT)) (-1813 ((|#2| |#2|) 66 T ELT)) (-3388 ((|#2| |#2|) 30 T ELT)) (-3392 ((|#2| |#2| |#2|) 33 T ELT)) (-3394 ((|#2| |#2| |#2|) 35 T ELT)) (-3391 ((|#2| |#2| |#2|) 32 T ELT)) (-3393 ((|#2| |#2| |#2|) 34 T ELT)) (-2256 (((-85) (-86)) 41 T ELT)) (-3396 ((|#2| |#2|) 37 T ELT)) (-3395 ((|#2| |#2|) 36 T ELT)) (-3386 ((|#2| |#2|) 25 T ELT)) (-3390 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3387 ((|#2| |#2| |#2|) 29 T ELT))) +(((-374 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -3386 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -1814 (|#2| |#2|))) (-497) (-364 |#1|)) (T -374)) +((-1814 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3396 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3394 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4))))) +((-2836 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-585 |#2|)) 65 T ELT))) +(((-375 |#1| |#2|) (-10 -7 (-15 -2836 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-585 |#2|))) (IF (|has| |#2| (-27)) (-15 -2836 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-497) (-120)) (-364 |#1|)) (T -375)) +((-2836 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1087 *3)) (|:| |pol2| (-1087 *3)) (|:| |prim| (-1087 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-497) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1087 *5))) (|:| |prim| (-1087 *5)))) (-5 *1 (-375 *4 *5))))) +((-1816 (((-1187)) 18 T ELT)) (-1815 (((-1087 (-350 (-486))) |#2| (-552 |#2|)) 40 T ELT) (((-350 (-486)) |#2|) 27 T ELT))) +(((-376 |#1| |#2|) (-10 -7 (-15 -1815 ((-350 (-486)) |#2|)) (-15 -1815 ((-1087 (-350 (-486))) |#2| (-552 |#2|))) (-15 -1816 ((-1187)))) (-13 (-497) (-952 (-486))) (-364 |#1|)) (T -376)) +((-1816 (*1 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *2 (-1187)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *4 (-552 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-376 *5 *3)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))) +((-3648 (((-85) $) 33 T ELT)) (-1817 (((-85) $) 35 T ELT)) (-3262 (((-85) $) 36 T ELT)) (-1819 (((-85) $) 39 T ELT)) (-1821 (((-85) $) 34 T ELT)) (-1820 (((-85) $) 38 T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1075)) 32 T ELT) (($ (-1092)) 30 T ELT) (((-1092) $) 24 T ELT) (((-1017) $) 23 T ELT)) (-1818 (((-85) $) 37 T ELT)) (-3059 (((-85) $ $) 17 T ELT))) +(((-377) (-13 (-554 (-774)) (-10 -8 (-15 -3949 ($ (-1075))) (-15 -3949 ($ (-1092))) (-15 -3949 ((-1092) $)) (-15 -3949 ((-1017) $)) (-15 -3648 ((-85) $)) (-15 -1821 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -1820 ((-85) $)) (-15 -1819 ((-85) $)) (-15 -1818 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -3059 ((-85) $ $))))) (T -377)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-377)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-377)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3059 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) +((-1823 (((-3 (-348 (-1087 (-350 (-486)))) #1="failed") |#3|) 71 T ELT)) (-1822 (((-348 |#3|) |#3|) 34 T ELT)) (-1825 (((-3 (-348 (-1087 (-48))) #1#) |#3|) 29 (|has| |#2| (-952 (-48))) ELT)) (-1824 (((-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) (|:| -2642 (-85))) |#3|) 37 T ELT))) +(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1822 ((-348 |#3|) |#3|)) (-15 -1823 ((-3 (-348 (-1087 (-350 (-486)))) #1="failed") |#3|)) (-15 -1824 ((-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) (|:| -2642 (-85))) |#3|)) (IF (|has| |#2| (-952 (-48))) (-15 -1825 ((-3 (-348 (-1087 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-497) (-952 (-486))) (-364 |#1|) (-1157 |#2|)) (T -378)) +((-1825 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-48))) (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1087 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-1824 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) (|:| -2642 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-1823 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1087 (-350 (-486))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-1822 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1835 (((-3 (|:| |fst| (-377)) (|:| -3913 #1="void")) $) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1832 (($) 35 T ELT)) (-1829 (($) 41 T ELT)) (-1830 (($) 37 T ELT)) (-1827 (($) 39 T ELT)) (-1831 (($) 36 T ELT)) (-1828 (($) 38 T ELT)) (-1826 (($) 40 T ELT)) (-1833 (((-85) $) 8 T ELT)) (-1834 (((-585 (-859 (-486))) $) 19 T ELT)) (-3533 (($ (-3 (|:| |fst| (-377)) (|:| -3913 #1#)) (-585 (-1092)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3913 #1#)) (-585 (-859 (-486))) (-85)) 30 T ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-379) (-13 (-1015) (-10 -8 (-15 -3949 ($ (-377))) (-15 -1835 ((-3 (|:| |fst| (-377)) (|:| -3913 #1="void")) $)) (-15 -1834 ((-585 (-859 (-486))) $)) (-15 -1833 ((-85) $)) (-15 -3533 ($ (-3 (|:| |fst| (-377)) (|:| -3913 #1#)) (-585 (-1092)) (-85))) (-15 -3533 ($ (-3 (|:| |fst| (-377)) (|:| -3913 #1#)) (-585 (-859 (-486))) (-85))) (-15 -1832 ($)) (-15 -1831 ($)) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($))))) (T -379)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 #1="void"))) (-5 *1 (-379)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-585 (-859 (-486)))) (-5 *1 (-379)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) (-5 *3 (-585 (-1092))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1832 (*1 *1) (-5 *1 (-379))) (-1831 (*1 *1) (-5 *1 (-379))) (-1830 (*1 *1) (-5 *1 (-379))) (-1829 (*1 *1) (-5 *1 (-379))) (-1828 (*1 *1) (-5 *1 (-379))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-1092) $) 8 T ELT)) (-3245 (((-1075) $) 17 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 14 T ELT))) +(((-380 |#1|) (-13 (-1015) (-10 -8 (-15 -3545 ((-1092) $)))) (-1092)) (T -380)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-380 *3)) (-14 *3 *2)))) +((-3961 (($ (-1 |#1| |#1|) $) 6 T ELT))) +(((-381 |#1|) (-113) (-1131)) (T -381)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3961 ($ (-1 |t#1| |t#1|) $)))) +(((-13) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3322 (((-1030) $) 7 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) +(((-382) (-13 (-1015) (-10 -8 (-15 -3322 ((-1030) $))))) (T -382)) +((-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-382))))) +((-1841 (((-85)) 18 T ELT)) (-1842 (((-85) (-85)) 19 T ELT)) (-1843 (((-85)) 14 T ELT)) (-1844 (((-85) (-85)) 15 T ELT)) (-1846 (((-85)) 16 T ELT)) (-1847 (((-85) (-85)) 17 T ELT)) (-1838 (((-832) (-832)) 22 T ELT) (((-832)) 21 T ELT)) (-1839 (((-696) (-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486))))) 52 T ELT)) (-1837 (((-832) (-832)) 24 T ELT) (((-832)) 23 T ELT)) (-1840 (((-2 (|:| -2581 (-486)) (|:| -1784 (-585 |#1|))) |#1|) 94 T ELT)) (-1836 (((-348 |#1|) (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486))))))) 176 T ELT)) (-3737 (((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85)) 209 T ELT)) (-3736 (((-348 |#1|) |#1| (-696) (-696)) 224 T ELT) (((-348 |#1|) |#1| (-585 (-696)) (-696)) 221 T ELT) (((-348 |#1|) |#1| (-585 (-696))) 223 T ELT) (((-348 |#1|) |#1| (-696)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1858 (((-3 |#1| #1="failed") (-832) |#1| (-585 (-696)) (-696) (-85)) 226 T ELT) (((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696)) 227 T ELT) (((-3 |#1| #1#) (-832) |#1| (-585 (-696))) 229 T ELT) (((-3 |#1| #1#) (-832) |#1| (-696)) 228 T ELT) (((-3 |#1| #1#) (-832) |#1|) 230 T ELT)) (-3735 (((-348 |#1|) |#1| (-696) (-696)) 219 T ELT) (((-348 |#1|) |#1| (-585 (-696)) (-696)) 215 T ELT) (((-348 |#1|) |#1| (-585 (-696))) 217 T ELT) (((-348 |#1|) |#1| (-696)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1845 (((-85) |#1|) 43 T ELT)) (-1857 (((-677 (-696)) (-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486))))) 99 T ELT)) (-1848 (((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85) (-1011 (-696)) (-696)) 213 T ELT))) +(((-383 |#1|) (-10 -7 (-15 -1836 ((-348 |#1|) (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))))) (-15 -1857 ((-677 (-696)) (-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486)))))) (-15 -1837 ((-832))) (-15 -1837 ((-832) (-832))) (-15 -1838 ((-832))) (-15 -1838 ((-832) (-832))) (-15 -1839 ((-696) (-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486)))))) (-15 -1840 ((-2 (|:| -2581 (-486)) (|:| -1784 (-585 |#1|))) |#1|)) (-15 -1841 ((-85))) (-15 -1842 ((-85) (-85))) (-15 -1843 ((-85))) (-15 -1844 ((-85) (-85))) (-15 -1845 ((-85) |#1|)) (-15 -1846 ((-85))) (-15 -1847 ((-85) (-85))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1| (-696))) (-15 -3735 ((-348 |#1|) |#1| (-585 (-696)))) (-15 -3735 ((-348 |#1|) |#1| (-585 (-696)) (-696))) (-15 -3735 ((-348 |#1|) |#1| (-696) (-696))) (-15 -3736 ((-348 |#1|) |#1|)) (-15 -3736 ((-348 |#1|) |#1| (-696))) (-15 -3736 ((-348 |#1|) |#1| (-585 (-696)))) (-15 -3736 ((-348 |#1|) |#1| (-585 (-696)) (-696))) (-15 -3736 ((-348 |#1|) |#1| (-696) (-696))) (-15 -1858 ((-3 |#1| #1="failed") (-832) |#1|)) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-696))) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)))) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696))) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696) (-85))) (-15 -3737 ((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85))) (-15 -1848 ((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85) (-1011 (-696)) (-696)))) (-1157 (-486))) (T -383)) +((-1848 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1011 (-696))) (-5 *6 (-696)) (-5 *2 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *6 (-85)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-696)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-832)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-3736 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1846 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1845 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1843 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1841 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1840 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2581 (-486)) (|:| -1784 (-585 *3)))) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3951 (-486))))) (-4 *4 (-1157 (-486))) (-5 *2 (-696)) (-5 *1 (-383 *4)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1838 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1837 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3951 (-486))))) (-4 *4 (-1157 (-486))) (-5 *2 (-677 (-696))) (-5 *1 (-383 *4)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *4) (|:| -2397 (-486))))))) (-4 *4 (-1157 (-486))) (-5 *2 (-348 *4)) (-5 *1 (-383 *4))))) +((-1852 (((-486) |#2|) 52 T ELT) (((-486) |#2| (-696)) 51 T ELT)) (-1851 (((-486) |#2|) 64 T ELT)) (-1853 ((|#3| |#2|) 26 T ELT)) (-3135 ((|#3| |#2| (-832)) 15 T ELT)) (-3836 ((|#3| |#2|) 16 T ELT)) (-1854 ((|#3| |#2|) 9 T ELT)) (-2606 ((|#3| |#2|) 10 T ELT)) (-1850 ((|#3| |#2| (-832)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1849 (((-486) |#2|) 66 T ELT))) +(((-384 |#1| |#2| |#3|) (-10 -7 (-15 -1849 ((-486) |#2|)) (-15 -1850 (|#3| |#2|)) (-15 -1850 (|#3| |#2| (-832))) (-15 -1851 ((-486) |#2|)) (-15 -1852 ((-486) |#2| (-696))) (-15 -1852 ((-486) |#2|)) (-15 -3135 (|#3| |#2| (-832))) (-15 -1853 (|#3| |#2|)) (-15 -1854 (|#3| |#2|)) (-15 -2606 (|#3| |#2|)) (-15 -3836 (|#3| |#2|))) (-963) (-1157 |#1|) (-13 (-347) (-952 |#1|) (-312) (-1117) (-239))) (T -384)) +((-3836 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1854 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-963)) (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239))))) (-1852 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *5 *3 *6)) (-4 *3 (-1157 *5)) (-4 *6 (-13 (-347) (-952 *5) (-312) (-1117) (-239))))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239))))) (-1850 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-963)) (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) +((-3357 ((|#2| (-1181 |#1|)) 42 T ELT)) (-1856 ((|#2| |#2| |#1|) 58 T ELT)) (-1855 ((|#2| |#2| |#1|) 49 T ELT)) (-2300 ((|#2| |#2|) 44 T ELT)) (-3176 (((-85) |#2|) 32 T ELT)) (-1859 (((-585 |#2|) (-832) (-348 |#2|)) 21 T ELT)) (-1858 ((|#2| (-832) (-348 |#2|)) 25 T ELT)) (-1857 (((-677 (-696)) (-348 |#2|)) 29 T ELT))) +(((-385 |#1| |#2|) (-10 -7 (-15 -3176 ((-85) |#2|)) (-15 -3357 (|#2| (-1181 |#1|))) (-15 -2300 (|#2| |#2|)) (-15 -1855 (|#2| |#2| |#1|)) (-15 -1856 (|#2| |#2| |#1|)) (-15 -1857 ((-677 (-696)) (-348 |#2|))) (-15 -1858 (|#2| (-832) (-348 |#2|))) (-15 -1859 ((-585 |#2|) (-832) (-348 |#2|)))) (-963) (-1157 |#1|)) (T -385)) +((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-348 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-963)) (-5 *2 (-585 *6)) (-5 *1 (-385 *5 *6)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-348 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-385 *5 *2)) (-4 *5 (-963)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-963)) (-5 *2 (-677 (-696))) (-5 *1 (-385 *4 *5)))) (-1856 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) (-1855 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-963)) (-4 *2 (-1157 *4)) (-5 *1 (-385 *4 *2)))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-385 *4 *3)) (-4 *3 (-1157 *4))))) +((-1862 (((-696)) 59 T ELT)) (-1866 (((-696)) 29 (|has| |#1| (-347)) ELT) (((-696) (-696)) 28 (|has| |#1| (-347)) ELT)) (-1865 (((-486) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1864 (((-486) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1861 (((-696)) 58 T ELT) (((-696) (-696)) 57 T ELT)) (-1860 ((|#1| (-696) (-486)) 37 T ELT)) (-1863 (((-1187)) 61 T ELT))) +(((-386 |#1|) (-10 -7 (-15 -1860 (|#1| (-696) (-486))) (-15 -1861 ((-696) (-696))) (-15 -1861 ((-696))) (-15 -1862 ((-696))) (-15 -1863 ((-1187))) (IF (|has| |#1| (-347)) (PROGN (-15 -1864 ((-486) |#1|)) (-15 -1865 ((-486) |#1|)) (-15 -1866 ((-696) (-696))) (-15 -1866 ((-696)))) |%noBranch|)) (-963)) (T -386)) +((-1866 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1865 (*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1863 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1862 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1861 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-486)) (-5 *1 (-386 *2)) (-4 *2 (-963))))) +((-1867 (((-585 (-486)) (-486)) 76 T ELT)) (-3726 (((-85) (-142 (-486))) 84 T ELT)) (-3735 (((-348 (-142 (-486))) (-142 (-486))) 75 T ELT))) +(((-387) (-10 -7 (-15 -3735 ((-348 (-142 (-486))) (-142 (-486)))) (-15 -1867 ((-585 (-486)) (-486))) (-15 -3726 ((-85) (-142 (-486)))))) (T -387)) +((-3726 (*1 *2 *3) (-12 (-5 *3 (-142 (-486))) (-5 *2 (-85)) (-5 *1 (-387)))) (-1867 (*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-387)) (-5 *3 (-486)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-486)))) (-5 *1 (-387)) (-5 *3 (-142 (-486)))))) +((-2949 ((|#4| |#4| (-585 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2253 (((-585 |#4|) (-585 |#4|) (-1075) (-1075)) 46 T ELT) (((-585 |#4|) (-585 |#4|) (-1075)) 45 T ELT) (((-585 |#4|) (-585 |#4|)) 34 T ELT))) +(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2253 ((-585 |#4|) (-585 |#4|))) (-15 -2253 ((-585 |#4|) (-585 |#4|) (-1075))) (-15 -2253 ((-585 |#4|) (-585 |#4|) (-1075) (-1075))) (IF (|has| |#1| (-312)) (-15 -2949 (|#4| |#4| (-585 |#4|))) |%noBranch|)) (-393) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -388)) +((-2949 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2)))) (-2253 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) (-2253 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6))))) +((-1868 ((|#4| |#4| (-585 |#4|)) 82 T ELT)) (-1869 (((-585 |#4|) (-585 |#4|) (-1075) (-1075)) 22 T ELT) (((-585 |#4|) (-585 |#4|) (-1075)) 21 T ELT) (((-585 |#4|) (-585 |#4|)) 13 T ELT))) +(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 (|#4| |#4| (-585 |#4|))) (-15 -1869 ((-585 |#4|) (-585 |#4|))) (-15 -1869 ((-585 |#4|) (-585 |#4|) (-1075))) (-15 -1869 ((-585 |#4|) (-585 |#4|) (-1075) (-1075)))) (-258) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -389)) +((-1869 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *2))))) +((-1871 (((-585 (-585 |#4|)) (-585 |#4|) (-85)) 90 T ELT) (((-585 (-585 |#4|)) (-585 |#4|)) 89 T ELT) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-85)) 83 T ELT) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|)) 84 T ELT)) (-1870 (((-585 (-585 |#4|)) (-585 |#4|) (-85)) 56 T ELT) (((-585 (-585 |#4|)) (-585 |#4|)) 78 T ELT))) +(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1870 ((-585 (-585 |#4|)) (-585 |#4|) (-85))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-85))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|) (-85)))) (-13 (-258) (-120)) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -390)) +((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1871 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +((-1895 (((-696) |#4|) 12 T ELT)) (-1883 (((-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))) |#4| (-696) (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)))) 39 T ELT)) (-1885 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1884 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1873 ((|#4| |#4| (-585 |#4|)) 54 T ELT)) (-1881 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|)) 96 T ELT)) (-1888 (((-1187) |#4|) 59 T ELT)) (-1891 (((-1187) (-585 |#4|)) 69 T ELT)) (-1889 (((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486)) 66 T ELT)) (-1892 (((-1187) (-486)) 110 T ELT)) (-1886 (((-585 |#4|) (-585 |#4|)) 104 T ELT)) (-1894 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)) |#4| (-696)) 31 T ELT)) (-1887 (((-486) |#4|) 109 T ELT)) (-1882 ((|#4| |#4|) 37 T ELT)) (-1874 (((-585 |#4|) (-585 |#4|) (-486) (-486)) 74 T ELT)) (-1890 (((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486) (-486)) 123 T ELT)) (-1893 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1875 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1880 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1879 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1876 (((-85) |#2| |#2|) 75 T ELT)) (-1878 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1877 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1872 ((|#4| |#4| (-585 |#4|)) 97 T ELT))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1872 (|#4| |#4| (-585 |#4|))) (-15 -1873 (|#4| |#4| (-585 |#4|))) (-15 -1874 ((-585 |#4|) (-585 |#4|) (-486) (-486))) (-15 -1875 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1876 ((-85) |#2| |#2|)) (-15 -1877 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1878 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1880 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1881 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|))) (-15 -1882 (|#4| |#4|)) (-15 -1883 ((-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))) |#4| (-696) (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))))) (-15 -1884 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1885 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1886 ((-585 |#4|) (-585 |#4|))) (-15 -1887 ((-486) |#4|)) (-15 -1888 ((-1187) |#4|)) (-15 -1889 ((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486))) (-15 -1890 ((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486) (-486))) (-15 -1891 ((-1187) (-585 |#4|))) (-15 -1892 ((-1187) (-486))) (-15 -1893 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1894 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)) |#4| (-696))) (-15 -1895 ((-696) |#4|))) (-393) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -391)) +((-1895 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)) (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-696)) (|:| -2006 *4))) (-5 *5 (-696)) (-4 *4 (-863 *6 *7 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-391 *6 *7 *8 *4)))) (-1893 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1890 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) (-5 *1 (-391 *5 *6 *7 *4)))) (-1889 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) (-5 *1 (-391 *5 *6 *7 *4)))) (-1888 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-486)) (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-719)) (-4 *2 (-863 *4 *5 *6)) (-5 *1 (-391 *4 *5 *6 *2)) (-4 *4 (-393)) (-4 *6 (-758)))) (-1883 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 *3)))) (-5 *4 (-696)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-391 *5 *6 *7 *3)))) (-1882 (*1 *2 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-391 *5 *6 *7 *3)))) (-1880 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-719)) (-4 *6 (-863 *4 *3 *5)) (-4 *4 (-393)) (-4 *5 (-758)) (-5 *1 (-391 *4 *3 *5 *6)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1878 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-719)) (-4 *3 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *3)))) (-1877 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5)))) (-1876 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1874 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-486)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1873 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2))))) +((-1896 (($ $ $) 14 T ELT) (($ (-585 $)) 21 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 45 T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) 22 T ELT))) +(((-392 |#1|) (-10 -7 (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -1896 (|#1| (-585 |#1|))) (-15 -1896 (|#1| |#1| |#1|)) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3147 (|#1| |#1| |#1|))) (-393)) (T -392)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-393) (-113)) (T -393)) +((-3147 (*1 *1 *1 *1) (-4 *1 (-393))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) (-1896 (*1 *1 *1 *1) (-4 *1 (-393))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) (-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-393))))) +(-13 (-497) (-10 -8 (-15 -3147 ($ $ $)) (-15 -3147 ($ (-585 $))) (-15 -1896 ($ $ $)) (-15 -1896 ($ (-585 $))) (-15 -2711 ((-1087 $) (-1087 $) (-1087 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 (-350 (-859 |#1|)))) (-1181 $)) NIL T ELT) (((-1181 (-632 (-350 (-859 |#1|))))) NIL T ELT)) (-1731 (((-1181 $)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1793 (((-632 (-350 (-859 |#1|))) (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|)))) NIL T ELT)) (-1729 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1791 (((-632 (-350 (-859 |#1|))) $ (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1905 (((-1087 (-859 (-350 (-859 |#1|))))) NIL (|has| (-350 (-859 |#1|)) (-312)) ELT) (((-1087 (-350 (-859 |#1|)))) 89 (|has| |#1| (-497)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1727 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1707 (((-1087 (-350 (-859 |#1|))) $) 87 (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1795 (((-350 (-859 |#1|)) (-1181 $)) NIL T ELT) (((-350 (-859 |#1|))) NIL T ELT)) (-1725 (((-1087 (-350 (-859 |#1|))) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1797 (($ (-1181 (-350 (-859 |#1|))) (-1181 $)) 111 T ELT) (($ (-1181 (-350 (-859 |#1|)))) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-3111 (((-832)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL T ELT)) (-1706 (((-3 $ #1#)) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1794 (((-632 (-350 (-859 |#1|))) (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|)))) NIL T ELT)) (-1730 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1792 (((-632 (-350 (-859 |#1|))) $ (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|))) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1909 (((-1087 (-859 (-350 (-859 |#1|))))) NIL (|has| (-350 (-859 |#1|)) (-312)) ELT) (((-1087 (-350 (-859 |#1|)))) 88 (|has| |#1| (-497)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1728 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1708 (((-1087 (-350 (-859 |#1|))) $) 84 (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1796 (((-350 (-859 |#1|)) (-1181 $)) NIL T ELT) (((-350 (-859 |#1|))) NIL T ELT)) (-1726 (((-1087 (-350 (-859 |#1|))) $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1899 (((-350 (-859 |#1|)) $ $) 75 (|has| |#1| (-497)) ELT)) (-1903 (((-350 (-859 |#1|)) $) 74 (|has| |#1| (-497)) ELT)) (-1902 (((-350 (-859 |#1|)) $) 101 (|has| |#1| (-497)) ELT)) (-1904 (((-1087 (-350 (-859 |#1|))) $) 93 (|has| |#1| (-497)) ELT)) (-1898 (((-350 (-859 |#1|))) 76 (|has| |#1| (-497)) ELT)) (-1901 (((-350 (-859 |#1|)) $ $) 64 (|has| |#1| (-497)) ELT)) (-1907 (((-350 (-859 |#1|)) $) 63 (|has| |#1| (-497)) ELT)) (-1906 (((-350 (-859 |#1|)) $) 100 (|has| |#1| (-497)) ELT)) (-1908 (((-1087 (-350 (-859 |#1|))) $) 92 (|has| |#1| (-497)) ELT)) (-1900 (((-350 (-859 |#1|))) 73 (|has| |#1| (-497)) ELT)) (-1910 (($) 107 T ELT) (($ (-1092)) 115 T ELT) (($ (-1181 (-1092))) 114 T ELT) (($ (-1181 $)) 102 T ELT) (($ (-1092) (-1181 $)) 113 T ELT) (($ (-1181 (-1092)) (-1181 $)) 112 T ELT)) (-1718 (((-85)) NIL T ELT)) (-3803 (((-350 (-859 |#1|)) $ (-486)) NIL T ELT)) (-3227 (((-1181 (-350 (-859 |#1|))) $ (-1181 $)) 104 T ELT) (((-632 (-350 (-859 |#1|))) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 (-350 (-859 |#1|))) $) 44 T ELT) (((-632 (-350 (-859 |#1|))) (-1181 $)) NIL T ELT)) (-3975 (((-1181 (-350 (-859 |#1|))) $) NIL T ELT) (($ (-1181 (-350 (-859 |#1|)))) 41 T ELT)) (-1897 (((-585 (-859 (-350 (-859 |#1|)))) (-1181 $)) NIL T ELT) (((-585 (-859 (-350 (-859 |#1|))))) NIL T ELT) (((-585 (-859 |#1|)) (-1181 $)) 105 (|has| |#1| (-497)) ELT) (((-585 (-859 |#1|))) 106 (|has| |#1| (-497)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1724 (((-85)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-1181 (-350 (-859 |#1|)))) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 66 T ELT)) (-1709 (((-585 (-1181 (-350 (-859 |#1|))))) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-2548 (($ (-632 (-350 (-859 |#1|))) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-859 |#1|))) NIL T ELT) (($ (-350 (-859 |#1|)) $) NIL T ELT) (($ (-1058 |#2| (-350 (-859 |#1|))) $) NIL T ELT))) +(((-394 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-859 |#1|))) (-592 (-1058 |#2| (-350 (-859 |#1|)))) (-10 -8 (-15 -3949 ($ (-1181 (-350 (-859 |#1|))))) (-15 -1912 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1="failed"))) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#))) (-15 -1910 ($)) (-15 -1910 ($ (-1092))) (-15 -1910 ($ (-1181 (-1092)))) (-15 -1910 ($ (-1181 $))) (-15 -1910 ($ (-1092) (-1181 $))) (-15 -1910 ($ (-1181 (-1092)) (-1181 $))) (IF (|has| |#1| (-497)) (PROGN (-15 -1909 ((-1087 (-350 (-859 |#1|))))) (-15 -1908 ((-1087 (-350 (-859 |#1|))) $)) (-15 -1907 ((-350 (-859 |#1|)) $)) (-15 -1906 ((-350 (-859 |#1|)) $)) (-15 -1905 ((-1087 (-350 (-859 |#1|))))) (-15 -1904 ((-1087 (-350 (-859 |#1|))) $)) (-15 -1903 ((-350 (-859 |#1|)) $)) (-15 -1902 ((-350 (-859 |#1|)) $)) (-15 -1901 ((-350 (-859 |#1|)) $ $)) (-15 -1900 ((-350 (-859 |#1|)))) (-15 -1899 ((-350 (-859 |#1|)) $ $)) (-15 -1898 ((-350 (-859 |#1|)))) (-15 -1897 ((-585 (-859 |#1|)) (-1181 $))) (-15 -1897 ((-585 (-859 |#1|))))) |%noBranch|))) (-146) (-832) (-585 (-1092)) (-1181 (-632 |#1|))) (T -394)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1181 (-350 (-859 *3)))) (-4 *3 (-146)) (-14 *6 (-1181 (-632 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))))) (-1912 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-394 *3 *4 *5 *6)) (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1911 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-394 *3 *4 *5 *6)) (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1) (-12 (-5 *1 (-394 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-832)) (-14 *4 (-585 (-1092))) (-14 *5 (-1181 (-632 *2))))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 *2)) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1092))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1181 (-394 *3 *4 *5 *6))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 *2)) (-14 *7 (-1181 (-632 *4))))) (-1910 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-1092))) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4))))) (-1909 (*1 *2) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1905 (*1 *2) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1901 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1900 (*1 *2) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1899 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *2 (-585 (-859 *4))) (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-497)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4))))) (-1897 (*1 *2) (-12 (-5 *2 (-585 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 19 T ELT)) (-3084 (((-585 (-775 |#1|)) $) 88 T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) 53 T ELT) (((-1087 |#2|) $) 140 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) 28 T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) 49 T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1942 (($ $ (-585 (-486))) 95 T ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1626 (($ $ |#2| |#3| $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 66 T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) 145 T ELT) (($ (-1087 $) (-775 |#1|)) 59 T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) 69 T ELT)) (-2896 (($ |#2| |#3|) 36 T ELT) (($ $ (-775 |#1|) (-696)) 38 T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 ((|#3| $) NIL T ELT) (((-696) $ (-775 |#1|)) 57 T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) 64 T ELT)) (-1627 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) 46 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) 48 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 47 T ELT)) (-1801 ((|#2| $) 138 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) 151 (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) 102 T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) 108 T ELT) (($ $ (-775 |#1|) $) 100 T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) 126 T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) 60 T ELT)) (-3951 ((|#3| $) 80 T ELT) (((-696) $ (-775 |#1|)) 43 T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) 63 T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) 147 (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3949 (((-774) $) 175 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-775 |#1|)) 40 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ |#3|) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 32 T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 133 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 131 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-395 |#1| |#2| |#3|) (-13 (-863 |#2| |#3| (-775 |#1|)) (-10 -8 (-15 -1942 ($ $ (-585 (-486)))))) (-585 (-1092)) (-963) (-196 (-3960 |#1|) (-696))) (T -395)) +((-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-14 *3 (-585 (-1092))) (-5 *1 (-395 *3 *4 *5)) (-4 *4 (-963)) (-4 *5 (-196 (-3960 *3) (-696)))))) +((-1916 (((-85) |#1| (-585 |#2|)) 90 T ELT)) (-1914 (((-3 (-1181 (-585 |#2|)) #1="failed") (-696) |#1| (-585 |#2|)) 99 T ELT)) (-1915 (((-3 (-585 |#2|) #1#) |#2| |#1| (-1181 (-585 |#2|))) 101 T ELT)) (-2039 ((|#2| |#2| |#1|) 35 T ELT)) (-1913 (((-696) |#2| (-585 |#2|)) 26 T ELT))) +(((-396 |#1| |#2|) (-10 -7 (-15 -2039 (|#2| |#2| |#1|)) (-15 -1913 ((-696) |#2| (-585 |#2|))) (-15 -1914 ((-3 (-1181 (-585 |#2|)) #1="failed") (-696) |#1| (-585 |#2|))) (-15 -1915 ((-3 (-585 |#2|) #1#) |#2| |#1| (-1181 (-585 |#2|)))) (-15 -1916 ((-85) |#1| (-585 |#2|)))) (-258) (-1157 |#1|)) (T -396)) +((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-396 *3 *5)))) (-1915 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1181 (-585 *3))) (-4 *4 (-258)) (-5 *2 (-585 *3)) (-5 *1 (-396 *4 *3)) (-4 *3 (-1157 *4)))) (-1914 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-258)) (-4 *6 (-1157 *4)) (-5 *2 (-1181 (-585 *6))) (-5 *1 (-396 *4 *6)) (-5 *5 (-585 *6)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-258)) (-5 *2 (-696)) (-5 *1 (-396 *5 *3)))) (-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-396 *3 *2)) (-4 *2 (-1157 *3))))) +((-3735 (((-348 |#5|) |#5|) 24 T ELT))) +(((-397 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3735 ((-348 |#5|) |#5|))) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092))))) (-719) (-497) (-497) (-863 |#4| |#2| |#1|)) (T -397)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) (-4 *5 (-719)) (-4 *7 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-397 *4 *5 *6 *7 *3)) (-4 *6 (-497)) (-4 *3 (-863 *7 *5 *4))))) +((-2703 ((|#3|) 43 T ELT)) (-2711 (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 34 T ELT))) +(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2711 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2703 (|#3|))) (-719) (-758) (-823) (-863 |#3| |#1| |#2|)) (T -398)) +((-2703 (*1 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-398 *3 *4 *2 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-823)) (-5 *1 (-398 *3 *4 *5 *6))))) +((-3735 (((-348 (-1087 |#1|)) (-1087 |#1|)) 43 T ELT))) +(((-399 |#1|) (-10 -7 (-15 -3735 ((-348 (-1087 |#1|)) (-1087 |#1|)))) (-258)) (T -399)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1087 *4))) (-5 *1 (-399 *4)) (-5 *3 (-1087 *4))))) +((-3732 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-696))) 44 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-696))) 43 T ELT) (((-51) |#2| (-1092) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|)) 29 T ELT)) (-3821 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 88 T ELT) (((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 87 T ELT) (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486))) 86 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486))) 85 T ELT) (((-51) |#2| (-1092) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|)) 79 T ELT)) (-3785 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 74 T ELT) (((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 72 T ELT)) (-3782 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486))) 51 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486))) 50 T ELT))) +(((-400 |#1| |#2|) (-10 -7 (-15 -3732 ((-51) (-1 |#2| (-486)) (-249 |#2|))) (-15 -3732 ((-51) |#2| (-1092) (-249 |#2|))) (-15 -3732 ((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-696)))) (-15 -3732 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-696)))) (-15 -3782 ((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486)))) (-15 -3782 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486)))) (-15 -3785 ((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486)))) (-15 -3785 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486)))) (-15 -3821 ((-51) (-1 |#2| (-486)) (-249 |#2|))) (-15 -3821 ((-51) |#2| (-1092) (-249 |#2|))) (-15 -3821 ((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486)))) (-15 -3821 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486)))) (-15 -3821 ((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486)))) (-15 -3821 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))))) (-13 (-497) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -400)) +((-3821 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *8 *3)))) (-3821 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) (-4 *8 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *8)))) (-3821 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *3)))) (-3821 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) (-4 *7 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *7)))) (-3821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *3)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *5 *6)))) (-3785 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *8 *3)))) (-3785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) (-4 *8 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *8)))) (-3782 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *3)))) (-3782 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) (-4 *7 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *7)))) (-3732 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-696))) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *3)))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-696))) (-4 *7 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *7)))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *5 *6))))) +((-2039 ((|#2| |#2| |#1|) 15 T ELT)) (-1918 (((-585 |#2|) |#2| (-585 |#2|) |#1| (-832)) 82 T ELT)) (-1917 (((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-832)) 71 T ELT))) +(((-401 |#1| |#2|) (-10 -7 (-15 -1917 ((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-832))) (-15 -1918 ((-585 |#2|) |#2| (-585 |#2|) |#1| (-832))) (-15 -2039 (|#2| |#2| |#1|))) (-258) (-1157 |#1|)) (T -401)) +((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-401 *3 *2)) (-4 *2 (-1157 *3)))) (-1918 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-585 *3)) (-5 *5 (-832)) (-4 *3 (-1157 *4)) (-4 *4 (-258)) (-5 *1 (-401 *4 *3)))) (-1917 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-832)) (-4 *5 (-258)) (-4 *3 (-1157 *5)) (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-401 *5 *3)) (-5 *4 (-585 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 28 T ELT)) (-3710 (($ |#3|) 25 T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) 32 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1919 (($ |#2| |#4| $) 33 T ELT)) (-2896 (($ |#2| (-652 |#3| |#4| |#5|)) 24 T ELT)) (-2897 (((-652 |#3| |#4| |#5|) $) 15 T ELT)) (-1921 ((|#3| $) 19 T ELT)) (-1922 ((|#4| $) 17 T ELT)) (-3177 ((|#2| $) 29 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1920 (($ |#2| |#3| |#4|) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 36 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 34 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-402 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-656 |#6|) (-656 |#2|) (-10 -8 (-15 -3177 (|#2| $)) (-15 -2897 ((-652 |#3| |#4| |#5|) $)) (-15 -1922 (|#4| $)) (-15 -1921 (|#3| $)) (-15 -3962 ($ $)) (-15 -2896 ($ |#2| (-652 |#3| |#4| |#5|))) (-15 -3710 ($ |#3|)) (-15 -1920 ($ |#2| |#3| |#4|)) (-15 -1919 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-585 (-1092)) (-146) (-758) (-196 (-3960 |#1|) (-696)) (-1 (-85) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|)) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|))) (-863 |#2| |#4| (-775 |#1|))) (T -402)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3960 *3) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *1 (-402 *3 *4 *5 *6 *7 *2)) (-4 *5 (-758)) (-4 *2 (-863 *4 *6 (-775 *3))))) (-3177 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *5 (-196 (-3960 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-4 *2 (-146)) (-5 *1 (-402 *3 *2 *4 *5 *6 *7)) (-4 *4 (-758)) (-4 *7 (-863 *2 *5 (-775 *3))))) (-2897 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3960 *3) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *2 (-652 *5 *6 *7)) (-5 *1 (-402 *3 *4 *5 *6 *7 *8)) (-4 *5 (-758)) (-4 *8 (-863 *4 *6 (-775 *3))))) (-1922 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *2)) (-2 (|:| -2402 *5) (|:| -2403 *2)))) (-4 *2 (-196 (-3960 *3) (-696))) (-5 *1 (-402 *3 *4 *5 *2 *6 *7)) (-4 *5 (-758)) (-4 *7 (-863 *4 *2 (-775 *3))))) (-1921 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3960 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-4 *2 (-758)) (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) (-4 *7 (-863 *4 *5 (-775 *3))))) (-3962 (*1 *1 *1) (-12 (-14 *2 (-585 (-1092))) (-4 *3 (-146)) (-4 *5 (-196 (-3960 *2) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-5 *1 (-402 *2 *3 *4 *5 *6 *7)) (-4 *4 (-758)) (-4 *7 (-863 *3 *5 (-775 *2))))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-652 *5 *6 *7)) (-4 *5 (-758)) (-4 *6 (-196 (-3960 *4) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-5 *1 (-402 *4 *2 *5 *6 *7 *8)) (-4 *8 (-863 *2 *6 (-775 *4))))) (-3710 (*1 *1 *2) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3960 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) (-4 *2 (-758)) (-4 *7 (-863 *4 *5 (-775 *3))))) (-1920 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-585 (-1092))) (-4 *2 (-146)) (-4 *4 (-196 (-3960 *5) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *4)) (-2 (|:| -2402 *3) (|:| -2403 *4)))) (-5 *1 (-402 *5 *2 *3 *4 *6 *7)) (-4 *3 (-758)) (-4 *7 (-863 *2 *4 (-775 *5))))) (-1919 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-4 *3 (-196 (-3960 *4) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *3)) (-2 (|:| -2402 *5) (|:| -2403 *3)))) (-5 *1 (-402 *4 *2 *5 *3 *6 *7)) (-4 *5 (-758)) (-4 *7 (-863 *2 *3 (-775 *4)))))) +((-1923 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-403 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1923 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-719) (-758) (-497) (-863 |#3| |#1| |#2|) (-13 (-952 (-350 (-486))) (-312) (-10 -8 (-15 -3949 ($ |#4|)) (-15 -3001 (|#4| $)) (-15 -3000 (|#4| $))))) (T -403)) +((-1923 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-758)) (-4 *5 (-719)) (-4 *6 (-497)) (-4 *7 (-863 *6 *5 *3)) (-5 *1 (-403 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-350 (-486))) (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3084 (((-585 |#3|) $) 40 T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1="failed") (-585 |#4|)) 48 T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3183 ((|#3| $) 46 T ELT)) (-2611 (((-585 |#4|) $) 14 T ELT)) (-3248 (((-85) |#4| $) 25 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1356 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 38 T ELT)) (-3568 (($) 17 T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 16 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT) (($ (-585 |#4|)) 50 T ELT)) (-3533 (($ (-585 |#4|)) 13 T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2915 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3949 (((-774) $) 37 T ELT) (((-585 |#4|) $) 49 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3059 (((-85) $ $) 29 T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-404 |#1| |#2| |#3| |#4|) (-13 (-891 |#1| |#2| |#3| |#4|) (-1037 |#4|) (-10 -8 (-15 -3975 ($ (-585 |#4|))))) (-963) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -404)) +((-3975 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-404 *3 *4 *5 *6))))) +((-2663 (($) 11 T CONST)) (-2669 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#1|) -3955) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2663 (|#1|) -3955)) (-406 |#2| |#3|) (-146) (-23)) (T -405)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3160 (((-3 |#1| "failed") $) 30 T ELT)) (-3159 ((|#1| $) 31 T ELT)) (-3947 (($ $ $) 27 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3951 ((|#2| $) 23 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 22 T CONST)) (-2669 (($) 28 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-406 |#1| |#2|) (-113) (-146) (-23)) (T -406)) +((-2669 (*1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3947 (*1 *1 *1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-411 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 -2669 ($) -3955) (-15 -3947 ($ $ $)))) +(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-411 |#1| |#2|) . T) ((-13) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-1924 (((-1181 (-1181 (-486))) (-1181 (-1181 (-486))) (-832)) 26 T ELT)) (-1925 (((-1181 (-1181 (-486))) (-832)) 21 T ELT))) +(((-407) (-10 -7 (-15 -1924 ((-1181 (-1181 (-486))) (-1181 (-1181 (-486))) (-832))) (-15 -1925 ((-1181 (-1181 (-486))) (-832))))) (T -407)) +((-1925 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 (-486)))) (-5 *1 (-407)))) (-1924 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-1181 (-486)))) (-5 *3 (-832)) (-5 *1 (-407))))) +((-2773 (((-486) (-486)) 32 T ELT) (((-486)) 24 T ELT)) (-2777 (((-486) (-486)) 28 T ELT) (((-486)) 20 T ELT)) (-2775 (((-486) (-486)) 30 T ELT) (((-486)) 22 T ELT)) (-1927 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1926 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1928 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-408) (-10 -7 (-15 -1926 ((-85))) (-15 -1927 ((-85))) (-15 -1926 ((-85) (-85))) (-15 -1927 ((-85) (-85))) (-15 -1928 ((-85))) (-15 -2775 ((-486))) (-15 -2777 ((-486))) (-15 -2773 ((-486))) (-15 -1928 ((-85) (-85))) (-15 -2775 ((-486) (-486))) (-15 -2777 ((-486) (-486))) (-15 -2773 ((-486) (-486))))) (T -408)) +((-2773 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-2773 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2777 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2775 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-1928 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1927 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1926 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3854 (((-585 (-330)) $) 34 T ELT) (((-585 (-330)) $ (-585 (-330))) 145 T ELT)) (-1933 (((-585 (-1003 (-330))) $) 16 T ELT) (((-585 (-1003 (-330))) $ (-585 (-1003 (-330)))) 142 T ELT)) (-1930 (((-585 (-585 (-856 (-179)))) (-585 (-585 (-856 (-179)))) (-585 (-785))) 58 T ELT)) (-1934 (((-585 (-585 (-856 (-179)))) $) 137 T ELT)) (-3709 (((-1187) $ (-856 (-179)) (-785)) 162 T ELT)) (-1935 (($ $) 136 T ELT) (($ (-585 (-585 (-856 (-179))))) 148 T ELT) (($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832))) 147 T ELT) (($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)) (-585 (-221))) 149 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3863 (((-486) $) 110 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1936 (($) 146 T ELT)) (-1929 (((-585 (-179)) (-585 (-585 (-856 (-179))))) 89 T ELT)) (-1932 (((-1187) $ (-585 (-856 (-179))) (-785) (-785) (-832)) 154 T ELT) (((-1187) $ (-856 (-179))) 156 T ELT) (((-1187) $ (-856 (-179)) (-785) (-785) (-832)) 155 T ELT)) (-3949 (((-774) $) 168 T ELT) (($ (-585 (-585 (-856 (-179))))) 163 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1931 (((-1187) $ (-856 (-179))) 161 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-409) (-13 (-1015) (-10 -8 (-15 -1936 ($)) (-15 -1935 ($ $)) (-15 -1935 ($ (-585 (-585 (-856 (-179)))))) (-15 -1935 ($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)))) (-15 -1935 ($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)) (-585 (-221)))) (-15 -1934 ((-585 (-585 (-856 (-179)))) $)) (-15 -3863 ((-486) $)) (-15 -1933 ((-585 (-1003 (-330))) $)) (-15 -1933 ((-585 (-1003 (-330))) $ (-585 (-1003 (-330))))) (-15 -3854 ((-585 (-330)) $)) (-15 -3854 ((-585 (-330)) $ (-585 (-330)))) (-15 -1932 ((-1187) $ (-585 (-856 (-179))) (-785) (-785) (-832))) (-15 -1932 ((-1187) $ (-856 (-179)))) (-15 -1932 ((-1187) $ (-856 (-179)) (-785) (-785) (-832))) (-15 -1931 ((-1187) $ (-856 (-179)))) (-15 -3709 ((-1187) $ (-856 (-179)) (-785))) (-15 -3949 ($ (-585 (-585 (-856 (-179)))))) (-15 -3949 ((-774) $)) (-15 -1930 ((-585 (-585 (-856 (-179)))) (-585 (-585 (-856 (-179)))) (-585 (-785)))) (-15 -1929 ((-585 (-179)) (-585 (-585 (-856 (-179))))))))) (T -409)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-409)))) (-1936 (*1 *1) (-5 *1 (-409))) (-1935 (*1 *1 *1) (-5 *1 (-409))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) (-1935 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *4 (-585 (-832))) (-5 *1 (-409)))) (-1935 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *4 (-585 (-832))) (-5 *5 (-585 (-221))) (-5 *1 (-409)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-409)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409)))) (-1933 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) (-3854 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) (-1932 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1187)) (-5 *1 (-409)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409)))) (-1932 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1187)) (-5 *1 (-409)))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409)))) (-3709 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-409)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *1 (-409)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-179))) (-5 *1 (-409))))) +((-3840 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|))) (-411 |#2| |#3|) (-146) (-23)) (T -410)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3951 ((|#2| $) 23 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 22 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-411 |#1| |#2|) (-113) (-146) (-23)) (T -411)) +((-3951 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2663 (*1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-1015) (-10 -8 (-15 -3951 (|t#2| $)) (-15 -2663 ($) -3955) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3840 ($ $)) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-1938 (((-3 (-585 (-422 |#1| |#2|)) "failed") (-585 (-422 |#1| |#2|)) (-585 (-775 |#1|))) 135 T ELT)) (-1937 (((-585 (-585 (-206 |#1| |#2|))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))) 132 T ELT)) (-1939 (((-2 (|:| |dpolys| (-585 (-206 |#1| |#2|))) (|:| |coords| (-585 (-486)))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))) 87 T ELT))) +(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -1937 ((-585 (-585 (-206 |#1| |#2|))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|)))) (-15 -1938 ((-3 (-585 (-422 |#1| |#2|)) "failed") (-585 (-422 |#1| |#2|)) (-585 (-775 |#1|)))) (-15 -1939 ((-2 (|:| |dpolys| (-585 (-206 |#1| |#2|))) (|:| |coords| (-585 (-486)))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))))) (-585 (-1092)) (-393) (-393)) (T -412)) +((-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-2 (|:| |dpolys| (-585 (-206 *5 *6))) (|:| |coords| (-585 (-486))))) (-5 *1 (-412 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393)))) (-1938 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-412 *4 *5 *6)) (-4 *6 (-393)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-585 (-585 (-206 *5 *6)))) (-5 *1 (-412 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393))))) +((-3470 (((-3 $ "failed") $) 11 T ELT)) (-3012 (($ $ $) 22 T ELT)) (-2438 (($ $ $) 23 T ELT)) (-3952 (($ $ $) 9 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 21 T ELT))) +(((-413 |#1|) (-10 -7 (-15 -2438 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3470 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832)))) (-414)) (T -413)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 30 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3012 (($ $ $) 27 T ELT)) (-2438 (($ $ $) 26 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 29 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ $ (-486)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-414) (-113)) (T -414)) +((-2487 (*1 *1 *1) (-4 *1 (-414))) (-3952 (*1 *1 *1 *1) (-4 *1 (-414))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-486)))) (-3012 (*1 *1 *1 *1) (-4 *1 (-414))) (-2438 (*1 *1 *1 *1) (-4 *1 (-414)))) +(-13 (-665) (-10 -8 (-15 -2487 ($ $)) (-15 -3952 ($ $ $)) (-15 ** ($ $ (-486))) (-6 -3995) (-15 -3012 ($ $ $)) (-15 -2438 ($ $ $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 18 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) NIL T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 29 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 30 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 28 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) 16 T ELT)) (-3951 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1178 |#2|)) NIL T ELT) (($ (-1162 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 21 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-415 |#1| |#2| |#3|) (-13 (-1164 |#1|) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3949 ($ (-1178 |#2|))) (-15 -3949 ($ (-1162 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -415)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-415 *3 *4 *5)))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 18 (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-416 |#1| |#2| |#3| |#4|) (-1109 |#1| |#2|) (-1015) (-1015) (-1109 |#1| |#2|) |#2|) (T -416)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) NIL T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) NIL T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-585 |#4|) $) 18 T ELT)) (-3248 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3700 (((-585 |#4|) $) NIL T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1356 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3772 (($ $ |#4|) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3951 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3949 (((-774) $) 34 T ELT) (((-585 |#4|) $) 45 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3936 (((-85) |#3| $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-417 |#1| |#2| |#3| |#4|) (-1126 |#1| |#2| |#3| |#4|) (-497) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -417)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3630 (($) 17 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3975 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1087 (-486))) $) 18 T ELT) (((-475) $) 53 T ELT)) (-3949 (((-774) $) 51 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 37 T CONST)) (-2669 (($) 8 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-418) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))) (-935) (-554 (-179)) (-554 (-330)) (-555 (-350 (-1087 (-486)))) (-555 (-475)) (-10 -8 (-15 -3630 ($))))) (T -418)) +((-3630 (*1 *1) (-5 *1 (-418)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-419) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -419)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419))))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 16 (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) 13 T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 19 T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3960 (((-696) $) 15 T ELT))) +(((-420 |#1| |#2| |#3|) (-1109 |#1| |#2|) (-1015) (-1015) (-1075)) (T -420)) +NIL +((-1940 (((-486) (-486) (-486)) 19 T ELT)) (-1941 (((-85) (-486) (-486) (-486) (-486)) 28 T ELT)) (-3460 (((-1181 (-585 (-486))) (-696) (-696)) 42 T ELT))) +(((-421) (-10 -7 (-15 -1940 ((-486) (-486) (-486))) (-15 -1941 ((-85) (-486) (-486) (-486) (-486))) (-15 -3460 ((-1181 (-585 (-486))) (-696) (-696))))) (T -421)) +((-3460 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1181 (-585 (-486)))) (-5 *1 (-421)))) (-1941 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-421)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-421))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1942 (($ $ (-585 (-486))) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1626 (($ $ |#2| (-423 (-3960 |#1|) (-696)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1087 $) (-775 |#1|)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-423 (-3960 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 (((-423 (-3960 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1627 (($ (-1 (-423 (-3960 |#1|) (-696)) (-423 (-3960 |#1|) (-696))) $) NIL T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3951 (((-423 (-3960 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-423 (-3960 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-422 |#1| |#2|) (-13 (-863 |#2| (-423 (-3960 |#1|) (-696)) (-775 |#1|)) (-10 -8 (-15 -1942 ($ $ (-585 (-486)))))) (-585 (-1092)) (-963)) (T -422)) +((-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-422 *3 *4)) (-14 *3 (-585 (-1092))) (-4 *4 (-963))))) +((-2571 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) NIL (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) NIL (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) NIL (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#2| (-963)) ELT)) (-2997 (($) NIL (|has| |#2| (-320)) ELT)) (-1578 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) 11 T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) NIL (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) NIL (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) NIL T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1470 (($ (-1181 |#2|)) NIL T ELT)) (-3914 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1181 |#2|) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) NIL (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2663 (($) NIL (|has| |#2| (-23)) CONST)) (-2669 (($) NIL (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 17 (|has| |#2| (-758)) ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) NIL (|has| |#2| (-963)) ELT) (($ $ |#2|) NIL (|has| |#2| (-665)) ELT) (($ |#2| $) NIL (|has| |#2| (-665)) ELT) (($ (-486) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-423 |#1| |#2|) (-196 |#1| |#2|) (-696) (-719)) (T -423)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-1943 (((-585 (-787)) $) 16 T ELT)) (-3545 (((-448) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1944 (($ (-448) (-585 (-787))) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 23 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-424) (-13 (-997) (-10 -8 (-15 -1944 ($ (-448) (-585 (-787)))) (-15 -3545 ((-448) $)) (-15 -1943 ((-585 (-787)) $))))) (T -424)) +((-1944 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-787))) (-5 *1 (-424)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-424)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-585 (-787))) (-5 *1 (-424))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2859 (($ $ $) 48 T ELT)) (-3521 (($ $ $) 47 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 40 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 41 T ELT)) (-3612 (($ |#1| $) 18 T ELT)) (-1945 (($ (-585 |#1|)) 19 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 34 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 11 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 45 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 29 T ELT))) +(((-425 |#1|) (-13 (-883 |#1|) (-10 -8 (-15 -1945 ($ (-585 |#1|))))) (-758)) (T -425)) +((-1945 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-425 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ $) 71 T ELT)) (-1639 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1970 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 117 T ELT)) (-1640 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-486)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3438 (((-2 (|:| -2338 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3949 (((-774) $) 110 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-3059 (((-85) $ $) 121 T ELT)) (-3840 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 72 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 77 T ELT))) +(((-426 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -426)) +NIL +((-1949 (((-486) (-585 (-486))) 53 T ELT)) (-1946 ((|#1| (-585 |#1|)) 94 T ELT)) (-1948 (((-585 |#1|) (-585 |#1|)) 95 T ELT)) (-1947 (((-585 |#1|) (-585 |#1|)) 97 T ELT)) (-3147 ((|#1| (-585 |#1|)) 96 T ELT)) (-2820 (((-585 (-486)) (-585 |#1|)) 56 T ELT))) +(((-427 |#1|) (-10 -7 (-15 -3147 (|#1| (-585 |#1|))) (-15 -1946 (|#1| (-585 |#1|))) (-15 -1947 ((-585 |#1|) (-585 |#1|))) (-15 -1948 ((-585 |#1|) (-585 |#1|))) (-15 -2820 ((-585 (-486)) (-585 |#1|))) (-15 -1949 ((-486) (-585 (-486))))) (-1157 (-486))) (T -427)) +((-1949 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-486)) (-5 *1 (-427 *4)) (-4 *4 (-1157 *2)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1157 (-486))) (-5 *2 (-585 (-486))) (-5 *1 (-427 *4)))) (-1948 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486))))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-486) $) NIL (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-1950 (($ (-350 (-486))) 9 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) NIL T ELT)) (-3133 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 8 T ELT) (($ (-486)) NIL T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL T ELT) (((-919 16) $) 10 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3952 (($ $ $) NIL T ELT) (($ (-486) (-486)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT))) +(((-428) (-13 (-906 (-486)) (-554 (-350 (-486))) (-554 (-919 16)) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -1950 ($ (-350 (-486))))))) (T -428)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428))))) +((-3771 (($ $ (-585 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL T ELT))) +(((-429 |#1| |#2|) (-10 -7 (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#2| |#2|)) (-15 -3771 (|#1| |#1| (-249 |#2|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#2|))))) (-430 |#2|) (-1131)) (T -429)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-430 |#1|) (-113) (-1131)) (T -430)) +NIL +(-13 (-34) (-381 |t#1|) (-10 -7 (IF (|has| |t#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-1015)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-3949 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-431 |#1|) (-113) (-1131)) (T -431)) +NIL +(-13 (-554 |t#1|) (-557 |t#1|)) +(((-557 |#1|) . T) ((-554 |#1|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1951 (($ (-1075)) 8 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 15 T ELT) (((-1075) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) +(((-432) (-13 (-1015) (-554 (-1075)) (-10 -8 (-15 -1951 ($ (-1075)))))) (T -432)) +((-1951 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-432))))) +((-3495 (($ $) 15 T ELT)) (-3493 (($ $) 24 T ELT)) (-3497 (($ $) 12 T ELT)) (-3498 (($ $) 10 T ELT)) (-3496 (($ $) 17 T ELT)) (-3494 (($ $) 22 T ELT))) +(((-433 |#1|) (-10 -7 (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|))) (-434)) (T -433)) +NIL +((-3495 (($ $) 11 T ELT)) (-3493 (($ $) 10 T ELT)) (-3497 (($ $) 9 T ELT)) (-3498 (($ $) 8 T ELT)) (-3496 (($ $) 7 T ELT)) (-3494 (($ $) 6 T ELT))) +(((-434) (-113)) (T -434)) +((-3495 (*1 *1 *1) (-4 *1 (-434))) (-3493 (*1 *1 *1) (-4 *1 (-434))) (-3497 (*1 *1 *1) (-4 *1 (-434))) (-3498 (*1 *1 *1) (-4 *1 (-434))) (-3496 (*1 *1 *1) (-4 *1 (-434))) (-3494 (*1 *1 *1) (-4 *1 (-434)))) +(-13 (-10 -8 (-15 -3494 ($ $)) (-15 -3496 ($ $)) (-15 -3498 ($ $)) (-15 -3497 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)))) +((-3735 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1157 |#1|) (-13 (-312) (-120) (-663 |#1| |#2|)) (-1157 |#3|)) (T -435)) +((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-663 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-435 *5 *6 *7 *3)) (-4 *3 (-1157 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1217 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-1218 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3191 (((-85) $) 39 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1952 (((-85) $ $) 72 T ELT)) (-1602 (((-585 (-552 $)) $) 49 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1219 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-3186 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3160 (((-3 (-552 $) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-552 $) $) NIL T ELT) (((-486) $) NIL T ELT) (((-350 (-486)) $) 54 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 (-486))) (-632 $)) NIL T ELT)) (-3845 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2576 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1601 (((-585 (-86)) $) NIL T ELT)) (-3598 (((-86) (-86)) NIL T ELT)) (-2412 (((-85) $) 42 T ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3001 (((-1041 (-486) (-552 $)) $) 37 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3135 (((-1087 $) (-1087 $) (-552 $)) 86 T ELT) (((-1087 $) (-1087 $) (-585 (-552 $))) 61 T ELT) (($ $ (-552 $)) 75 T ELT) (($ $ (-585 (-552 $))) 76 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1599 (((-1087 $) (-552 $)) 73 (|has| $ (-963)) ELT)) (-3961 (($ (-1 $ $) (-552 $)) NIL T ELT)) (-1604 (((-3 (-552 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-1181 $) $) NIL T ELT) (((-632 (-350 (-486))) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1603 (((-585 (-552 $)) $) NIL T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2636 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-2606 (((-696) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1600 (((-85) $ $) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1605 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3761 (($ $) 36 T ELT) (($ $ (-696)) NIL T ELT)) (-3000 (((-1041 (-486) (-552 $)) $) 20 T ELT)) (-3188 (($ $) NIL (|has| $ (-963)) ELT)) (-3975 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-552 $)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-1041 (-486) (-552 $))) 21 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2593 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2256 (((-85) (-86)) 92 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 22 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) 24 T ELT)) (-3952 (($ $ $) 44 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-486))) NIL T ELT) (($ $ (-486)) 47 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) +(((-436) (-13 (-254) (-27) (-952 (-486)) (-952 (-350 (-486))) (-582 (-486)) (-935) (-582 (-350 (-486))) (-120) (-555 (-142 (-330))) (-190) (-557 (-1041 (-486) (-552 $))) (-10 -8 (-15 -3001 ((-1041 (-486) (-552 $)) $)) (-15 -3000 ((-1041 (-486) (-552 $)) $)) (-15 -3845 ($ $)) (-15 -1952 ((-85) $ $)) (-15 -3135 ((-1087 $) (-1087 $) (-552 $))) (-15 -3135 ((-1087 $) (-1087 $) (-585 (-552 $)))) (-15 -3135 ($ $ (-552 $))) (-15 -3135 ($ $ (-585 (-552 $))))))) (T -436)) +((-3001 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) (-3845 (*1 *1 *1) (-5 *1 (-436))) (-1952 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-436)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-552 (-436))) (-5 *1 (-436)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-585 (-552 (-436)))) (-5 *1 (-436)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-552 (-436))) (-5 *1 (-436)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-436)))) (-5 *1 (-436))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 19 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) 14 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 13 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) 9 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 16 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 18 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-437 |#1| |#2|) (-19 |#1|) (-1131) (-486)) (T -437)) +NIL +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) 44 T ELT)) (-1259 (($ $ (-486) |#2|) NIL T ELT)) (-1258 (($ $ (-486) |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3114 ((|#2| $ (-486)) 53 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1578 ((|#1| $ (-486) (-486) |#1|) 43 T ELT)) (-3115 ((|#1| $ (-486) (-486)) 38 T ELT)) (-3117 (((-696) $) 28 T ELT)) (-3617 (($ (-696) (-696) |#1|) 24 T ELT)) (-3116 (((-696) $) 30 T ELT)) (-3121 (((-486) $) 26 T ELT)) (-3119 (((-486) $) 27 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 29 T ELT)) (-3118 (((-486) $) 31 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3245 (((-1075) $) 48 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) 61 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 33 T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) 41 T ELT) ((|#1| $ (-486) (-486) |#1|) 72 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) 59 T ELT)) (-3113 ((|#3| $ (-486)) 55 T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-438 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1131) (-324 |#1|) (-324 |#1|)) (T -438)) +NIL +((-1954 (((-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-696) (-696)) 32 T ELT)) (-1953 (((-585 (-1087 |#1|)) |#1| (-696) (-696) (-696)) 43 T ELT)) (-2079 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-696)) 107 T ELT))) +(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -1953 ((-585 (-1087 |#1|)) |#1| (-696) (-696) (-696))) (-15 -1954 ((-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-696) (-696))) (-15 -2079 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-696)))) (-299) (-1157 |#1|) (-1157 |#2|)) (T -439)) +((-2079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-696)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-439 *6 *7 *8)))) (-1954 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-4 *5 (-299)) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-439 *5 *6 *7)) (-5 *3 (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1157 *6)))) (-1953 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-696)) (-4 *3 (-299)) (-4 *5 (-1157 *3)) (-5 *2 (-585 (-1087 *3))) (-5 *1 (-439 *3 *5 *6)) (-4 *6 (-1157 *5))))) +((-1960 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 70 T ELT)) (-1955 ((|#1| (-632 |#1|) |#1| (-696)) 24 T ELT)) (-1957 (((-696) (-696) (-696)) 34 T ELT)) (-1959 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 50 T ELT)) (-1958 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 58 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 55 T ELT)) (-1956 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-486)) 28 T ELT)) (-3332 ((|#1| (-632 |#1|)) 18 T ELT))) +(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -3332 (|#1| (-632 |#1|))) (-15 -1955 (|#1| (-632 |#1|) |#1| (-696))) (-15 -1956 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-486))) (-15 -1957 ((-696) (-696) (-696))) (-15 -1958 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1958 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1959 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1960 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $)))) (-1157 |#1|) (-353 |#1| |#2|)) (T -440)) +((-1960 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-696)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-486)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1955 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-696)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1157 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-5 *1 (-440 *2 *4 *5)) (-4 *5 (-353 *2 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 44 T ELT)) (-3324 (($ $ $) 41 T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-1737 (((-85) $) NIL (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 (-85))) (|has| (-85) (-758))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1037 (-85))) ELT)) (-2912 (($ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3791 (((-85) $ (-1148 (-486)) (-85)) NIL (|has| $ (-1037 (-85))) ELT) (((-85) $ (-486) (-85)) 43 (|has| $ (-1037 (-85))) ELT)) (-3713 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-85))) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3409 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3845 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1578 (((-85) $ (-486) (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-3115 (((-85) $ (-486)) NIL T ELT)) (-3422 (((-486) (-85) $ (-486)) NIL (|has| (-85) (-72)) ELT) (((-486) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-486) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) 39 T ELT)) (-2563 (($ $) NIL T ELT)) (-1302 (($ $ $) NIL T ELT)) (-3617 (($ (-696) (-85)) 27 T ELT)) (-1303 (($ $ $) NIL T ELT)) (-2202 (((-486) $) 8 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2611 (((-585 (-85)) $) NIL T ELT)) (-3248 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL T ELT)) (-3329 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3961 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ (-85) $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-85) $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2201 (($ $ (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3771 (($ $ (-585 (-85)) (-585 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2207 (((-585 (-85)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 29 T ELT)) (-3803 (($ $ (-1148 (-486))) NIL T ELT) (((-85) $ (-486)) 22 T ELT) (((-85) $ (-486) (-85)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-85)) $) NIL T ELT) (((-696) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-3403 (($ $) 30 T ELT)) (-3975 (((-475) $) NIL (|has| (-85) (-555 (-475))) ELT)) (-3533 (($ (-585 (-85))) NIL T ELT)) (-3805 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3949 (((-774) $) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2565 (($ $ $) 37 T ELT)) (-2313 (($ $ $) 46 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 31 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 32 T ELT)) (-2314 (($ $ $) 45 T ELT)) (-3960 (((-696) $) 13 T ELT))) +(((-441 |#1|) (-96) (-486)) (T -441)) +NIL +((-1962 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1087 |#4|)) 35 T ELT)) (-1961 (((-1087 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1087 |#4|)) 22 T ELT)) (-1963 (((-3 (-632 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-632 (-1087 |#4|))) 46 T ELT)) (-1964 (((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1961 (|#2| (-1 |#1| |#4|) (-1087 |#4|))) (-15 -1961 ((-1087 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1962 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1087 |#4|))) (-15 -1963 ((-3 (-632 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-632 (-1087 |#4|)))) (-15 -1964 ((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|))) (-963) (-1157 |#1|) (-1157 |#2|) (-963)) (T -442)) +((-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1157 *5)) (-5 *2 (-1087 (-1087 *7))) (-5 *1 (-442 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))) (-1963 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1087 *8))) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *6)) (-5 *1 (-442 *5 *6 *7 *8)) (-4 *7 (-1157 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1087 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1157 *5)) (-5 *2 (-1087 *7)) (-5 *1 (-442 *5 *4 *6 *7)) (-4 *6 (-1157 *4)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1087 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) (-4 *6 (-1157 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1965 (((-1187) $) 25 T ELT)) (-3803 (((-1075) $ (-1092)) 30 T ELT)) (-3620 (((-1187) $) 20 T ELT)) (-3949 (((-774) $) 27 T ELT) (($ (-1075)) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 12 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 10 T ELT))) +(((-443) (-13 (-758) (-557 (-1075)) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))) (T -443)) +((-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-443)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443))))) +((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3742 ((|#1| |#4|) 10 T ELT)) (-3743 ((|#3| |#4|) 17 T ELT))) +(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3742 (|#1| |#4|)) (-15 -3743 (|#3| |#4|)) (-15 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-497) (-906 |#1|) (-324 |#1|) (-324 |#2|)) (T -444)) +((-3744 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-4 *2 (-324 *4)) (-5 *1 (-444 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-444 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1975 (((-85) $ (-585 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3191 (((-85) $) 178 T ELT)) (-1967 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-585 |#3|)) 122 T ELT)) (-1966 (((-1082 (-585 (-859 |#1|)) (-585 (-249 (-859 |#1|)))) (-585 |#4|)) 171 (|has| |#3| (-555 (-1092))) ELT)) (-1974 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2412 (((-85) $) 177 T ELT)) (-1971 (($ $) 132 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 99 T ELT) (($ (-585 $)) 101 T ELT)) (-1976 (((-85) |#4| $) 130 T ELT)) (-1977 (((-85) $ $) 82 T ELT)) (-1970 (($ (-585 |#4|)) 106 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1969 (($ (-585 |#4|)) 175 T ELT)) (-1968 (((-85) $) 176 T ELT)) (-2253 (($ $) 85 T ELT)) (-2698 (((-585 |#4|) $) 73 T ELT)) (-1973 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|)) NIL T ELT)) (-1978 (((-85) |#4| $) 89 T ELT)) (-3914 (((-486) $ (-585 |#3|)) 134 T ELT) (((-486) $) 135 T ELT)) (-3949 (((-774) $) 174 T ELT) (($ (-585 |#4|)) 102 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1972 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3059 (((-85) $ $) 84 T ELT)) (-3842 (($ $ $) 109 T ELT)) (** (($ $ (-696)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-445 |#1| |#2| |#3| |#4|) (-13 (-1015) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-696))) (-15 -3842 ($ $ $)) (-15 -2412 ((-85) $)) (-15 -3191 ((-85) $)) (-15 -1978 ((-85) |#4| $)) (-15 -1977 ((-85) $ $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ (-585 |#3|))) (-15 -1975 ((-85) $)) (-15 -3241 ($ $ $)) (-15 -3241 ($ (-585 $))) (-15 -1974 ($ $ $)) (-15 -1974 ($ $ |#4|)) (-15 -2253 ($ $)) (-15 -1973 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|))) (-15 -1972 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3914 ((-486) $ (-585 |#3|))) (-15 -3914 ((-486) $)) (-15 -1971 ($ $)) (-15 -1970 ($ (-585 |#4|))) (-15 -1969 ($ (-585 |#4|))) (-15 -1968 ((-85) $)) (-15 -2698 ((-585 |#4|) $)) (-15 -3949 ($ (-585 |#4|))) (-15 -1967 ($ $ |#4|)) (-15 -1967 ($ $ |#4| (-585 |#3|))) (IF (|has| |#3| (-555 (-1092))) (-15 -1966 ((-1082 (-585 (-859 |#1|)) (-585 (-249 (-859 |#1|)))) (-585 |#4|))) |%noBranch|))) (-312) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -445)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2412 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3191 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1978 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1977 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1975 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-585 (-445 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1974 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-2253 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-445 *4 *5 *6 *7)))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-445 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-486)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-3914 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1971 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1968 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-2698 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *6)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-1967 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *1 (-445 *4 *5 *6 *2)) (-4 *2 (-863 *4 *5 *6)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *6 (-555 (-1092))) (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1082 (-585 (-859 *4)) (-585 (-249 (-859 *4))))) (-5 *1 (-445 *4 *5 *6 *7))))) +((-1979 (((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 178 T ELT)) (-1980 (((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 179 T ELT)) (-1981 (((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 129 T ELT)) (-3726 (((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) NIL T ELT)) (-1982 (((-585 (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 181 T ELT)) (-1983 (((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-585 (-775 |#1|))) 197 T ELT))) +(((-446 |#1| |#2|) (-10 -7 (-15 -1979 ((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1980 ((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -3726 ((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1981 ((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1982 ((-585 (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1983 ((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-585 (-775 |#1|))))) (-585 (-1092)) (-696)) (T -446)) +((-1983 (*1 *2 *2 *3) (-12 (-5 *2 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *1 (-446 *4 *5)))) (-1982 (*1 *2 *3) (-12 (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-585 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486)))))) (-5 *1 (-446 *4 *5)) (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-445 (-350 (-486)) (-197 *4 (-696)) (-775 *3) (-206 *3 (-350 (-486))))) (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-446 *3 *4)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5))))) +((-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-447 |#1|) (-113) (-72)) (T -447)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3059 (|f| |x| |x|) |x|)))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1984 (($) 6 T ELT)) (-3949 (((-774) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-448) (-13 (-1015) (-10 -8 (-15 -1984 ($))))) (T -448)) +((-1984 (*1 *1) (-5 *1 (-448)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 10 T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 15 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 20 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 25 T ELT))) +(((-449 |#1| |#2|) (-13 (-21) (-451 |#1| |#2|)) (-21) (-761)) (T -449)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 16 T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 13 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) 39 T ELT)) (-1216 (((-85) $ $) 44 T ELT)) (-2896 (($ |#1| |#2|) 36 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) 41 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 11 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) 30 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 35 T ELT))) +(((-450 |#1| |#2|) (-13 (-23) (-451 |#1| |#2|)) (-23) (-761)) (T -450)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 16 T ELT)) (-3962 (($ $) 17 T ELT)) (-2896 (($ |#1| |#2|) 20 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1985 ((|#2| $) 18 T ELT)) (-3177 ((|#1| $) 19 T ELT)) (-3245 (((-1075) $) 15 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-3246 (((-1035) $) 14 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 22 T ELT)) (-3949 (((-774) $) 13 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-451 |#1| |#2|) (-113) (-72) (-761)) (T -451)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-451 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)))) (-2896 (*1 *1 *2 *3) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *3 (-761)) (-4 *2 (-72)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-451 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)) (-5 *2 (-585 (-455 *3 *4)))))) +(-13 (-72) (-559 (-585 (-455 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1015)) (IF (|has| |t#2| (-1015)) (-6 (-1015)) |%noBranch|) |%noBranch|) (-15 -3961 ($ (-1 |t#1| |t#1|) $)) (-15 -2896 ($ |t#1| |t#2|)) (-15 -3177 (|t#1| $)) (-15 -1985 (|t#2| $)) (-15 -3962 ($ $)) (-15 -3777 ((-585 (-455 |t#1| |t#2|)) $)))) +(((-72) . T) ((-554 (-774)) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ((-559 (-585 (-455 |#1| |#2|))) . T) ((-13) . T) ((-1015) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 29 T ELT)) (-3962 (($ $) 23 T ELT)) (-2896 (($ |#1| |#2|) 19 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1985 ((|#2| $) 28 T ELT)) (-3177 ((|#1| $) 27 T ELT)) (-3245 (((-1075) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3246 (((-1035) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 30 T ELT)) (-1986 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3949 (((-774) $) 17 (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-452 |#1| |#2|) (-13 (-451 |#1| |#2|) (-10 -8 (-15 -1986 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-761)) (T -452)) +((-1986 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-452 *4 *5)) (-4 *5 (-761))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 10 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 21 T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) +(((-453 |#1| |#2|) (-13 (-718) (-451 |#1| |#2|)) (-718) (-761)) (T -453)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) NIL T ELT)) (-2486 (($ $ $) 24 T ELT)) (-1314 (((-3 $ "failed") $ $) 20 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) +(((-454 |#1| |#2|) (-13 (-719) (-451 |#1| |#2|)) (-719) (-758)) (T -454)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-1987 (($ |#2| |#1|) 9 T ELT)) (-2402 ((|#2| $) 11 T ELT)) (-3949 (((-784 |#2| |#1|) $) 14 T ELT)) (-3680 ((|#1| $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-455 |#1| |#2|) (-13 (-72) (-554 (-784 |#2| |#1|)) (-10 -8 (-15 -1987 ($ |#2| |#1|)) (-15 -2402 (|#2| $)) (-15 -3680 (|#1| $)))) (-72) (-761)) (T -455)) +((-1987 (*1 *1 *2 *3) (-12 (-5 *1 (-455 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761)))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-761)) (-5 *1 (-455 *3 *2)) (-4 *3 (-72)))) (-3680 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-455 *2 *3)) (-4 *3 (-761))))) +((-3771 (($ $ (-585 |#2|) (-585 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-456 |#1| |#2| |#3|) (-10 -7 (-15 -3771 (|#1| |#1| |#2| |#3|)) (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#3|)))) (-457 |#2| |#3|) (-1015) (-1131)) (T -456)) +NIL +((-3771 (($ $ (-585 |#1|) (-585 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-457 |#1| |#2|) (-113) (-1015) (-1131)) (T -457)) +((-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-457 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1131)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1131))))) +(-13 (-10 -8 (-15 -3771 ($ $ |t#1| |t#2|)) (-15 -3771 ($ $ (-585 |t#1|) (-585 |t#2|))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 17 T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 19 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-486)) 24 T ELT)) (-1624 ((|#2| $ (-486)) 22 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1622 (($ $ $) 55 (|has| |#2| (-718)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3680 ((|#2| |#1| $) 51 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 11 T CONST)) (-3059 (((-85) $ $) 30 T ELT)) (-3842 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-458 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1015) (-104) |#2|) (T -458)) +NIL +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-1988 (((-85) (-85)) 32 T ELT)) (-3791 ((|#1| $ (-486) |#1|) 42 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) 83 (|has| |#1| (-72)) ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-1989 (($ $ (-486)) 19 T ELT)) (-1990 (((-696) $) 13 T ELT)) (-3617 (($ (-696) |#1|) 31 T ELT)) (-2202 (((-486) $) 29 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 28 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3612 (($ $ $ (-486)) 75 T ELT) (($ |#1| $ (-486)) 59 T ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1991 (($ (-585 |#1|)) 43 T ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 24 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 62 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 21 T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 55 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1573 (($ $ (-1148 (-486))) 73 T ELT) (($ $ (-486)) 67 T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) 63 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 53 T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3794 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 22 T ELT))) +(((-459 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1991 ($ (-585 |#1|))) (-15 -1990 ((-696) $)) (-15 -1989 ($ $ (-486))) (-15 -1988 ((-85) (-85))))) (-1131) (-486)) (T -459)) +((-1991 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-459 *3 *4)) (-14 *4 (-486)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 *2))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1993 (((-1051) $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1992 (((-1051) $) 14 T ELT)) (-3925 (((-1051) $) 10 T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-460) (-13 (-997) (-10 -8 (-15 -3925 ((-1051) $)) (-15 -1993 ((-1051) $)) (-15 -1992 ((-1051) $))))) (T -460)) +((-3925 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 (((-519 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-519 |#1|) #1#) $) NIL T ELT)) (-3159 (((-519 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-519 |#1|))) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1682 (((-85) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3135 (((-519 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-519 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1629 (((-1087 (-519 |#1|)) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1628 (((-1087 (-519 |#1|)) $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-3 (-1087 (-519 |#1|)) #1#) $ $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1630 (($ $ (-1087 (-519 |#1|))) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-519 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-519 |#1|) (-320)) ELT) (($ $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3951 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-519 |#1|))) NIL T ELT)) (-1676 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1631 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3227 (((-1181 (-519 |#1|)) $) NIL T ELT) (((-632 (-519 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-519 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| (-519 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-519 |#1|) (-320)) ELT) (($ $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ $ (-519 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-519 |#1|)) NIL T ELT) (($ (-519 |#1|) $) NIL T ELT))) +(((-461 |#1| |#2|) (-280 (-519 |#1|)) (-832) (-832)) (T -461)) +NIL +((-3112 ((|#4| |#4|) 38 T ELT)) (-3111 (((-696) |#4|) 45 T ELT)) (-3110 (((-696) |#4|) 46 T ELT)) (-3109 (((-585 |#3|) |#4|) 57 (|has| |#3| (-1037 |#1|)) ELT)) (-3593 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1994 ((|#4| |#4|) 61 T ELT)) (-3331 ((|#1| |#4|) 60 T ELT))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3112 (|#4| |#4|)) (-15 -3111 ((-696) |#4|)) (-15 -3110 ((-696) |#4|)) (IF (|has| |#3| (-1037 |#1|)) (-15 -3109 ((-585 |#3|) |#4|)) |%noBranch|) (-15 -3331 (|#1| |#4|)) (-15 -1994 (|#4| |#4|)) (-15 -3593 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -462)) +((-3593 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-462 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-4 *6 (-1037 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-585 *6)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +((-3112 ((|#8| |#4|) 20 T ELT)) (-3109 (((-585 |#3|) |#4|) 29 (|has| |#7| (-1037 |#5|)) ELT)) (-3593 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-463 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3112 (|#8| |#4|)) (-15 -3593 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1037 |#5|)) (-15 -3109 ((-585 |#3|) |#4|)) |%noBranch|)) (-497) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|) (-906 |#1|) (-324 |#5|) (-324 |#5|) (-629 |#5| |#6| |#7|)) (T -463)) +((-3109 (*1 *2 *3) (-12 (-4 *9 (-1037 *7)) (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-585 *6)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) (-4 *10 (-629 *7 *8 *9)))) (-3593 (*1 *2 *3) (|partial| -12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1995 (((-585 (-1132)) $) 14 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) (($ (-585 (-1132))) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-464) (-13 (-997) (-10 -8 (-15 -3949 ($ (-585 (-1132)))) (-15 -1995 ((-585 (-1132)) $))))) (T -464)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1996 (((-1051) $) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3453 (((-448) $) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 22 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-465) (-13 (-997) (-10 -8 (-15 -3453 ((-448) $)) (-15 -1996 ((-1051) $))))) (T -465)) +((-3453 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-465)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-465))))) +((-2002 (((-634 (-1140)) $) 15 T ELT)) (-1998 (((-634 (-1138)) $) 38 T ELT)) (-2000 (((-634 (-1137)) $) 29 T ELT)) (-2003 (((-634 (-490)) $) 12 T ELT)) (-1999 (((-634 (-488)) $) 42 T ELT)) (-2001 (((-634 (-487)) $) 33 T ELT)) (-1997 (((-696) $ (-102)) 54 T ELT))) +(((-466 |#1|) (-10 -7 (-15 -1997 ((-696) |#1| (-102))) (-15 -1998 ((-634 (-1138)) |#1|)) (-15 -1999 ((-634 (-488)) |#1|)) (-15 -2000 ((-634 (-1137)) |#1|)) (-15 -2001 ((-634 (-487)) |#1|)) (-15 -2002 ((-634 (-1140)) |#1|)) (-15 -2003 ((-634 (-490)) |#1|))) (-467)) (T -466)) +NIL +((-2002 (((-634 (-1140)) $) 12 T ELT)) (-1998 (((-634 (-1138)) $) 8 T ELT)) (-2000 (((-634 (-1137)) $) 10 T ELT)) (-2003 (((-634 (-490)) $) 13 T ELT)) (-1999 (((-634 (-488)) $) 9 T ELT)) (-2001 (((-634 (-487)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-1702 (($ $) 6 T ELT))) +(((-467) (-113)) (T -467)) +((-2004 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-101))))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-490))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1140))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-487))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1137))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-488))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1138))))) (-1997 (*1 *2 *1 *3) (-12 (-4 *1 (-467)) (-5 *3 (-102)) (-5 *2 (-696))))) +(-13 (-147) (-10 -8 (-15 -2004 ((-634 (-101)) $)) (-15 -2003 ((-634 (-490)) $)) (-15 -2002 ((-634 (-1140)) $)) (-15 -2001 ((-634 (-487)) $)) (-15 -2000 ((-634 (-1137)) $)) (-15 -1999 ((-634 (-488)) $)) (-15 -1998 ((-634 (-1138)) $)) (-15 -1997 ((-696) $ (-102))))) (((-147) . T)) -((-2006 (((-1086 |#1|) (-695)) 114 T ELT)) (-3332 (((-1180 |#1|) (-1180 |#1|) (-831)) 107 T ELT)) (-2004 (((-1186) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) |#1|) 122 T ELT)) (-2008 (((-1180 |#1|) (-1180 |#1|) (-695)) 53 T ELT)) (-2996 (((-1180 |#1|) (-831)) 109 T ELT)) (-2010 (((-1180 |#1|) (-1180 |#1|) (-485)) 30 T ELT)) (-2005 (((-1086 |#1|) (-1180 |#1|)) 115 T ELT)) (-2014 (((-1180 |#1|) (-831)) 136 T ELT)) (-2012 (((-85) (-1180 |#1|)) 119 T ELT)) (-3134 (((-1180 |#1|) (-1180 |#1|) (-831)) 99 T ELT)) (-2015 (((-1086 |#1|) (-1180 |#1|)) 130 T ELT)) (-2011 (((-831) (-1180 |#1|)) 95 T ELT)) (-2486 (((-1180 |#1|) (-1180 |#1|)) 38 T ELT)) (-2401 (((-1180 |#1|) (-831) (-831)) 139 T ELT)) (-2009 (((-1180 |#1|) (-1180 |#1|) (-1034) (-1034)) 29 T ELT)) (-2007 (((-1180 |#1|) (-1180 |#1|) (-695) (-1034)) 54 T ELT)) (-2013 (((-1180 (-1180 |#1|)) (-831)) 135 T ELT)) (-3951 (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 120 T ELT)) (** (((-1180 |#1|) (-1180 |#1|) (-485)) 67 T ELT)) (* (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 31 T ELT))) -(((-467 |#1|) (-10 -7 (-15 -2004 ((-1186) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) |#1|)) (-15 -2996 ((-1180 |#1|) (-831))) (-15 -2401 ((-1180 |#1|) (-831) (-831))) (-15 -2005 ((-1086 |#1|) (-1180 |#1|))) (-15 -2006 ((-1086 |#1|) (-695))) (-15 -2007 ((-1180 |#1|) (-1180 |#1|) (-695) (-1034))) (-15 -2008 ((-1180 |#1|) (-1180 |#1|) (-695))) (-15 -2009 ((-1180 |#1|) (-1180 |#1|) (-1034) (-1034))) (-15 -2010 ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 ** ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 * ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3951 ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3134 ((-1180 |#1|) (-1180 |#1|) (-831))) (-15 -3332 ((-1180 |#1|) (-1180 |#1|) (-831))) (-15 -2486 ((-1180 |#1|) (-1180 |#1|))) (-15 -2011 ((-831) (-1180 |#1|))) (-15 -2012 ((-85) (-1180 |#1|))) (-15 -2013 ((-1180 (-1180 |#1|)) (-831))) (-15 -2014 ((-1180 |#1|) (-831))) (-15 -2015 ((-1086 |#1|) (-1180 |#1|)))) (-299)) (T -467)) -((-2015 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (-3332 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3951 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2010 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2009 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2007 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299)) (-5 *1 (-467 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4))))) -((-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) 26 T ELT)) (-2016 (((-1034) $ (-1034)) 31 T ELT)) (-3421 (((-1034) $) 30 T ELT)) (-2560 (((-85) $) 20 T ELT)) (-2018 (($ (-338)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-2017 (((-85) $) 27 T ELT)) (-3948 (((-773) $) 34 T ELT)) (-1701 (($ $) 28 T ELT))) -(((-468) (-13 (-466) (-553 (-773)) (-10 -8 (-15 -2018 ($ (-338))) (-15 -2018 ($ (-1074))) (-15 -2017 ((-85) $)) (-15 -2560 ((-85) $)) (-15 -3421 ((-1034) $)) (-15 -2016 ((-1034) $ (-1034)))))) (T -468)) -((-2018 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))) (-2016 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468))))) -((-2020 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2019 (((-1 |#1| |#1|)) 10 T ELT))) -(((-469 |#1|) (-10 -7 (-15 -2019 ((-1 |#1| |#1|))) (-15 -2020 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -469)) -((-2020 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))) (-2019 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 (-695) |#1|)) $) NIL T ELT)) (-2485 (($ $ $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ (-695) |#1|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1984 ((|#1| $) NIL T ELT)) (-3176 (((-695) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 (-695) |#1|))) NIL T ELT)) (-3948 (((-773) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) -(((-470 |#1|) (-13 (-718) (-450 (-695) |#1|)) (-757)) (T -470)) -NIL -((-2022 (((-584 |#2|) (-1086 |#1|) |#3|) 98 T ELT)) (-2023 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1086 |#1|)) (-1086 |#1|))) 114 T ELT)) (-2021 (((-1086 |#1|) (-631 |#1|)) 110 T ELT))) -(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2021 ((-1086 |#1|) (-631 |#1|))) (-15 -2022 ((-584 |#2|) (-1086 |#1|) |#3|)) (-15 -2023 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1086 |#1|)) (-1086 |#1|))))) (-312) (-312) (-13 (-312) (-756))) (T -471)) -((-2023 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1086 *6)) (-1086 *6))) (-4 *6 (-312)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756)))))) -((-2557 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-695) $ (-102)) 39 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 40 T ELT)) (-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) 35 T ELT)) (-2003 (((-633 (-101)) $) 37 T ELT)) (-2441 (((-85) $) 27 T ELT)) (-2442 (((-633 $) (-516) (-866)) 18 T ELT) (((-633 $) (-431) (-866)) 24 T ELT)) (-3948 (((-773) $) 48 T ELT)) (-1701 (($ $) 42 T ELT))) -(((-472) (-13 (-692 (-516)) (-553 (-773)) (-10 -8 (-15 -2442 ((-633 $) (-431) (-866)))))) (T -472)) -((-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472))))) -((-2529 (((-751 (-485))) 12 T ELT)) (-2528 (((-751 (-485))) 14 T ELT)) (-2516 (((-744 (-485))) 9 T ELT))) -(((-473) (-10 -7 (-15 -2516 ((-744 (-485)))) (-15 -2529 ((-751 (-485)))) (-15 -2528 ((-751 (-485)))))) (T -473)) -((-2528 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2529 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2516 (*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2027 (((-1074) $) 55 T ELT)) (-3262 (((-85) $) 51 T ELT)) (-3258 (((-1091) $) 52 T ELT)) (-3263 (((-85) $) 49 T ELT)) (-3537 (((-1074) $) 50 T ELT)) (-2026 (($ (-1074)) 56 T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2029 (($ $ (-584 (-1091))) 21 T ELT)) (-2032 (((-51) $) 23 T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2384 (($ $ (-584 (-1091)) (-1091)) 73 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-179) $) NIL T ELT)) (-2028 (($ $) 44 T ELT)) (-3255 (((-773) $) NIL T ELT)) (-3268 (((-85) $ $) NIL T ELT)) (-3802 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3259 (((-584 $) $) 30 T ELT)) (-2025 (((-1091) (-584 $)) 57 T ELT)) (-3974 (($ (-1074)) NIL T ELT) (($ (-1091)) 19 T ELT) (($ (-485)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1016) $) 12 T ELT) (($ (-1016)) 13 T ELT)) (-2024 (((-1091) (-1091) (-584 $)) 60 T ELT)) (-3948 (((-773) $) 54 T ELT)) (-3253 (($ $) 59 T ELT)) (-3254 (($ $) 58 T ELT)) (-2030 (($ $ (-584 $)) 66 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 29 T ELT)) (-2662 (($) 9 T CONST)) (-2668 (($) 11 T CONST)) (-3058 (((-85) $ $) 74 T ELT)) (-3951 (($ $ $) 82 T ELT)) (-3841 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-485)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3959 (((-485) $) NIL T ELT))) -(((-474) (-13 (-1017 (-1074) (-1091) (-485) (-179) (-773)) (-554 (-1016)) (-10 -8 (-15 -2032 ((-51) $)) (-15 -3974 ($ (-1016))) (-15 -2030 ($ $ (-584 $))) (-15 -2384 ($ $ (-584 (-1091)) (-1091))) (-15 -2029 ($ $ (-584 (-1091)))) (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 -3951 ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ (-485))) (-15 -2662 ($) -3954) (-15 -2668 ($) -3954) (-15 -2028 ($ $)) (-15 -2027 ((-1074) $)) (-15 -2026 ($ (-1074))) (-15 -2025 ((-1091) (-584 $))) (-15 -2024 ((-1091) (-1091) (-584 $)))))) (T -474)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474)))) (-2384 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-474)))) (-3841 (*1 *1 *1 *1) (-5 *1 (-474))) (* (*1 *1 *1 *1) (-5 *1 (-474))) (-3951 (*1 *1 *1 *1) (-5 *1 (-474))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) (-2662 (*1 *1) (-5 *1 (-474))) (-2668 (*1 *1) (-5 *1 (-474))) (-2028 (*1 *1 *1) (-5 *1 (-474))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))) (-2024 (*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474))))) -((-2031 (((-474) (-1091)) 15 T ELT)) (-2032 ((|#1| (-474)) 20 T ELT))) -(((-475 |#1|) (-10 -7 (-15 -2031 ((-474) (-1091))) (-15 -2032 (|#1| (-474)))) (-1130)) (T -475)) -((-2032 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130))))) -((-3455 ((|#2| |#2|) 17 T ELT)) (-3453 ((|#2| |#2|) 13 T ELT)) (-3456 ((|#2| |#2| (-485) (-485)) 20 T ELT)) (-3454 ((|#2| |#2|) 15 T ELT))) -(((-476 |#1| |#2|) (-10 -7 (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2| (-485) (-485)))) (-13 (-496) (-120)) (-1173 |#1|)) (T -476)) -((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1173 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))) -((-2035 (((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1091))) 32 T ELT)) (-2033 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1086 |#1|) |#3|) 53 T ELT)) (-2034 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|) 106 T ELT))) -(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2033 ((-584 |#2|) (-1086 |#1|) |#3|)) (-15 -2033 ((-584 |#2|) (-858 |#1|) |#3|)) (-15 -2034 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|)) (-15 -2035 ((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1091))))) (-392) (-312) (-13 (-312) (-756))) (T -477)) -((-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-312)) (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-13 (-312) (-756))))) (-2034 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))) -((-2038 ((|#2| |#2| |#1|) 17 T ELT)) (-2036 ((|#2| (-584 |#2|)) 30 T ELT)) (-2037 ((|#2| (-584 |#2|)) 51 T ELT))) -(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2036 (|#2| (-584 |#2|))) (-15 -2037 (|#2| (-584 |#2|))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1156 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -478)) -((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) -((-3734 (((-348 (-1086 |#4|)) (-1086 |#4|) (-1 (-348 (-1086 |#3|)) (-1086 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1086 |#3|)) (-1086 |#3|))) 213 T ELT))) -(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4| (-1 (-348 (-1086 |#3|)) (-1086 |#3|)))) (-15 -3734 ((-348 (-1086 |#4|)) (-1086 |#4|) (-1 (-348 (-1086 |#3|)) (-1086 |#3|))))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -479)) -((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5))))) -((-3455 ((|#4| |#4|) 74 T ELT)) (-3453 ((|#4| |#4|) 70 T ELT)) (-3456 ((|#4| |#4| (-485) (-485)) 76 T ELT)) (-3454 ((|#4| |#4|) 72 T ELT))) -(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4|)) (-15 -3456 (|#4| |#4| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1156 |#1|) (-662 |#1| |#2|) (-1173 |#3|)) (T -480)) -((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1156 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))) -((-3455 ((|#2| |#2|) 27 T ELT)) (-3453 ((|#2| |#2|) 23 T ELT)) (-3456 ((|#2| |#2| (-485) (-485)) 29 T ELT)) (-3454 ((|#2| |#2|) 25 T ELT))) -(((-481 |#1| |#2|) (-10 -7 (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1173 |#1|)) (T -481)) -((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3))))) -((-2039 (((-3 (-485) #1="failed") |#2| |#1| (-1 (-3 (-485) #1#) |#1|)) 18 T ELT) (((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|)) 14 T ELT) (((-3 (-485) #1#) |#2| (-485) (-1 (-3 (-485) #1#) |#1|)) 30 T ELT))) -(((-482 |#1| |#2|) (-10 -7 (-15 -2039 ((-3 (-485) #1="failed") |#2| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-1 (-3 (-485) #1#) |#1|)))) (-962) (-1156 |#1|)) (T -482)) -((-2039 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2039 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2039 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-485) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5))))) -((-2048 (($ $ $) 87 T ELT)) (-3973 (((-348 $) $) 50 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 62 T ELT)) (-3158 (((-485) $) 40 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 80 T ELT)) (-3025 (((-85) $) 24 T ELT)) (-3024 (((-350 (-485)) $) 78 T ELT)) (-3725 (((-85) $) 53 T ELT)) (-2041 (($ $ $ $) 94 T ELT)) (-1370 (($ $ $) 60 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 75 T ELT)) (-3447 (((-633 $) $) 70 T ELT)) (-2045 (($ $) 22 T ELT)) (-2040 (($ $ $) 92 T ELT)) (-3448 (($) 63 T CONST)) (-1368 (($ $) 56 T ELT)) (-3734 (((-348 $) $) 48 T ELT)) (-2676 (((-85) $) 15 T ELT)) (-1608 (((-695) $) 30 T ELT)) (-3760 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3402 (($ $) 16 T ELT)) (-3974 (((-485) $) NIL T ELT) (((-474) $) 39 T ELT) (((-801 (-485)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3128 (((-695)) 9 T CONST)) (-2050 (((-85) $ $) 19 T ELT)) (-3103 (($ $ $) 58 T ELT))) -(((-483 |#1|) (-10 -7 (-15 -2040 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -3026 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2050 ((-85) |#1| |#1|)) (-15 -2676 ((-85) |#1|)) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -3974 ((-179) |#1|)) (-15 -3974 ((-330) |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3974 ((-485) |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3725 ((-85) |#1|)) (-15 -3128 ((-695)) -3954)) (-484)) (T -483)) -((-3128 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-2048 (($ $ $) 102 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2043 (($ $ $ $) 91 T ELT)) (-3777 (($ $) 66 T ELT)) (-3973 (((-348 $) $) 67 T ELT)) (-1609 (((-85) $ $) 145 T ELT)) (-3625 (((-485) $) 134 T ELT)) (-2443 (($ $ $) 105 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) "failed") $) 126 T ELT)) (-3158 (((-485) $) 127 T ELT)) (-2566 (($ $ $) 149 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 124 T ELT) (((-631 (-485)) (-631 $)) 123 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 99 T ELT)) (-3025 (((-85) $) 101 T ELT)) (-3024 (((-350 (-485)) $) 100 T ELT)) (-2996 (($) 98 T ELT) (($ $) 97 T ELT)) (-2565 (($ $ $) 148 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 143 T ELT)) (-3725 (((-85) $) 68 T ELT)) (-2041 (($ $ $ $) 89 T ELT)) (-2049 (($ $ $) 103 T ELT)) (-3188 (((-85) $) 136 T ELT)) (-1370 (($ $ $) 114 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2675 (((-85) $) 109 T ELT)) (-3447 (((-633 $) $) 111 T ELT)) (-3189 (((-85) $) 135 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 152 T ELT)) (-2042 (($ $ $ $) 90 T ELT)) (-2533 (($ $ $) 142 T ELT)) (-2859 (($ $ $) 141 T ELT)) (-2045 (($ $) 93 T ELT)) (-3835 (($ $) 106 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 122 T ELT) (((-631 (-485)) (-1180 $)) 121 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2040 (($ $ $) 88 T ELT)) (-3448 (($) 110 T CONST)) (-2047 (($ $) 95 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1368 (($ $) 115 T ELT)) (-3734 (((-348 $) $) 65 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 150 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 144 T ELT)) (-2676 (((-85) $) 108 T ELT)) (-1608 (((-695) $) 146 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 147 T ELT)) (-3760 (($ $) 132 T ELT) (($ $ (-695)) 130 T ELT)) (-2046 (($ $) 94 T ELT)) (-3402 (($ $) 96 T ELT)) (-3974 (((-485) $) 128 T ELT) (((-474) $) 119 T ELT) (((-801 (-485)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 125 T ELT)) (-3128 (((-695)) 40 T CONST)) (-2050 (((-85) $ $) 104 T ELT)) (-3103 (($ $ $) 116 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2696 (($) 107 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2044 (($ $ $ $) 92 T ELT)) (-3385 (($ $) 133 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $) 131 T ELT) (($ $ (-695)) 129 T ELT)) (-2568 (((-85) $ $) 140 T ELT)) (-2569 (((-85) $ $) 138 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 139 T ELT)) (-2687 (((-85) $ $) 137 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-485) $) 120 T ELT))) -(((-484) (-113)) (T -484)) -((-2675 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2696 (*1 *1) (-4 *1 (-484))) (-3835 (*1 *1 *1) (-4 *1 (-484))) (-2443 (*1 *1 *1 *1) (-4 *1 (-484))) (-2050 (*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2049 (*1 *1 *1 *1) (-4 *1 (-484))) (-2048 (*1 *1 *1 *1) (-4 *1 (-484))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-2996 (*1 *1) (-4 *1 (-484))) (-2996 (*1 *1 *1) (-4 *1 (-484))) (-3402 (*1 *1 *1) (-4 *1 (-484))) (-2047 (*1 *1 *1) (-4 *1 (-484))) (-2046 (*1 *1 *1) (-4 *1 (-484))) (-2045 (*1 *1 *1) (-4 *1 (-484))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2040 (*1 *1 *1 *1) (-4 *1 (-484)))) -(-13 (-1135) (-258) (-741) (-190) (-554 (-485)) (-951 (-485)) (-581 (-485)) (-554 (-474)) (-554 (-801 (-485))) (-797 (-485)) (-116) (-934) (-120) (-1067) (-10 -8 (-15 -2675 ((-85) $)) (-15 -2676 ((-85) $)) (-6 -3996) (-15 -2696 ($)) (-15 -3835 ($ $)) (-15 -2443 ($ $ $)) (-15 -2050 ((-85) $ $)) (-15 -2049 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $)) (-15 -2996 ($)) (-15 -2996 ($ $)) (-15 -3402 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $)) (-6 -3995))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-116) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-474)) . T) ((-554 (-485)) . T) ((-554 (-801 (-485))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-485)) . T) ((-833) . T) ((-934) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 8 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 77 T ELT)) (-2064 (($ $) 78 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 31 T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL T ELT)) (-2443 (($ $ $) 71 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) 45 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 53 T ELT) (((-631 (-485)) (-631 $)) 49 T ELT)) (-3469 (((-3 $ #1#) $) 74 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-350 (-485)) $) NIL T ELT)) (-2996 (($) 55 T ELT) (($ $) 56 T ELT)) (-2565 (($ $ $) 70 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 46 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) 110 T ELT)) (-2411 (((-85) $) 9 T ELT)) (-2675 (((-85) $) 64 T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-3189 (((-85) $) 21 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 32 T ELT)) (-2533 (($ $ $) 67 T ELT)) (-2859 (($ $ $) 66 T ELT)) (-2045 (($ $) NIL T ELT)) (-3835 (($ $) 29 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) 44 T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2047 (($ $) 15 T ELT)) (-3245 (((-1034) $) 19 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 109 T ELT)) (-3146 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3734 (((-348 $) $) 95 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 93 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) 65 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 69 T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 17 T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-485) $) 28 T ELT) (((-474) $) 41 T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3948 (((-773) $) 26 T ELT) (($ (-485)) 27 T ELT) (($ $) NIL T ELT) (($ (-485)) 27 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) 12 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) 112 T ELT)) (-2044 (($ $ $ $) 30 T ELT)) (-3385 (($ $) 54 T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 11 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) 59 T ELT)) (-2569 (((-85) $ $) 57 T ELT)) (-3058 (((-85) $ $) 7 T ELT)) (-2686 (((-85) $ $) 58 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-3839 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3841 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-485) $) 61 T ELT))) -(((-485) (-13 (-484) (-10 -7 (-6 -3984) (-6 -3989) (-6 -3985)))) (T -485)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-486) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -486)) -((-3726 (*1 *1) (-5 *1 (-486)))) -((-485) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-487) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -487)) -((-3726 (*1 *1) (-5 *1 (-487)))) -((-485) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-488) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -488)) -((-3726 (*1 *1) (-5 *1 (-488)))) -((-485) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-489) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -489)) -((-3726 (*1 *1) (-5 *1 (-489)))) -((-485) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-490 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|)) (T -490)) -NIL -((-2051 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 50 T ELT))) -(((-491 |#1| |#2|) (-10 -7 (-15 -2051 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-496) (-13 (-27) (-364 |#1|))) (T -491)) -((-2051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) (-5 *1 (-491 *6 *3))))) -((-2053 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2054 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2052 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-492 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-496) (-951 (-485))) (-13 (-27) (-364 |#1|)) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -492)) -((-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *7 (-1156 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) -((-2057 (((-85) (-485) (-485)) 12 T ELT)) (-2055 (((-485) (-485)) 7 T ELT)) (-2056 (((-485) (-485) (-485)) 10 T ELT))) -(((-493) (-10 -7 (-15 -2055 ((-485) (-485))) (-15 -2056 ((-485) (-485) (-485))) (-15 -2057 ((-85) (-485) (-485))))) (T -493)) -((-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))) (-2056 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2606 ((|#1| $) 77 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3494 (($ $) 107 T ELT)) (-3641 (($ $) 90 T ELT)) (-2485 ((|#1| $) 78 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 89 T ELT)) (-3492 (($ $) 106 T ELT)) (-3640 (($ $) 91 T ELT)) (-3496 (($ $) 105 T ELT)) (-3639 (($ $) 92 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) "failed") $) 85 T ELT)) (-3158 (((-485) $) 86 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2060 (($ |#1| |#1|) 82 T ELT)) (-3188 (((-85) $) 76 T ELT)) (-3629 (($) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 88 T ELT)) (-3189 (((-85) $) 75 T ELT)) (-2533 (($ $ $) 118 T ELT)) (-2859 (($ $ $) 119 T ELT)) (-3944 (($ $) 114 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2061 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-485))) 80 T ELT)) (-2059 ((|#1| $) 79 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (($ $) 115 T ELT)) (-3497 (($ $) 104 T ELT)) (-3638 (($ $) 93 T ELT)) (-3495 (($ $) 103 T ELT)) (-3637 (($ $) 94 T ELT)) (-3493 (($ $) 102 T ELT)) (-3636 (($ $) 95 T ELT)) (-2058 (((-85) $ |#1|) 74 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 84 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 113 T ELT)) (-3488 (($ $) 101 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3498 (($ $) 112 T ELT)) (-3486 (($ $) 100 T ELT)) (-3502 (($ $) 111 T ELT)) (-3490 (($ $) 99 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 110 T ELT)) (-3491 (($ $) 98 T ELT)) (-3501 (($ $) 109 T ELT)) (-3489 (($ $) 97 T ELT)) (-3499 (($ $) 108 T ELT)) (-3487 (($ $) 96 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 120 T ELT)) (-2569 (((-85) $ $) 122 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 121 T ELT)) (-2687 (((-85) $ $) 123 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-485))) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-494 |#1|) (-113) (-13 (-347) (-1116))) (T -494)) -((-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2061 (*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2061 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) (-2058 (*1 *2 *1 *3) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85))))) -(-13 (-392) (-757) (-1116) (-916) (-951 (-485)) (-10 -8 (-6 -3772) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1|)) (-15 -2061 ($ (-350 (-485)))) (-15 -2059 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -2606 (|t#1| $)) (-15 -3188 ((-85) $)) (-15 -3189 ((-85) $)) (-15 -2058 ((-85) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-392) . T) ((-433) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) . T) ((-1119) . T) ((-1130) . T)) -((-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 9 T ELT)) (-2064 (($ $) 11 T ELT)) (-2062 (((-85) $) 20 T ELT)) (-3469 (((-3 $ "failed") $) 16 T ELT)) (-2063 (((-85) $ $) 22 T ELT))) -(((-495 |#1|) (-10 -7 (-15 -2062 ((-85) |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1776 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3469 ((-3 |#1| "failed") |#1|))) (-496)) (T -495)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-496) (-113)) (T -496)) -((-3468 (*1 *1 *1 *1) (|partial| -4 *1 (-496))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1776 *1) (|:| -3984 *1) (|:| |associate| *1))) (-4 *1 (-496)))) (-2064 (*1 *1 *1) (-4 *1 (-496))) (-2063 (*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) -(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3468 ((-3 $ "failed") $ $)) (-15 -2065 ((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $)) (-15 -2064 ($ $)) (-15 -2063 ((-85) $ $)) (-15 -2062 ((-85) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2067 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1091) (-584 |#2|)) 38 T ELT)) (-2069 (((-520 |#2|) |#2| (-1091)) 63 T ELT)) (-2068 (((-3 |#2| #1#) |#2| (-1091)) 156 T ELT)) (-2070 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2066 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) |#2|) 41 T ELT))) -(((-497 |#1| |#2|) (-10 -7 (-15 -2066 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1091) |#2|)) (-15 -2067 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1091) (-584 |#2|))) (-15 -2068 ((-3 |#2| #1#) |#2| (-1091))) (-15 -2069 ((-520 |#2|) |#2| (-1091))) (-15 -2070 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -497)) -((-2070 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2068 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-2067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3)))) (-2066 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) -((-3973 (((-348 |#1|) |#1|) 17 T ELT)) (-3734 (((-348 |#1|) |#1|) 32 T ELT)) (-2072 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2071 (((-348 |#1|) |#1|) 59 T ELT))) -(((-498 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -2071 ((-348 |#1|) |#1|)) (-15 -2072 ((-3 |#1| "failed") |#1|))) (-484)) (T -498)) -((-2072 (*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3973 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))) -((-3085 (((-1086 (-350 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|)) 35 T ELT)) (-2075 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|)) 115 T ELT)) (-2073 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 85 T ELT) (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 55 T ELT)) (-2074 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1086 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|)) 114 T ELT)) (-2076 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|)) 116 T ELT)) (-2077 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3086 ((|#2| (-1086 (-350 (-1086 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3081 (((-1086 (-350 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|)) 34 T ELT))) -(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -3085 ((-1086 (-350 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|))) (-15 -3086 (|#2| (-1086 (-350 (-1086 |#2|))) (-551 |#2|) |#2|)) (-15 -3081 ((-1086 (-350 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1116)) (-1014)) (T -499)) -((-2077 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1086 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2077 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1086 (-350 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1014)))) (-3086 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1086 (-350 (-1086 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) (-3085 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1086 (-350 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1091))) (-5 *5 (-350 (-1086 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1091))) (-5 *5 (-1086 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))) -((-2087 (((-485) (-485) (-695)) 87 T ELT)) (-2086 (((-485) (-485)) 85 T ELT)) (-2085 (((-485) (-485)) 82 T ELT)) (-2084 (((-485) (-485)) 89 T ELT)) (-2807 (((-485) (-485) (-485)) 67 T ELT)) (-2083 (((-485) (-485) (-485)) 64 T ELT)) (-2082 (((-350 (-485)) (-485)) 29 T ELT)) (-2081 (((-485) (-485)) 34 T ELT)) (-2080 (((-485) (-485)) 76 T ELT)) (-2804 (((-485) (-485)) 47 T ELT)) (-2079 (((-584 (-485)) (-485)) 81 T ELT)) (-2078 (((-485) (-485) (-485) (-485) (-485)) 60 T ELT)) (-2800 (((-350 (-485)) (-485)) 56 T ELT))) -(((-500) (-10 -7 (-15 -2800 ((-350 (-485)) (-485))) (-15 -2078 ((-485) (-485) (-485) (-485) (-485))) (-15 -2079 ((-584 (-485)) (-485))) (-15 -2804 ((-485) (-485))) (-15 -2080 ((-485) (-485))) (-15 -2081 ((-485) (-485))) (-15 -2082 ((-350 (-485)) (-485))) (-15 -2083 ((-485) (-485) (-485))) (-15 -2807 ((-485) (-485) (-485))) (-15 -2084 ((-485) (-485))) (-15 -2085 ((-485) (-485))) (-15 -2086 ((-485) (-485))) (-15 -2087 ((-485) (-485) (-695))))) (T -500)) -((-2087 (*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2807 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2083 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2078 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) -((-2088 (((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -501)) -((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3))) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) -((-2088 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-502 |#1| |#2|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -502)) -((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6))))) -((-2091 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2089 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2090 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2092 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091))) 200 T ELT)) (-2093 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091)) 209 (|has| |#3| (-601 |#2|)) ELT))) -(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2089 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-15 -2090 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-15 -2091 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-15 -2092 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)))) (IF (|has| |#3| (-601 |#2|)) (-15 -2093 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1116)) (-1014)) (T -503)) -((-2093 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2092 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-4 *2 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))) (-2091 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))) (-2090 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))) (-2089 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014))))) -((-2094 (((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1091)) 64 T ELT)) (-2096 (((-3 |#2| #1="failed") |#2| (-1091) (-751 |#2|) (-751 |#2|)) 174 (-12 (|has| |#2| (-1054)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 145 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)) (-2095 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 156 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT))) -(((-504 |#1| |#2|) (-10 -7 (-15 -2094 ((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1091))) (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -2096 ((-3 |#2| #1#) |#2| (-1091) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-951 (-485)) (-392) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -504)) -((-2096 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054)) (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *1 (-504 *5 *2)))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) -((-2099 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-584 (-350 |#2|))) 41 T ELT)) (-3814 (((-520 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2097 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2098 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT))) -(((-505 |#1| |#2|) (-10 -7 (-15 -3814 ((-520 (-350 |#2|)) (-350 |#2|))) (-15 -2097 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2098 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2099 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -505)) -((-2099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *5 *6)))) (-2098 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))) (-2097 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4)))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5))))) -((-2100 (((-3 (-485) "failed") |#1|) 14 T ELT)) (-3261 (((-85) |#1|) 13 T ELT)) (-3257 (((-485) |#1|) 9 T ELT))) -(((-506 |#1|) (-10 -7 (-15 -3257 ((-485) |#1|)) (-15 -3261 ((-85) |#1|)) (-15 -2100 ((-3 (-485) "failed") |#1|))) (-951 (-485))) (T -506)) -((-2100 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) (-3257 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))) -((-2103 (((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1="failed") (-350 (-858 |#1|)) (-1091) (-584 (-350 (-858 |#1|)))) 48 T ELT)) (-2101 (((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1091)) 28 T ELT)) (-2102 (((-3 (-350 (-858 |#1|)) #1#) (-350 (-858 |#1|)) (-1091)) 23 T ELT)) (-2104 (((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))) 35 T ELT))) -(((-507 |#1|) (-10 -7 (-15 -2101 ((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -2102 ((-3 (-350 (-858 |#1|)) #1="failed") (-350 (-858 |#1|)) (-1091))) (-15 -2103 ((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1#) (-350 (-858 |#1|)) (-1091) (-584 (-350 (-858 |#1|))))) (-15 -2104 ((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))))) (-13 (-496) (-951 (-485)) (-120))) (T -507)) -((-2104 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5))))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))) (-2103 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-507 *6)))) (-2102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5)))))) -((-2570 (((-85) $ $) 77 T ELT)) (-3190 (((-85) $) 49 T ELT)) (-2606 ((|#1| $) 39 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 81 T ELT)) (-3494 (($ $) 142 T ELT)) (-3641 (($ $) 120 T ELT)) (-2485 ((|#1| $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-3492 (($ $) 144 T ELT)) (-3640 (($ $) 116 T ELT)) (-3496 (($ $) 146 T ELT)) (-3639 (($ $) 124 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) 95 T ELT)) (-3158 (((-485) $) 97 T ELT)) (-3469 (((-3 $ #1#) $) 80 T ELT)) (-2060 (($ |#1| |#1|) 35 T ELT)) (-3188 (((-85) $) 44 T ELT)) (-3629 (($) 106 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 56 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3189 (((-85) $) 46 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3944 (($ $) 108 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2061 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-485))) 94 T ELT)) (-2059 ((|#1| $) 36 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 82 T ELT)) (-3945 (($ $) 110 T ELT)) (-3497 (($ $) 150 T ELT)) (-3638 (($ $) 122 T ELT)) (-3495 (($ $) 152 T ELT)) (-3637 (($ $) 126 T ELT)) (-3493 (($ $) 148 T ELT)) (-3636 (($ $) 118 T ELT)) (-2058 (((-85) $ |#1|) 42 T ELT)) (-3948 (((-773) $) 102 T ELT) (($ (-485)) 85 T ELT) (($ $) NIL T ELT) (($ (-485)) 85 T ELT)) (-3128 (((-695)) 104 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 164 T ELT)) (-3488 (($ $) 132 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 162 T ELT)) (-3486 (($ $) 128 T ELT)) (-3502 (($ $) 160 T ELT)) (-3490 (($ $) 140 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 158 T ELT)) (-3491 (($ $) 138 T ELT)) (-3501 (($ $) 156 T ELT)) (-3489 (($ $) 134 T ELT)) (-3499 (($ $) 154 T ELT)) (-3487 (($ $) 130 T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 50 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 48 T ELT)) (-3839 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3841 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-485))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-508 |#1|) (-494 |#1|) (-13 (-347) (-1116))) (T -508)) -NIL -((-2706 (((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485))) 27 T ELT))) -(((-509) (-10 -7 (-15 -2706 ((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485)))))) (T -509)) -((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485))) (-5 *1 (-509))))) -((-2105 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091)) 19 T ELT)) (-2108 (((-584 (-551 |#2|)) (-584 |#2|) (-1091)) 23 T ELT)) (-3236 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2109 ((|#2| |#2| (-1091)) 59 (|has| |#1| (-496)) ELT)) (-2110 ((|#2| |#2| (-1091)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-392))) ELT)) (-2107 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091)) 25 T ELT)) (-2106 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2111 (((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1091))) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-392)) (|has| |#1| (-797 (-485)))) ELT))) -(((-510 |#1| |#2|) (-10 -7 (-15 -2105 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091))) (-15 -2106 ((-551 |#2|) (-584 (-551 |#2|)))) (-15 -2107 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091))) (-15 -3236 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-15 -2108 ((-584 (-551 |#2|)) (-584 |#2|) (-1091))) (IF (|has| |#1| (-496)) (-15 -2109 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-239)) (PROGN (-15 -2110 (|#2| |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1091))) (-15 -2111 ((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1014) (-364 |#1|)) (T -510)) -((-2111 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) (-5 *1 (-510 *7 *3)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-364 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))) (-3236 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014)) (-5 *1 (-510 *3 *4)))) (-2107 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-364 *4)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *5))))) -((-2114 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-485) |#1| |#1|)) 199 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|))) 174 T ELT)) (-2120 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|))) 171 T ELT)) (-2121 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2112 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2119 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2123 (((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2124 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|))) 178 T ELT)) (-2122 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 166 T ELT)) (-2113 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 189 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|)) 210 T ELT))) -(((-511 |#1| |#2|) (-10 -7 (-15 -2112 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2113 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2114 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-485) |#1| |#1|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|)))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|)))) (-15 -2119 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2120 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|)))) (-15 -2121 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2122 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2123 ((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2124 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -511)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))) (-485) *4)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))) (-2121 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1156 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *7)))) (-2119 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3139 *7) (|:| |sol?| (-85))) (-485) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) -((-2125 (((-3 |#2| "failed") |#2| (-1091) (-1091)) 10 T ELT))) -(((-512 |#1| |#2|) (-10 -7 (-15 -2125 ((-3 |#2| "failed") |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-1054) (-29 |#1|))) (T -512)) -((-2125 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-1054) (-29 *4)))))) -((-2557 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2556 (((-695) $ (-102)) 28 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-513) (-113)) (T -513)) -NIL -(-13 (-466) (-771)) -(((-147) . T) ((-466) . T) ((-771) . T)) -((-2557 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-695) $ (-102)) NIL T ELT)) (-2559 (((-633 (-101)) $ (-101)) NIL T ELT)) (-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) NIL T ELT)) (-2560 (((-85) $) NIL T ELT)) (-2126 (($ (-338)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT))) -(((-514) (-13 (-513) (-553 (-773)) (-10 -8 (-15 -2126 ($ (-338))) (-15 -2126 ($ (-1074))) (-15 -2560 ((-85) $))))) (T -514)) -((-2126 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3462 (($) 7 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-2129 (($) 6 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 15 T ELT)) (-2127 (($) 9 T CONST)) (-2128 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) -(((-515) (-13 (-1014) (-10 -8 (-15 -2129 ($) -3954) (-15 -3462 ($) -3954) (-15 -2128 ($) -3954) (-15 -2127 ($) -3954)))) (T -515)) -((-2129 (*1 *1) (-5 *1 (-515))) (-3462 (*1 *1) (-5 *1 (-515))) (-2128 (*1 *1) (-5 *1 (-515))) (-2127 (*1 *1) (-5 *1 (-515)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2130 (((-633 $) (-431)) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2132 (($ (-1074)) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 33 T ELT)) (-2131 (((-166 4 (-101)) $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 26 T ELT))) -(((-516) (-13 (-1014) (-10 -8 (-15 -2132 ($ (-1074))) (-15 -2131 ((-166 4 (-101)) $)) (-15 -2130 ((-633 $) (-431)))))) (T -516)) -((-2132 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) 73 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) 79 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 64 T ELT)) (-2614 (($ $) 43 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3774 (((-695) $) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 (((-485)) 37 T ELT)) (-2615 (((-485) $) 41 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3771 (($ $ (-485)) 24 T ELT)) (-3468 (((-3 $ #1#) $ $) 70 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) 17 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 71 T ELT)) (-2617 (((-1070 (-485)) $) 19 T ELT)) (-2893 (($ $) 26 T ELT)) (-3948 (((-773) $) 100 T ELT) (($ (-485)) 59 T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) 15 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-485) $ (-485)) 46 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 44 T CONST)) (-2668 (($) 21 T CONST)) (-3058 (((-85) $ $) 51 T ELT)) (-3839 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3841 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-517 |#1| |#2|) (-780 |#1|) (-485) (-85)) (T -517)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 30 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 $ #1#) $) 95 T ELT)) (-3158 (($ $) 94 T ELT)) (-1796 (($ (-1180 $)) 93 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 47 T ELT)) (-2996 (($) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 61 T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1768 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 49 (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3134 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1086 $) $) 104 T ELT)) (-2011 (((-831) $) 67 T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2401 (($ (-831)) 60 T ELT)) (-3933 (((-85) $) 87 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) 28 (|has| $ (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 54 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3950 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3187 (((-1086 $)) 102 T ELT)) (-1675 (($) 66 T ELT)) (-1630 (($) 50 (|has| $ (-320)) ELT)) (-3226 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) 91 T ELT)) (-3974 (((-485) $) 42 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3128 (((-695)) 51 T CONST)) (-1266 (((-85) $ $) 107 T ELT)) (-2013 (((-1180 $) (-831)) 97 T ELT) (((-1180 $)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 31 T CONST)) (-2668 (($) 27 T CONST)) (-3930 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-518 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -518)) -NIL -((-2133 (((-1186) (-1074)) 10 T ELT))) -(((-519) (-10 -7 (-15 -2133 ((-1186) (-1074))))) (T -519)) -((-2133 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 77 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2137 ((|#1| $) 30 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2135 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2138 (($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2136 (((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2834 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1091)) 49 (|has| |#1| (-951 (-1091))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2134 (((-85) $) 35 T ELT)) (-3760 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1091)) 90 (|has| |#1| (-810 (-1091))) ELT)) (-3948 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 16 T ELT) (($ (-350 (-485)) $) 41 T ELT) (($ $ (-350 (-485))) NIL T ELT))) -(((-520 |#1|) (-13 (-655 (-350 (-485))) (-951 |#1|) (-10 -8 (-15 -2138 ($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2137 (|#1| $)) (-15 -2136 ((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -2135 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2134 ((-85) $)) (-15 -2834 ($ |#1| |#1|)) (-15 -3760 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1091))) (-15 -3760 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-951 (-1091))) (-15 -2834 ($ |#1| (-1091))) |%noBranch|))) (-312)) (T -520)) -((-2138 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-520 *2)))) (-2137 (*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2834 (*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3760 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) (-2834 (*1 *1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312))))) -((-3960 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|)) 30 T ELT))) -(((-521 |#1| |#2|) (-10 -7 (-15 -3960 ((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|))) (-15 -3960 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3960 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3960 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -521)) -((-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-521 *5 *6)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6))) (-5 *1 (-521 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6))))) -((-3420 (((-520 |#2|) (-520 |#2|)) 42 T ELT)) (-3965 (((-584 |#2|) (-520 |#2|)) 44 T ELT)) (-2149 ((|#2| (-520 |#2|)) 50 T ELT))) -(((-522 |#1| |#2|) (-10 -7 (-15 -3420 ((-520 |#2|) (-520 |#2|))) (-15 -3965 ((-584 |#2|) (-520 |#2|))) (-15 -2149 (|#2| (-520 |#2|)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-29 |#1|) (-1116))) (T -522)) -((-2149 (*1 *2 *3) (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) (-5 *1 (-522 *4 *5)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2141 (($ (-447) (-533)) 14 T ELT)) (-2139 (($ (-447) (-533) $) 16 T ELT)) (-2140 (($ (-447) (-533)) 15 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) 7 T ELT) (((-1096) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-523) (-13 (-1014) (-430 (-1096)) (-10 -8 (-15 -2141 ($ (-447) (-533))) (-15 -2140 ($ (-447) (-533))) (-15 -2139 ($ (-447) (-533) $))))) (T -523)) -((-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2139 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) -((-2145 (((-85) |#1|) 16 T ELT)) (-2146 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2143 (((-2 (|:| -2696 |#1|) (|:| -2402 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2142 (((-85) |#1| (-695)) 19 T ELT)) (-2147 ((|#1| |#1|) 41 T ELT)) (-2144 ((|#1| |#1| (-695)) 44 T ELT))) -(((-524 |#1|) (-10 -7 (-15 -2142 ((-85) |#1| (-695))) (-15 -2143 ((-3 |#1| #1="failed") |#1| (-695))) (-15 -2143 ((-2 (|:| -2696 |#1|) (|:| -2402 (-695))) |#1|)) (-15 -2144 (|#1| |#1| (-695))) (-15 -2145 ((-85) |#1|)) (-15 -2146 ((-3 |#1| #1#) |#1|)) (-15 -2147 (|#1| |#1|))) (-484)) (T -524)) -((-2147 (*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2146 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2144 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2696 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) -((-2148 (((-1086 |#1|) (-831)) 44 T ELT))) -(((-525 |#1|) (-10 -7 (-15 -2148 ((-1086 |#1|) (-831)))) (-299)) (T -525)) -((-2148 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299))))) -((-3420 (((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|)))) 27 T ELT)) (-3814 (((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1091)) 33 (|has| |#1| (-120)) ELT)) (-3965 (((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|)))) 19 T ELT)) (-2150 (((-265 |#1|) (-350 (-858 |#1|)) (-1091)) 31 (|has| |#1| (-120)) ELT)) (-2149 (((-265 |#1|) (-520 (-350 (-858 |#1|)))) 21 T ELT))) -(((-526 |#1|) (-10 -7 (-15 -3420 ((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|))))) (-15 -3965 ((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|))))) (-15 -2149 ((-265 |#1|) (-520 (-350 (-858 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3814 ((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -2150 ((-265 |#1|) (-350 (-858 |#1|)) (-1091)))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-581 (-485)))) (T -526)) -((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5)) (-5 *1 (-526 *5)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-526 *4)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4))) (-5 *1 (-526 *4)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-520 (-350 (-858 *3)))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3))))) -((-2152 (((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-831))) 81 T ELT) (((-631 (-485)) (-584 (-831)) (-814 (-485))) 74 T ELT)) (-2151 (((-695) (-584 (-831))) 71 T ELT))) -(((-527) (-10 -7 (-15 -2151 ((-695) (-584 (-831)))) (-15 -2152 ((-631 (-485)) (-584 (-831)) (-814 (-485)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485))))))) (T -527)) -((-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-527)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527))))) -((-3215 (((-584 |#5|) |#5| (-85)) 97 T ELT)) (-2153 (((-85) |#5| (-584 |#5|)) 34 T ELT))) -(((-528 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3215 ((-584 |#5|) |#5| (-85))) (-15 -2153 ((-85) |#5| (-584 |#5|)))) (-13 (-258) (-120)) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -528)) -((-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-529) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -529)) -((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529))))) -((-3534 (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|)) 32 T ELT))) -(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|))) (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|)) (T -530)) -((-3534 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3534 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *6 *4 *7 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 71 T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 58 T ELT) (($ $ (-485) (-485)) 59 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 65 T ELT)) (-2184 (($ $) 109 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2182 (((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-350 (-485))) 232 T ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 36 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3774 (((-485) $) 63 T ELT) (((-485) $ (-485)) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3779 (($ $ (-831)) 83 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 80 T ELT)) (-3939 (((-85) $) 26 T ELT)) (-2895 (($ |#1| (-485)) 22 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2188 (($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 13 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2185 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2183 (($ $ $) 116 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2186 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 15 T ELT)) (-2187 (((-940 (-751 (-485))) $) 14 T ELT)) (-3771 (($ $ (-485)) 47 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-3802 ((|#1| $ (-485)) 62 T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3950 (((-485) $) NIL T ELT)) (-2893 (($ $) 48 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 29 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ (-485)) 61 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 39 T CONST)) (-3775 ((|#1| $) NIL T ELT)) (-2163 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2175 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2165 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2177 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2161 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2173 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2180 (($ $ (-350 (-485))) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2181 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2178 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2179 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2160 (($ $) 195 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2172 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2162 (($ $) 193 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2174 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2164 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2176 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2157 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2169 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2159 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2171 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2155 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2167 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2154 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2166 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2156 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2168 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2158 (($ $) 199 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2170 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3772 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 40 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3058 (((-85) $ $) 73 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3841 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-485) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-531 |#1|) (-13 (-1159 |#1| (-485)) (-10 -8 (-15 -2188 ($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -2187 ((-940 (-751 (-485))) $)) (-15 -2186 ((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $)) (-15 -3820 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -3939 ((-85) $)) (-15 -3817 ($ (-1 |#1| (-485)) $)) (-15 -2185 ((-3 $ "failed") $ $ (-85))) (-15 -2184 ($ $)) (-15 -2183 ($ $ $)) (-15 -2182 ((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-350 (-485)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (-15 -2181 ($ $ |#1|)) (-15 -2180 ($ $ (-350 (-485)))) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $))) |%noBranch|))) (-962)) (T -531)) -((-3939 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2188 (*1 *1 *2 *3) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-531 *4)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2185 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2183 (*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2182 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-350 (-485))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) (-4 *3 (-962)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 62 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3820 (($ (-1070 |#1|)) 9 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) 44 T ELT)) (-2894 (((-85) $) 56 T ELT)) (-3774 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 46 (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-1070 |#1|) $) 25 T ELT)) (-3128 (((-695)) 55 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 14 T CONST)) (-3058 (((-85) $ $) 24 T ELT)) (-3839 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3841 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-485)) 38 T ELT))) -(((-532 |#1|) (-13 (-962) (-82 |#1| |#1|) (-10 -8 (-15 -3819 ((-1070 |#1|) $)) (-15 -3820 ($ (-1070 |#1|))) (-15 -2894 ((-85) $)) (-15 -3774 ((-695) $)) (-15 -3774 ((-695) $ (-695))) (-15 * ($ $ (-485))) (IF (|has| |#1| (-496)) (-6 (-496)) |%noBranch|))) (-962)) (T -532)) -((-3819 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3774 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2191 (($) 8 T CONST)) (-2192 (($) 7 T CONST)) (-2189 (($ $ (-584 $)) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2193 (($) 6 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) 15 T ELT) (((-1096) $) 10 T ELT)) (-2190 (($) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-533) (-13 (-1014) (-430 (-1096)) (-10 -8 (-15 -2193 ($) -3954) (-15 -2192 ($) -3954) (-15 -2191 ($) -3954) (-15 -2190 ($) -3954) (-15 -2189 ($ $ (-584 $)))))) (T -533)) -((-2193 (*1 *1) (-5 *1 (-533))) (-2192 (*1 *1) (-5 *1 (-533))) (-2191 (*1 *1) (-5 *1 (-533))) (-2190 (*1 *1) (-5 *1 (-533))) (-2189 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533))))) -((-3960 (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 15 T ELT))) -(((-534 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3960 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))))) (-1130) (-1130)) (T -534)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6))))) -((-3960 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)) 20 T ELT) (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|)) 19 T ELT) (((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|)) 18 T ELT))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|))) (-15 -3960 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|))) (-15 -3960 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -535)) -((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) (-5 *1 (-535 *6 *7 *8))))) -((-2198 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))) 57 T ELT)) (-2197 (((-142 |#2|) |#3|) 122 T ELT)) (-2194 ((|#3| (-142 |#2|)) 46 T ELT)) (-2195 ((|#2| |#3|) 21 T ELT)) (-2196 ((|#3| |#2|) 35 T ELT))) -(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2194 (|#3| (-142 |#2|))) (-15 -2195 (|#2| |#3|)) (-15 -2196 (|#3| |#2|)) (-15 -2197 ((-142 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))))) (-496) (-13 (-364 |#1|) (-916) (-1116)) (-13 (-364 (-142 |#1|)) (-916) (-1116))) (T -536)) -((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091))) (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1116))) (-4 *5 (-496)) (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1116))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1116))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2))))) -((-3712 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3459 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3532 (((-1070 |#1|) $) 20 T ELT)) (-3948 (((-773) $) 25 T ELT))) -(((-537 |#1|) (-13 (-553 (-773)) (-10 -8 (-15 -3960 ($ (-1 |#1| |#1|) $)) (-15 -3458 ($ (-1 (-85) |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3712 ($ (-1 (-85) |#1|) $)) (-15 -3459 ($ (-1 |#1| |#1|) |#1|)) (-15 -3532 ((-1070 |#1|) $)))) (-1130)) (T -537)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3459 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130))))) -((-2199 (((-1186) $ |#2| |#2|) 34 T ELT)) (-2201 ((|#2| $) 23 T ELT)) (-2202 ((|#2| $) 21 T ELT)) (-3960 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3803 ((|#3| $) 26 T ELT)) (-2200 (($ $ |#3|) 32 T ELT)) (-2203 (((-85) |#3| $) 17 T ELT)) (-2206 (((-584 |#3|) $) 15 T ELT)) (-3802 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-1186) |#1| |#2| |#2|)) (-15 -2200 (|#1| |#1| |#3|)) (-15 -3803 (|#3| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 ((-85) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -3802 (|#3| |#1| |#2|)) (-15 -3802 (|#3| |#1| |#2| |#3|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-1014) (-1130)) (T -538)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-2199 (((-1186) $ |#1| |#1|) 34 (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 46 (|has| $ (-1036 |#2|)) ELT)) (-3726 (($) 6 T CONST)) (-1577 ((|#2| $ |#1| |#2|) 47 (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) 45 T ELT)) (-2201 ((|#1| $) 37 (|has| |#1| (-757)) ELT)) (-2202 ((|#1| $) 38 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 |#1|) $) 40 T ELT)) (-2205 (((-85) |#1| $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) 36 (|has| |#1| (-757)) ELT)) (-2200 (($ $ |#2|) 35 (|has| $ (-1036 |#2|)) ELT)) (-3770 (($ $ (-584 (-249 |#2|))) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 21 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 39 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1| |#2|) 44 T ELT) ((|#2| $ |#1|) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#2| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#2| (-72)) ELT))) -(((-539 |#1| |#2|) (-113) (-1014) (-1130)) (T -539)) -((-2206 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *4)))) (-2205 (*1 *2 *3 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *3)))) (-2203 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1130)))) (-2200 (*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-4 *1 (-1036 *4)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-1186))))) -(-13 (-429 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2206 ((-584 |t#2|) $)) (-15 -2205 ((-85) |t#1| $)) (-15 -2204 ((-584 |t#1|) $)) (IF (|has| |t#2| (-72)) (IF (|has| $ (-318 |t#2|)) (-15 -2203 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2202 (|t#1| $)) (-15 -2201 (|t#1| $)) (-15 -3803 (|t#2| $))) |%noBranch|) (IF (|has| $ (-1036 |t#2|)) (PROGN (-15 -2200 ($ $ |t#2|)) (-15 -2199 ((-1186) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) |has| |#2| (-1014)) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 15 T ELT) (($ (-584 (-1131))) 14 T ELT)) (-2207 (((-584 (-1131)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-540) (-13 (-996) (-553 (-1131)) (-10 -8 (-15 -3948 ($ (-584 (-1131)))) (-15 -2207 ((-584 (-1131)) $))))) (T -540)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1904 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1794 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1796 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3469 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3110 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1793 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1908 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3802 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3226 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3974 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1896 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3948 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2547 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-541 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3948 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -541)) -((-3948 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-542) (-13 (-1014) (-430 (-101)))) (T -542)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2209 (($) 10 T CONST)) (-2231 (($) 8 T CONST)) (-2208 (($) 11 T CONST)) (-2227 (($) 9 T CONST)) (-2224 (($) 12 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-543) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3954) (-15 -2227 ($) -3954) (-15 -2209 ($) -3954) (-15 -2208 ($) -3954) (-15 -2224 ($) -3954)))) (T -543)) -((-2231 (*1 *1) (-5 *1 (-543))) (-2227 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2208 (*1 *1) (-5 *1 (-543))) (-2224 (*1 *1) (-5 *1 (-543)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2220 (($) 11 T CONST)) (-2214 (($) 17 T CONST)) (-2210 (($) 21 T CONST)) (-2212 (($) 19 T CONST)) (-2217 (($) 14 T CONST)) (-2211 (($) 20 T CONST)) (-2219 (($) 12 T CONST)) (-2218 (($) 13 T CONST)) (-2213 (($) 18 T CONST)) (-2216 (($) 15 T CONST)) (-2215 (($) 16 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-544) (-13 (-1014) (-553 (-101)) (-10 -8 (-15 -2220 ($) -3954) (-15 -2219 ($) -3954) (-15 -2218 ($) -3954) (-15 -2217 ($) -3954) (-15 -2216 ($) -3954) (-15 -2215 ($) -3954) (-15 -2214 ($) -3954) (-15 -2213 ($) -3954) (-15 -2212 ($) -3954) (-15 -2211 ($) -3954) (-15 -2210 ($) -3954)))) (T -544)) -((-2220 (*1 *1) (-5 *1 (-544))) (-2219 (*1 *1) (-5 *1 (-544))) (-2218 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2222 (($) 13 T CONST)) (-2221 (($) 14 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2227 (($) 12 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-545) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3954) (-15 -2230 ($) -3954) (-15 -2229 ($) -3954) (-15 -2228 ($) -3954) (-15 -2227 ($) -3954) (-15 -2222 ($) -3954) (-15 -2221 ($) -3954)))) (T -545)) -((-2231 (*1 *1) (-5 *1 (-545))) (-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))) (-2221 (*1 *1) (-5 *1 (-545)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2226 (($) 13 T CONST)) (-2223 (($) 16 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2225 (($) 14 T CONST)) (-2227 (($) 12 T CONST)) (-2224 (($) 15 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-546) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3954) (-15 -2230 ($) -3954) (-15 -2229 ($) -3954) (-15 -2228 ($) -3954) (-15 -2227 ($) -3954) (-15 -2226 ($) -3954) (-15 -2225 ($) -3954) (-15 -2224 ($) -3954) (-15 -2223 ($) -3954)))) (T -546)) -((-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-547) (-13 (-1014) (-430 (-542)) (-430 (-101)))) (T -547)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-1698 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) 40 T ELT)) (-3601 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ (-1074) |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-2232 (((-3 |#1| #1="failed") (-1074) $) 53 T ELT)) (-3726 (($) NIL T CONST)) (-1702 (($ $ (-1074)) 25 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT)) (-3407 (((-3 |#1| #1#) (-1074) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3408 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT)) (-3844 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-1699 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-1074)) NIL T ELT)) (-2272 (($ $) 55 T ELT)) (-1703 (($ (-338)) 23 T ELT) (($ (-338) (-1074)) 22 T ELT)) (-3544 (((-338) $) 41 T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2233 (((-584 (-1074)) $) 46 T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1700 (((-1074) $) 42 T ELT)) (-1275 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1276 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 44 T ELT)) (-3802 ((|#1| $ (-1074) |#1|) NIL T ELT) ((|#1| $ (-1074)) 49 T ELT)) (-1467 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (((-695) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3948 (((-773) $) 21 T ELT)) (-1701 (($ $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-3959 (((-695) $) 48 T ELT))) -(((-548 |#1|) (-13 (-314 (-338) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-1108 (-1074) |#1|) (-10 -8 (-15 -2272 ($ $)))) (-1014)) (T -548)) -((-2272 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014))))) -((-2233 (((-584 |#2|) $) 19 T ELT)) (-2234 (((-85) |#2| $) 12 T ELT)) (-3802 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT))) -(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2233 ((-584 |#2|) |#1|)) (-15 -2234 ((-85) |#2| |#1|)) (-15 -3802 (|#3| |#1| |#2| |#3|)) (-15 -3802 (|#3| |#1| |#2|))) (-550 |#2| |#3|) (-1014) (-1014)) (T -549)) -NIL -((-2570 (((-85) $ $) 17 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2199 (((-1186) $ |#1| |#1|) 80 (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 68 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| "failed") |#1| $) 57 T ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 58 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1577 ((|#2| $ |#1| |#2|) 67 (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) 69 T ELT)) (-2201 ((|#1| $) 77 (|has| |#1| (-757)) ELT)) (-2202 ((|#1| $) 76 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 33 T ELT) (($ (-1 |#2| |#2|) $) 61 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 62 T ELT)) (-3244 (((-1074) $) 20 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 59 T ELT)) (-2234 (((-85) |#1| $) 60 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-2204 (((-584 |#1|) $) 74 T ELT)) (-2205 (((-85) |#1| $) 73 T ELT)) (-3245 (((-1034) $) 19 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 78 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 46 T ELT)) (-2200 (($ $ |#2|) 79 (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 75 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 72 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1|) 71 T ELT) ((|#2| $ |#1| |#2|) 70 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3948 (((-773) $) 15 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-3058 (((-85) $ $) 16 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT))) -(((-550 |#1| |#2|) (-113) (-1014) (-1014)) (T -550)) -((-2234 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-3407 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2232 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(-13 (-183 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) (-539 |t#1| |t#2|) (-1036 |t#2|) (-10 -8 (-15 -2234 ((-85) |t#1| $)) (-15 -2233 ((-584 |t#1|) $)) (-15 -3407 ((-3 |t#2| "failed") |t#1| $)) (-15 -2232 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1036 |#2|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2235 (((-3 (-1091) "failed") $) 46 T ELT)) (-1314 (((-1186) $ (-695)) 22 T ELT)) (-3421 (((-695) $) 20 T ELT)) (-3597 (((-86) $) 9 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2236 (($ (-86) (-584 |#1|) (-695)) 32 T ELT) (($ (-1091)) 33 T ELT)) (-2635 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1091)) 13 T ELT)) (-2605 (((-695) $) 17 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (((-801 (-485)) $) 99 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 106 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 92 (|has| |#1| (-554 (-474))) ELT)) (-3948 (((-773) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2237 (((-584 |#1|) $) 19 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 51 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 53 T ELT))) -(((-551 |#1|) (-13 (-105) (-757) (-795 |#1|) (-10 -8 (-15 -3597 ((-86) $)) (-15 -2237 ((-584 |#1|) $)) (-15 -2605 ((-695) $)) (-15 -2236 ($ (-86) (-584 |#1|) (-695))) (-15 -2236 ($ (-1091))) (-15 -2235 ((-3 (-1091) "failed") $)) (-15 -2635 ((-85) $ (-86))) (-15 -2635 ((-85) $ (-1091))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-1014)) (T -551)) -((-3597 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) (-5 *1 (-551 *5)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2235 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))) -((-2238 (((-551 |#2|) |#1|) 17 T ELT)) (-2239 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT))) -(((-552 |#1| |#2|) (-10 -7 (-15 -2238 ((-551 |#2|) |#1|)) (-15 -2239 ((-3 |#1| "failed") (-551 |#2|)))) (-1014) (-1014)) (T -552)) -((-2239 (*1 *2 *3) (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-552 *2 *4)))) (-2238 (*1 *2 *3) (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -((-3948 ((|#1| $) 6 T ELT))) -(((-553 |#1|) (-113) (-1130)) (T -553)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1130))))) -(-13 (-10 -8 (-15 -3948 (|t#1| $)))) -((-3974 ((|#1| $) 6 T ELT))) -(((-554 |#1|) (-113) (-1130)) (T -554)) -((-3974 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130))))) -(-13 (-10 -8 (-15 -3974 (|t#1| $)))) -((-2240 (((-3 (-1086 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1086 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2240 ((-3 (-1086 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2240 ((-3 (-1086 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -555)) -((-2240 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-1086 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6)))) (-2240 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-350 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-350 *5))))) -((-3948 (($ |#1|) 6 T ELT))) -(((-556 |#1|) (-113) (-1130)) (T -556)) -((-3948 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1130))))) -(-13 (-10 -8 (-15 -3948 ($ |t#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-2241 (($) 11 T CONST)) (-2857 (($) 13 T CONST)) (-3138 (((-695)) 36 T ELT)) (-2996 (($) NIL T ELT)) (-2563 (($ $ $) 25 T ELT)) (-2562 (($ $) 23 T ELT)) (-2011 (((-831) $) 43 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 42 T ELT)) (-2855 (($ $ $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2856 (($) 9 T CONST)) (-2854 (($ $ $) 27 T ELT)) (-3948 (((-773) $) 34 T ELT)) (-3568 (((-85) $ (|[\|\|]| -2856)) 20 T ELT) (((-85) $ (|[\|\|]| -2241)) 22 T ELT) (((-85) $ (|[\|\|]| -2857)) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 24 T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-557) (-13 (-881) (-320) (-10 -8 (-15 -2241 ($) -3954) (-15 -3568 ((-85) $ (|[\|\|]| -2856))) (-15 -3568 ((-85) $ (|[\|\|]| -2241))) (-15 -3568 ((-85) $ (|[\|\|]| -2857)))))) (T -557)) -((-2241 (*1 *1) (-5 *1 (-557))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-557))))) -((-3974 (($ |#1|) 6 T ELT))) -(((-558 |#1|) (-113) (-1130)) (T -558)) -((-3974 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1130))))) -(-13 (-10 -8 (-15 -3974 ($ |t#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3000 ((|#1| $) 13 T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2999 ((|#3| $) 15 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3128 (((-695)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 12 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-559 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-15 -3951 ($ $ |#3|)) (-15 -3951 ($ |#1| |#3|)) (-15 -3000 (|#1| $)) (-15 -2999 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -559)) -((-3951 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3951 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2999 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-560 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) -(((-561 |#1|) (-113) (-962)) (T -561)) -((-3948 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))) -(-13 (-962) (-591 |t#1|) (-10 -8 (-15 -3948 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2242 ((|#2| |#2| (-1091) (-1091)) 16 T ELT))) -(((-562 |#1| |#2|) (-10 -7 (-15 -2242 (|#2| |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -562)) -((-2242 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-29 *4)))))) -((-2570 (((-85) $ $) 64 T ELT)) (-3190 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2243 ((|#1| $) 55 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3753 (((-2 (|:| -1766 $) (|:| -1765 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 27 T ELT)) (-3469 (((-3 $ #1#) $) 88 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3774 (((-485) $) 22 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 40 T ELT)) (-2895 (($ |#1| (-485)) 24 T ELT)) (-3176 ((|#1| $) 57 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) 93 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) 115 (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3950 (((-485) $) 38 T ELT)) (-3974 (((-350 |#2|) $) 47 T ELT)) (-3948 (((-773) $) 69 T ELT) (($ (-485)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3679 ((|#1| $ (-485)) 72 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 32 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 9 T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-3839 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-563 |#1| |#2|) (-13 (-184 |#2|) (-496) (-554 (-350 |#2|)) (-355 |#1|) (-951 |#2|) (-10 -8 (-15 -3939 ((-85) $)) (-15 -3950 ((-485) $)) (-15 -3774 ((-485) $)) (-15 -3961 ($ $)) (-15 -3176 (|#1| $)) (-15 -2243 (|#1| $)) (-15 -3679 (|#1| $ (-485))) (-15 -2895 ($ |#1| (-485))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3753 ((-2 (|:| -1766 $) (|:| -1765 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-496) (-1156 |#1|)) (T -563)) -((-3939 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3774 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3961 (*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3176 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-2243 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -1766 (-563 *4 *5)) (|:| -1765 (-350 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5))))) -((-3684 (((-584 |#6|) (-584 |#4|) (-85)) 54 T ELT)) (-2244 ((|#6| |#6|) 48 T ELT))) -(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2244 (|#6| |#6|)) (-15 -3684 ((-584 |#6|) (-584 |#4|) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|) (-1021 |#1| |#2| |#3| |#4|)) (T -564)) -((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *10 (-1021 *5 *6 *7 *8)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6))))) -((-2245 (((-85) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2246 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1783 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT))) -(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2245 ((-85) |#3| (-695) (-584 |#3|))) (-15 -2246 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1783 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-258) (-862 |#3| |#2| |#1|)) (T -565)) -((-2246 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1783 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1086 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3))))) (-2245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-566) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -566)) -((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3938 (($ $) 77 T ELT)) (-3944 (((-607 |#1| |#2|) $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 81 T ELT)) (-2247 (((-584 (-249 |#2|)) $ $) 42 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3945 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 66 T ELT) (((-1196 |#1| |#2|) $) NIL T ELT) (((-1201 |#1| |#2|) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 61 T CONST)) (-2248 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2249 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2667 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3058 (((-85) $ $) 62 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-567 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -3945 ($ (-607 |#1| |#2|))) (-15 -3944 ((-607 |#1| |#2|) $)) (-15 -2667 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-15 -3948 ((-1196 |#1| |#2|) $)) (-15 -3948 ((-1201 |#1| |#2|) $)) (-15 -3938 ($ $)) (-15 -3936 ((-584 |#1|) $)) (-15 -2249 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-15 -2248 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-15 -2247 ((-584 (-249 |#2|)) $ $)))) (-757) (-13 (-146) (-655 (-350 (-485)))) (-831)) (T -567)) -((-3945 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-831)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485))))) (-14 *6 (-831)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2247 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))) -((-3684 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 77 T ELT)) (-2250 (((-85) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2254 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 102 T ELT)) (-2253 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 76 T ELT)) (-2252 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2251 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT))) -(((-568 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2251 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-15 -2252 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2253 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -2254 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3684 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3684 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)))) (-392) (-584 (-1091))) (T -568)) -((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) (-14 *5 (-584 (-1091))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))))) -((-3597 (((-86) (-86)) 88 T ELT)) (-2258 ((|#2| |#2|) 28 T ELT)) (-2834 ((|#2| |#2| (-1005 |#2|)) 84 T ELT) ((|#2| |#2| (-1091)) 50 T ELT)) (-2256 ((|#2| |#2|) 27 T ELT)) (-2257 ((|#2| |#2|) 29 T ELT)) (-2255 (((-85) (-86)) 33 T ELT)) (-2260 ((|#2| |#2|) 24 T ELT)) (-2261 ((|#2| |#2|) 26 T ELT)) (-2259 ((|#2| |#2|) 25 T ELT))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2834 (|#2| |#2| (-1091))) (-15 -2834 (|#2| |#2| (-1005 |#2|)))) (-496) (-13 (-364 |#1|) (-916) (-1116))) (T -569)) -((-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) (-4 *4 (-13 (-364 *3) (-916) (-1116))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116)))))) -((-3494 (($ $) 38 T ELT)) (-3641 (($ $) 21 T ELT)) (-3492 (($ $) 37 T ELT)) (-3640 (($ $) 22 T ELT)) (-3496 (($ $) 36 T ELT)) (-3639 (($ $) 23 T ELT)) (-3629 (($) 48 T ELT)) (-3944 (($ $) 45 T ELT)) (-2258 (($ $) 17 T ELT)) (-2834 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)) (-3945 (($ $) 46 T ELT)) (-2256 (($ $) 15 T ELT)) (-2257 (($ $) 16 T ELT)) (-3497 (($ $) 35 T ELT)) (-3638 (($ $) 24 T ELT)) (-3495 (($ $) 34 T ELT)) (-3637 (($ $) 25 T ELT)) (-3493 (($ $) 33 T ELT)) (-3636 (($ $) 26 T ELT)) (-3500 (($ $) 44 T ELT)) (-3488 (($ $) 32 T ELT)) (-3498 (($ $) 43 T ELT)) (-3486 (($ $) 31 T ELT)) (-3502 (($ $) 42 T ELT)) (-3490 (($ $) 30 T ELT)) (-3503 (($ $) 41 T ELT)) (-3491 (($ $) 29 T ELT)) (-3501 (($ $) 40 T ELT)) (-3489 (($ $) 28 T ELT)) (-3499 (($ $) 39 T ELT)) (-3487 (($ $) 27 T ELT)) (-2260 (($ $) 19 T ELT)) (-2261 (($ $) 20 T ELT)) (-2259 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-570) (-113)) (T -570)) -((-2261 (*1 *1 *1) (-4 *1 (-570))) (-2260 (*1 *1 *1) (-4 *1 (-570))) (-2259 (*1 *1 *1) (-4 *1 (-570))) (-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))) (-2256 (*1 *1 *1) (-4 *1 (-570)))) -(-13 (-872) (-1116) (-10 -8 (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-872) . T) ((-1116) . T) ((-1119) . T)) -((-2271 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2264 (((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 90 T ELT)) (-2265 (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2262 (((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|))) 136 T ELT)) (-2269 (((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 105 T ELT)) (-2263 (((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|))) 147 T ELT)) (-2267 (((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|))) 70 T ELT)) (-2266 (((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 47 T ELT)) (-2270 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 61 T ELT)) (-2268 (((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 113 T ELT))) -(((-571 |#1| |#2|) (-10 -7 (-15 -2262 ((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|)))) (-15 -2263 ((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|)))) (-15 -2264 ((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2266 ((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2267 ((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|)))) (-15 -2268 ((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2269 ((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2270 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2271 ((-421 |#1| |#2|) (-206 |#1| |#2|)))) (-584 (-1091)) (-392)) (T -571)) -((-2271 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2270 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2269 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2268 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392)) (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-571 *3 *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2265 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2263 (*1 *2 *3) (-12 (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485))))) (-5 *1 (-571 *4 *5))))) -((-2570 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-1036 (-51))) ELT)) (-3790 (((-51) $ (-1074) (-51)) NIL (|has| $ (-1036 (-51))) ELT) (((-51) $ (-1091) (-51)) 16 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT)) (-2232 (((-3 (-51) #1="failed") (-1074) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT) (((-3 (-51) #1#) (-1074) $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT)) (-3844 (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72)) ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-1577 (((-51) $ (-1074) (-51)) NIL (|has| $ (-1036 (-51))) ELT)) (-3114 (((-51) $ (-1074)) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2273 (($ (-338)) 8 T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-2233 (((-584 (-1074)) $) NIL T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-3803 (((-51) $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2200 (($ $ (-51)) NIL (|has| $ (-1036 (-51))) ELT)) (-1276 (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-51)) (-584 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-51) $) NIL (-12 (|has| $ (-318 (-51))) (|has| (-51) (-72))) ELT)) (-2206 (((-584 (-51)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 (((-51) $ (-1074)) NIL T ELT) (((-51) $ (-1074) (-51)) NIL T ELT) (((-51) $ (-1091)) 14 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-553 (-773))) (|has| (-51) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-572) (-13 (-1108 (-1074) (-51)) (-241 (-1091) (-51)) (-10 -8 (-15 -2273 ($ (-338))) (-15 -2272 ($ $)) (-15 -3790 ((-51) $ (-1091) (-51)))))) (T -572)) -((-2273 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572)))) (-2272 (*1 *1 *1) (-5 *1 (-572))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-572))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1904 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1794 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1796 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3469 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3110 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1793 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1908 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3802 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3226 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3974 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1896 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3948 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2547 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-573 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3948 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -573)) -((-3948 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))) -((-3951 (($ $ |#2|) 10 T ELT))) -(((-574 |#1| |#2|) (-10 -7 (-15 -3951 (|#1| |#1| |#2|))) (-575 |#2|) (-146)) (T -574)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3532 (($ $ $) 40 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-575 |#1|) (-113) (-146)) (T -575)) -((-3532 (*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3532 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3951 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2275 (((-3 (-751 |#2|) #1="failed") |#2| (-249 |#2|) (-1074)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|))) 130 T ELT)) (-2274 (((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|))) 135 T ELT))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2275 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|)))) (-15 -2274 ((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|)))) (-15 -2275 ((-3 (-751 |#2|) #1#) |#2| (-249 |#2|) (-1074)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -576)) -((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2274 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-744 *3))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) (-5 *1 (-576 *5 *3))))) -((-2275 (((-3 (-751 (-350 (-858 |#1|))) #1="failed") (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1074)) 86 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|)))) 35 T ELT)) (-2274 (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 23 T ELT) (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|)))) 43 T ELT))) -(((-577 |#1|) (-10 -7 (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1074)))) (-392)) (T -577)) -((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1074)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #2="failed")) (-5 *1 (-577 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-751 (-350 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #1#))) #2#)) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 11 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2853 (($ (-168 |#1|)) 12 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-578 |#1|) (-13 (-753) (-556 (-774 |#1|)) (-10 -8 (-15 -2853 ($ (-168 |#1|))))) (-584 (-1091))) (T -578)) -((-2853 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-578 *3))))) -((-2278 (((-3 (-1180 (-350 |#1|)) #1="failed") (-1180 |#2|) |#2|) 64 (-2562 (|has| |#1| (-312))) ELT) (((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2276 (((-85) (-1180 |#2|)) 33 T ELT)) (-2277 (((-3 (-1180 |#1|) #1#) (-1180 |#2|)) 40 T ELT))) -(((-579 |#1| |#2|) (-10 -7 (-15 -2276 ((-85) (-1180 |#2|))) (-15 -2277 ((-3 (-1180 |#1|) #1="failed") (-1180 |#2|))) (IF (|has| |#1| (-312)) (-15 -2278 ((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|)) (-15 -2278 ((-3 (-1180 (-350 |#1|)) #1#) (-1180 |#2|) |#2|)))) (-496) (-13 (-962) (-581 |#1|))) (T -579)) -((-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-2562 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-350 *5))) (-5 *1 (-579 *5 *4)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-579 *4 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| (-578 |#2|))) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (($ (-584 |#1|)) 25 T ELT)) (-1984 (((-578 |#2|) $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3913 (((-107)) 16 T ELT)) (-3226 (((-1180 |#1|) $) 44 T ELT)) (-3974 (($ (-584 (-454 |#1| (-578 |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 20 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-580 |#1| |#2|) (-13 (-1188 |#1|) (-556 (-578 |#2|)) (-450 |#1| (-578 |#2|)) (-10 -8 (-15 -2279 ($ (-584 |#1|))) (-15 -3226 ((-1180 |#1|) $)))) (-312) (-584 (-1091))) (T -580)) -((-2279 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) (-14 *4 (-584 (-1091))))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1091)))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-581 |#1|) (-113) (-962)) (T -581)) -((-2281 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2281 (*1 *2 *3 *1) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4)))))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5))))))) -(-13 (-591 |t#1|) (-10 -8 (-15 -2281 ((-631 |t#1|) (-1180 $))) (-15 -2281 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-1180 $) $)) (-15 -2280 ((-631 |t#1|) (-631 $))) (-15 -2280 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-631 $) (-1180 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1215 (((-85) $ $) NIL T ELT)) (-2282 (($ (-584 |#1|)) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3913 (((-107)) 13 T ELT)) (-3226 (((-1180 |#1|) $) 42 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-582 |#1| |#2|) (-13 (-1188 |#1|) (-241 (-580 |#1| |#2|) |#1|) (-10 -8 (-15 -2282 ($ (-584 |#1|))) (-15 -3226 ((-1180 |#1|) $)))) (-312) (-584 (-1091))) (T -582)) -((-2282 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4)) (-14 *4 (-584 (-1091))))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1091)))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-583 |#1|) (-113) (-1026)) (T -583)) -NIL -(-13 (-589 |t#1|) (-964 |t#1|)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3799 (($ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3787 (($ $ (-485)) 68 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-1036 |#1|)) ELT)) (-2911 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 26 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-2285 (($ $ $) 74 (|has| |#1| (-1014)) ELT)) (-2284 (($ $ $) 75 (|has| |#1| (-1014)) ELT)) (-2283 (($ $ $) 79 (|has| |#1| (-1014)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) 31 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 32 T ELT)) (-3801 (($ $) 21 T ELT) (($ $ (-695)) 35 T ELT)) (-2369 (($ $) 63 (|has| |#1| (-72)) ELT)) (-1354 (($ $) 73 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3408 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3421 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2287 (((-85) $) 9 T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2288 (($) 7 T CONST)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) 34 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3520 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2610 (((-584 |#1|) $) 30 T ELT)) (-3247 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3536 (($ |#1|) NIL T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) 59 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3611 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3446 (((-85) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 15 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) 20 T ELT)) (-3567 (($) 19 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 78 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3792 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) 40 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 36 T ELT)) (-3974 (((-474) $) 87 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 29 T ELT)) (-3463 (($ |#1| $) 10 T ELT)) (-3793 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3804 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3948 (((-773) $) 51 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2286 (($ $ $) 11 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 13 T ELT))) -(((-584 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -2288 ($) -3954) (-15 -2287 ((-85) $)) (-15 -3463 ($ |#1| $)) (-15 -2286 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $))) |%noBranch|))) (-1130)) (T -584)) -((-2288 (*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1130)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) -((-3843 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3960 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3843 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3960 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1130) (-1130)) (T -585)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-585 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))) -((-3424 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3424 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-15 -3424 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-15 -3424 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-15 -3424 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-15 -3424 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-15 -3424 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1130)) (T -586)) -((-3424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3424 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-586 *5 *6)))) (-3424 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))) -((-3960 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT))) -(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1130) (-1130) (-1130)) (T -587)) -((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-588 |#1|) (-13 (-996) (-553 |#1|)) (-1014)) (T -588)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-589 |#1|) (-113) (-1026)) (T -589)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026))))) -(-13 (-1014) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2289 (($ |#1| |#1| $) 45 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2369 (($ $) 47 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) 58 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2610 (((-584 |#1|) $) 9 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 49 T ELT)) (-3611 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 52 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 23 T ELT)) (-3567 (($) 29 T ELT)) (-2290 (((-85) $) 56 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 69 T ELT)) (-1467 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1731 (((-695) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 20 T ELT)) (-3974 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3948 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 17 T ELT))) -(((-590 |#1|) (-13 (-635 |#1|) (-318 |#1|) (-10 -8 (-15 -2290 ((-85) $)) (-15 -2289 ($ |#1| |#1| $)))) (-1014)) (T -590)) -((-2290 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))) (-2289 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-591 |#1|) (-113) (-971)) (T -591)) -NIL -(-13 (-21) (-589 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695) $) 17 T ELT)) (-2296 (($ $ |#1|) 68 T ELT)) (-2298 (($ $) 39 T ELT)) (-2299 (($ $) 37 T ELT)) (-3159 (((-3 |#1| "failed") $) 60 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2294 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3535 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485)) 55 T ELT)) (-2300 ((|#1| $ (-485)) 35 T ELT)) (-2301 ((|#2| $ (-485)) 34 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2292 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2297 (($) 13 T ELT)) (-2303 (($ |#1| |#2|) 24 T ELT)) (-2302 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|)))) 25 T ELT)) (-2304 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $) 14 T ELT)) (-2295 (($ |#1| $) 69 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2293 (((-85) $ $) 74 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 27 T ELT))) -(((-592 |#1| |#2| |#3|) (-13 (-1014) (-951 |#1|) (-10 -8 (-15 -3535 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485))) (-15 -2304 ((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $)) (-15 -2303 ($ |#1| |#2|)) (-15 -2302 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))))) (-15 -2301 (|#2| $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2299 ($ $)) (-15 -2298 ($ $)) (-15 -3138 ((-695) $)) (-15 -2297 ($)) (-15 -2296 ($ $ |#1|)) (-15 -2295 ($ |#1| $)) (-15 -2294 ($ |#1| |#2| $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-85) $ $)) (-15 -2292 ($ (-1 |#2| |#2|) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)))) (-1014) (-23) |#2|) (T -592)) -((-3535 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2303 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2297 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2202 (((-485) $) 30 T ELT)) (-2305 (($ |#2| $ (-485)) 26 T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) 12 T ELT)) (-2205 (((-85) (-485) $) 17 T ELT)) (-3804 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT))) -(((-593 |#1| |#2|) (-10 -7 (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -2202 ((-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2205 ((-85) (-485) |#1|))) (-594 |#2|) (-1130)) (T -593)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 46 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 45 T ELT)) (-3616 (($ (-695) |#1|) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 59 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 67 T ELT)) (-2200 (($ $ |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 39 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 44 T ELT) ((|#1| $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 66 T ELT)) (-3804 (($ $ |#1|) 63 T ELT) (($ |#1| $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-594 |#1|) (-113) (-1130)) (T -594)) -((-3616 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3804 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2305 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-2305 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1147 (-485))) (-4 *1 (-1036 *2)) (-4 *1 (-594 *2)) (-4 *2 (-1130))))) -(-13 (-539 (-485) |t#1|) (-124 |t#1|) (-241 (-1147 (-485)) $) (-10 -8 (-15 -3616 ($ (-695) |t#1|)) (-15 -3804 ($ $ |t#1|)) (-15 -3804 ($ |t#1| $)) (-15 -3804 ($ $ $)) (-15 -3804 ($ (-584 $))) (-15 -3960 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2306 ($ $ (-485))) (-15 -2306 ($ $ (-1147 (-485)))) (-15 -2305 ($ |t#1| $ (-485))) (-15 -2305 ($ $ $ (-485))) (IF (|has| $ (-1036 |t#1|)) (-15 -3790 (|t#1| $ (-1147 (-485)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 15 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-715)) ELT)) (-3726 (($) NIL T CONST)) (-3188 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| $) 23 T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3244 (((-1074) $) 48 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2999 ((|#3| $) 24 T ELT)) (-3948 (((-773) $) 43 T ELT)) (-1266 (((-85) $ $) 22 T ELT)) (-3385 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2662 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2687 (((-85) $ $) 26 (|has| |#1| (-715)) ELT)) (-3951 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3839 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-595 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-15 -3951 ($ $ |#3|)) (-15 -3951 ($ |#1| |#3|)) (-15 -3000 (|#1| $)) (-15 -2999 (|#3| $)))) (-655 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -595)) -((-3951 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3951 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2999 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))) -((-3575 (((-3 |#2| #1="failed") |#3| |#2| (-1091) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1#) |#3| |#2| (-1091)) 44 T ELT))) -(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3575 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1="failed") |#3| |#2| (-1091))) (-15 -3575 ((-3 |#2| #1#) |#3| |#2| (-1091) |#2| (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872)) (-601 |#2|)) (T -596)) -((-3575 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 31 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) 24 T ELT)) (-2311 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 8 T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-598 |#1|) (-601 |#1|) (-190)) (T -598)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-599 |#1| |#2|) (-13 (-601 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-591 |#1|) (-10 -8 (-15 -3760 ($ $))))) (T -599)) -NIL -((-2307 (($ $) 29 T ELT)) (-2522 (($ $) 27 T ELT)) (-2671 (($) 13 T ELT))) -(((-600 |#1| |#2|) (-10 -7 (-15 -2307 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -2671 (|#1|))) (-601 |#2|) (-962)) (T -600)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2307 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 97 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2538 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #2="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #2#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3158 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3961 (($ $) 77 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-695)) 75 T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 79 T ELT)) (-2544 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) 78 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) 101 T ELT)) (-2311 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) 80 T ELT)) (-2819 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3819 (((-584 |#1|) $) 74 T ELT)) (-3679 ((|#1| $ (-695)) 76 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2547 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2522 (($ $) 99 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($) 100 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-601 |#1|) (-113) (-962)) (T -601)) -((-2671 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2522 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(-13 (-762 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2671 ($)) (-15 -2522 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2309 ($ $ $)) (-15 -2310 ($ $ (-695))) (-15 -2307 ($ $)) (-15 -2311 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-762 |#1|) . T)) -((-2308 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3734 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT))) -(((-602 |#1| |#2|) (-10 -7 (-15 -3734 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3734 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)))) (-15 -2308 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -602)) -((-2308 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-350 *6)))))) -((-2309 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2310 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2311 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-603 |#1| |#2|) (-10 -7 (-15 -2309 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -603)) -((-2311 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2310 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4))))) -((-2312 (($ $ $) 9 T ELT))) -(((-604 |#1|) (-10 -7 (-15 -2312 (|#1| |#1| |#1|))) (-605)) (T -604)) -NIL -((-2314 (($ $) 8 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT))) -(((-605) (-113)) (T -605)) -((-2314 (*1 *1 *1) (-4 *1 (-605))) (-2313 (*1 *1 *1 *1) (-4 *1 (-605))) (-2312 (*1 *1 *1 *1) (-4 *1 (-605)))) -(-13 (-1130) (-10 -8 (-15 -2314 ($ $)) (-15 -2313 ($ $ $)) (-15 -2312 ($ $ $)))) -(((-13) . T) ((-1130) . T)) -((-2315 (((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)) 33 T ELT))) -(((-606 |#1|) (-10 -7 (-15 -2315 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)))) (-822)) (T -606)) -((-2315 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 85 T ELT)) (-3949 (($ $ (-695)) 95 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 50 T ELT)) (-3159 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3158 (((-615 |#1|) $) NIL T ELT)) (-3961 (($ $) 94 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3938 (($ $) 90 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 49 T ELT)) (-1753 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-615 |#1|) $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3950 (((-695) $) 92 T ELT)) (-3532 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1196 |#1| |#2|) $) 60 T ELT) (((-1205 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3956 ((|#2| (-1205 |#1| |#2|) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2667 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3947 (((-3 $ #1#) (-1196 |#1| |#2|)) 62 T ELT)) (-1737 (($ (-615 |#1|)) 14 T ELT)) (-3058 (((-85) $ $) 46 T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT))) -(((-607 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-615 |#1|)) (-10 -8 (-15 -3947 ((-3 $ "failed") (-1196 |#1| |#2|))) (-15 -3532 ($ (-615 |#1|) (-615 |#1|))) (-15 -3532 ($ (-615 |#1|) $)) (-15 -3532 ($ $ (-615 |#1|))))) (-757) (-146)) (T -607)) -((-3947 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-607 *3 *4)))) (-3532 (*1 *1 *2 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3532 (*1 *1 *2 *1) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))) -((-1736 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1734 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1571 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2298 (($ $) 65 T ELT)) (-2369 (($ $) 74 T ELT)) (-3407 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3421 (((-485) |#2| $ (-485)) 71 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) (-1 (-85) |#2|) $) 54 T ELT)) (-3616 (($ (-695) |#2|) 63 T ELT)) (-2858 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3520 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3536 (($ |#2|) 15 T ELT)) (-3611 (($ $ $ (-485)) 42 T ELT) (($ |#2| $ (-485)) 40 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1572 (($ $ (-1147 (-485))) 51 T ELT) (($ $ (-485)) 44 T ELT)) (-1735 (($ $ $ (-485)) 70 T ELT)) (-3402 (($ $) 68 T ELT)) (-2687 (((-85) $ $) 76 T ELT))) -(((-608 |#1| |#2|) (-10 -7 (-15 -3536 (|#1| |#2|)) (-15 -1572 (|#1| |#1| (-485))) (-15 -1572 (|#1| |#1| (-1147 (-485)))) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3611 (|#1| |#2| |#1| (-485))) (-15 -3611 (|#1| |#1| |#1| (-485))) (-15 -2858 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3520 (|#1| |#1| |#1|)) (-15 -1736 ((-85) |#1|)) (-15 -1735 (|#1| |#1| |#1| (-485))) (-15 -2298 (|#1| |#1|)) (-15 -1734 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1734 (|#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3616 (|#1| (-695) |#2|)) (-15 -3960 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#1| |#1|))) (-609 |#2|) (-1130)) (T -608)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3797 ((|#1| $) 61 T ELT)) (-3799 (($ $) 63 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 98 (|has| $ (-1036 |#1|)) ELT)) (-3787 (($ $ (-485)) 48 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) $) 154 (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-1734 (($ $) 158 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT) (($ (-1 (-85) |#1| |#1|) $) 157 (|has| $ (-1036 |#1|)) ELT)) (-2911 (($ $) 153 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-3444 (((-85) $ (-695)) 81 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 52 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 53 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 51 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 49 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 115 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 87 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 131 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) 102 (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 156 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 146 T ELT)) (-3801 (($ $) 69 T ELT) (($ $ (-695)) 67 T ELT)) (-2369 (($ $) 133 (|has| |#1| (-72)) ELT)) (-1354 (($ $) 100 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 132 (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 127 T ELT)) (-3408 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 138 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 86 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 88 T ELT)) (-3445 (((-85) $) 84 T ELT)) (-3421 (((-485) |#1| $ (-485)) 151 (|has| |#1| (-72)) ELT) (((-485) |#1| $) 150 (|has| |#1| (-72)) ELT) (((-485) (-1 (-85) |#1|) $) 149 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 107 T ELT)) (-3721 (((-85) $ (-695)) 82 T ELT)) (-2201 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 164 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 134 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 130 T ELT)) (-3520 (($ $ $) 152 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 145 T ELT)) (-2610 (((-584 |#1|) $) 140 T ELT)) (-3247 (((-85) |#1| $) 136 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 95 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 163 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3536 (($ |#1|) 123 T ELT)) (-3718 (((-85) $ (-695)) 83 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 66 T ELT) (($ $ (-695)) 64 T ELT)) (-3611 (($ $ $ (-485)) 129 T ELT) (($ |#1| $ (-485)) 128 T ELT)) (-2305 (($ $ $ (-485)) 114 T ELT) (($ |#1| $ (-485)) 113 T ELT)) (-2204 (((-584 (-485)) $) 93 T ELT)) (-2205 (((-85) (-485) $) 92 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 72 T ELT) (($ $ (-695)) 70 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 104 T ELT)) (-2200 (($ $ |#1|) 97 (|has| $ (-1036 |#1|)) ELT)) (-3446 (((-85) $) 85 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 142 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 94 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 91 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT) ((|#1| $ #2#) 71 T ELT) (($ $ #3#) 68 T ELT) ((|#1| $ #4#) 65 T ELT) (($ $ (-1147 (-485))) 106 T ELT) ((|#1| $ (-485)) 90 T ELT) ((|#1| $ (-485) |#1|) 89 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-1572 (($ $ (-1147 (-485))) 126 T ELT) (($ $ (-485)) 125 T ELT)) (-2306 (($ $ (-1147 (-485))) 112 T ELT) (($ $ (-485)) 111 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3794 (($ $) 58 T ELT)) (-3792 (($ $) 55 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 59 T ELT)) (-3796 (($ $) 60 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 141 T ELT) (((-695) |#1| $) 137 (|has| |#1| (-72)) ELT)) (-1735 (($ $ $ (-485)) 155 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 99 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 105 T ELT)) (-3793 (($ $ $) 57 T ELT) (($ $ |#1|) 56 T ELT)) (-3804 (($ $ $) 74 T ELT) (($ |#1| $) 73 T ELT) (($ (-584 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 143 T ELT)) (-2568 (((-85) $ $) 162 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 160 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 161 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 159 (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 144 T ELT))) -(((-609 |#1|) (-113) (-1130)) (T -609)) -((-3536 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1130))))) -(-13 (-1065 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3536 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T)) -((-3575 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3110 (((-695) |#4| |#3|) 18 T ELT)) (-3342 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2316 (((-85) |#4| |#3|) 14 T ELT))) -(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3575 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|)) (-15 -3575 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|))) (-15 -3342 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2316 ((-85) |#4| |#3|)) (-15 -3110 ((-695) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-1036 |#1|)) (-13 (-324 |#1|) (-1036 |#1|)) (-628 |#1| |#2| |#3|)) (T -610)) -((-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) (-4 *4 (-13 (-324 *5) (-1036 *5))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2316 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) (-4 *4 (-13 (-324 *5) (-1036 *5))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3342 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1036 *4))) (-4 *2 (-13 (-324 *4) (-1036 *4))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) (-4 *7 (-13 (-324 *5) (-1036 *5))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2013 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) (-4 *4 (-13 (-324 *5) (-1036 *5))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))) -((-3575 (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 14 T ELT)) (-3110 (((-695) (-631 |#1|) (-1180 |#1|)) 30 T ELT)) (-3342 (((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|)) 24 T ELT)) (-2316 (((-85) (-631 |#1|) (-1180 |#1|)) 27 T ELT))) -(((-611 |#1|) (-10 -7 (-15 -3575 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|))) (-15 -3575 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|))) (-15 -3575 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|)))) (-15 -3575 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|)))) (-15 -3342 ((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|))) (-15 -2316 ((-85) (-631 |#1|) (-1180 |#1|))) (-15 -3110 ((-695) (-631 |#1|) (-1180 |#1|)))) (-312)) (T -611)) -((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-611 *5)))) (-3342 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *1 (-611 *4)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1="failed")) (|:| -2013 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5))))) -((-2317 (((-2 (|:| |particular| (-3 (-1180 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1180 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT))) -(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-1180 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1180 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-496) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612)) -((-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 (-350 *8)) "failed")) (|:| -2013 (-584 (-1180 (-350 *8)))))) (-5 *1 (-612 *5 *6 *7 *8))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (|has| |#2| (-496)) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#2|))) NIL T ELT) (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-1730 (((-1180 $)) 41 T ELT)) (-3335 (($ |#2|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3113 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1792 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1790 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1904 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1794 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1724 (((-1086 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-1796 (($ (-1180 |#2|)) NIL T ELT) (($ (-1180 |#2|) (-1180 $)) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3110 (((-695) $) NIL (|has| |#2| (-496)) ELT) (((-831)) 42 T ELT)) (-3114 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3109 (((-695) $) NIL (|has| |#2| (-496)) ELT)) (-3108 (((-584 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3329 ((|#2| $) NIL (|has| |#2| (-6 (-3999 #2="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#2|))) NIL T ELT)) (-3960 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3596 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1793 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1791 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1908 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1795 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1725 (((-1086 |#2|) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3592 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) 27 T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3334 (($ (-584 |#2|)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3333 (((-197 |#1| |#2|) $) NIL T ELT)) (-3330 ((|#2| $) NIL (|has| |#2| (-6 (-3999 #2#))) ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3226 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $ (-1180 $)) 30 T ELT)) (-3974 (($ (-1180 |#2|)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT)) (-1896 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 40 T ELT)) (-1708 (((-584 (-1180 |#2|))) NIL (|has| |#2| (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2547 (($ (-631 |#2|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-613 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-361 |#2|)) (-831) (-146)) (T -613)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3250 (((-584 (-1050)) $) 12 T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-614) (-13 (-996) (-10 -8 (-15 -3250 ((-584 (-1050)) $))))) (T -614)) -((-3250 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-614))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) NIL T ELT)) (-3139 (($ $) 62 T ELT)) (-2666 (((-85) $) NIL T ELT)) (-3159 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2320 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2322 (((-85) (-740 |#1|)) 18 T ELT)) (-2321 (($ (-740 |#1|)) 29 T ELT)) (-2513 (((-85) $ $) 36 T ELT)) (-3835 (((-831) $) 43 T ELT)) (-3140 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3734 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3948 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2319 (((-58 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2318 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 63 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 46 T ELT))) -(((-615 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 -2666 ((-85) $)) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3835 ((-831) $)) (-15 -2513 ((-85) $ $)) (-15 -3948 ((-740 |#1|) $)) (-15 -3948 ((-619 |#1|) $)) (-15 -3734 ((-584 $) (-740 |#1|))) (-15 -2322 ((-85) (-740 |#1|))) (-15 -2321 ($ (-740 |#1|))) (-15 -2320 ((-3 $ "failed") (-740 |#1|))) (-15 -3936 ((-584 |#1|) $)) (-15 -2319 ((-58 (-584 $)) (-584 |#1|) (-831))) (-15 -2318 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615)) -((-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2320 (*1 *1 *2) (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5))))) -((-3404 ((|#2| $) 96 T ELT)) (-3799 (($ $) 117 T ELT)) (-3444 (((-85) $ (-695)) 35 T ELT)) (-3801 (($ $) 105 T ELT) (($ $ (-695)) 108 T ELT)) (-3445 (((-85) $) 118 T ELT)) (-3033 (((-584 $) $) 92 T ELT)) (-3029 (((-85) $ $) 88 T ELT)) (-3721 (((-85) $ (-695)) 33 T ELT)) (-2201 (((-485) $) 62 T ELT)) (-2202 (((-485) $) 61 T ELT)) (-3718 (((-85) $ (-695)) 31 T ELT)) (-3529 (((-85) $) 94 T ELT)) (-3800 ((|#2| $) 109 T ELT) (($ $ (-695)) 113 T ELT)) (-2305 (($ $ $ (-485)) 79 T ELT) (($ |#2| $ (-485)) 78 T ELT)) (-2204 (((-584 (-485)) $) 60 T ELT)) (-2205 (((-85) (-485) $) 55 T ELT)) (-3803 ((|#2| $) NIL T ELT) (($ $ (-695)) 104 T ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3446 (((-85) $) 120 T ELT)) (-2206 (((-584 |#2|) $) 42 T ELT)) (-3802 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1147 (-485))) 75 T ELT) ((|#2| $ (-485)) 53 T ELT) ((|#2| $ (-485) |#2|) 54 T ELT)) (-3031 (((-485) $ $) 87 T ELT)) (-2306 (($ $ (-1147 (-485))) 74 T ELT) (($ $ (-485)) 68 T ELT)) (-3635 (((-85) $) 83 T ELT)) (-3794 (($ $) 101 T ELT)) (-3795 (((-695) $) 100 T ELT)) (-3796 (($ $) 99 T ELT)) (-3532 (($ (-584 |#2|)) 49 T ELT)) (-2893 (($ $) 122 T ELT)) (-3524 (((-584 $) $) 86 T ELT)) (-3030 (((-85) $ $) 85 T ELT)) (-3058 (((-85) $ $) 20 T ELT))) -(((-616 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3771 (|#1| |#1| (-485))) (-15 -3444 ((-85) |#1| (-695))) (-15 -3721 ((-85) |#1| (-695))) (-15 -3718 ((-85) |#1| (-695))) (-15 -3445 ((-85) |#1|)) (-15 -3446 ((-85) |#1|)) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -2206 ((-584 |#2|) |#1|)) (-15 -2205 ((-85) (-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2202 ((-485) |#1|)) (-15 -2201 ((-485) |#1|)) (-15 -3532 (|#1| (-584 |#2|))) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -3794 (|#1| |#1|)) (-15 -3795 ((-695) |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| "last")) (-15 -3800 (|#2| |#1|)) (-15 -3801 (|#1| |#1| (-695))) (-15 -3802 (|#1| |#1| "rest")) (-15 -3801 (|#1| |#1|)) (-15 -3803 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| "first")) (-15 -3803 (|#2| |#1|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3031 ((-485) |#1| |#1|)) (-15 -3635 ((-85) |#1|)) (-15 -3802 (|#2| |#1| "value")) (-15 -3404 (|#2| |#1|)) (-15 -3529 ((-85) |#1|)) (-15 -3033 ((-584 |#1|) |#1|)) (-15 -3524 ((-584 |#1|) |#1|))) (-617 |#2|) (-1130)) (T -616)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3797 ((|#1| $) 61 T ELT)) (-3799 (($ $) 63 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 98 (|has| $ (-1036 |#1|)) ELT)) (-3787 (($ $ (-485)) 48 (|has| $ (-1036 |#1|)) ELT)) (-3444 (((-85) $ (-695)) 81 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 52 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 53 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 51 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 49 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 115 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 87 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 102 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3726 (($) 6 T CONST)) (-2324 (($ $) 123 T ELT)) (-3801 (($ $) 69 T ELT) (($ $ (-695)) 67 T ELT)) (-1354 (($ $) 100 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 103 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 86 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 88 T ELT)) (-3445 (((-85) $) 84 T ELT)) (-2323 (((-695) $) 122 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 107 T ELT)) (-3721 (((-85) $ (-695)) 82 T ELT)) (-2201 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) 95 (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3718 (((-85) $ (-695)) 83 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-2326 (($ $) 125 T ELT)) (-2327 (((-85) $) 126 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 66 T ELT) (($ $ (-695)) 64 T ELT)) (-2305 (($ $ $ (-485)) 114 T ELT) (($ |#1| $ (-485)) 113 T ELT)) (-2204 (((-584 (-485)) $) 93 T ELT)) (-2205 (((-85) (-485) $) 92 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-2325 ((|#1| $) 124 T ELT)) (-3803 ((|#1| $) 72 T ELT) (($ $ (-695)) 70 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 104 T ELT)) (-2200 (($ $ |#1|) 97 (|has| $ (-1036 |#1|)) ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-2328 (((-85) $) 127 T ELT)) (-2329 (((-85) $) 128 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 94 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 91 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT) ((|#1| $ #2#) 71 T ELT) (($ $ #3#) 68 T ELT) ((|#1| $ #4#) 65 T ELT) (($ $ (-1147 (-485))) 106 T ELT) ((|#1| $ (-485)) 90 T ELT) ((|#1| $ (-485) |#1|) 89 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-2306 (($ $ (-1147 (-485))) 112 T ELT) (($ $ (-485)) 111 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3794 (($ $) 58 T ELT)) (-3792 (($ $) 55 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 59 T ELT)) (-3796 (($ $) 60 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 99 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 105 T ELT)) (-3793 (($ $ $) 57 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 56 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 74 T ELT) (($ |#1| $) 73 T ELT) (($ (-584 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-2893 (($ $) 120 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-617 |#1|) (-113) (-1130)) (T -617)) -((-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) -(-13 (-1065 |t#1|) (-10 -8 (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -3712 ($ (-1 (-85) |t#1|) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ($ $)) (-15 -2325 (|t#1| $)) (-15 -2324 ($ $)) (-15 -2323 ((-695) $)) (-15 -3771 ($ $ (-485))) (-15 -2893 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3180 (((-423) $) 15 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-618) (-13 (-996) (-10 -8 (-15 -3180 ((-423) $)) (-15 -3235 ((-1050) $))))) (T -618)) -((-3180 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-618))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) 15 T ELT)) (-3139 (($ $) 19 T ELT)) (-2666 (((-85) $) 20 T ELT)) (-3159 (((-3 |#1| "failed") $) 23 T ELT)) (-3158 ((|#1| $) 21 T ELT)) (-3801 (($ $) 37 T ELT)) (-3938 (($ $) 25 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2513 (((-85) $ $) 46 T ELT)) (-3835 (((-831) $) 40 T ELT)) (-3140 (($ $) 18 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $) 36 T ELT)) (-3948 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-619 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3948 ((-740 |#1|) $)) (-15 -3803 (|#1| $)) (-15 -3140 ($ $)) (-15 -3835 ((-831) $)) (-15 -2513 ((-85) $ $)) (-15 -3938 ($ $)) (-15 -3801 ($ $)) (-15 -2666 ((-85) $)) (-15 -3139 ($ $)) (-15 -3936 ((-584 |#1|) $)))) (-757)) (T -619)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3803 (*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))) -((-2338 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2330 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT))) -(((-620 |#1|) (-10 -7 (-15 -2330 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-15 -2338 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1014)) (T -620)) -((-2338 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))) (-2330 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2))))) -((-2332 ((|#2| |#1| |#2|) 9 T ELT)) (-2331 ((|#1| |#1| |#2|) 8 T ELT))) -(((-621 |#1| |#2|) (-10 -7 (-15 -2331 (|#1| |#1| |#2|)) (-15 -2332 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -621)) -((-2332 (*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2331 (*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -((-2333 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2333 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -622)) -((-2333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 22 T ELT)) (-3319 (((-584 (-1131)) $) 20 T ELT)) (-2334 (($ (-584 (-1131)) (-1131)) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 30 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 23 T ELT) (($ (-1029)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-623) (-13 (-996) (-553 (-1131)) (-10 -8 (-15 -3948 ($ (-1029))) (-15 -2334 ($ (-584 (-1131)) (-1131))) (-15 -3319 ((-584 (-1131)) $)) (-15 -3320 ((-1131) $))))) (T -623)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623)))) (-2334 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-623)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-623))))) -((-2338 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2335 (((-1 |#1|) |#1|) 8 T ELT)) (-2337 ((|#1| |#1|) 19 T ELT)) (-2336 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3948 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT))) -(((-624 |#1|) (-10 -7 (-15 -2335 ((-1 |#1|) |#1|)) (-15 -3948 ((-1 |#1|) |#1|)) (-15 -2336 (|#1| (-1 |#1| |#1|))) (-15 -2336 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485))) (-15 -2337 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-15 -2338 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1014)) (T -624)) -((-2338 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) (-2337 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1014)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))) -((-2341 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2340 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3954 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2339 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-625 |#1| |#2|) (-10 -7 (-15 -2339 ((-1 |#2| |#1|) |#2|)) (-15 -2340 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3954 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2341 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -625)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1014)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014))))) -((-2346 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2342 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2343 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2342 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2343 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2346 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -626)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) -((-3840 (($ (-695) (-695)) 42 T ELT)) (-2351 (($ $ $) 73 T ELT)) (-3416 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3122 (((-85) $) 36 T ELT)) (-2350 (($ $ (-485) (-485)) 84 T ELT)) (-2349 (($ $ (-485) (-485)) 85 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 90 T ELT)) (-2353 (($ $) 71 T ELT)) (-3124 (((-85) $) 15 T ELT)) (-2347 (($ $ (-485) (-485) $) 91 T ELT)) (-3790 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 89 T ELT)) (-3335 (($ (-695) |#2|) 55 T ELT)) (-3125 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-485) (-485))) 53 T ELT)) (-3596 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2352 (($ $ $) 72 T ELT)) (-3468 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3802 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) 88 T ELT)) (-3334 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3123 (((-85) $) 28 T ELT)) (-3948 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3121 (((-85) $) 38 T ELT)) (-3951 (($ $ |#2|) 124 T ELT)) (-3839 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3841 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-485)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-485) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3948 ((-773) |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3951 (|#1| |#1| |#2|)) (-15 -3468 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| (-485) (-485) |#1|)) (-15 -2348 (|#1| |#1| (-485) (-485) (-485) (-485))) (-15 -2349 (|#1| |#1| (-485) (-485))) (-15 -2350 (|#1| |#1| (-485) (-485))) (-15 -3790 (|#1| |#1| (-584 (-485)) (-584 (-485)) |#1|)) (-15 -3802 (|#1| |#1| (-584 (-485)) (-584 (-485)))) (-15 -3596 ((-584 (-584 |#2|)) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3416 (|#1| |#3|)) (-15 -3948 (|#1| |#4|)) (-15 -3334 (|#1| (-584 |#1|))) (-15 -3334 (|#1| (-584 |#2|))) (-15 -3335 (|#1| (-695) |#2|)) (-15 -3125 (|#1| (-695) (-695) (-1 |#2| (-485) (-485)))) (-15 -3125 (|#1| (-584 (-584 |#2|)))) (-15 -3840 (|#1| (-695) (-695))) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3790 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) (-485)))) (-628 |#2| |#3| |#4|) (-962) (-324 |#2|) (-324 |#2|)) (T -627)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3840 (($ (-695) (-695)) 106 T ELT)) (-2351 (($ $ $) 95 T ELT)) (-3416 (($ |#2|) 99 T ELT) (($ $) 98 T ELT)) (-3122 (((-85) $) 108 T ELT)) (-2350 (($ $ (-485) (-485)) 91 T ELT)) (-2349 (($ $ (-485) (-485)) 90 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 89 T ELT)) (-2353 (($ $) 97 T ELT)) (-3124 (((-85) $) 110 T ELT)) (-2347 (($ $ (-485) (-485) $) 88 T ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) 50 T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 92 T ELT)) (-1258 (($ $ (-485) |#2|) 48 T ELT)) (-1257 (($ $ (-485) |#3|) 47 T ELT)) (-3335 (($ (-695) |#1|) 103 T ELT)) (-3726 (($) 6 T CONST)) (-3111 (($ $) 75 (|has| |#1| (-258)) ELT)) (-3113 ((|#2| $ (-485)) 52 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 36 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 33 (|has| |#1| (-72)) ELT)) (-3110 (((-695) $) 74 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 49 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 54 T ELT)) (-3109 (((-695) $) 73 (|has| |#1| (-496)) ELT)) (-3108 (((-584 |#3|) $) 72 (|has| |#1| (-496)) ELT)) (-3116 (((-695) $) 57 T ELT)) (-3616 (($ (-695) (-695) |#1|) 63 T ELT)) (-3115 (((-695) $) 56 T ELT)) (-3329 ((|#1| $) 70 (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-3120 (((-485) $) 61 T ELT)) (-3118 (((-485) $) 59 T ELT)) (-2610 (((-584 |#1|) $) 38 T ELT)) (-3247 (((-85) |#1| $) 34 (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 60 T ELT)) (-3117 (((-485) $) 58 T ELT)) (-3125 (($ (-584 (-584 |#1|))) 105 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) 104 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 64 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 46 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 45 T ELT)) (-3596 (((-584 (-584 |#1|)) $) 94 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3592 (((-3 $ "failed") $) 69 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) 96 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 62 T ELT)) (-3468 (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 40 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) (-485)) 55 T ELT) ((|#1| $ (-485) (-485) |#1|) 53 T ELT) (($ $ (-584 (-485)) (-584 (-485))) 93 T ELT)) (-3334 (($ (-584 |#1|)) 102 T ELT) (($ (-584 $)) 101 T ELT)) (-3123 (((-85) $) 109 T ELT)) (-3330 ((|#1| $) 71 (|has| |#1| (-6 (-3999 #1#))) ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 39 T ELT) (((-695) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3112 ((|#3| $ (-485)) 51 T ELT)) (-3948 (($ |#3|) 100 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3121 (((-85) $) 107 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3951 (($ $ |#1|) 76 (|has| |#1| (-312)) ELT)) (-3839 (($ $ $) 86 T ELT) (($ $) 85 T ELT)) (-3841 (($ $ $) 87 T ELT)) (** (($ $ (-695)) 78 T ELT) (($ $ (-485)) 68 (|has| |#1| (-312)) ELT)) (* (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ (-485) $) 81 T ELT) ((|#3| $ |#3|) 80 T ELT) ((|#2| |#2| $) 79 T ELT)) (-3959 (((-695) $) 42 T ELT))) -(((-628 |#1| |#2| |#3|) (-113) (-962) (-324 |t#1|) (-324 |t#1|)) (T -628)) -((-3124 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3840 (*1 *1 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3125 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3335 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3416 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3416 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3))))) (-3802 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3790 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2347 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-496)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3999 #1="*"))) (-4 *2 (-962)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3999 #1#))) (-4 *2 (-962)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3840 ($ (-695) (-695))) (-15 -3125 ($ (-584 (-584 |t#1|)))) (-15 -3125 ($ (-695) (-695) (-1 |t#1| (-485) (-485)))) (-15 -3335 ($ (-695) |t#1|)) (-15 -3334 ($ (-584 |t#1|))) (-15 -3334 ($ (-584 $))) (-15 -3948 ($ |t#3|)) (-15 -3416 ($ |t#2|)) (-15 -3416 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -3596 ((-584 (-584 |t#1|)) $)) (-15 -3802 ($ $ (-584 (-485)) (-584 (-485)))) (-15 -3790 ($ $ (-584 (-485)) (-584 (-485)) $)) (-15 -2350 ($ $ (-485) (-485))) (-15 -2349 ($ $ (-485) (-485))) (-15 -2348 ($ $ (-485) (-485) (-485) (-485))) (-15 -2347 ($ $ (-485) (-485) $)) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3839 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-485) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-695))) (IF (|has| |t#1| (-496)) (-15 -3468 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3951 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3111 ($ $)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3110 ((-695) $)) (-15 -3109 ((-695) $)) (-15 -3108 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3999 "*"))) (PROGN (-15 -3330 (|t#1| $)) (-15 -3329 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3592 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1130) . T)) -((-3844 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3960 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3960 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3844 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-962) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -629)) -((-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))) -((-3111 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3110 (((-695) |#4|) 92 (|has| |#1| (-496)) ELT)) (-3109 (((-695) |#4|) 94 (|has| |#1| (-496)) ELT)) (-3108 (((-584 |#3|) |#4|) 101 (|has| |#1| (-496)) ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3329 ((|#1| |#4|) 52 T ELT)) (-2358 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-496)) ELT)) (-3592 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2357 ((|#4| |#4|) 76 (|has| |#1| (-496)) ELT)) (-2355 ((|#4| |#4| |#1| (-485) (-485)) 60 T ELT)) (-2354 ((|#4| |#4| (-485) (-485)) 55 T ELT)) (-2356 ((|#4| |#4| |#1| (-485) (-485)) 65 T ELT)) (-3330 ((|#1| |#4|) 96 T ELT)) (-2522 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-496)) ELT))) -(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3330 (|#1| |#4|)) (-15 -3329 (|#1| |#4|)) (-15 -2354 (|#4| |#4| (-485) (-485))) (-15 -2355 (|#4| |#4| |#1| (-485) (-485))) (-15 -2356 (|#4| |#4| |#1| (-485) (-485))) (IF (|has| |#1| (-496)) (PROGN (-15 -3110 ((-695) |#4|)) (-15 -3109 ((-695) |#4|)) (-15 -3108 ((-584 |#3|) |#4|)) (-15 -2357 (|#4| |#4|)) (-15 -2358 ((-3 |#4| #1="failed") |#4|)) (-15 -2522 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3111 (|#4| |#4|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3592 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -630)) -((-3592 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2381 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2358 (*1 *2 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695) (-695)) 63 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3416 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) 21 T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3335 (($ (-695) |#1|) 37 T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3110 (((-695) $) 48 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 68 T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3109 (((-695) $) 50 (|has| |#1| (-496)) ELT)) (-3108 (((-584 (-1180 |#1|)) $) 53 (|has| |#1| (-496)) ELT)) (-3116 (((-695) $) 31 T ELT)) (-3616 (($ (-695) (-695) |#1|) 27 T ELT)) (-3115 (((-695) $) 32 T ELT)) (-3329 ((|#1| $) 44 (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-3120 (((-485) $) 9 T ELT)) (-3118 (((-485) $) 10 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 13 T ELT)) (-3117 (((-485) $) 64 T ELT)) (-3125 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3596 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3592 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3468 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3334 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1180 |#1|)) 69 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3330 ((|#1| $) 42 (|has| |#1| (-6 (-3999 #1#))) ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 79 (|has| |#1| (-554 (-474))) ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3948 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-485)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) NIL T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-631 |#1|) (-13 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 -3334 ($ (-1180 |#1|))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3592 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631)) -((-3592 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))) -((-2364 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2365 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2362 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2359 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT))) -(((-632 |#1|) (-10 -7 (-15 -2359 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2360 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2362 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2364 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2365 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-15 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2365 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2364 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2363 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2362 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -((-3159 (((-3 |#1| "failed") $) 18 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2366 (($) 7 T CONST)) (-2367 (($ |#1|) 8 T ELT)) (-3948 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3568 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2366)) 11 T ELT)) (-3574 ((|#1| $) 15 T ELT))) -(((-633 |#1|) (-13 (-1176) (-951 |#1|) (-553 (-773)) (-10 -8 (-15 -2367 ($ |#1|)) (-15 -3568 ((-85) $ (|[\|\|]| |#1|))) (-15 -3568 ((-85) $ (|[\|\|]| -2366))) (-15 -3574 (|#1| $)) (-15 -2366 ($) -3954))) (-553 (-773))) (T -633)) -((-2367 (*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) (-5 *1 (-633 *4)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3574 (*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2366 (*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) -((-3743 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3741 ((|#1| (-631 |#2|)) 9 T ELT)) (-3742 (((-631 |#1|) (-631 |#2|)) 18 T ELT))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3741 (|#1| (-631 |#2|))) (-15 -3742 ((-631 |#1|) (-631 |#2|))) (-15 -3743 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-496) (-905 |#1|)) (T -634)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-634 *2 *4))))) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 54 T ELT)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT) (($ |#1| $ (-695)) 55 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 53 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-635 |#1|) (-113) (-1014)) (T -635)) -((-3611 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1731 (-695)))))))) -(-13 (-193 |t#1|) (-10 -8 (-15 -3611 ($ |t#1| $ (-695))) (-15 -2369 ($ $)) (-15 -2368 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1731 (-695)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2372 (((-584 |#1|) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) (-485)) 66 T ELT)) (-2370 ((|#1| |#1| (-485)) 63 T ELT)) (-3146 ((|#1| |#1| |#1| (-485)) 46 T ELT)) (-3734 (((-584 |#1|) |#1| (-485)) 49 T ELT)) (-2373 ((|#1| |#1| (-485) |#1| (-485)) 40 T ELT)) (-2371 (((-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) |#1| (-485)) 62 T ELT))) -(((-636 |#1|) (-10 -7 (-15 -3146 (|#1| |#1| |#1| (-485))) (-15 -2370 (|#1| |#1| (-485))) (-15 -3734 ((-584 |#1|) |#1| (-485))) (-15 -2371 ((-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) |#1| (-485))) (-15 -2372 ((-584 |#1|) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) (-485))) (-15 -2373 (|#1| |#1| (-485) |#1| (-485)))) (-1156 (-485))) (T -636)) -((-2373 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| -3734 *5) (|:| -3950 (-485))))) (-5 *4 (-485)) (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -3950 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-3146 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))) -((-2377 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2374 (((-1048 (-179)) (-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 53 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 55 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 57 T ELT)) (-2376 (((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221))) NIL T ELT)) (-2375 (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 58 T ELT))) -(((-637) (-10 -7 (-15 -2374 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1048 (-179)) (-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2375 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2376 ((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2377 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -637)) -((-2377 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))) (-2376 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2375 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637))))) -((-3734 (((-348 (-1086 |#4|)) (-1086 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT))) -(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|)) (-15 -3734 ((-348 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-299) (-862 |#3| |#2| |#1|)) (T -638)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) -((-2380 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3111 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2379 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2378 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 84 T ELT))) -(((-639 |#1|) (-10 -7 (-15 -2378 ((-631 |#1|) (-631 |#1|))) (-15 -3111 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2379 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2380 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|))) (-258)) (T -639)) -((-2381 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-639 *3)) (-4 *3 (-258)))) (-2380 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-3111 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) -((-2387 (((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)) 19 T ELT)) (-2382 (((-1 |#4| |#2| |#3|) (-1091)) 12 T ELT))) -(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-1 |#4| |#2| |#3|) (-1091))) (-15 -2387 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)))) (-554 (-474)) (-1130) (-1130) (-1130)) (T -640)) -((-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))) -((-2383 (((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1091)) 48 T ELT))) -(((-641 |#1|) (-10 -7 (-15 -2383 ((-1 (-179) (-179)) |#1| (-1091))) (-15 -2383 ((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)))) (-554 (-474))) (T -641)) -((-2383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474)))))) -((-2384 (((-1091) |#1| (-1091) (-584 (-1091))) 10 T ELT) (((-1091) |#1| (-1091) (-1091) (-1091)) 13 T ELT) (((-1091) |#1| (-1091) (-1091)) 12 T ELT) (((-1091) |#1| (-1091)) 11 T ELT))) -(((-642 |#1|) (-10 -7 (-15 -2384 ((-1091) |#1| (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-1091) (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-584 (-1091))))) (-554 (-474))) (T -642)) -((-2384 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))) -((-2385 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2385 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1130) (-1130)) (T -643)) -((-2385 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) -((-2386 (((-1 |#3| |#2|) (-1091)) 11 T ELT)) (-2387 (((-1 |#3| |#2|) |#1| (-1091)) 21 T ELT))) -(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2386 ((-1 |#3| |#2|) (-1091))) (-15 -2387 ((-1 |#3| |#2|) |#1| (-1091)))) (-554 (-474)) (-1130) (-1130)) (T -644)) -((-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) -((-2390 (((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|) 92 T ELT)) (-2389 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2388 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|) 48 T ELT))) -(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2388 ((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|)) (-15 -2389 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-15 -2390 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -645)) -((-2390 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757)) (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2389 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-2388 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-258)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 56 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-695)) 54 T ELT)) (-2822 (((-695) $) 58 T ELT)) (-3176 ((|#1| $) 57 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 (((-695) $) 59 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ (-695)) 55 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) -(((-646 |#1|) (-113) (-962)) (T -646)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))) -(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3950 ((-695) $)) (-15 -2822 ((-695) $)) (-15 -3176 (|t#1| $)) (-15 -3961 ($ $)) (-15 -3679 (|t#1| $ (-695))) (-15 -2895 ($ |t#1| (-695))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3960 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3960 (|#6| (-1 |#4| |#1|) |#3|))) (-496) (-1156 |#1|) (-1156 (-350 |#2|)) (-496) (-1156 |#4|) (-1156 (-350 |#5|))) (T -647)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) (-4 *2 (-1156 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1156 (-350 *6))) (-4 *8 (-1156 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2391 (((-1074) (-773)) 36 T ELT)) (-3619 (((-1186) (-1074)) 29 T ELT)) (-2393 (((-1074) (-773)) 26 T ELT)) (-2392 (((-1074) (-773)) 27 T ELT)) (-3948 (((-773) $) NIL T ELT) (((-1074) (-773)) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-648) (-13 (-1014) (-10 -7 (-15 -3948 ((-1074) (-773))) (-15 -2393 ((-1074) (-773))) (-15 -2392 ((-1074) (-773))) (-15 -2391 ((-1074) (-773))) (-15 -3619 ((-1186) (-1074)))))) (T -648)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3844 (($ |#1| |#2|) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 ((|#2| $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2616 (|#2| $)) (-15 -3948 (|#1| $)) (-15 -3844 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649)) -((-2616 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3138 (((-695)) 55 (|has| |#1| (-320)) ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-2400 ((|#2| |#2|) 51 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 72 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3844 (($ |#2|) 49 T ELT)) (-3469 (((-3 $ #1#) $) 98 T ELT)) (-2996 (($) 59 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-2396 (((-870 $)) 89 T ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3779 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 86 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2616 ((|#2|) 52 T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3768 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3081 ((|#2| $) 48 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) 35 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2394 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) 39 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-2395 (((-870 $)) 43 T ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) 69 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-995)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) 71 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 26 T CONST)) (-2399 (((-1180 |#1|) $) 84 T ELT)) (-2398 (($ (-1180 |#1|)) 58 T ELT)) (-2668 (($) 9 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2397 (((-1180 |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 77 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-650 |#1| |#2|) (-13 (-1156 |#1|) (-556 |#2|) (-10 -8 (-15 -2400 (|#2| |#2|)) (-15 -2616 (|#2|)) (-15 -3844 ($ |#2|)) (-15 -3081 (|#2| $)) (-15 -2399 ((-1180 |#1|) $)) (-15 -2398 ($ (-1180 |#1|))) (-15 -2397 ((-1180 |#1|) $)) (-15 -2396 ((-870 $))) (-15 -2395 ((-870 $))) (IF (|has| |#1| (-299)) (-15 -2394 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-962) (-1156 |#1|)) (T -650)) -((-2400 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-2616 (*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3844 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2399 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2394 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2402 ((|#2| $) 12 T ELT)) (-3532 (($ |#1| |#2|) 16 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) 15 T ELT) (((-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 11 T ELT))) -(((-651 |#1| |#2| |#3|) (-13 (-757) (-430 (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) (-10 -8 (-15 -2402 (|#2| $)) (-15 -2401 (|#1| $)) (-15 -3532 ($ |#1| |#2|)))) (-757) (-1014) (-1 (-85) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)))) (T -651)) -((-2402 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2)) (-2 (|:| -2401 *3) (|:| -2402 *2)))))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3)))))) (-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 66 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3469 (((-3 $ #1#) $) 102 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2518 ((|#2| (-86) |#2|) 93 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2517 (($ |#1| (-310 (-86))) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2519 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2520 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3802 ((|#2| $ |#2|) 33 T ELT)) (-2521 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3948 (((-773) $) 73 T ELT) (($ (-485)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 37 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 9 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) -(((-652 |#1| |#2|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2521 (|#1| |#1|))) |%noBranch|) (-15 -2520 ($ $ (-1 |#2| |#2|))) (-15 -2519 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2518 (|#2| (-86) |#2|)) (-15 -2517 ($ |#1| (-310 (-86)))))) (-962) (-591 |#1|)) (T -652)) -((-2522 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2521 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 33 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ |#1| |#2|) 25 T ELT)) (-3469 (((-3 $ #1#) $) 51 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 35 T ELT)) (-2616 ((|#2| $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 52 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) 50 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-485)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3128 (((-695)) 28 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 16 T CONST)) (-2668 (($) 30 T CONST)) (-3058 (((-85) $ $) 41 T ELT)) (-3839 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3841 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -2616 (|#2| $)) (-15 -3948 (|#1| $)) (-15 -3844 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3469 ((-3 $ #1#) $)) (-15 -2486 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653)) -((-3469 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2616 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2486 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-654 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-655 |#2|) (-146)) (T -654)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-655 |#1|) (-113) (-146)) (T -655)) -NIL -(-13 (-82 |t#1| |t#1|) (-583 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2443 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3849 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2404 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 39 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 9 T CONST)) (-3058 (((-85) $ $) 48 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-656 |#1|) (-13 (-413) (-10 -8 (-15 -2404 ($ |#1| |#1| |#1| |#1|)) (-15 -2443 ($ |#1|)) (-15 -3849 ($ |#1|)) (-15 -3469 ($)) (-15 -2443 ($ $ |#1|)) (-15 -3849 ($ $ |#1|)) (-15 -3469 ($ $)) (-15 -3770 (|#1| $ |#1|)) (-15 -3770 ((-744 |#1|) $ (-744 |#1|))))) (-312)) (T -656)) -((-2404 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2443 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3849 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3469 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3849 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3469 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3770 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3770 (*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3))))) -((-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT))) -(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-658)) (T -657)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-658) (-113)) (T -658)) -((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))) -(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 -2408 ($ $ (-831))) (-15 -2407 ($ $ (-831))) (-15 ** ($ $ (-831))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2408 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2411 (((-85) $) 10 T ELT)) (-2407 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT))) -(((-659 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-695))) (-15 -2407 (|#1| |#1| (-695))) (-15 -2408 (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-660)) (T -659)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-2405 (((-3 $ "failed") $) 22 T ELT)) (-2408 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3469 (((-3 $ "failed") $) 24 T ELT)) (-2411 (((-85) $) 28 T ELT)) (-2406 (((-3 $ "failed") $) 23 T ELT)) (-2407 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 29 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-660) (-113)) (T -660)) -((-2668 (*1 *1) (-4 *1 (-660))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-3469 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-660)))) -(-13 (-658) (-10 -8 (-15 -2668 ($) -3954) (-15 -2411 ((-85) $)) (-15 -2408 ($ $ (-695))) (-15 -2407 ($ $ (-695))) (-15 ** ($ $ (-695))) (-15 -3469 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-658) . T) ((-1014) . T) ((-1130) . T)) -((-3138 (((-695)) 39 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3844 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3469 (((-3 $ #1#) $) 69 T ELT)) (-2996 (($) 43 T ELT)) (-3134 ((|#2| $) 21 T ELT)) (-2410 (($) 18 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2409 (((-631 |#2|) (-1180 $) (-1 |#2| |#2|)) 64 T ELT)) (-3974 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2451 ((|#3| $) 36 T ELT)) (-2013 (((-1180 $)) 33 T ELT))) -(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2996 (|#1|)) (-15 -3138 ((-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2409 ((-631 |#2|) (-1180 |#1|) (-1 |#2| |#2|))) (-15 -3844 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3974 (|#1| |#3|)) (-15 -3844 (|#1| |#3|)) (-15 -2410 (|#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -2013 ((-1180 |#1|))) (-15 -2451 (|#3| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-146) (-1156 |#2|)) (T -661)) -((-3138 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2064 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3138 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3844 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-831)) 69 T ELT)) (-2996 (($) 111 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-312)) ELT)) (-2835 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3774 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-3447 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3081 ((|#2| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1895 (($ (-584 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3448 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-3734 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1769 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-695)) 156 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-695)) 149 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091))) 148 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 146 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3187 ((|#2|) 179 T ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3974 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| |#1| (-299)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-695)) 157 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-695)) 152 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091))) 151 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 147 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-312)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT))) -(((-662 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -662)) -((-2410 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2)))) (-3187 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3844 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3974 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3844 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5))))) -(-13 (-353 |t#1| |t#2|) (-146) (-554 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2410 ($)) (-15 -3187 (|t#2|)) (-15 -3844 ($ |t#2|)) (-15 -3974 ($ |t#2|)) (-15 -3081 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3844 ((-3 $ "failed") (-350 |t#2|))) (-15 -2409 ((-631 |t#1|) (-1180 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-496) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) ((-810 (-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) ((-812 (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-299)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) -((-3726 (($) 11 T CONST)) (-3469 (((-3 $ "failed") $) 14 T ELT)) (-2411 (((-85) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT))) -(((-663 |#1|) (-10 -7 (-15 -3469 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 -3726 (|#1|) -3954) (-15 ** (|#1| |#1| (-831)))) (-664)) (T -663)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-664) (-113)) (T -664)) -((-2668 (*1 *1) (-4 *1 (-664))) (-3726 (*1 *1) (-4 *1 (-664))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) (-3469 (*1 *1 *1) (|partial| -4 *1 (-664)))) -(-13 (-1026) (-10 -8 (-15 -2668 ($) -3954) (-15 -3726 ($) -3954) (-15 -2411 ((-85) $)) (-15 ** ($ $ (-695))) (-15 -3469 ((-3 $ "failed") $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2413 ((|#1| $) 16 T ELT)) (-2412 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3948 (((-773) $) NIL T ELT) (((-1023 |#1|) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-665 |#1|) (-13 (-666 |#1|) (-1014) (-553 (-1023 |#1|)) (-10 -8 (-15 -2412 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -665)) -((-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3))))) -((-2413 ((|#1| $) 8 T ELT)) (-3802 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-666 |#1|) (-113) (-72)) (T -666)) -((-2413 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72))))) -(-13 (-1024 |t#1|) (-10 -8 (-15 -2413 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3058 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2413 |f|) |x|) |x|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1024 |#1|) . T) ((-1130) . T)) -((-2414 (((-2 (|:| -3091 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3420 (((-2 (|:| -3091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2415 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3437 (((-2 (|:| |poly| |#2|) (|:| -3091 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-667 |#1| |#2|) (-10 -7 (-15 -3420 ((-2 (|:| -3091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2414 ((-2 (|:| -3091 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2415 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3437 ((-2 (|:| |poly| |#2|) (|:| -3091 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -667)) -((-3437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3091 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-312)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3091 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-667 *5 *3)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3091 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))) -((-2416 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3960 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3960 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2416 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668)) -((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))) -((-3960 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3960 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))) -((-3734 (((-348 |#4|) |#4|) 42 T ELT))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))) (-258) (-862 (-858 |#3|) |#1| |#2|)) (T -670)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-470 (-774 |#1|)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-470 (-774 |#1|)) (-470 (-774 |#1|))) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3950 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-671 |#1| |#2|) (-862 |#2| (-470 (-774 |#1|)) (-774 |#1|)) (-584 (-1091)) (-962)) (T -671)) -NIL -((-2417 (((-2 (|:| -2485 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|) 14 T ELT)) (-2988 ((|#4| |#4| |#2|) 33 T ELT)) (-2420 ((|#4| (-350 (-858 |#3|)) |#2|) 62 T ELT)) (-2419 ((|#4| (-1086 (-858 |#3|)) |#2|) 74 T ELT)) (-2418 ((|#4| (-1086 |#4|) |#2|) 49 T ELT)) (-2987 ((|#4| |#4| |#2|) 52 T ELT)) (-3734 (((-348 |#4|) |#4|) 40 T ELT))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-2 (|:| -2485 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|)) (-15 -2987 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1086 |#4|) |#2|)) (-15 -2988 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1086 (-858 |#3|)) |#2|)) (-15 -2420 (|#4| (-350 (-858 |#3|)) |#2|)) (-15 -3734 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))) (-496) (-862 (-350 (-858 |#3|)) |#1| |#2|)) (T -672)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))) (-2420 (*1 *2 *3 *4) (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-350 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-2 (|:| -2485 (-858 *6)) (|:| -2059 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5))))) -((-3734 (((-348 |#4|) |#4|) 54 T ELT))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|))) (-718) (-757) (-13 (-258) (-120)) (-862 (-350 |#3|) |#1| |#2|)) (T -673)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-350 *6) *4 *5))))) -((-3960 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT))) -(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 36 T ELT)) (-3776 (((-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|))) $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3158 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3469 (((-3 $ #1#) $) 83 T ELT)) (-2996 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 70 T ELT)) (-2823 (((-584 $) $) 52 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| |#2|) 17 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2011 (((-831) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2896 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3176 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 96 T ELT) (($ (-485)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|)))) 11 T ELT)) (-3819 (((-584 |#1|) $) 54 T ELT)) (-3679 ((|#1| $ |#2|) 114 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-2668 (($) 44 T CONST)) (-3058 (((-85) $ $) 104 T ELT)) (-3839 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-675 |#1| |#2|) (-13 (-962) (-951 |#2|) (-951 |#1|) (-10 -8 (-15 -2895 ($ |#1| |#2|)) (-15 -3679 (|#1| $ |#2|)) (-15 -3948 ($ (-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|))))) (-15 -3776 ((-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|))) $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (-15 -3939 ((-85) $)) (-15 -3819 ((-584 |#1|) $)) (-15 -2823 ((-584 $) $)) (-15 -2421 ((-695) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-15 -2896 (|#2| $)) (-15 -3176 (|#1| $)) (-15 -3961 ($ $))) |%noBranch|))) (-962) (-664)) (T -675)) -((-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2896 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3176 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2422 (((-584 |#1|) $) 38 T ELT)) (-3236 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3238 (($ $ $) 99 T ELT)) (-3237 (((-85) $ $) 107 T ELT)) (-3241 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2369 (($ $) 88 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) 71 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-485)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 81 T ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-485)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 84 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3243 (((-85) $ $) 106 T ELT)) (-2423 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2610 (((-584 |#1|) $) 32 T ELT)) (-3247 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 97 T ELT)) (-1275 ((|#1| $) 63 T ELT)) (-3611 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 62 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 57 T ELT)) (-3567 (($) 14 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 56 T ELT)) (-3239 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1467 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1731 (((-695) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 82 T ELT)) (-3974 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 22 T ELT)) (-3948 (((-773) $) 50 T ELT)) (-3242 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 103 T ELT)) (-3959 (((-695) $) 68 T ELT))) -(((-676 |#1|) (-13 (-677 |#1|) (-318 |#1|) (-1036 |#1|) (-10 -8 (-15 -2423 ($)) (-15 -2423 ($ |#1|)) (-15 -2423 ($ (-584 |#1|))) (-15 -2422 ((-584 |#1|) $)) (-15 -3408 ($ |#1| $ (-485))) (-15 -3408 ($ (-1 (-85) |#1|) $ (-485))) (-15 -3407 ($ |#1| $ (-485))) (-15 -3407 ($ (-1 (-85) |#1|) $ (-485))))) (-1014)) (T -676)) -((-2423 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2423 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))) -((-2570 (((-85) $ $) 17 T ELT)) (-3236 (($ |#1| $) 70 T ELT) (($ $ |#1|) 69 T ELT) (($ $ $) 68 T ELT)) (-3238 (($ $ $) 66 T ELT)) (-3237 (((-85) $ $) 67 T ELT)) (-3241 (($ (-584 |#1|)) 62 T ELT) (($) 61 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 54 T ELT)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3243 (((-85) $ $) 58 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 T ELT)) (-3240 (($ $ $) 63 T ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT) (($ |#1| $ (-695)) 55 T ELT)) (-3245 (((-1034) $) 19 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 53 T ELT)) (-3239 (($ $ |#1|) 65 T ELT) (($ $ $) 64 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 T ELT)) (-3242 (($ (-584 |#1|)) 60 T ELT) (($) 59 T ELT)) (-1266 (((-85) $ $) 18 T ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 T ELT))) -(((-677 |#1|) (-113) (-1014)) (T -677)) -NIL -(-13 (-635 |t#1|) (-1012 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T)) -((-2424 (((-1186) (-1074)) 8 T ELT))) -(((-678) (-10 -7 (-15 -2424 ((-1186) (-1074))))) (T -678)) -((-2424 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678))))) -((-2425 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT))) -(((-679 |#1|) (-10 -7 (-15 -2425 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679)) -((-2425 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#2|) $) 159 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 152 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 151 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 149 (|has| |#1| (-496)) ELT)) (-3494 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 91 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 107 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3496 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 93 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 143 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 121 T ELT) (((-858 |#1|) $ (-695) (-695)) 120 T ELT)) (-2894 (((-85) $) 160 T ELT)) (-3629 (($) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $ |#2|) 123 T ELT) (((-695) $ |#2| (-695)) 122 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 89 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3939 (((-85) $) 141 T ELT)) (-2895 (($ $ (-584 |#2|) (-584 (-470 |#2|))) 158 T ELT) (($ $ |#2| (-470 |#2|)) 157 T ELT) (($ |#1| (-470 |#2|)) 142 T ELT) (($ $ |#2| (-695)) 125 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 124 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3944 (($ $) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 138 T ELT)) (-3176 ((|#1| $) 137 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3814 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-695)) 126 T ELT)) (-3468 (((-3 $ "failed") $ $) 153 (|has| |#1| (-496)) ELT)) (-3945 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ |#2| $) 134 T ELT) (($ $ (-584 |#2|) (-584 $)) 133 T ELT) (($ $ (-584 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-584 $) (-584 $)) 129 T ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) 52 T ELT) (($ $ |#2| (-695)) 51 T ELT) (($ $ (-584 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3950 (((-470 |#2|) $) 139 T ELT)) (-3497 (($ $) 105 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 95 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 103 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 161 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3679 ((|#1| $ (-470 |#2|)) 144 T ELT) (($ $ |#2| (-695)) 128 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 127 T ELT)) (-2704 (((-633 $) $) 155 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 150 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 101 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 111 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 99 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 97 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) 55 T ELT) (($ $ |#2| (-695)) 54 T ELT) (($ $ (-584 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 148 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) -(((-680 |#1| |#2|) (-113) (-962) (-757)) (T -680)) -((-3679 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3774 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3774 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3816 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3816 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3814 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-38 (-350 (-485))))))) -(-13 (-810 |t#2|) (-887 |t#1| (-470 |t#2|) |t#2|) (-456 |t#2| $) (-260 $) (-10 -8 (-15 -3679 ($ $ |t#2| (-695))) (-15 -3679 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3771 ($ $ (-695))) (-15 -2895 ($ $ |t#2| (-695))) (-15 -2895 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3774 ((-695) $ |t#2|)) (-15 -3774 ((-695) $ |t#2| (-695))) (-15 -3816 ((-858 |t#1|) $ (-695))) (-15 -3816 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $ |t#2|)) (-6 (-916)) (-6 (-1116))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-470 |#2|)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-246) |has| |#1| (-496)) ((-260 $) . T) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 |#2| $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-470 |#2|) |#2|) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T)) -((-3734 (((-348 (-1086 |#4|)) (-1086 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|)) (-15 -3734 ((-348 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -681)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) -((-2428 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2426 (((-348 |#4|) |#4|) NIL T ELT)) (-3973 (((-348 (-1086 |#4|)) (-1086 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2430 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 |#4|)) (|:| -2402 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2434 (((-1086 |#3|) (-1086 |#3|) (-485)) 169 T ELT)) (-2433 (((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3081 (((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2431 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2429 (((-2 (|:| -2005 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485)) 72 T ELT)) (-2427 (((-485) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) 165 T ELT)) (-2432 ((|#4| (-485) (-348 |#4|)) 73 T ELT)) (-3359 (((-85) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) NIL T ELT))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3973 ((-348 |#4|) |#4|)) (-15 -3973 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2426 ((-348 |#4|) |#4|)) (-15 -2427 ((-485) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))))) (-15 -2428 ((-348 |#4|) |#4| |#2|)) (-15 -2429 ((-2 (|:| -2005 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485))) (-15 -2430 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 |#4|)) (|:| -2402 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2431 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2432 (|#4| (-485) (-348 |#4|))) (-15 -3359 ((-85) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))))) (-15 -3081 ((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-15 -2433 ((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695))) (-15 -2434 ((-1086 |#3|) (-1086 |#3|) (-485)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -682)) -((-2434 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3081 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-3359 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 *8)) (|:| -2402 (-485))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 *9)) (|:| -2402 (-485))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2005 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-2428 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))) -((-2435 (($ $ (-831)) 17 T ELT))) -(((-683 |#1| |#2|) (-10 -7 (-15 -2435 (|#1| |#1| (-831)))) (-684 |#2|) (-146)) (T -683)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-2435 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-684 |#1|) (-113) (-146)) (T -684)) -((-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146))))) -(-13 (-686) (-655 |t#1|) (-10 -8 (-15 -2435 ($ $ (-831))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2437 (($ $ $) 10 T ELT)) (-2438 (($ $ $ $) 9 T ELT)) (-2436 (($ $ $) 12 T ELT))) -(((-685 |#1|) (-10 -7 (-15 -2436 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2438 (|#1| |#1| |#1| |#1|))) (-686)) (T -685)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-686) (-113)) (T -686)) -((-2438 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2437 (*1 *1 *1 *1) (-4 *1 (-686))) (-2436 (*1 *1 *1 *1) (-4 *1 (-686)))) -(-13 (-21) (-658) (-10 -8 (-15 -2438 ($ $ $ $)) (-15 -2437 ($ $ $)) (-15 -2436 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-1014) . T) ((-1130) . T)) -((-3948 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT))) -(((-687 |#1|) (-10 -7 (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-688)) (T -687)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2405 (((-3 $ #1="failed") $) 49 T ELT)) (-2408 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3469 (((-3 $ #1#) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 43 T ELT)) (-2406 (((-3 $ #1#) $) 48 T ELT)) (-2407 (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 40 T ELT)) (-3128 (((-695)) 41 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 42 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 46 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-688) (-113)) (T -688)) -((-3128 (*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688))))) -(-13 (-686) (-660) (-10 -8 (-15 -3128 ((-695)) -3954) (-15 -3948 ($ (-485))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1014) . T) ((-1130) . T)) -((-2440 (((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|) 33 T ELT)) (-2439 (((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|) 23 T ELT)) (-2451 (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1091)) 20 T ELT) (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485))))) 19 T ELT))) -(((-689 |#1|) (-10 -7 (-15 -2451 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))))) (-15 -2451 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1091))) (-15 -2439 ((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|)) (-15 -2440 ((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|))) (-13 (-312) (-756))) (T -689)) -((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1091)) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5)) (-4 *5 (-13 (-312) (-756))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))) -((-2618 (((-148 (-485)) |#1|) 27 T ELT))) -(((-690 |#1|) (-10 -7 (-15 -2618 ((-148 (-485)) |#1|))) (-347)) (T -690)) -((-2618 (*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347))))) -((-2544 ((|#1| |#1| |#1|) 28 T ELT)) (-2545 ((|#1| |#1| |#1|) 27 T ELT)) (-2534 ((|#1| |#1| |#1|) 38 T ELT)) (-2542 ((|#1| |#1| |#1|) 33 T ELT)) (-2543 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2550 (((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 26 T ELT))) -(((-691 |#1| |#2|) (-10 -7 (-15 -2550 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|))) (-646 |#2|) (-312)) (T -691)) -((-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2543 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2545 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2550 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))) -((-2557 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2556 (((-695) $ (-102)) 28 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-2441 (((-85) $) 32 T ELT)) (-2442 (((-633 $) |#1| (-866)) 33 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-692 |#1|) (-113) (-1014)) (T -692)) -((-2442 (*1 *2 *3 *4) (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) -(-13 (-513) (-10 -8 (-15 -2442 ((-633 $) |t#1| (-866))) (-15 -2441 ((-85) $)))) -(((-147) . T) ((-466) . T) ((-513) . T) ((-771) . T)) -((-3921 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)) 72 T ELT)) (-3920 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) 70 T ELT)) (-3759 (((-485)) 86 T ELT))) -(((-693 |#1| |#2|) (-10 -7 (-15 -3759 ((-485))) (-15 -3920 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))))) (-15 -3921 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)))) (-1156 (-485)) (-353 (-485) |#1|)) (T -693)) -((-3921 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3920 (*1 *2) (-12 (-4 *3 (-1156 (-485))) (-5 *2 (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3)))) (-3759 (*1 *2) (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 *2 *3))))) -((-2510 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 18 T ELT)) (-3575 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 20 T ELT))) -(((-694 |#1|) (-10 -7 (-15 -2510 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2510 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))))) (-496)) (T -694)) -((-3575 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2485 (($ $ $) 10 T ELT)) (-1313 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2443 (($ $ (-485)) 11 T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3146 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 6 T CONST)) (-2668 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-695) (-13 (-718) (-664) (-10 -8 (-15 -2565 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -2881 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3468 ((-3 $ "failed") $ $)) (-15 -2443 ($ $ (-485))) (-15 -2996 ($ $)) (-6 (-3999 "*"))))) (T -695)) -((-2565 (*1 *1 *1 *1) (-5 *1 (-695))) (-2566 (*1 *1 *1 *1) (-5 *1 (-695))) (-3146 (*1 *1 *1 *1) (-5 *1 (-695))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2904 (-695)))) (-5 *1 (-695)))) (-3468 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695)))) (-2996 (*1 *1 *1) (-5 *1 (-695)))) -((-485) (|%not| (|%ilt| |#1| 0))) -((-3575 (((-3 |#2| "failed") |#2| |#2| (-86) (-1091)) 37 T ELT))) -(((-696 |#1| |#2|) (-10 -7 (-15 -3575 ((-3 |#2| "failed") |#2| |#2| (-86) (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -696)) -((-3575 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2)) (-4 *2 (-13 (-29 *5) (-1116) (-872)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) -(((-697) (-1014)) (T -697)) -NIL -((-3948 (((-697) |#1|) 8 T ELT))) -(((-698 |#1|) (-10 -7 (-15 -3948 ((-697) |#1|))) (-1130)) (T -698)) -((-3948 (*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130))))) -((-3134 ((|#2| |#4|) 35 T ELT))) -(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3134 (|#2| |#4|))) (-392) (-1156 |#1|) (-662 |#1| |#2|) (-1156 |#3|)) (T -699)) -((-3134 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5))))) -((-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2446 (((-1186) (-1074) (-1074) |#4| |#5|) 33 T ELT)) (-2444 ((|#4| |#4| |#5|) 74 T ELT)) (-2445 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 79 T ELT)) (-2447 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 16 T ELT))) -(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3469 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2444 (|#4| |#4| |#5|)) (-15 -2445 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -2446 ((-1186) (-1074) (-1074) |#4| |#5|)) (-15 -2447 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -700)) -((-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2446 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-984 *6 *7 *8 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2444 (*1 *2 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) -((-3159 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 53 T ELT)) (-2448 (((-584 |#4|) |#4|) 22 T ELT)) (-3930 ((|#4| |#4|) 17 T ELT))) -(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2448 ((-584 |#4|) |#4|)) (-15 -3159 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3930 (|#4| |#4|))) (-299) (-280 |#1|) (-1156 |#2|) (-1156 |#3|) (-831)) (T -701)) -((-3930 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-831)))) (-3159 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831))))) -((-2449 (((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2450 (((-584 (-695)) |#1|) 20 T ELT))) -(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 ((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|))) (-15 -2450 ((-584 (-695)) |#1|))) (-1156 |#4|) (-718) (-757) (-258) (-862 |#4| |#2| |#3|)) (T -702)) -((-2450 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2449 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1086 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10))))) -((-2453 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|) 31 T ELT)) (-2452 (((-584 |#1|) (-631 (-350 (-485))) |#1|) 21 T ELT)) (-2451 (((-858 (-350 (-485))) (-631 (-350 (-485))) (-1091)) 18 T ELT) (((-858 (-350 (-485))) (-631 (-350 (-485)))) 17 T ELT))) -(((-703 |#1|) (-10 -7 (-15 -2451 ((-858 (-350 (-485))) (-631 (-350 (-485))))) (-15 -2451 ((-858 (-350 (-485))) (-631 (-350 (-485))) (-1091))) (-15 -2452 ((-584 |#1|) (-631 (-350 (-485))) |#1|)) (-15 -2453 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|))) (-13 (-312) (-756))) (T -703)) -((-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1091)) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 36 T ELT)) (-3083 (((-584 |#2|) $) NIL T ELT)) (-3085 (((-1086 $) $ |#2|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3799 (($ $) 30 T ELT)) (-3168 (((-85) $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) 110 (|has| |#1| (-496)) ELT)) (-3150 (((-584 $) $ $) 123 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (((-3 $ #1#) (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-905 (-485)))))) ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 21 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-905 (-485)))))) ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3758 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-496)) ELT)) (-3961 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3174 (((-85) $) NIL T ELT)) (-3754 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 81 T ELT)) (-3145 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-3156 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3157 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3167 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3166 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 57 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3147 (($ $ $ $ $) 107 (|has| |#1| (-496)) ELT)) (-3182 ((|#2| $) 22 T ELT)) (-3086 (($ (-1086 |#1|) |#2|) NIL T ELT) (($ (-1086 $) |#2|) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3161 (($ $ $) 63 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3175 (((-85) $) NIL T ELT)) (-2822 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3181 (((-695) $) 23 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3084 (((-3 |#2| #1#) $) NIL T ELT)) (-3142 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3143 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) NIL T ELT)) (-3173 (($ $) 39 T ELT)) (-3144 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3171 (((-584 $) $) 43 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3172 (($ $) 41 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $) 96 T ELT)) (-3162 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 78 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3163 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $) NIL T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3192 (($ $ $) 125 (|has| |#1| (-496)) ELT)) (-3178 (((-584 $) $) 32 T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3688 (($ $ $) NIL T ELT)) (-3448 (($ $) 24 T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3689 (($ $ $) NIL T ELT)) (-3180 (($ $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-496)) ELT)) (-1801 (((-85) $) 56 T ELT)) (-1800 ((|#1| $) 58 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 129 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 128 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3759 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3950 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3179 (($ $) NIL T ELT)) (-3177 (($ $) 35 T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1074) $) NIL (-12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT)) (-2819 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1040 |#1| |#2|) $) 18 T ELT) (($ (-1040 |#1| |#2|)) 19 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 13 T CONST)) (-3169 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2668 (($) 37 T CONST)) (-3148 (($ $ $ $ (-695)) 105 (|has| |#1| (-496)) ELT)) (-3149 (($ $ $ (-695)) 104 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3841 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-704 |#1| |#2|) (-13 (-978 |#1| (-470 |#2|) |#2|) (-553 (-1040 |#1| |#2|)) (-951 (-1040 |#1| |#2|))) (-962) (-757)) (T -704)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 12 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2457 (((-584 $) $ $) 54 (|has| |#1| (-496)) ELT)) (-3757 (($ $ $) 50 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT) (((-3 (-1086 |#1|) #1#) $) 10 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) NIL T ELT)) (-3755 (($ $ $) 87 (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) 86 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3779 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3161 (($ $ $) 27 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3768 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3483 (-695))) $ $) 37 T ELT)) (-2459 (($ $ $) 41 T ELT)) (-2458 (($ $ $) 47 T ELT)) (-3162 (((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 46 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3192 (($ $ $) 56 (|has| |#1| (-496)) ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-496)) ELT)) (-2454 (((-2 (|:| -3758 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2455 (((-2 (|:| -3758 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-496)) ELT)) (-1801 (((-85) $) 13 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3740 (($ $ (-695) |#1| $) 26 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-496)) ELT)) (-2456 (((-2 (|:| -3758 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-995)) NIL T ELT) (((-1086 |#1|) $) 7 T ELT) (($ (-1086 |#1|)) 8 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 32 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-705 |#1|) (-13 (-1156 |#1|) (-553 (-1086 |#1|)) (-951 (-1086 |#1|)) (-10 -8 (-15 -3740 ($ $ (-695) |#1| $)) (-15 -3161 ($ $ $)) (-15 -3160 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3483 (-695))) $ $)) (-15 -2459 ($ $ $)) (-15 -3162 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2458 ($ $ $)) (IF (|has| |#1| (-496)) (PROGN (-15 -2457 ((-584 $) $ $)) (-15 -3192 ($ $ $)) (-15 -3153 ((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3152 ((-2 (|:| -3146 $) (|:| |coef1| $)) $ $)) (-15 -3151 ((-2 (|:| -3146 $) (|:| |coef2| $)) $ $)) (-15 -2456 ((-2 (|:| -3758 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2455 ((-2 (|:| -3758 |#1|) (|:| |coef1| $)) $ $)) (-15 -2454 ((-2 (|:| -3758 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705)) -((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3161 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3160 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3483 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2459 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3162 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3956 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3)) (|:| -2904 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2457 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3192 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))) -((-3960 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT))) -(((-706 |#1| |#2|) (-10 -7 (-15 -3960 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))) -((-2461 ((|#1| (-695) |#1|) 33 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2803 ((|#1| (-695) |#1|) 23 T ELT)) (-2460 ((|#1| (-695) |#1|) 35 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-707 |#1|) (-10 -7 (-15 -2803 (|#1| (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -2460 (|#1| (-695) |#1|)) (-15 -2461 (|#1| (-695) |#1|))) |%noBranch|)) (-146)) (T -707)) -((-2461 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 87 T ELT)) (-3687 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 67 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3685 ((|#4| |#4| $) 92 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 116 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 112 T ELT)) (-3693 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-3701 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 64 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3771 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 111 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 69 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 63 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 81 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-708 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -708)) -NIL -(-13 (-984 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) -((-2464 (((-3 (-330) #1="failed") (-265 |#1|) (-831)) 60 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|)) (-831)) 39 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|))) 35 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-330) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2462 (((-330) (-265 |#1|) (-831)) 92 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-350 (-858 |#1|)) (-831)) 84 (|has| |#1| (-496)) ELT) (((-330) (-350 (-858 |#1|))) 81 (|has| |#1| (-496)) ELT) (((-330) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-330) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-330) |#1| (-831)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2465 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)) 68 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-831)) 61 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831)) 44 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|)))) 43 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831)) 38 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|))) 37 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2463 (((-142 (-330)) (-265 (-142 |#1|)) (-831)) 95 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|) (-831)) 93 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831)) 86 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|)))) 85 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|)) (-831)) 83 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|))) 82 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 (-142 |#1|)) (-831)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-858 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-831)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-831)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT))) -(((-709 |#1|) (-10 -7 (-15 -2462 ((-330) |#1|)) (-15 -2462 ((-330) |#1| (-831))) (-15 -2463 ((-142 (-330)) |#1|)) (-15 -2463 ((-142 (-330)) |#1| (-831))) (IF (|has| |#1| (-146)) (PROGN (-15 -2463 ((-142 (-330)) (-142 |#1|))) (-15 -2463 ((-142 (-330)) (-142 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-858 (-142 |#1|)))) (-15 -2463 ((-142 (-330)) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2462 ((-330) (-858 |#1|))) (-15 -2462 ((-330) (-858 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-858 |#1|))) (-15 -2463 ((-142 (-330)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2462 ((-330) (-350 (-858 |#1|)))) (-15 -2462 ((-330) (-350 (-858 |#1|)) (-831))) (-15 -2463 ((-142 (-330)) (-350 (-858 |#1|)))) (-15 -2463 ((-142 (-330)) (-350 (-858 |#1|)) (-831))) (-15 -2463 ((-142 (-330)) (-350 (-858 (-142 |#1|))))) (-15 -2463 ((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2462 ((-330) (-265 |#1|))) (-15 -2462 ((-330) (-265 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-265 |#1|))) (-15 -2463 ((-142 (-330)) (-265 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2463 ((-142 (-330)) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2465 ((-3 (-142 (-330)) #1="failed") (-858 (-142 |#1|)))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2464 ((-3 (-330) #1#) (-858 |#1|))) (-15 -2464 ((-3 (-330) #1#) (-858 |#1|) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-858 |#1|))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2464 ((-3 (-330) #1#) (-350 (-858 |#1|)))) (-15 -2464 ((-3 (-330) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2464 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2464 ((-3 (-330) #1#) (-265 |#1|) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-330))) (T -709)) -((-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))) -((-2469 (((-831) (-1074)) 90 T ELT)) (-2471 (((-3 (-330) "failed") (-1074)) 36 T ELT)) (-2470 (((-330) (-1074)) 34 T ELT)) (-2467 (((-831) (-1074)) 64 T ELT)) (-2468 (((-1074) (-831)) 74 T ELT)) (-2466 (((-1074) (-831)) 63 T ELT))) -(((-710) (-10 -7 (-15 -2466 ((-1074) (-831))) (-15 -2467 ((-831) (-1074))) (-15 -2468 ((-1074) (-831))) (-15 -2469 ((-831) (-1074))) (-15 -2470 ((-330) (-1074))) (-15 -2471 ((-3 (-330) "failed") (-1074))))) (T -710)) -((-2471 (*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710))))) -((-2474 (((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330))) 54 T ELT) (((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 51 T ELT)) (-2475 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 61 T ELT)) (-2473 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 49 T ELT)) (-2472 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330))) 63 T ELT) (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 62 T ELT))) -(((-711) (-10 -7 (-15 -2472 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2472 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)))) (-15 -2473 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2474 ((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2474 ((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)))) (-15 -2475 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))))) (T -711)) -((-2475 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2474 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2474 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2472 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2472 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) -((-2484 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 65 T ELT)) (-2481 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 40 T ELT)) (-2483 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 64 T ELT)) (-2480 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 38 T ELT)) (-2482 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 63 T ELT)) (-2479 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 24 T ELT)) (-2478 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 41 T ELT)) (-2477 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 39 T ELT)) (-2476 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 37 T ELT))) -(((-712) (-10 -7 (-15 -2476 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2477 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2478 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2479 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2480 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2481 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2482 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2483 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2484 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))))) (T -712)) -((-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485))))) -((-3707 (((-1126 |#1|) |#1| (-179) (-485)) 69 T ELT))) -(((-713 |#1|) (-10 -7 (-15 -3707 ((-1126 |#1|) |#1| (-179) (-485)))) (-888)) (T -713)) -((-3707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888))))) -((-3625 (((-485) $) 17 T ELT)) (-3189 (((-85) $) 10 T ELT)) (-3385 (($ $) 19 T ELT))) -(((-714 |#1|) (-10 -7 (-15 -3385 (|#1| |#1|)) (-15 -3625 ((-485) |#1|)) (-15 -3189 ((-85) |#1|))) (-715)) (T -714)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3625 (((-485) $) 38 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3385 (($ $) 37 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT))) -(((-715) (-113)) (T -715)) -((-3189 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485)))) (-3385 (*1 *1 *1) (-4 *1 (-715)))) -(-13 (-722) (-21) (-10 -8 (-15 -3189 ((-85) $)) (-15 -3625 ((-485) $)) (-15 -3385 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-3188 (((-85) $) 10 T ELT))) -(((-716 |#1|) (-10 -7 (-15 -3188 ((-85) |#1|))) (-717)) (T -716)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) -(((-717) (-113)) (T -717)) -((-3188 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85))))) -(-13 (-719) (-23) (-10 -8 (-15 -3188 ((-85) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-2485 (($ $ $) 36 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) +((-2007 (((-1087 |#1|) (-696)) 114 T ELT)) (-3333 (((-1181 |#1|) (-1181 |#1|) (-832)) 107 T ELT)) (-2005 (((-1187) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) |#1|) 122 T ELT)) (-2009 (((-1181 |#1|) (-1181 |#1|) (-696)) 53 T ELT)) (-2997 (((-1181 |#1|) (-832)) 109 T ELT)) (-2011 (((-1181 |#1|) (-1181 |#1|) (-486)) 30 T ELT)) (-2006 (((-1087 |#1|) (-1181 |#1|)) 115 T ELT)) (-2015 (((-1181 |#1|) (-832)) 136 T ELT)) (-2013 (((-85) (-1181 |#1|)) 119 T ELT)) (-3135 (((-1181 |#1|) (-1181 |#1|) (-832)) 99 T ELT)) (-2016 (((-1087 |#1|) (-1181 |#1|)) 130 T ELT)) (-2012 (((-832) (-1181 |#1|)) 95 T ELT)) (-2487 (((-1181 |#1|) (-1181 |#1|)) 38 T ELT)) (-2402 (((-1181 |#1|) (-832) (-832)) 139 T ELT)) (-2010 (((-1181 |#1|) (-1181 |#1|) (-1035) (-1035)) 29 T ELT)) (-2008 (((-1181 |#1|) (-1181 |#1|) (-696) (-1035)) 54 T ELT)) (-2014 (((-1181 (-1181 |#1|)) (-832)) 135 T ELT)) (-3952 (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 120 T ELT)) (** (((-1181 |#1|) (-1181 |#1|) (-486)) 67 T ELT)) (* (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 31 T ELT))) +(((-468 |#1|) (-10 -7 (-15 -2005 ((-1187) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) |#1|)) (-15 -2997 ((-1181 |#1|) (-832))) (-15 -2402 ((-1181 |#1|) (-832) (-832))) (-15 -2006 ((-1087 |#1|) (-1181 |#1|))) (-15 -2007 ((-1087 |#1|) (-696))) (-15 -2008 ((-1181 |#1|) (-1181 |#1|) (-696) (-1035))) (-15 -2009 ((-1181 |#1|) (-1181 |#1|) (-696))) (-15 -2010 ((-1181 |#1|) (-1181 |#1|) (-1035) (-1035))) (-15 -2011 ((-1181 |#1|) (-1181 |#1|) (-486))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-486))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3952 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3135 ((-1181 |#1|) (-1181 |#1|) (-832))) (-15 -3333 ((-1181 |#1|) (-1181 |#1|) (-832))) (-15 -2487 ((-1181 |#1|) (-1181 |#1|))) (-15 -2012 ((-832) (-1181 |#1|))) (-15 -2013 ((-85) (-1181 |#1|))) (-15 -2014 ((-1181 (-1181 |#1|)) (-832))) (-15 -2015 ((-1181 |#1|) (-832))) (-15 -2016 ((-1087 |#1|) (-1181 |#1|)))) (-299)) (T -468)) +((-2016 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-468 *4)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-832)) (-5 *1 (-468 *4)))) (-2487 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-3952 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2011 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2010 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1035)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2008 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1181 *5)) (-5 *3 (-696)) (-5 *4 (-1035)) (-4 *5 (-299)) (-5 *1 (-468 *5)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-1187)) (-5 *1 (-468 *4))))) +((-2002 (((-634 (-1140)) $) NIL T ELT)) (-1998 (((-634 (-1138)) $) NIL T ELT)) (-2000 (((-634 (-1137)) $) NIL T ELT)) (-2003 (((-634 (-490)) $) NIL T ELT)) (-1999 (((-634 (-488)) $) NIL T ELT)) (-2001 (((-634 (-487)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) NIL T ELT)) (-2004 (((-634 (-101)) $) 26 T ELT)) (-2017 (((-1035) $ (-1035)) 31 T ELT)) (-3422 (((-1035) $) 30 T ELT)) (-2561 (((-85) $) 20 T ELT)) (-2019 (($ (-338)) 14 T ELT) (($ (-1075)) 16 T ELT)) (-2018 (((-85) $) 27 T ELT)) (-3949 (((-774) $) 34 T ELT)) (-1702 (($ $) 28 T ELT))) +(((-469) (-13 (-467) (-554 (-774)) (-10 -8 (-15 -2019 ($ (-338))) (-15 -2019 ($ (-1075))) (-15 -2018 ((-85) $)) (-15 -2561 ((-85) $)) (-15 -3422 ((-1035) $)) (-15 -2017 ((-1035) $ (-1035)))))) (T -469)) +((-2019 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-469)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-469)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-469)))) (-2017 (*1 *2 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-469))))) +((-2021 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2020 (((-1 |#1| |#1|)) 10 T ELT))) +(((-470 |#1|) (-10 -7 (-15 -2020 ((-1 |#1| |#1|))) (-15 -2021 ((-1 |#1| |#1|) |#1|))) (-13 (-665) (-25))) (T -470)) +((-2021 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25))))) (-2020 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 (-696) |#1|)) $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ (-696) |#1|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3961 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-1985 ((|#1| $) NIL T ELT)) (-3177 (((-696) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 (-696) |#1|))) NIL T ELT)) (-3949 (((-774) $) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) +(((-471 |#1|) (-13 (-719) (-451 (-696) |#1|)) (-758)) (T -471)) +NIL +((-2023 (((-585 |#2|) (-1087 |#1|) |#3|) 98 T ELT)) (-2024 (((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-348 (-1087 |#1|)) (-1087 |#1|))) 114 T ELT)) (-2022 (((-1087 |#1|) (-632 |#1|)) 110 T ELT))) +(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-1087 |#1|) (-632 |#1|))) (-15 -2023 ((-585 |#2|) (-1087 |#1|) |#3|)) (-15 -2024 ((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-348 (-1087 |#1|)) (-1087 |#1|))))) (-312) (-312) (-13 (-312) (-757))) (T -472)) +((-2024 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-348 (-1087 *6)) (-1087 *6))) (-4 *6 (-312)) (-5 *2 (-585 (-2 (|:| |outval| *7) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 *7)))))) (-5 *1 (-472 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *5)) (-4 *5 (-312)) (-5 *2 (-585 *6)) (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *2 (-1087 *4)) (-5 *1 (-472 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-757)))))) +((-2558 (((-634 (-1140)) $ (-1140)) NIL T ELT)) (-2559 (((-634 (-490)) $ (-490)) NIL T ELT)) (-2557 (((-696) $ (-102)) 39 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 40 T ELT)) (-2002 (((-634 (-1140)) $) NIL T ELT)) (-1998 (((-634 (-1138)) $) NIL T ELT)) (-2000 (((-634 (-1137)) $) NIL T ELT)) (-2003 (((-634 (-490)) $) NIL T ELT)) (-1999 (((-634 (-488)) $) NIL T ELT)) (-2001 (((-634 (-487)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) 35 T ELT)) (-2004 (((-634 (-101)) $) 37 T ELT)) (-2442 (((-85) $) 27 T ELT)) (-2443 (((-634 $) (-517) (-867)) 18 T ELT) (((-634 $) (-432) (-867)) 24 T ELT)) (-3949 (((-774) $) 48 T ELT)) (-1702 (($ $) 42 T ELT))) +(((-473) (-13 (-693 (-517)) (-554 (-774)) (-10 -8 (-15 -2443 ((-634 $) (-432) (-867)))))) (T -473)) +((-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-432)) (-5 *4 (-867)) (-5 *2 (-634 (-473))) (-5 *1 (-473))))) +((-2530 (((-752 (-486))) 12 T ELT)) (-2529 (((-752 (-486))) 14 T ELT)) (-2517 (((-745 (-486))) 9 T ELT))) +(((-474) (-10 -7 (-15 -2517 ((-745 (-486)))) (-15 -2530 ((-752 (-486)))) (-15 -2529 ((-752 (-486)))))) (T -474)) +((-2529 (*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) (-2530 (*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) (-2517 (*1 *2) (-12 (-5 *2 (-745 (-486))) (-5 *1 (-474))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2028 (((-1075) $) 55 T ELT)) (-3263 (((-85) $) 51 T ELT)) (-3259 (((-1092) $) 52 T ELT)) (-3264 (((-85) $) 49 T ELT)) (-3538 (((-1075) $) 50 T ELT)) (-2027 (($ (-1075)) 56 T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3268 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2030 (($ $ (-585 (-1092))) 21 T ELT)) (-2033 (((-51) $) 23 T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2385 (($ $ (-585 (-1092)) (-1092)) 73 T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-179) $) NIL T ELT)) (-2029 (($ $) 44 T ELT)) (-3256 (((-774) $) NIL T ELT)) (-3269 (((-85) $ $) NIL T ELT)) (-3803 (($ $ (-486)) NIL T ELT) (($ $ (-585 (-486))) NIL T ELT)) (-3260 (((-585 $) $) 30 T ELT)) (-2026 (((-1092) (-585 $)) 57 T ELT)) (-3975 (($ (-1075)) NIL T ELT) (($ (-1092)) 19 T ELT) (($ (-486)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-774)) NIL T ELT) (($ (-585 $)) 65 T ELT) (((-1017) $) 12 T ELT) (($ (-1017)) 13 T ELT)) (-2025 (((-1092) (-1092) (-585 $)) 60 T ELT)) (-3949 (((-774) $) 54 T ELT)) (-3254 (($ $) 59 T ELT)) (-3255 (($ $) 58 T ELT)) (-2031 (($ $ (-585 $)) 66 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3267 (((-85) $) 29 T ELT)) (-2663 (($) 9 T CONST)) (-2669 (($) 11 T CONST)) (-3059 (((-85) $ $) 74 T ELT)) (-3952 (($ $ $) 82 T ELT)) (-3842 (($ $ $) 75 T ELT)) (** (($ $ (-696)) 81 T ELT) (($ $ (-486)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3960 (((-486) $) NIL T ELT))) +(((-475) (-13 (-1018 (-1075) (-1092) (-486) (-179) (-774)) (-555 (-1017)) (-10 -8 (-15 -2033 ((-51) $)) (-15 -3975 ($ (-1017))) (-15 -2031 ($ $ (-585 $))) (-15 -2385 ($ $ (-585 (-1092)) (-1092))) (-15 -2030 ($ $ (-585 (-1092)))) (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 -3952 ($ $ $)) (-15 ** ($ $ (-696))) (-15 ** ($ $ (-486))) (-15 -2663 ($) -3955) (-15 -2669 ($) -3955) (-15 -2029 ($ $)) (-15 -2028 ((-1075) $)) (-15 -2027 ($ (-1075))) (-15 -2026 ((-1092) (-585 $))) (-15 -2025 ((-1092) (-1092) (-585 $)))))) (T -475)) +((-2033 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-475)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-475)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-475))) (-5 *1 (-475)))) (-2385 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1092)) (-5 *1 (-475)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-475)))) (-3842 (*1 *1 *1 *1) (-5 *1 (-475))) (* (*1 *1 *1 *1) (-5 *1 (-475))) (-3952 (*1 *1 *1 *1) (-5 *1 (-475))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-475)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-475)))) (-2663 (*1 *1) (-5 *1 (-475))) (-2669 (*1 *1) (-5 *1 (-475))) (-2029 (*1 *1 *1) (-5 *1 (-475))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-475)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-585 (-475))) (-5 *2 (-1092)) (-5 *1 (-475)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-585 (-475))) (-5 *1 (-475))))) +((-2032 (((-475) (-1092)) 15 T ELT)) (-2033 ((|#1| (-475)) 20 T ELT))) +(((-476 |#1|) (-10 -7 (-15 -2032 ((-475) (-1092))) (-15 -2033 (|#1| (-475)))) (-1131)) (T -476)) +((-2033 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *1 (-476 *2)) (-4 *2 (-1131)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-475)) (-5 *1 (-476 *4)) (-4 *4 (-1131))))) +((-3456 ((|#2| |#2|) 17 T ELT)) (-3454 ((|#2| |#2|) 13 T ELT)) (-3457 ((|#2| |#2| (-486) (-486)) 20 T ELT)) (-3455 ((|#2| |#2|) 15 T ELT))) +(((-477 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -3457 (|#2| |#2| (-486) (-486)))) (-13 (-497) (-120)) (-1174 |#1|)) (T -477)) +((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-477 *4 *2)) (-4 *2 (-1174 *4)))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3))))) +((-2036 (((-585 (-249 (-859 |#2|))) (-585 |#2|) (-585 (-1092))) 32 T ELT)) (-2034 (((-585 |#2|) (-859 |#1|) |#3|) 54 T ELT) (((-585 |#2|) (-1087 |#1|) |#3|) 53 T ELT)) (-2035 (((-585 (-585 |#2|)) (-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092)) |#3|) 106 T ELT))) +(((-478 |#1| |#2| |#3|) (-10 -7 (-15 -2034 ((-585 |#2|) (-1087 |#1|) |#3|)) (-15 -2034 ((-585 |#2|) (-859 |#1|) |#3|)) (-15 -2035 ((-585 (-585 |#2|)) (-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092)) |#3|)) (-15 -2036 ((-585 (-249 (-859 |#2|))) (-585 |#2|) (-585 (-1092))))) (-393) (-312) (-13 (-312) (-757))) (T -478)) +((-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1092))) (-4 *6 (-312)) (-5 *2 (-585 (-249 (-859 *6)))) (-5 *1 (-478 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-13 (-312) (-757))))) (-2035 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-478 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-757))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) +((-2039 ((|#2| |#2| |#1|) 17 T ELT)) (-2037 ((|#2| (-585 |#2|)) 30 T ELT)) (-2038 ((|#2| (-585 |#2|)) 51 T ELT))) +(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2037 (|#2| (-585 |#2|))) (-15 -2038 (|#2| (-585 |#2|))) (-15 -2039 (|#2| |#2| |#1|))) (-258) (-1157 |#1|) |#1| (-1 |#1| |#1| (-696))) (T -479)) +((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-696))) (-5 *1 (-479 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696))))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) +((-3735 (((-348 (-1087 |#4|)) (-1087 |#4|) (-1 (-348 (-1087 |#3|)) (-1087 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1087 |#3|)) (-1087 |#3|))) 213 T ELT))) +(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4| (-1 (-348 (-1087 |#3|)) (-1087 |#3|)))) (-15 -3735 ((-348 (-1087 |#4|)) (-1087 |#4|) (-1 (-348 (-1087 |#3|)) (-1087 |#3|))))) (-758) (-719) (-13 (-258) (-120)) (-863 |#3| |#2| |#1|)) (T -480)) +((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-863 *7 *6 *5)) (-5 *2 (-348 (-1087 *8))) (-5 *1 (-480 *5 *6 *7 *8)) (-5 *3 (-1087 *8)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) (-5 *1 (-480 *5 *6 *7 *3)) (-4 *3 (-863 *7 *6 *5))))) +((-3456 ((|#4| |#4|) 74 T ELT)) (-3454 ((|#4| |#4|) 70 T ELT)) (-3457 ((|#4| |#4| (-486) (-486)) 76 T ELT)) (-3455 ((|#4| |#4|) 72 T ELT))) +(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4|)) (-15 -3456 (|#4| |#4|)) (-15 -3457 (|#4| |#4| (-486) (-486)))) (-13 (-312) (-320) (-555 (-486))) (-1157 |#1|) (-663 |#1| |#2|) (-1174 |#3|)) (T -481)) +((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) (-4 *5 (-1157 *4)) (-4 *6 (-663 *4 *5)) (-5 *1 (-481 *4 *5 *6 *2)) (-4 *2 (-1174 *6)))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5))))) +((-3456 ((|#2| |#2|) 27 T ELT)) (-3454 ((|#2| |#2|) 23 T ELT)) (-3457 ((|#2| |#2| (-486) (-486)) 29 T ELT)) (-3455 ((|#2| |#2|) 25 T ELT))) +(((-482 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -3457 (|#2| |#2| (-486) (-486)))) (-13 (-312) (-320) (-555 (-486))) (-1174 |#1|)) (T -482)) +((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) (-5 *1 (-482 *4 *2)) (-4 *2 (-1174 *4)))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) (-4 *2 (-1174 *3)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) (-4 *2 (-1174 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) (-4 *2 (-1174 *3))))) +((-2040 (((-3 (-486) #1="failed") |#2| |#1| (-1 (-3 (-486) #1#) |#1|)) 18 T ELT) (((-3 (-486) #1#) |#2| |#1| (-486) (-1 (-3 (-486) #1#) |#1|)) 14 T ELT) (((-3 (-486) #1#) |#2| (-486) (-1 (-3 (-486) #1#) |#1|)) 30 T ELT))) +(((-483 |#1| |#2|) (-10 -7 (-15 -2040 ((-3 (-486) #1="failed") |#2| (-486) (-1 (-3 (-486) #1#) |#1|))) (-15 -2040 ((-3 (-486) #1#) |#2| |#1| (-486) (-1 (-3 (-486) #1#) |#1|))) (-15 -2040 ((-3 (-486) #1#) |#2| |#1| (-1 (-3 (-486) #1#) |#1|)))) (-963) (-1157 |#1|)) (T -483)) +((-2040 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-486) #1="failed") *4)) (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4)))) (-2040 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-486) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4)))) (-2040 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-486) #1#) *5)) (-4 *5 (-963)) (-5 *2 (-486)) (-5 *1 (-483 *5 *3)) (-4 *3 (-1157 *5))))) +((-2049 (($ $ $) 87 T ELT)) (-3974 (((-348 $) $) 50 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 62 T ELT)) (-3159 (((-486) $) 40 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 80 T ELT)) (-3026 (((-85) $) 24 T ELT)) (-3025 (((-350 (-486)) $) 78 T ELT)) (-3726 (((-85) $) 53 T ELT)) (-2042 (($ $ $ $) 94 T ELT)) (-1371 (($ $ $) 60 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 75 T ELT)) (-3448 (((-634 $) $) 70 T ELT)) (-2046 (($ $) 22 T ELT)) (-2041 (($ $ $) 92 T ELT)) (-3449 (($) 63 T CONST)) (-1369 (($ $) 56 T ELT)) (-3735 (((-348 $) $) 48 T ELT)) (-2677 (((-85) $) 15 T ELT)) (-1609 (((-696) $) 30 T ELT)) (-3761 (($ $) 11 T ELT) (($ $ (-696)) NIL T ELT)) (-3403 (($ $) 16 T ELT)) (-3975 (((-486) $) NIL T ELT) (((-475) $) 39 T ELT) (((-802 (-486)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3129 (((-696)) 9 T CONST)) (-2051 (((-85) $ $) 19 T ELT)) (-3104 (($ $ $) 58 T ELT))) +(((-484 |#1|) (-10 -7 (-15 -2041 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3403 (|#1| |#1|)) (-15 -3027 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -2049 (|#1| |#1| |#1|)) (-15 -2051 ((-85) |#1| |#1|)) (-15 -2677 ((-85) |#1|)) (-15 -3449 (|#1|) -3955) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -3975 ((-179) |#1|)) (-15 -3975 ((-330) |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1|)) (-15 -3104 (|#1| |#1| |#1|)) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3975 ((-486) |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -1609 ((-696) |#1|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3726 ((-85) |#1|)) (-15 -3129 ((-696)) -3955)) (-485)) (T -484)) +((-3129 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-484 *3)) (-4 *3 (-485))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-2049 (($ $ $) 102 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2044 (($ $ $ $) 91 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-348 $) $) 67 T ELT)) (-1610 (((-85) $ $) 145 T ELT)) (-3626 (((-486) $) 134 T ELT)) (-2444 (($ $ $) 105 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) "failed") $) 126 T ELT)) (-3159 (((-486) $) 127 T ELT)) (-2567 (($ $ $) 149 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 124 T ELT) (((-632 (-486)) (-632 $)) 123 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 99 T ELT)) (-3026 (((-85) $) 101 T ELT)) (-3025 (((-350 (-486)) $) 100 T ELT)) (-2997 (($) 98 T ELT) (($ $) 97 T ELT)) (-2566 (($ $ $) 148 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 143 T ELT)) (-3726 (((-85) $) 68 T ELT)) (-2042 (($ $ $ $) 89 T ELT)) (-2050 (($ $ $) 103 T ELT)) (-3189 (((-85) $) 136 T ELT)) (-1371 (($ $ $) 114 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 117 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2676 (((-85) $) 109 T ELT)) (-3448 (((-634 $) $) 111 T ELT)) (-3190 (((-85) $) 135 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 152 T ELT)) (-2043 (($ $ $ $) 90 T ELT)) (-2534 (($ $ $) 142 T ELT)) (-2860 (($ $ $) 141 T ELT)) (-2046 (($ $) 93 T ELT)) (-3836 (($ $) 106 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 122 T ELT) (((-632 (-486)) (-1181 $)) 121 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2041 (($ $ $) 88 T ELT)) (-3449 (($) 110 T CONST)) (-2048 (($ $) 95 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1369 (($ $) 115 T ELT)) (-3735 (((-348 $) $) 65 T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 150 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 144 T ELT)) (-2677 (((-85) $) 108 T ELT)) (-1609 (((-696) $) 146 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 147 T ELT)) (-3761 (($ $) 132 T ELT) (($ $ (-696)) 130 T ELT)) (-2047 (($ $) 94 T ELT)) (-3403 (($ $) 96 T ELT)) (-3975 (((-486) $) 128 T ELT) (((-475) $) 119 T ELT) (((-802 (-486)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-486)) 125 T ELT)) (-3129 (((-696)) 40 T CONST)) (-2051 (((-85) $ $) 104 T ELT)) (-3104 (($ $ $) 116 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2697 (($) 107 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2045 (($ $ $ $) 92 T ELT)) (-3386 (($ $) 133 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $) 131 T ELT) (($ $ (-696)) 129 T ELT)) (-2569 (((-85) $ $) 140 T ELT)) (-2570 (((-85) $ $) 138 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 139 T ELT)) (-2688 (((-85) $ $) 137 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-486) $) 120 T ELT))) +(((-485) (-113)) (T -485)) +((-2676 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-2697 (*1 *1) (-4 *1 (-485))) (-3836 (*1 *1 *1) (-4 *1 (-485))) (-2444 (*1 *1 *1 *1) (-4 *1 (-485))) (-2051 (*1 *2 *1 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-2050 (*1 *1 *1 *1) (-4 *1 (-485))) (-2049 (*1 *1 *1 *1) (-4 *1 (-485))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) (-2997 (*1 *1) (-4 *1 (-485))) (-2997 (*1 *1 *1) (-4 *1 (-485))) (-3403 (*1 *1 *1) (-4 *1 (-485))) (-2048 (*1 *1 *1) (-4 *1 (-485))) (-2047 (*1 *1 *1) (-4 *1 (-485))) (-2046 (*1 *1 *1) (-4 *1 (-485))) (-2045 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2041 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-1136) (-258) (-742) (-190) (-555 (-486)) (-952 (-486)) (-582 (-486)) (-555 (-475)) (-555 (-802 (-486))) (-798 (-486)) (-116) (-935) (-120) (-1068) (-10 -8 (-15 -2676 ((-85) $)) (-15 -2677 ((-85) $)) (-6 -3997) (-15 -2697 ($)) (-15 -3836 ($ $)) (-15 -2444 ($ $ $)) (-15 -2051 ((-85) $ $)) (-15 -2050 ($ $ $)) (-15 -2049 ($ $ $)) (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $)) (-15 -2997 ($)) (-15 -2997 ($ $)) (-15 -3403 ($ $)) (-15 -2048 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $ $ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $)) (-6 -3996))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-116) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-330)) . T) ((-555 (-475)) . T) ((-555 (-486)) . T) ((-555 (-802 (-486))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-486)) . T) ((-592 $) . T) ((-584 $) . T) ((-582 (-486)) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-742) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-486)) . T) ((-834) . T) ((-935) . T) ((-952 (-486)) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) . T) ((-1131) . T) ((-1136) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 8 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 77 T ELT)) (-2065 (($ $) 78 T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 31 T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL T ELT)) (-2444 (($ $ $) 71 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT)) (-2567 (($ $ $) 45 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 53 T ELT) (((-632 (-486)) (-632 $)) 49 T ELT)) (-3470 (((-3 $ #1#) $) 74 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3026 (((-85) $) NIL T ELT)) (-3025 (((-350 (-486)) $) NIL T ELT)) (-2997 (($) 55 T ELT) (($ $) 56 T ELT)) (-2566 (($ $ $) 70 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 46 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1371 (($ $ $) NIL T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL T ELT)) (-1216 (((-85) $ $) 110 T ELT)) (-2412 (((-85) $) 9 T ELT)) (-2676 (((-85) $) 64 T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-3190 (((-85) $) 21 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) 32 T ELT)) (-2534 (($ $ $) 67 T ELT)) (-2860 (($ $ $) 66 T ELT)) (-2046 (($ $) NIL T ELT)) (-3836 (($ $) 29 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) 44 T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2048 (($ $) 15 T ELT)) (-3246 (((-1035) $) 19 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 109 T ELT)) (-3147 (($ $ $) 75 T ELT) (($ (-585 $)) NIL T ELT)) (-1369 (($ $) NIL T ELT)) (-3735 (((-348 $) $) 95 T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 93 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) 65 T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 69 T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) 17 T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-486) $) 28 T ELT) (((-475) $) 41 T ELT) (((-802 (-486)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3949 (((-774) $) 26 T ELT) (($ (-486)) 27 T ELT) (($ $) NIL T ELT) (($ (-486)) 27 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (($) 12 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) 112 T ELT)) (-2045 (($ $ $ $) 30 T ELT)) (-3386 (($ $) 54 T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 11 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) 59 T ELT)) (-2570 (((-85) $ $) 57 T ELT)) (-3059 (((-85) $ $) 7 T ELT)) (-2687 (((-85) $ $) 58 T ELT)) (-2688 (((-85) $ $) 20 T ELT)) (-3840 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3842 (($ $ $) 14 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 63 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-486) $) 61 T ELT))) +(((-486) (-13 (-485) (-10 -7 (-6 -3985) (-6 -3990) (-6 -3986)))) (T -486)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-487) (-13 (-754) (-10 -8 (-15 -3727 ($) -3955)))) (T -487)) +((-3727 (*1 *1) (-5 *1 (-487)))) +((-486) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-488) (-13 (-754) (-10 -8 (-15 -3727 ($) -3955)))) (T -488)) +((-3727 (*1 *1) (-5 *1 (-488)))) +((-486) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-489) (-13 (-754) (-10 -8 (-15 -3727 ($) -3955)))) (T -489)) +((-3727 (*1 *1) (-5 *1 (-489)))) +((-486) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-490) (-13 (-754) (-10 -8 (-15 -3727 ($) -3955)))) (T -490)) +((-3727 (*1 *1) (-5 *1 (-490)))) +((-486) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-491 |#1| |#2| |#3|) (-1109 |#1| |#2|) (-1015) (-1015) (-1109 |#1| |#2|)) (T -491)) +NIL +((-2052 (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-1 (-1087 |#2|) (-1087 |#2|))) 50 T ELT))) +(((-492 |#1| |#2|) (-10 -7 (-15 -2052 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-1 (-1087 |#2|) (-1087 |#2|))))) (-497) (-13 (-27) (-364 |#1|))) (T -492)) +((-2052 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-1 (-1087 *3) (-1087 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-497)) (-5 *2 (-521 *3)) (-5 *1 (-492 *6 *3))))) +((-2054 (((-521 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2055 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2053 (((-521 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-493 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2053 ((-521 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-521 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2055 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-497) (-952 (-486))) (-13 (-27) (-364 |#1|)) (-1157 |#2|) (-1157 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -493)) +((-2055 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *7 (-1157 (-350 *6))) (-5 *1 (-493 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) +((-2058 (((-85) (-486) (-486)) 12 T ELT)) (-2056 (((-486) (-486)) 7 T ELT)) (-2057 (((-486) (-486) (-486)) 10 T ELT))) +(((-494) (-10 -7 (-15 -2056 ((-486) (-486))) (-15 -2057 ((-486) (-486) (-486))) (-15 -2058 ((-85) (-486) (-486))))) (T -494)) +((-2058 (*1 *2 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-494)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494)))) (-2056 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2607 ((|#1| $) 77 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3495 (($ $) 107 T ELT)) (-3642 (($ $) 90 T ELT)) (-2486 ((|#1| $) 78 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 89 T ELT)) (-3493 (($ $) 106 T ELT)) (-3641 (($ $) 91 T ELT)) (-3497 (($ $) 105 T ELT)) (-3640 (($ $) 92 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) "failed") $) 85 T ELT)) (-3159 (((-486) $) 86 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2061 (($ |#1| |#1|) 82 T ELT)) (-3189 (((-85) $) 76 T ELT)) (-3630 (($) 117 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 88 T ELT)) (-3190 (((-85) $) 75 T ELT)) (-2534 (($ $ $) 118 T ELT)) (-2860 (($ $ $) 119 T ELT)) (-3945 (($ $) 114 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2062 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-486))) 80 T ELT)) (-2060 ((|#1| $) 79 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (($ $) 115 T ELT)) (-3498 (($ $) 104 T ELT)) (-3639 (($ $) 93 T ELT)) (-3496 (($ $) 103 T ELT)) (-3638 (($ $) 94 T ELT)) (-3494 (($ $) 102 T ELT)) (-3637 (($ $) 95 T ELT)) (-2059 (((-85) $ |#1|) 74 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-486)) 84 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 113 T ELT)) (-3489 (($ $) 101 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3499 (($ $) 112 T ELT)) (-3487 (($ $) 100 T ELT)) (-3503 (($ $) 111 T ELT)) (-3491 (($ $) 99 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 110 T ELT)) (-3492 (($ $) 98 T ELT)) (-3502 (($ $) 109 T ELT)) (-3490 (($ $) 97 T ELT)) (-3500 (($ $) 108 T ELT)) (-3488 (($ $) 96 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 120 T ELT)) (-2570 (((-85) $ $) 122 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 121 T ELT)) (-2688 (((-85) $ $) 123 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-486))) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-495 |#1|) (-113) (-13 (-347) (-1117))) (T -495)) +((-2062 (*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2062 (*1 *1 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) (-2059 (*1 *2 *1 *3) (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85))))) +(-13 (-393) (-758) (-1117) (-917) (-952 (-486)) (-10 -8 (-6 -3773) (-15 -2062 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2062 ($ |t#1|)) (-15 -2062 ($ (-350 (-486)))) (-15 -2060 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2607 (|t#1| $)) (-15 -3189 ((-85) $)) (-15 -3190 ((-85) $)) (-15 -2059 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-393) . T) ((-434) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-758) . T) ((-761) . T) ((-917) . T) ((-952 (-486)) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) . T) ((-1120) . T) ((-1131) . T)) +((-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 9 T ELT)) (-2065 (($ $) 11 T ELT)) (-2063 (((-85) $) 20 T ELT)) (-3470 (((-3 $ "failed") $) 16 T ELT)) (-2064 (((-85) $ $) 22 T ELT))) +(((-496 |#1|) (-10 -7 (-15 -2063 ((-85) |#1|)) (-15 -2064 ((-85) |#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2066 ((-2 (|:| -1777 |#1|) (|:| -3985 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3470 ((-3 |#1| "failed") |#1|))) (-497)) (T -496)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-497) (-113)) (T -497)) +((-3469 (*1 *1 *1 *1) (|partial| -4 *1 (-497))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1777 *1) (|:| -3985 *1) (|:| |associate| *1))) (-4 *1 (-497)))) (-2065 (*1 *1 *1) (-4 *1 (-497))) (-2064 (*1 *2 *1 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85))))) +(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3469 ((-3 $ "failed") $ $)) (-15 -2066 ((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $)) (-15 -2065 ($ $)) (-15 -2064 ((-85) $ $)) (-15 -2063 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2068 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1092) (-585 |#2|)) 38 T ELT)) (-2070 (((-521 |#2|) |#2| (-1092)) 63 T ELT)) (-2069 (((-3 |#2| #1#) |#2| (-1092)) 156 T ELT)) (-2071 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1092) (-552 |#2|) (-585 (-552 |#2|))) 159 T ELT)) (-2067 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1092) |#2|) 41 T ELT))) +(((-498 |#1| |#2|) (-10 -7 (-15 -2067 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1092) |#2|)) (-15 -2068 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1092) (-585 |#2|))) (-15 -2069 ((-3 |#2| #1#) |#2| (-1092))) (-15 -2070 ((-521 |#2|) |#2| (-1092))) (-15 -2071 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1092) (-552 |#2|) (-585 (-552 |#2|))))) (-13 (-393) (-120) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -498)) +((-2071 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-585 (-552 *3))) (-5 *5 (-552 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *7 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-498 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2069 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-498 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-2068 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *6 *3)))) (-2067 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) +((-3974 (((-348 |#1|) |#1|) 17 T ELT)) (-3735 (((-348 |#1|) |#1|) 32 T ELT)) (-2073 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2072 (((-348 |#1|) |#1|) 59 T ELT))) +(((-499 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -2072 ((-348 |#1|) |#1|)) (-15 -2073 ((-3 |#1| "failed") |#1|))) (-485)) (T -499)) +((-2073 (*1 *2 *2) (|partial| -12 (-5 *1 (-499 *2)) (-4 *2 (-485)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) (-3974 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485))))) +((-3086 (((-1087 (-350 (-1087 |#2|))) |#2| (-552 |#2|) (-552 |#2|) (-1087 |#2|)) 35 T ELT)) (-2076 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) |#2| (-1087 |#2|)) 115 T ELT)) (-2074 (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 85 T ELT) (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|)) 55 T ELT)) (-2075 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| (-552 |#2|) |#2| (-350 (-1087 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| |#2| (-1087 |#2|)) 114 T ELT)) (-2077 (((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) |#2| (-1087 |#2|)) 116 T ELT)) (-2078 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 133 (|has| |#3| (-602 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|)) 132 (|has| |#3| (-602 |#2|)) ELT)) (-3087 ((|#2| (-1087 (-350 (-1087 |#2|))) (-552 |#2|) |#2|) 53 T ELT)) (-3082 (((-1087 (-350 (-1087 |#2|))) (-1087 |#2|) (-552 |#2|)) 34 T ELT))) +(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -2074 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|))) (-15 -2074 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-552 |#2|) (-552 |#2|) |#2| |#2| (-1087 |#2|))) (-15 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) |#2| (-1087 |#2|))) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) |#2| (-1087 |#2|))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -3086 ((-1087 (-350 (-1087 |#2|))) |#2| (-552 |#2|) (-552 |#2|) (-1087 |#2|))) (-15 -3087 (|#2| (-1087 (-350 (-1087 |#2|))) (-552 |#2|) |#2|)) (-15 -3082 ((-1087 (-350 (-1087 |#2|))) (-1087 |#2|) (-552 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|))) (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))))) |%noBranch|)) (-13 (-393) (-952 (-486)) (-120) (-582 (-486))) (-13 (-364 |#1|) (-27) (-1117)) (-1015)) (T -500)) +((-2078 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-350 (-1087 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-2078 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-1087 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-552 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-1087 (-350 (-1087 *6)))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-1087 *6)) (-4 *7 (-1015)))) (-3087 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1087 (-350 (-1087 *2)))) (-5 *4 (-552 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-500 *5 *2 *6)) (-4 *6 (-1015)))) (-3086 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-1087 (-350 (-1087 *3)))) (-5 *1 (-500 *6 *3 *7)) (-5 *5 (-1087 *3)) (-4 *7 (-1015)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1092))) (-5 *5 (-350 (-1087 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1092))) (-5 *5 (-1087 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015)))) (-2076 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-350 (-1087 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015)))) (-2076 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1087 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015)))) (-2075 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) (-2075 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) (-2074 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) (-2074 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015))))) +((-2088 (((-486) (-486) (-696)) 87 T ELT)) (-2087 (((-486) (-486)) 85 T ELT)) (-2086 (((-486) (-486)) 82 T ELT)) (-2085 (((-486) (-486)) 89 T ELT)) (-2808 (((-486) (-486) (-486)) 67 T ELT)) (-2084 (((-486) (-486) (-486)) 64 T ELT)) (-2083 (((-350 (-486)) (-486)) 29 T ELT)) (-2082 (((-486) (-486)) 34 T ELT)) (-2081 (((-486) (-486)) 76 T ELT)) (-2805 (((-486) (-486)) 47 T ELT)) (-2080 (((-585 (-486)) (-486)) 81 T ELT)) (-2079 (((-486) (-486) (-486) (-486) (-486)) 60 T ELT)) (-2801 (((-350 (-486)) (-486)) 56 T ELT))) +(((-501) (-10 -7 (-15 -2801 ((-350 (-486)) (-486))) (-15 -2079 ((-486) (-486) (-486) (-486) (-486))) (-15 -2080 ((-585 (-486)) (-486))) (-15 -2805 ((-486) (-486))) (-15 -2081 ((-486) (-486))) (-15 -2082 ((-486) (-486))) (-15 -2083 ((-350 (-486)) (-486))) (-15 -2084 ((-486) (-486) (-486))) (-15 -2808 ((-486) (-486) (-486))) (-15 -2085 ((-486) (-486))) (-15 -2086 ((-486) (-486))) (-15 -2087 ((-486) (-486))) (-15 -2088 ((-486) (-486) (-696))))) (T -501)) +((-2088 (*1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-696)) (-5 *1 (-501)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2808 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2084 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-501)) (-5 *3 (-486)))) (-2079 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486))))) +((-2089 (((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2089 ((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -502)) +((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-4 *7 (-1157 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) +((-2089 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2137 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-503 |#1| |#2|) (-10 -7 (-15 -2089 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2137 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1157 |#1|)) (T -503)) +((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2137 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-503 *5 *6)) (-5 *3 (-350 *6))))) +((-2092 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|)) 195 T ELT)) (-2090 (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|)) 97 T ELT)) (-2091 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2|) 191 T ELT)) (-2093 (((-3 |#2| #1#) |#2| |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092))) 200 T ELT)) (-2094 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-1092)) 209 (|has| |#3| (-602 |#2|)) ELT))) +(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -2090 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|))) (-15 -2091 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-552 |#2|) (-552 |#2|) |#2|)) (-15 -2092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|))) (-15 -2093 ((-3 |#2| #1#) |#2| |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)))) (IF (|has| |#3| (-602 |#2|)) (-15 -2094 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-1092))) |%noBranch|)) (-13 (-393) (-952 (-486)) (-120) (-582 (-486))) (-13 (-364 |#1|) (-27) (-1117)) (-1015)) (T -504)) +((-2094 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-1092)) (-4 *4 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-504 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-2093 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1092))) (-4 *2 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-504 *5 *2 *6)) (-4 *6 (-1015)))) (-2092 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *6 *3 *7)) (-4 *7 (-1015)))) (-2091 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-504 *5 *3 *6)) (-4 *6 (-1015)))) (-2090 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-504 *5 *3 *6)) (-4 *6 (-1015))))) +((-2095 (((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1092)) 64 T ELT)) (-2097 (((-3 |#2| #1="failed") |#2| (-1092) (-752 |#2|) (-752 |#2|)) 174 (-12 (|has| |#2| (-1055)) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-798 (-486)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1092)) 145 (-12 (|has| |#2| (-571)) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-798 (-486)))) ELT)) (-2096 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1092)) 156 (-12 (|has| |#2| (-571)) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-798 (-486)))) ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2095 ((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1092))) (IF (|has| |#1| (-555 (-802 (-486)))) (IF (|has| |#1| (-798 (-486))) (PROGN (IF (|has| |#2| (-571)) (PROGN (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1092))) (-15 -2097 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1092)))) |%noBranch|) (IF (|has| |#2| (-1055)) (-15 -2097 ((-3 |#2| #1#) |#2| (-1092) (-752 |#2|) (-752 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-952 (-486)) (-393) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -505)) +((-2097 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-752 *2)) (-4 *2 (-1055)) (-4 *2 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-555 (-802 (-486)))) (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *1 (-505 *5 *2)))) (-2097 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2095 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-505 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) +((-2100 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-585 (-350 |#2|))) 41 T ELT)) (-3815 (((-521 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2098 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2099 (((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT))) +(((-506 |#1| |#2|) (-10 -7 (-15 -3815 ((-521 (-350 |#2|)) (-350 |#2|))) (-15 -2098 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2099 ((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2100 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-585 (-350 |#2|))))) (-13 (-312) (-120) (-952 (-486))) (-1157 |#1|)) (T -506)) +((-2100 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-585 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *5 *6)))) (-2099 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2138 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5)))) (-2098 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120) (-952 (-486)))) (-5 *1 (-506 *3 *4)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-521 (-350 *5))) (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5))))) +((-2101 (((-3 (-486) "failed") |#1|) 14 T ELT)) (-3262 (((-85) |#1|) 13 T ELT)) (-3258 (((-486) |#1|) 9 T ELT))) +(((-507 |#1|) (-10 -7 (-15 -3258 ((-486) |#1|)) (-15 -3262 ((-85) |#1|)) (-15 -2101 ((-3 (-486) "failed") |#1|))) (-952 (-486))) (T -507)) +((-2101 (*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2)))) (-3262 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-507 *3)) (-4 *3 (-952 (-486))))) (-3258 (*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2))))) +((-2104 (((-3 (-2 (|:| |mainpart| (-350 (-859 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 (-859 |#1|))) (|:| |logand| (-350 (-859 |#1|))))))) #1="failed") (-350 (-859 |#1|)) (-1092) (-585 (-350 (-859 |#1|)))) 48 T ELT)) (-2102 (((-521 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-1092)) 28 T ELT)) (-2103 (((-3 (-350 (-859 |#1|)) #1#) (-350 (-859 |#1|)) (-1092)) 23 T ELT)) (-2105 (((-3 (-2 (|:| -2138 (-350 (-859 |#1|))) (|:| |coeff| (-350 (-859 |#1|)))) #1#) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|))) 35 T ELT))) +(((-508 |#1|) (-10 -7 (-15 -2102 ((-521 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-1092))) (-15 -2103 ((-3 (-350 (-859 |#1|)) #1="failed") (-350 (-859 |#1|)) (-1092))) (-15 -2104 ((-3 (-2 (|:| |mainpart| (-350 (-859 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 (-859 |#1|))) (|:| |logand| (-350 (-859 |#1|))))))) #1#) (-350 (-859 |#1|)) (-1092) (-585 (-350 (-859 |#1|))))) (-15 -2105 ((-3 (-2 (|:| -2138 (-350 (-859 |#1|))) (|:| |coeff| (-350 (-859 |#1|)))) #1#) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|))))) (-13 (-497) (-952 (-486)) (-120))) (T -508)) +((-2105 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-2 (|:| -2138 (-350 (-859 *5))) (|:| |coeff| (-350 (-859 *5))))) (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5))))) (-2104 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 (-350 (-859 *6)))) (-5 *3 (-350 (-859 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-508 *6)))) (-2103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-120))) (-5 *1 (-508 *4)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-521 (-350 (-859 *5)))) (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5)))))) +((-2571 (((-85) $ $) 77 T ELT)) (-3191 (((-85) $) 49 T ELT)) (-2607 ((|#1| $) 39 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) 81 T ELT)) (-3495 (($ $) 142 T ELT)) (-3642 (($ $) 120 T ELT)) (-2486 ((|#1| $) 37 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-3493 (($ $) 144 T ELT)) (-3641 (($ $) 116 T ELT)) (-3497 (($ $) 146 T ELT)) (-3640 (($ $) 124 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) 95 T ELT)) (-3159 (((-486) $) 97 T ELT)) (-3470 (((-3 $ #1#) $) 80 T ELT)) (-2061 (($ |#1| |#1|) 35 T ELT)) (-3189 (((-85) $) 44 T ELT)) (-3630 (($) 106 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 56 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3190 (((-85) $) 46 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3945 (($ $) 108 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2062 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-486))) 94 T ELT)) (-2060 ((|#1| $) 36 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) 83 T ELT) (($ (-585 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 82 T ELT)) (-3946 (($ $) 110 T ELT)) (-3498 (($ $) 150 T ELT)) (-3639 (($ $) 122 T ELT)) (-3496 (($ $) 152 T ELT)) (-3638 (($ $) 126 T ELT)) (-3494 (($ $) 148 T ELT)) (-3637 (($ $) 118 T ELT)) (-2059 (((-85) $ |#1|) 42 T ELT)) (-3949 (((-774) $) 102 T ELT) (($ (-486)) 85 T ELT) (($ $) NIL T ELT) (($ (-486)) 85 T ELT)) (-3129 (((-696)) 104 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 164 T ELT)) (-3489 (($ $) 132 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 162 T ELT)) (-3487 (($ $) 128 T ELT)) (-3503 (($ $) 160 T ELT)) (-3491 (($ $) 140 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 158 T ELT)) (-3492 (($ $) 138 T ELT)) (-3502 (($ $) 156 T ELT)) (-3490 (($ $) 134 T ELT)) (-3500 (($ $) 154 T ELT)) (-3488 (($ $) 130 T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 10 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 50 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 48 T ELT)) (-3840 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3842 (($ $ $) 53 T ELT)) (** (($ $ (-832)) 73 T ELT) (($ $ (-696)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-486))) 166 T ELT)) (* (($ (-832) $) 67 T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-509 |#1|) (-495 |#1|) (-13 (-347) (-1117))) (T -509)) +NIL +((-2707 (((-3 (-585 (-1087 (-486))) "failed") (-585 (-1087 (-486))) (-1087 (-486))) 27 T ELT))) +(((-510) (-10 -7 (-15 -2707 ((-3 (-585 (-1087 (-486))) "failed") (-585 (-1087 (-486))) (-1087 (-486)))))) (T -510)) +((-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 (-486)))) (-5 *3 (-1087 (-486))) (-5 *1 (-510))))) +((-2106 (((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-1092)) 19 T ELT)) (-2109 (((-585 (-552 |#2|)) (-585 |#2|) (-1092)) 23 T ELT)) (-3237 (((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-585 (-552 |#2|))) 11 T ELT)) (-2110 ((|#2| |#2| (-1092)) 59 (|has| |#1| (-497)) ELT)) (-2111 ((|#2| |#2| (-1092)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-393))) ELT)) (-2108 (((-552 |#2|) (-552 |#2|) (-585 (-552 |#2|)) (-1092)) 25 T ELT)) (-2107 (((-552 |#2|) (-585 (-552 |#2|))) 24 T ELT)) (-2112 (((-521 |#2|) |#2| (-1092) (-1 (-521 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-571)) (|has| |#2| (-952 (-1092))) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-393)) (|has| |#1| (-798 (-486)))) ELT))) +(((-511 |#1| |#2|) (-10 -7 (-15 -2106 ((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-1092))) (-15 -2107 ((-552 |#2|) (-585 (-552 |#2|)))) (-15 -2108 ((-552 |#2|) (-552 |#2|) (-585 (-552 |#2|)) (-1092))) (-15 -3237 ((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-585 (-552 |#2|)))) (-15 -2109 ((-585 (-552 |#2|)) (-585 |#2|) (-1092))) (IF (|has| |#1| (-497)) (-15 -2110 (|#2| |#2| (-1092))) |%noBranch|) (IF (|has| |#1| (-393)) (IF (|has| |#2| (-239)) (PROGN (-15 -2111 (|#2| |#2| (-1092))) (IF (|has| |#1| (-555 (-802 (-486)))) (IF (|has| |#1| (-798 (-486))) (IF (|has| |#2| (-571)) (IF (|has| |#2| (-952 (-1092))) (-15 -2112 ((-521 |#2|) |#2| (-1092) (-1 (-521 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1015) (-364 |#1|)) (T -511)) +((-2112 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-521 *3) *3 (-1092))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1092))) (-4 *3 (-239)) (-4 *3 (-571)) (-4 *3 (-952 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1092)) (-4 *7 (-555 (-802 (-486)))) (-4 *7 (-393)) (-4 *7 (-798 (-486))) (-4 *7 (-1015)) (-5 *2 (-521 *3)) (-5 *1 (-511 *7 *3)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-393)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) (-4 *2 (-364 *4)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-1092)) (-4 *6 (-364 *5)) (-4 *5 (-1015)) (-5 *2 (-585 (-552 *6))) (-5 *1 (-511 *5 *6)))) (-3237 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-552 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1015)) (-5 *1 (-511 *3 *4)))) (-2108 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-552 *6))) (-5 *4 (-1092)) (-5 *2 (-552 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1015)) (-5 *1 (-511 *5 *6)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-585 (-552 *5))) (-4 *4 (-1015)) (-5 *2 (-552 *5)) (-5 *1 (-511 *4 *5)) (-4 *5 (-364 *4)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-552 *5))) (-5 *3 (-1092)) (-4 *5 (-364 *4)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *5))))) +((-2115 (((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) #1="failed") (-486) |#1| |#1|)) 199 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-585 (-350 |#2|))) 174 T ELT)) (-2121 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-585 (-350 |#2|))) 171 T ELT)) (-2122 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2113 (((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2120 (((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2124 (((-2 (|:| |ir| (-521 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2125 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2119 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-585 (-350 |#2|))) 178 T ELT)) (-2123 (((-3 (-564 |#1| |#2|) #1#) (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|)) 166 T ELT)) (-2114 (((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|)) 189 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-350 |#2|)) 210 T ELT))) +(((-512 |#1| |#2|) (-10 -7 (-15 -2113 ((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2114 ((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|))) (-15 -2115 ((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) #1#) (-486) |#1| |#1|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-350 |#2|))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-585 (-350 |#2|)))) (-15 -2119 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-585 (-350 |#2|)))) (-15 -2120 ((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2121 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-585 (-350 |#2|)))) (-15 -2122 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2123 ((-3 (-564 |#1| |#2|) #1#) (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|))) (-15 -2124 ((-2 (|:| |ir| (-521 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2125 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1157 |#1|)) (T -512)) +((-2125 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-512 *5 *3)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-521 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6)))) (-2123 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85))) (-486) *4)) (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *1 (-512 *4 *5)))) (-2122 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-512 *4 *2)) (-4 *2 (-1157 *4)))) (-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-350 *7))) (-4 *7 (-1157 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *6 *7)))) (-2120 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2138 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6)))) (-2119 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3140 *7) (|:| |sol?| (-85))) (-486) *7)) (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-512 *7 *8)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-512 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) "failed") (-486) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) +((-2126 (((-3 |#2| "failed") |#2| (-1092) (-1092)) 10 T ELT))) +(((-513 |#1| |#2|) (-10 -7 (-15 -2126 ((-3 |#2| "failed") |#2| (-1092) (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-1055) (-29 |#1|))) (T -513)) +((-2126 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-513 *4 *2)) (-4 *2 (-13 (-1117) (-873) (-1055) (-29 *4)))))) +((-2558 (((-634 (-1140)) $ (-1140)) 27 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 26 T ELT)) (-2557 (((-696) $ (-102)) 28 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 25 T ELT)) (-2002 (((-634 (-1140)) $) 12 T ELT)) (-1998 (((-634 (-1138)) $) 8 T ELT)) (-2000 (((-634 (-1137)) $) 10 T ELT)) (-2003 (((-634 (-490)) $) 13 T ELT)) (-1999 (((-634 (-488)) $) 9 T ELT)) (-2001 (((-634 (-487)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-1702 (($ $) 6 T ELT))) +(((-514) (-113)) (T -514)) +NIL +(-13 (-467) (-772)) +(((-147) . T) ((-467) . T) ((-772) . T)) +((-2558 (((-634 (-1140)) $ (-1140)) NIL T ELT)) (-2559 (((-634 (-490)) $ (-490)) NIL T ELT)) (-2557 (((-696) $ (-102)) NIL T ELT)) (-2560 (((-634 (-101)) $ (-101)) NIL T ELT)) (-2002 (((-634 (-1140)) $) NIL T ELT)) (-1998 (((-634 (-1138)) $) NIL T ELT)) (-2000 (((-634 (-1137)) $) NIL T ELT)) (-2003 (((-634 (-490)) $) NIL T ELT)) (-1999 (((-634 (-488)) $) NIL T ELT)) (-2001 (((-634 (-487)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) NIL T ELT)) (-2004 (((-634 (-101)) $) NIL T ELT)) (-2561 (((-85) $) NIL T ELT)) (-2127 (($ (-338)) 14 T ELT) (($ (-1075)) 16 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1702 (($ $) NIL T ELT))) +(((-515) (-13 (-514) (-554 (-774)) (-10 -8 (-15 -2127 ($ (-338))) (-15 -2127 ($ (-1075))) (-15 -2561 ((-85) $))))) (T -515)) +((-2127 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-515)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-515)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-515))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3463 (($) 7 T CONST)) (-3245 (((-1075) $) NIL T ELT)) (-2130 (($) 6 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 15 T ELT)) (-2128 (($) 9 T CONST)) (-2129 (($) 8 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) +(((-516) (-13 (-1015) (-10 -8 (-15 -2130 ($) -3955) (-15 -3463 ($) -3955) (-15 -2129 ($) -3955) (-15 -2128 ($) -3955)))) (T -516)) +((-2130 (*1 *1) (-5 *1 (-516))) (-3463 (*1 *1) (-5 *1 (-516))) (-2129 (*1 *1) (-5 *1 (-516))) (-2128 (*1 *1) (-5 *1 (-516)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2131 (((-634 $) (-432)) 23 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2133 (($ (-1075)) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 33 T ELT)) (-2132 (((-166 4 (-101)) $) 24 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 26 T ELT))) +(((-517) (-13 (-1015) (-10 -8 (-15 -2133 ($ (-1075))) (-15 -2132 ((-166 4 (-101)) $)) (-15 -2131 ((-634 $) (-432)))))) (T -517)) +((-2133 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-517)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-517)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-432)) (-5 *2 (-634 (-517))) (-5 *1 (-517))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-486)) 73 T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1087 (-486)) (-486)) 79 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 64 T ELT)) (-2615 (($ $) 43 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3775 (((-696) $) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 (((-486)) 37 T ELT)) (-2616 (((-486) $) 41 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-486)) 24 T ELT)) (-3469 (((-3 $ #1#) $ $) 70 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) 17 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 T ELT)) (-2618 (((-1071 (-486)) $) 19 T ELT)) (-2894 (($ $) 26 T ELT)) (-3949 (((-774) $) 100 T ELT) (($ (-486)) 59 T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) 15 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-486) $ (-486)) 46 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 44 T CONST)) (-2669 (($) 21 T CONST)) (-3059 (((-85) $ $) 51 T ELT)) (-3840 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3842 (($ $ $) 57 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-518 |#1| |#2|) (-781 |#1|) (-486) (-85)) (T -518)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 30 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 59 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 $ #1#) $) 95 T ELT)) (-3159 (($ $) 94 T ELT)) (-1797 (($ (-1181 $)) 93 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 47 T ELT)) (-2997 (($) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 61 T ELT)) (-1682 (((-85) $) NIL T ELT)) (-1769 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 49 (|has| $ (-320)) ELT)) (-2013 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3135 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 $) $ (-832)) NIL (|has| $ (-320)) ELT) (((-1087 $) $) 104 T ELT)) (-2012 (((-832) $) 67 T ELT)) (-1629 (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (((-3 (-1087 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1630 (($ $ (-1087 $)) NIL (|has| $ (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-832)) 60 T ELT)) (-3934 (((-85) $) 87 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) 28 (|has| $ (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 54 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-832)) 86 T ELT) (((-745 (-832))) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-3 (-696) #1#) $ $) NIL T ELT) (((-696) $) NIL T ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3951 (((-832) $) 85 T ELT) (((-745 (-832)) $) NIL T ELT)) (-3188 (((-1087 $)) 102 T ELT)) (-1676 (($) 66 T ELT)) (-1631 (($) 50 (|has| $ (-320)) ELT)) (-3227 (((-632 $) (-1181 $)) NIL T ELT) (((-1181 $) $) 91 T ELT)) (-3975 (((-486) $) 42 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3129 (((-696)) 51 T CONST)) (-1267 (((-85) $ $) 107 T ELT)) (-2014 (((-1181 $) (-832)) 97 T ELT) (((-1181 $)) 96 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) 31 T CONST)) (-2669 (($) 27 T CONST)) (-3931 (($ $ (-696)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 34 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-519 |#1|) (-13 (-299) (-280 $) (-555 (-486))) (-832)) (T -519)) +NIL +((-2134 (((-1187) (-1075)) 10 T ELT))) +(((-520) (-10 -7 (-15 -2134 ((-1187) (-1075))))) (T -520)) +((-2134 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-520))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 77 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2138 ((|#1| $) 30 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2136 (((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2139 (($ |#1| (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2137 (((-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $) 31 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2835 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1092)) 49 (|has| |#1| (-952 (-1092))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2135 (((-85) $) 35 T ELT)) (-3761 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1092)) 90 (|has| |#1| (-811 (-1092))) ELT)) (-3949 (((-774) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 86 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 16 T ELT) (($ (-350 (-486)) $) 41 T ELT) (($ $ (-350 (-486))) NIL T ELT))) +(((-521 |#1|) (-13 (-656 (-350 (-486))) (-952 |#1|) (-10 -8 (-15 -2139 ($ |#1| (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2138 (|#1| $)) (-15 -2137 ((-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $)) (-15 -2136 ((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2135 ((-85) $)) (-15 -2835 ($ |#1| |#1|)) (-15 -3761 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-811 (-1092))) (-15 -3761 (|#1| $ (-1092))) |%noBranch|) (IF (|has| |#1| (-952 (-1092))) (-15 -2835 ($ |#1| (-1092))) |%noBranch|))) (-312)) (T -521)) +((-2139 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *2)) (|:| |logand| (-1087 *2))))) (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-521 *2)))) (-2138 (*1 *2 *1) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *3)) (|:| |logand| (-1087 *3))))) (-5 *1 (-521 *3)) (-4 *3 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-521 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-521 *3)) (-4 *3 (-312)))) (-2835 (*1 *1 *2 *2) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-521 *2)) (-4 *2 (-312)))) (-3761 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-811 *3)) (-5 *1 (-521 *2)) (-5 *3 (-1092)))) (-2835 (*1 *1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *1 (-521 *2)) (-4 *2 (-952 *3)) (-4 *2 (-312))))) +((-3961 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-521 |#2|) (-1 |#2| |#1|) (-521 |#1|)) 30 T ELT))) +(((-522 |#1| |#2|) (-10 -7 (-15 -3961 ((-521 |#2|) (-1 |#2| |#1|) (-521 |#1|))) (-15 -3961 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3961 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3961 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -522)) +((-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-522 *5 *6)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-522 *5 *2)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) (-5 *1 (-522 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-521 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-521 *6)) (-5 *1 (-522 *5 *6))))) +((-3421 (((-521 |#2|) (-521 |#2|)) 42 T ELT)) (-3966 (((-585 |#2|) (-521 |#2|)) 44 T ELT)) (-2150 ((|#2| (-521 |#2|)) 50 T ELT))) +(((-523 |#1| |#2|) (-10 -7 (-15 -3421 ((-521 |#2|) (-521 |#2|))) (-15 -3966 ((-585 |#2|) (-521 |#2|))) (-15 -2150 (|#2| (-521 |#2|)))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-29 |#1|) (-1117))) (T -523)) +((-2150 (*1 *2 *3) (-12 (-5 *3 (-521 *2)) (-4 *2 (-13 (-29 *4) (-1117))) (-5 *1 (-523 *4 *2)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-521 *5)) (-4 *5 (-13 (-29 *4) (-1117))) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 *5)) (-5 *1 (-523 *4 *5)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-521 *4)) (-4 *4 (-13 (-29 *3) (-1117))) (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-523 *3 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2142 (($ (-448) (-534)) 14 T ELT)) (-2140 (($ (-448) (-534) $) 16 T ELT)) (-2141 (($ (-448) (-534)) 15 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-1097)) 7 T ELT) (((-1097) $) 6 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-524) (-13 (-1015) (-431 (-1097)) (-10 -8 (-15 -2142 ($ (-448) (-534))) (-15 -2141 ($ (-448) (-534))) (-15 -2140 ($ (-448) (-534) $))))) (T -524)) +((-2142 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524)))) (-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524)))) (-2140 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) +((-2146 (((-85) |#1|) 16 T ELT)) (-2147 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2144 (((-2 (|:| -2697 |#1|) (|:| -2403 (-696))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-696)) 18 T ELT)) (-2143 (((-85) |#1| (-696)) 19 T ELT)) (-2148 ((|#1| |#1|) 41 T ELT)) (-2145 ((|#1| |#1| (-696)) 44 T ELT))) +(((-525 |#1|) (-10 -7 (-15 -2143 ((-85) |#1| (-696))) (-15 -2144 ((-3 |#1| #1="failed") |#1| (-696))) (-15 -2144 ((-2 (|:| -2697 |#1|) (|:| -2403 (-696))) |#1|)) (-15 -2145 (|#1| |#1| (-696))) (-15 -2146 ((-85) |#1|)) (-15 -2147 ((-3 |#1| #1#) |#1|)) (-15 -2148 (|#1| |#1|))) (-485)) (T -525)) +((-2148 (*1 *2 *2) (-12 (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2147 (*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485)))) (-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2697 *3) (|:| -2403 (-696)))) (-5 *1 (-525 *3)) (-4 *3 (-485)))) (-2144 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485))))) +((-2149 (((-1087 |#1|) (-832)) 44 T ELT))) +(((-526 |#1|) (-10 -7 (-15 -2149 ((-1087 |#1|) (-832)))) (-299)) (T -526)) +((-2149 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-526 *4)) (-4 *4 (-299))))) +((-3421 (((-521 (-350 (-859 |#1|))) (-521 (-350 (-859 |#1|)))) 27 T ELT)) (-3815 (((-3 (-265 |#1|) (-585 (-265 |#1|))) (-350 (-859 |#1|)) (-1092)) 33 (|has| |#1| (-120)) ELT)) (-3966 (((-585 (-265 |#1|)) (-521 (-350 (-859 |#1|)))) 19 T ELT)) (-2151 (((-265 |#1|) (-350 (-859 |#1|)) (-1092)) 31 (|has| |#1| (-120)) ELT)) (-2150 (((-265 |#1|) (-521 (-350 (-859 |#1|)))) 21 T ELT))) +(((-527 |#1|) (-10 -7 (-15 -3421 ((-521 (-350 (-859 |#1|))) (-521 (-350 (-859 |#1|))))) (-15 -3966 ((-585 (-265 |#1|)) (-521 (-350 (-859 |#1|))))) (-15 -2150 ((-265 |#1|) (-521 (-350 (-859 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3815 ((-3 (-265 |#1|) (-585 (-265 |#1|))) (-350 (-859 |#1|)) (-1092))) (-15 -2151 ((-265 |#1|) (-350 (-859 |#1|)) (-1092)))) |%noBranch|)) (-13 (-393) (-952 (-486)) (-582 (-486)))) (T -527)) +((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *5)) (-5 *1 (-527 *5)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (-265 *5) (-585 (-265 *5)))) (-5 *1 (-527 *5)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-521 (-350 (-859 *4)))) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *4)) (-5 *1 (-527 *4)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-521 (-350 (-859 *4)))) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 (-265 *4))) (-5 *1 (-527 *4)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-521 (-350 (-859 *3)))) (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-527 *3))))) +((-2153 (((-585 (-632 (-486))) (-585 (-832)) (-585 (-815 (-486)))) 80 T ELT) (((-585 (-632 (-486))) (-585 (-832))) 81 T ELT) (((-632 (-486)) (-585 (-832)) (-815 (-486))) 74 T ELT)) (-2152 (((-696) (-585 (-832))) 71 T ELT))) +(((-528) (-10 -7 (-15 -2152 ((-696) (-585 (-832)))) (-15 -2153 ((-632 (-486)) (-585 (-832)) (-815 (-486)))) (-15 -2153 ((-585 (-632 (-486))) (-585 (-832)))) (-15 -2153 ((-585 (-632 (-486))) (-585 (-832)) (-585 (-815 (-486))))))) (T -528)) +((-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-815 (-486)))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-815 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-528)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-696)) (-5 *1 (-528))))) +((-3216 (((-585 |#5|) |#5| (-85)) 97 T ELT)) (-2154 (((-85) |#5| (-585 |#5|)) 34 T ELT))) +(((-529 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3216 ((-585 |#5|) |#5| (-85))) (-15 -2154 ((-85) |#5| (-585 |#5|)))) (-13 (-258) (-120)) (-719) (-758) (-979 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -529)) +((-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-529 *5 *6 *7 *8 *3)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-530) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -530)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530))))) +((-3535 (((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2| (-1003 |#4|)) 32 T ELT))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2| (-1003 |#4|))) (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2|))) (-719) (-758) (-497) (-863 |#3| |#1| |#2|)) (T -531)) +((-3535 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) (-5 *1 (-531 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1003 *3)) (-4 *3 (-863 *7 *6 *4)) (-4 *6 (-719)) (-4 *4 (-758)) (-4 *7 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) (-5 *1 (-531 *6 *4 *7 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 71 T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 58 T ELT) (($ $ (-486) (-486)) 59 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 65 T ELT)) (-2185 (($ $) 109 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2183 (((-774) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) (-941 (-752 (-486))) (-1092) |#1| (-350 (-486))) 232 T ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 36 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3775 (((-486) $) 63 T ELT) (((-486) $ (-486)) 64 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3780 (($ $ (-832)) 83 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 80 T ELT)) (-3940 (((-85) $) 26 T ELT)) (-2896 (($ |#1| (-486)) 22 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2189 (($ (-941 (-752 (-486))) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 13 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $) 120 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2186 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2184 (($ $ $) 116 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2187 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 15 T ELT)) (-2188 (((-941 (-752 (-486))) $) 14 T ELT)) (-3772 (($ $ (-486)) 47 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT)) (-3803 ((|#1| $ (-486)) 62 T ELT) (($ $ $) NIL (|has| (-486) (-1027)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3951 (((-486) $) NIL T ELT)) (-2894 (($ $) 48 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) 29 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ (-486)) 61 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 39 T CONST)) (-3776 ((|#1| $) NIL T ELT)) (-2164 (($ $) 192 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2176 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2166 (($ $) 189 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2178 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2162 (($ $) 194 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2174 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2181 (($ $ (-350 (-486))) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2182 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2179 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2180 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2161 (($ $) 195 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2173 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2163 (($ $) 193 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2175 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2165 (($ $) 190 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2177 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2158 (($ $) 200 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2170 (($ $) 180 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2160 (($ $) 197 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2172 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2156 (($ $) 204 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2168 (($ $) 184 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2155 (($ $) 206 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2167 (($ $) 186 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2157 (($ $) 202 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2169 (($ $) 182 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2159 (($ $) 199 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2171 (($ $) 178 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3773 ((|#1| $ (-486)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 40 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3059 (((-85) $ $) 73 T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3842 (($ $ $) 88 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 111 T ELT)) (* (($ (-832) $) 98 T ELT) (($ (-696) $) 96 T ELT) (($ (-486) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-532 |#1|) (-13 (-1160 |#1| (-486)) (-10 -8 (-15 -2189 ($ (-941 (-752 (-486))) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))))) (-15 -2188 ((-941 (-752 (-486))) $)) (-15 -2187 ((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $)) (-15 -3821 ($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))))) (-15 -3940 ((-85) $)) (-15 -3818 ($ (-1 |#1| (-486)) $)) (-15 -2186 ((-3 $ "failed") $ $ (-85))) (-15 -2185 ($ $)) (-15 -2184 ($ $ $)) (-15 -2183 ((-774) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) (-941 (-752 (-486))) (-1092) |#1| (-350 (-486)))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (-15 -2182 ($ $ |#1|)) (-15 -2181 ($ $ (-350 (-486)))) (-15 -2180 ($ $)) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $))) |%noBranch|))) (-963)) (T -532)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-752 (-486)))) (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *4)))) (-4 *4 (-963)) (-5 *1 (-532 *4)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-941 (-752 (-486)))) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) (-5 *1 (-532 *3)))) (-3818 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-532 *3)))) (-2186 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963)))) (-2184 (*1 *1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963)))) (-2183 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *6)))) (-5 *4 (-941 (-752 (-486)))) (-5 *5 (-1092)) (-5 *7 (-350 (-486))) (-4 *6 (-963)) (-5 *2 (-774)) (-5 *1 (-532 *6)))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-532 *3)) (-4 *3 (-38 *2)) (-4 *3 (-963)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 62 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3821 (($ (-1071 |#1|)) 9 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 44 T ELT)) (-2895 (((-85) $) 56 T ELT)) (-3775 (((-696) $) 61 T ELT) (((-696) $ (-696)) 60 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 46 (|has| |#1| (-497)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-1071 |#1|) $) 25 T ELT)) (-3129 (((-696)) 55 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 14 T CONST)) (-3059 (((-85) $ $) 24 T ELT)) (-3840 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3842 (($ $ $) 27 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 53 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-486)) 38 T ELT))) +(((-533 |#1|) (-13 (-963) (-82 |#1| |#1|) (-10 -8 (-15 -3820 ((-1071 |#1|) $)) (-15 -3821 ($ (-1071 |#1|))) (-15 -2895 ((-85) $)) (-15 -3775 ((-696) $)) (-15 -3775 ((-696) $ (-696))) (-15 * ($ $ (-486))) (IF (|has| |#1| (-497)) (-6 (-497)) |%noBranch|))) (-963)) (T -533)) +((-3820 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-533 *3)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (-3775 (*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-533 *3)) (-4 *3 (-963))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2192 (($) 8 T CONST)) (-2193 (($) 7 T CONST)) (-2190 (($ $ (-585 $)) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2194 (($) 6 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-1097)) 15 T ELT) (((-1097) $) 10 T ELT)) (-2191 (($) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-534) (-13 (-1015) (-431 (-1097)) (-10 -8 (-15 -2194 ($) -3955) (-15 -2193 ($) -3955) (-15 -2192 ($) -3955) (-15 -2191 ($) -3955) (-15 -2190 ($ $ (-585 $)))))) (T -534)) +((-2194 (*1 *1) (-5 *1 (-534))) (-2193 (*1 *1) (-5 *1 (-534))) (-2192 (*1 *1) (-5 *1 (-534))) (-2191 (*1 *1) (-5 *1 (-534))) (-2190 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-534))) (-5 *1 (-534))))) +((-3961 (((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|)) 15 T ELT))) +(((-535 |#1| |#2|) (-13 (-1131) (-10 -7 (-15 -3961 ((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|))))) (-1131) (-1131)) (T -535)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-538 *6)) (-5 *1 (-535 *5 *6))))) +((-3961 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-1071 |#2|)) 20 T ELT) (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-538 |#2|)) 19 T ELT) (((-538 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-538 |#2|)) 18 T ELT))) +(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-538 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-538 |#2|))) (-15 -3961 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-538 |#2|))) (-15 -3961 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-1071 |#2|)))) (-1131) (-1131) (-1131)) (T -536)) +((-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) (-5 *1 (-536 *6 *7 *8)))) (-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-538 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) (-5 *1 (-536 *6 *7 *8)))) (-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-538 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-538 *8)) (-5 *1 (-536 *6 *7 *8))))) +((-2199 ((|#3| |#3| (-585 (-552 |#3|)) (-585 (-1092))) 57 T ELT)) (-2198 (((-142 |#2|) |#3|) 122 T ELT)) (-2195 ((|#3| (-142 |#2|)) 46 T ELT)) (-2196 ((|#2| |#3|) 21 T ELT)) (-2197 ((|#3| |#2|) 35 T ELT))) +(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2195 (|#3| (-142 |#2|))) (-15 -2196 (|#2| |#3|)) (-15 -2197 (|#3| |#2|)) (-15 -2198 ((-142 |#2|) |#3|)) (-15 -2199 (|#3| |#3| (-585 (-552 |#3|)) (-585 (-1092))))) (-497) (-13 (-364 |#1|) (-917) (-1117)) (-13 (-364 (-142 |#1|)) (-917) (-1117))) (T -537)) +((-2199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-585 (-1092))) (-4 *2 (-13 (-364 (-142 *5)) (-917) (-1117))) (-4 *5 (-497)) (-5 *1 (-537 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-917) (-1117))))) (-2198 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-142 *5)) (-5 *1 (-537 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-917) (-1117))) (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) (-5 *1 (-537 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-917) (-1117))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) (-5 *1 (-537 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117))))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) (-5 *1 (-537 *4 *5 *2))))) +((-3713 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3460 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3459 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3533 (((-1071 |#1|) $) 20 T ELT)) (-3949 (((-774) $) 25 T ELT))) +(((-538 |#1|) (-13 (-554 (-774)) (-10 -8 (-15 -3961 ($ (-1 |#1| |#1|) $)) (-15 -3459 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 (-85) |#1|) $)) (-15 -3713 ($ (-1 (-85) |#1|) $)) (-15 -3460 ($ (-1 |#1| |#1|) |#1|)) (-15 -3533 ((-1071 |#1|) $)))) (-1131)) (T -538)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-538 *3)) (-4 *3 (-1131))))) +((-2200 (((-1187) $ |#2| |#2|) 34 T ELT)) (-2202 ((|#2| $) 23 T ELT)) (-2203 ((|#2| $) 21 T ELT)) (-3961 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3804 ((|#3| $) 26 T ELT)) (-2201 (($ $ |#3|) 32 T ELT)) (-2204 (((-85) |#3| $) 17 T ELT)) (-2207 (((-585 |#3|) $) 15 T ELT)) (-3803 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-539 |#1| |#2| |#3|) (-10 -7 (-15 -2200 ((-1187) |#1| |#2| |#2|)) (-15 -2201 (|#1| |#1| |#3|)) (-15 -3804 (|#3| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 (|#2| |#1|)) (-15 -2204 ((-85) |#3| |#1|)) (-15 -2207 ((-585 |#3|) |#1|)) (-15 -3803 (|#3| |#1| |#2|)) (-15 -3803 (|#3| |#1| |#2| |#3|)) (-15 -3961 (|#1| (-1 |#3| |#3|) |#1|))) (-540 |#2| |#3|) (-1015) (-1131)) (T -539)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2200 (((-1187) $ |#1| |#1|) 35 (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 47 (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) 6 T CONST)) (-1578 ((|#2| $ |#1| |#2|) 48 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 46 T ELT)) (-2202 ((|#1| $) 38 (|has| |#1| (-758)) ELT)) (-2203 ((|#1| $) 39 (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#2| (-1015)) ELT)) (-2205 (((-585 |#1|) $) 41 T ELT)) (-2206 (((-85) |#1| $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) 37 (|has| |#1| (-758)) ELT)) (-2201 (($ $ |#2|) 36 (|has| $ (-1037 |#2|)) ELT)) (-3771 (($ $ (-585 (-249 |#2|))) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#2| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#2| (-72)) ELT))) +(((-540 |#1| |#2|) (-113) (-1015) (-1131)) (T -540)) +((-2207 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-585 *4)))) (-2206 (*1 *2 *3 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-585 *3)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-540 *4 *3)) (-4 *4 (-1015)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) (-4 *3 (-758)) (-4 *2 (-1131)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131)))) (-2200 (*1 *2 *1 *3 *3) (-12 (-4 *1 (-1037 *4)) (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-1187))))) +(-13 (-430 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2207 ((-585 |t#2|) $)) (-15 -2206 ((-85) |t#1| $)) (-15 -2205 ((-585 |t#1|) $)) (IF (|has| |t#2| (-72)) (IF (|has| $ (-318 |t#2|)) (-15 -2204 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-15 -2203 (|t#1| $)) (-15 -2202 (|t#1| $)) (-15 -3804 (|t#2| $))) |%noBranch|) (IF (|has| $ (-1037 |t#2|)) (PROGN (-15 -2201 ($ $ |t#2|)) (-15 -2200 ((-1187) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-381 |#2|) . T) ((-430 |#2|) . T) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-1015) |has| |#2| (-1015)) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) (((-1132) $) 15 T ELT) (($ (-585 (-1132))) 14 T ELT)) (-2208 (((-585 (-1132)) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-541) (-13 (-997) (-554 (-1132)) (-10 -8 (-15 -3949 ($ (-585 (-1132)))) (-15 -2208 ((-585 (-1132)) $))))) (T -541)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 (-632 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1731 (((-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1793 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1905 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1797 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3470 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-3111 (((-832)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1706 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1794 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1909 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1796 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3803 ((|#1| $ (-486)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3227 (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3975 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1897 (((-585 (-859 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-585 (-859 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1724 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3949 (((-774) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1709 (((-585 (-1181 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2548 (($ (-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 24 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-542 |#1| |#2|) (-13 (-685 |#1|) (-554 |#2|) (-10 -8 (-15 -3949 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-685 |#1|)) (T -542)) +((-3949 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-542 *3 *2)) (-4 *2 (-685 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-543) (-13 (-1015) (-431 (-101)))) (T -543)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2210 (($) 10 T CONST)) (-2232 (($) 8 T CONST)) (-2209 (($) 11 T CONST)) (-2228 (($) 9 T CONST)) (-2225 (($) 12 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-544) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3955) (-15 -2228 ($) -3955) (-15 -2210 ($) -3955) (-15 -2209 ($) -3955) (-15 -2225 ($) -3955)))) (T -544)) +((-2232 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))) (-2209 (*1 *1) (-5 *1 (-544))) (-2225 (*1 *1) (-5 *1 (-544)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2221 (($) 11 T CONST)) (-2215 (($) 17 T CONST)) (-2211 (($) 21 T CONST)) (-2213 (($) 19 T CONST)) (-2218 (($) 14 T CONST)) (-2212 (($) 20 T CONST)) (-2220 (($) 12 T CONST)) (-2219 (($) 13 T CONST)) (-2214 (($) 18 T CONST)) (-2217 (($) 15 T CONST)) (-2216 (($) 16 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-545) (-13 (-1015) (-554 (-101)) (-10 -8 (-15 -2221 ($) -3955) (-15 -2220 ($) -3955) (-15 -2219 ($) -3955) (-15 -2218 ($) -3955) (-15 -2217 ($) -3955) (-15 -2216 ($) -3955) (-15 -2215 ($) -3955) (-15 -2214 ($) -3955) (-15 -2213 ($) -3955) (-15 -2212 ($) -3955) (-15 -2211 ($) -3955)))) (T -545)) +((-2221 (*1 *1) (-5 *1 (-545))) (-2220 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545))) (-2218 (*1 *1) (-5 *1 (-545))) (-2217 (*1 *1) (-5 *1 (-545))) (-2216 (*1 *1) (-5 *1 (-545))) (-2215 (*1 *1) (-5 *1 (-545))) (-2214 (*1 *1) (-5 *1 (-545))) (-2213 (*1 *1) (-5 *1 (-545))) (-2212 (*1 *1) (-5 *1 (-545))) (-2211 (*1 *1) (-5 *1 (-545)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2223 (($) 13 T CONST)) (-2222 (($) 14 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2228 (($) 12 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-546) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3955) (-15 -2231 ($) -3955) (-15 -2230 ($) -3955) (-15 -2229 ($) -3955) (-15 -2228 ($) -3955) (-15 -2223 ($) -3955) (-15 -2222 ($) -3955)))) (T -546)) +((-2232 (*1 *1) (-5 *1 (-546))) (-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))) (-2222 (*1 *1) (-5 *1 (-546)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2227 (($) 13 T CONST)) (-2224 (($) 16 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2226 (($) 14 T CONST)) (-2228 (($) 12 T CONST)) (-2225 (($) 15 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-547) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3955) (-15 -2231 ($) -3955) (-15 -2230 ($) -3955) (-15 -2229 ($) -3955) (-15 -2228 ($) -3955) (-15 -2227 ($) -3955) (-15 -2226 ($) -3955) (-15 -2225 ($) -3955) (-15 -2224 ($) -3955)))) (T -547)) +((-2232 (*1 *1) (-5 *1 (-547))) (-2231 (*1 *1) (-5 *1 (-547))) (-2230 (*1 *1) (-5 *1 (-547))) (-2229 (*1 *1) (-5 *1 (-547))) (-2228 (*1 *1) (-5 *1 (-547))) (-2227 (*1 *1) (-5 *1 (-547))) (-2226 (*1 *1) (-5 *1 (-547))) (-2225 (*1 *1) (-5 *1 (-547))) (-2224 (*1 *1) (-5 *1 (-547)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 19 T ELT) (($ (-543)) 12 T ELT) (((-543) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-548) (-13 (-1015) (-431 (-543)) (-431 (-101)))) (T -548)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-1699 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) 40 T ELT)) (-3602 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2200 (((-1187) $ (-1075) (-1075)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-1075) |#1|) 50 (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT)) (-2233 (((-3 |#1| #1="failed") (-1075) $) 53 T ELT)) (-3727 (($) NIL T CONST)) (-1703 (($ $ (-1075)) 25 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72))) ELT)) (-3408 (((-3 |#1| #1#) (-1075) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3409 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72))) ELT)) (-3845 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-1700 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1578 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-1075)) NIL T ELT)) (-2273 (($ $) 55 T ELT)) (-1704 (($ (-338)) 23 T ELT) (($ (-338) (-1075)) 22 T ELT)) (-3545 (((-338) $) 41 T ELT)) (-2202 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-2203 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2234 (((-585 (-1075)) $) 46 T ELT)) (-2235 (((-85) (-1075) $) NIL T ELT)) (-1701 (((-1075) $) 42 T ELT)) (-1276 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-585 (-1075)) $) NIL T ELT)) (-2206 (((-85) (-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#1| $) NIL (|has| (-1075) (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1277 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 44 T ELT)) (-3803 ((|#1| $ (-1075) |#1|) NIL T ELT) ((|#1| $ (-1075)) 49 T ELT)) (-1468 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (((-696) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-3949 (((-774) $) 21 T ELT)) (-1702 (($ $) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3059 (((-85) $ $) 20 T ELT)) (-3960 (((-696) $) 48 T ELT))) +(((-549 |#1|) (-13 (-314 (-338) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) (-1109 (-1075) |#1|) (-10 -8 (-15 -2273 ($ $)))) (-1015)) (T -549)) +((-2273 (*1 *1 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-1015))))) +((-2234 (((-585 |#2|) $) 19 T ELT)) (-2235 (((-85) |#2| $) 12 T ELT)) (-3803 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2234 ((-585 |#2|) |#1|)) (-15 -2235 ((-85) |#2| |#1|)) (-15 -3803 (|#3| |#1| |#2| |#3|)) (-15 -3803 (|#3| |#1| |#2|))) (-551 |#2| |#3|) (-1015) (-1015)) (T -550)) +NIL +((-2571 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2200 (((-1187) $ |#1| |#1|) 82 (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| "failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 43 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 60 T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-1578 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-758)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT)) (-3245 (((-1075) $) 21 (OR (|has| |#2| (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2234 (((-585 |#1|) $) 61 T ELT)) (-2235 (((-85) |#1| $) 62 T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2205 (((-585 |#1|) $) 76 T ELT)) (-2206 (((-85) |#1| $) 75 T ELT)) (-3246 (((-1035) $) 20 (OR (|has| |#2| (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 47 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 68 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 77 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 74 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-3949 (((-774) $) 16 (OR (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-1267 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-3059 (((-85) $ $) 17 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT))) +(((-551 |#1| |#2|) (-113) (-1015) (-1015)) (T -551)) +((-2235 (*1 *2 *3 *1) (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-85)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) (-3408 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-2233 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(-13 (-183 (-2 (|:| -3863 |t#1|) (|:| |entry| |t#2|))) (-540 |t#1| |t#2|) (-1037 |t#2|) (-10 -8 (-15 -2235 ((-85) |t#1| $)) (-15 -2234 ((-585 |t#1|) $)) (-15 -3408 ((-3 |t#2| "failed") |t#1| $)) (-15 -2233 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-475)) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ((-183 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-381 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-381 |#2|) . T) ((-430 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-430 |#2|) . T) ((-540 |#1| |#2|) . T) ((-457 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-1015) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ((-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-1037 |#2|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2236 (((-3 (-1092) "failed") $) 46 T ELT)) (-1315 (((-1187) $ (-696)) 22 T ELT)) (-3422 (((-696) $) 20 T ELT)) (-3598 (((-86) $) 9 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2237 (($ (-86) (-585 |#1|) (-696)) 32 T ELT) (($ (-1092)) 33 T ELT)) (-2636 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1092)) 13 T ELT)) (-2606 (((-696) $) 17 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (((-802 (-486)) $) 99 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 106 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-475) $) 92 (|has| |#1| (-555 (-475))) ELT)) (-3949 (((-774) $) 74 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2238 (((-585 |#1|) $) 19 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 51 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 53 T ELT))) +(((-552 |#1|) (-13 (-105) (-758) (-796 |#1|) (-10 -8 (-15 -3598 ((-86) $)) (-15 -2238 ((-585 |#1|) $)) (-15 -2606 ((-696) $)) (-15 -2237 ($ (-86) (-585 |#1|) (-696))) (-15 -2237 ($ (-1092))) (-15 -2236 ((-3 (-1092) "failed") $)) (-15 -2636 ((-85) $ (-86))) (-15 -2636 ((-85) $ (-1092))) (IF (|has| |#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|))) (-1015)) (T -552)) +((-3598 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2237 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-1015)) (-5 *1 (-552 *5)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2236 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015))))) +((-2239 (((-552 |#2|) |#1|) 17 T ELT)) (-2240 (((-3 |#1| "failed") (-552 |#2|)) 21 T ELT))) +(((-553 |#1| |#2|) (-10 -7 (-15 -2239 ((-552 |#2|) |#1|)) (-15 -2240 ((-3 |#1| "failed") (-552 |#2|)))) (-1015) (-1015)) (T -553)) +((-2240 (*1 *2 *3) (|partial| -12 (-5 *3 (-552 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) (-5 *1 (-553 *2 *4)))) (-2239 (*1 *2 *3) (-12 (-5 *2 (-552 *4)) (-5 *1 (-553 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +((-3949 ((|#1| $) 6 T ELT))) +(((-554 |#1|) (-113) (-1131)) (T -554)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1131))))) +(-13 (-10 -8 (-15 -3949 (|t#1| $)))) +((-3975 ((|#1| $) 6 T ELT))) +(((-555 |#1|) (-113) (-1131)) (T -555)) +((-3975 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1131))))) +(-13 (-10 -8 (-15 -3975 (|t#1| $)))) +((-2241 (((-3 (-1087 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1087 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2241 ((-3 (-1087 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2241 ((-3 (-1087 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -556)) +((-2241 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-1087 (-350 *6))) (-5 *1 (-556 *5 *6)) (-5 *3 (-350 *6)))) (-2241 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-1087 (-350 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-350 *5))))) +((-3949 (($ |#1|) 6 T ELT))) +(((-557 |#1|) (-113) (-1131)) (T -557)) +((-3949 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1131))))) +(-13 (-10 -8 (-15 -3949 ($ |t#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-2242 (($) 11 T CONST)) (-2858 (($) 13 T CONST)) (-3139 (((-696)) 36 T ELT)) (-2997 (($) NIL T ELT)) (-2564 (($ $ $) 25 T ELT)) (-2563 (($ $) 23 T ELT)) (-2012 (((-832) $) 43 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 42 T ELT)) (-2856 (($ $ $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2857 (($) 9 T CONST)) (-2855 (($ $ $) 27 T ELT)) (-3949 (((-774) $) 34 T ELT)) (-3569 (((-85) $ (|[\|\|]| -2857)) 20 T ELT) (((-85) $ (|[\|\|]| -2242)) 22 T ELT) (((-85) $ (|[\|\|]| -2858)) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) 24 T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) 16 T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-558) (-13 (-882) (-320) (-10 -8 (-15 -2242 ($) -3955) (-15 -3569 ((-85) $ (|[\|\|]| -2857))) (-15 -3569 ((-85) $ (|[\|\|]| -2242))) (-15 -3569 ((-85) $ (|[\|\|]| -2858)))))) (T -558)) +((-2242 (*1 *1) (-5 *1 (-558))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-558)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-85)) (-5 *1 (-558)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2858)) (-5 *2 (-85)) (-5 *1 (-558))))) +((-3975 (($ |#1|) 6 T ELT))) +(((-559 |#1|) (-113) (-1131)) (T -559)) +((-3975 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1131))))) +(-13 (-10 -8 (-15 -3975 ($ |t#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-757)) ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3001 ((|#1| $) 13 T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3000 ((|#3| $) 15 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3129 (((-696)) 20 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 12 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3952 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-560 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (-15 -3952 ($ $ |#3|)) (-15 -3952 ($ |#1| |#3|)) (-15 -3001 (|#1| $)) (-15 -3000 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-665) |#2|)) (T -560)) +((-3952 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-665) *4)))) (-3952 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-560 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-665) *4)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-560 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-665) *3)))) (-3000 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-561 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#2|)) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-562 |#2|) (-963)) (T -561)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) +(((-562 |#1|) (-113) (-963)) (T -562)) +((-3949 (*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-963))))) +(-13 (-963) (-592 |t#1|) (-10 -8 (-15 -3949 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2243 ((|#2| |#2| (-1092) (-1092)) 16 T ELT))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2243 (|#2| |#2| (-1092) (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-29 |#1|))) (T -563)) +((-2243 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1117) (-873) (-29 *4)))))) +((-2571 (((-85) $ $) 64 T ELT)) (-3191 (((-85) $) 58 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2244 ((|#1| $) 55 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3754 (((-2 (|:| -1767 $) (|:| -1766 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 27 T ELT)) (-3470 (((-3 $ #1#) $) 88 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3775 (((-486) $) 22 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) 40 T ELT)) (-2896 (($ |#1| (-486)) 24 T ELT)) (-3177 ((|#1| $) 57 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) 93 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-696) $) 115 (|has| |#1| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3951 (((-486) $) 38 T ELT)) (-3975 (((-350 |#2|) $) 47 T ELT)) (-3949 (((-774) $) 69 T ELT) (($ (-486)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3680 ((|#1| $ (-486)) 72 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 32 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 9 T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-3840 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 90 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-564 |#1| |#2|) (-13 (-184 |#2|) (-497) (-555 (-350 |#2|)) (-355 |#1|) (-952 |#2|) (-10 -8 (-15 -3940 ((-85) $)) (-15 -3951 ((-486) $)) (-15 -3775 ((-486) $)) (-15 -3962 ($ $)) (-15 -3177 (|#1| $)) (-15 -2244 (|#1| $)) (-15 -3680 (|#1| $ (-486))) (-15 -2896 ($ |#1| (-486))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3754 ((-2 (|:| -1767 $) (|:| -1766 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-497) (-1157 |#1|)) (T -564)) +((-3940 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-85)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) (-3951 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) (-3962 (*1 *1 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) (-3177 (*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) (-2244 (*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-497)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -1767 (-564 *4 *5)) (|:| -1766 (-350 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-350 *5))))) +((-3685 (((-585 |#6|) (-585 |#4|) (-85)) 54 T ELT)) (-2245 ((|#6| |#6|) 48 T ELT))) +(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2245 (|#6| |#6|)) (-15 -3685 ((-585 |#6|) (-585 |#4|) (-85)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|) (-1022 |#1| |#2| |#3| |#4|)) (T -565)) +((-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *10 (-1022 *5 *6 *7 *8)))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6))))) +((-2246 (((-85) |#3| (-696) (-585 |#3|)) 30 T ELT)) (-2247 (((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1087 |#3|)))) "failed") |#3| (-585 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1784 (-585 (-2 (|:| |irr| |#4|) (|:| -2397 (-486)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)) 68 T ELT))) +(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2246 ((-85) |#3| (-696) (-585 |#3|))) (-15 -2247 ((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1087 |#3|)))) "failed") |#3| (-585 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1784 (-585 (-2 (|:| |irr| |#4|) (|:| -2397 (-486)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)))) (-758) (-719) (-258) (-863 |#3| |#2| |#1|)) (T -566)) +((-2247 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1784 (-585 (-2 (|:| |irr| *10) (|:| -2397 (-486))))))) (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-758)) (-4 *3 (-258)) (-4 *10 (-863 *3 *9 *8)) (-4 *9 (-719)) (-5 *2 (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) (|:| |corrfact| (-585 (-1087 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-585 (-1087 *3))))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-696)) (-5 *5 (-585 *3)) (-4 *3 (-258)) (-4 *6 (-758)) (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-863 *3 *7 *6))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-567) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -567)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3937 (((-585 |#1|) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3939 (($ $) 77 T ELT)) (-3945 (((-608 |#1| |#2|) $) 60 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 81 T ELT)) (-2248 (((-585 (-249 |#2|)) $ $) 42 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3946 (($ (-608 |#1| |#2|)) 56 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3949 (((-774) $) 66 T ELT) (((-1197 |#1| |#2|) $) NIL T ELT) (((-1202 |#1| |#2|) $) 74 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 61 T CONST)) (-2249 (((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2250 (((-585 (-608 |#1| |#2|)) (-585 |#1|)) 73 T ELT)) (-2668 (((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3059 (((-85) $ $) 62 T ELT)) (-3952 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-568 |#1| |#2| |#3|) (-13 (-414) (-10 -8 (-15 -3946 ($ (-608 |#1| |#2|))) (-15 -3945 ((-608 |#1| |#2|) $)) (-15 -2668 ((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $)) (-15 -3949 ((-1197 |#1| |#2|) $)) (-15 -3949 ((-1202 |#1| |#2|) $)) (-15 -3939 ($ $)) (-15 -3937 ((-585 |#1|) $)) (-15 -2250 ((-585 (-608 |#1| |#2|)) (-585 |#1|))) (-15 -2249 ((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $)) (-15 -2248 ((-585 (-249 |#2|)) $ $)))) (-758) (-13 (-146) (-656 (-350 (-486)))) (-832)) (T -568)) +((-3946 (*1 *1 *2) (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-5 *1 (-568 *3 *4 *5)) (-14 *5 (-832)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-608 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-568 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-13 (-146) (-656 (-350 (-486))))) (-14 *4 (-832)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-608 *4 *5))) (-5 *1 (-568 *4 *5 *6)) (-4 *5 (-13 (-146) (-656 (-350 (-486))))) (-14 *6 (-832)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-249 *4))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832))))) +((-3685 (((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)) 103 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85)) 77 T ELT)) (-2251 (((-85) (-585 (-705 |#1| (-775 |#2|)))) 26 T ELT)) (-2255 (((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)) 102 T ELT)) (-2254 (((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85)) 76 T ELT)) (-2253 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|)))) 30 T ELT)) (-2252 (((-3 (-585 (-705 |#1| (-775 |#2|))) "failed") (-585 (-705 |#1| (-775 |#2|)))) 29 T ELT))) +(((-569 |#1| |#2|) (-10 -7 (-15 -2251 ((-85) (-585 (-705 |#1| (-775 |#2|))))) (-15 -2252 ((-3 (-585 (-705 |#1| (-775 |#2|))) "failed") (-585 (-705 |#1| (-775 |#2|))))) (-15 -2253 ((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))))) (-15 -2254 ((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -2255 ((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -3685 ((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -3685 ((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)))) (-393) (-585 (-1092))) (T -569)) +((-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) (-5 *1 (-569 *5 *6)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) (-5 *1 (-569 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4)))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-585 (-705 *4 (-775 *5)))) (-4 *4 (-393)) (-14 *5 (-585 (-1092))) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))))) +((-3598 (((-86) (-86)) 88 T ELT)) (-2259 ((|#2| |#2|) 28 T ELT)) (-2835 ((|#2| |#2| (-1006 |#2|)) 84 T ELT) ((|#2| |#2| (-1092)) 50 T ELT)) (-2257 ((|#2| |#2|) 27 T ELT)) (-2258 ((|#2| |#2|) 29 T ELT)) (-2256 (((-85) (-86)) 33 T ELT)) (-2261 ((|#2| |#2|) 24 T ELT)) (-2262 ((|#2| |#2|) 26 T ELT)) (-2260 ((|#2| |#2|) 25 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -2262 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2835 (|#2| |#2| (-1092))) (-15 -2835 (|#2| |#2| (-1006 |#2|)))) (-497) (-13 (-364 |#1|) (-917) (-1117))) (T -570)) +((-2835 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) (-5 *1 (-570 *4 *2)))) (-2835 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-364 *4) (-917) (-1117))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-364 *3) (-917) (-1117))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-364 *4) (-917) (-1117)))))) +((-3495 (($ $) 38 T ELT)) (-3642 (($ $) 21 T ELT)) (-3493 (($ $) 37 T ELT)) (-3641 (($ $) 22 T ELT)) (-3497 (($ $) 36 T ELT)) (-3640 (($ $) 23 T ELT)) (-3630 (($) 48 T ELT)) (-3945 (($ $) 45 T ELT)) (-2259 (($ $) 17 T ELT)) (-2835 (($ $ (-1006 $)) 7 T ELT) (($ $ (-1092)) 6 T ELT)) (-3946 (($ $) 46 T ELT)) (-2257 (($ $) 15 T ELT)) (-2258 (($ $) 16 T ELT)) (-3498 (($ $) 35 T ELT)) (-3639 (($ $) 24 T ELT)) (-3496 (($ $) 34 T ELT)) (-3638 (($ $) 25 T ELT)) (-3494 (($ $) 33 T ELT)) (-3637 (($ $) 26 T ELT)) (-3501 (($ $) 44 T ELT)) (-3489 (($ $) 32 T ELT)) (-3499 (($ $) 43 T ELT)) (-3487 (($ $) 31 T ELT)) (-3503 (($ $) 42 T ELT)) (-3491 (($ $) 30 T ELT)) (-3504 (($ $) 41 T ELT)) (-3492 (($ $) 29 T ELT)) (-3502 (($ $) 40 T ELT)) (-3490 (($ $) 28 T ELT)) (-3500 (($ $) 39 T ELT)) (-3488 (($ $) 27 T ELT)) (-2261 (($ $) 19 T ELT)) (-2262 (($ $) 20 T ELT)) (-2260 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-571) (-113)) (T -571)) +((-2262 (*1 *1 *1) (-4 *1 (-571))) (-2261 (*1 *1 *1) (-4 *1 (-571))) (-2260 (*1 *1 *1) (-4 *1 (-571))) (-2259 (*1 *1 *1) (-4 *1 (-571))) (-2258 (*1 *1 *1) (-4 *1 (-571))) (-2257 (*1 *1 *1) (-4 *1 (-571)))) +(-13 (-873) (-1117) (-10 -8 (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-434) . T) ((-873) . T) ((-1117) . T) ((-1120) . T)) +((-2272 (((-422 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2265 (((-585 (-206 |#1| |#2|)) (-585 (-422 |#1| |#2|))) 90 T ELT)) (-2266 (((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-775 |#1|)) 92 T ELT) (((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)) (-775 |#1|)) 91 T ELT)) (-2263 (((-2 (|:| |gblist| (-585 (-206 |#1| |#2|))) (|:| |gvlist| (-585 (-486)))) (-585 (-422 |#1| |#2|))) 136 T ELT)) (-2270 (((-585 (-422 |#1| |#2|)) (-775 |#1|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|))) 105 T ELT)) (-2264 (((-2 (|:| |glbase| (-585 (-206 |#1| |#2|))) (|:| |glval| (-585 (-486)))) (-585 (-206 |#1| |#2|))) 147 T ELT)) (-2268 (((-1181 |#2|) (-422 |#1| |#2|) (-585 (-422 |#1| |#2|))) 70 T ELT)) (-2267 (((-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|))) 47 T ELT)) (-2271 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|))) 61 T ELT)) (-2269 (((-206 |#1| |#2|) (-585 |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|))) 113 T ELT))) +(((-572 |#1| |#2|) (-10 -7 (-15 -2263 ((-2 (|:| |gblist| (-585 (-206 |#1| |#2|))) (|:| |gvlist| (-585 (-486)))) (-585 (-422 |#1| |#2|)))) (-15 -2264 ((-2 (|:| |glbase| (-585 (-206 |#1| |#2|))) (|:| |glval| (-585 (-486)))) (-585 (-206 |#1| |#2|)))) (-15 -2265 ((-585 (-206 |#1| |#2|)) (-585 (-422 |#1| |#2|)))) (-15 -2266 ((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)) (-775 |#1|))) (-15 -2266 ((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-775 |#1|))) (-15 -2267 ((-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)))) (-15 -2268 ((-1181 |#2|) (-422 |#1| |#2|) (-585 (-422 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-585 |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|)))) (-15 -2270 ((-585 (-422 |#1| |#2|)) (-775 |#1|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)))) (-15 -2271 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|)))) (-15 -2272 ((-422 |#1| |#2|) (-206 |#1| |#2|)))) (-585 (-1092)) (-393)) (T -572)) +((-2272 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-422 *4 *5)) (-5 *1 (-572 *4 *5)))) (-2271 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-572 *4 *5)))) (-2270 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-775 *4)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-572 *4 *5)))) (-2269 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-206 *5 *6))) (-4 *6 (-393)) (-5 *2 (-206 *5 *6)) (-14 *5 (-585 (-1092))) (-5 *1 (-572 *5 *6)))) (-2268 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-422 *5 *6))) (-5 *3 (-422 *5 *6)) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-1181 *6)) (-5 *1 (-572 *5 *6)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-585 (-422 *3 *4))) (-14 *3 (-585 (-1092))) (-4 *4 (-393)) (-5 *1 (-572 *3 *4)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393)))) (-2266 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-585 (-206 *4 *5))) (-5 *1 (-572 *4 *5)))) (-2264 (*1 *2 *3) (-12 (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-2 (|:| |glbase| (-585 (-206 *4 *5))) (|:| |glval| (-585 (-486))))) (-5 *1 (-572 *4 *5)) (-5 *3 (-585 (-206 *4 *5))))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-2 (|:| |gblist| (-585 (-206 *4 *5))) (|:| |gvlist| (-585 (-486))))) (-5 *1 (-572 *4 *5))))) +((-2571 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-2200 (((-1187) $ (-1075) (-1075)) NIL (|has| $ (-1037 (-51))) ELT)) (-3791 (((-51) $ (-1075) (-51)) NIL (|has| $ (-1037 (-51))) ELT) (((-51) $ (-1092) (-51)) 16 T ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) ELT)) (-2233 (((-3 (-51) #1="failed") (-1075) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) ELT) (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) ELT) (((-3 (-51) #1#) (-1075) $) NIL T ELT)) (-3409 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) ELT)) (-3845 (((-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72)) ELT) (((-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) NIL T ELT) (((-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-1578 (((-51) $ (-1075) (-51)) NIL (|has| $ (-1037 (-51))) ELT)) (-3115 (((-51) $ (-1075)) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2202 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72)) ELT)) (-2203 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2274 (($ (-338)) 8 T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-51) (-1015)) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT)) (-2234 (((-585 (-1075)) $) NIL T ELT)) (-2235 (((-85) (-1075) $) NIL T ELT)) (-1276 (((-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL T ELT)) (-2205 (((-585 (-1075)) $) NIL T ELT)) (-2206 (((-85) (-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-51) (-1015)) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT)) (-3804 (((-51) $) NIL (|has| (-1075) (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2201 (($ $ (-51)) NIL (|has| $ (-1037 (-51))) ELT)) (-1277 (((-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-51)) (-585 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-585 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-51) $) NIL (-12 (|has| $ (-318 (-51))) (|has| (-51) (-72))) ELT)) (-2207 (((-585 (-51)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 (((-51) $ (-1075)) NIL T ELT) (((-51) $ (-1075) (-51)) NIL T ELT) (((-51) $ (-1092)) 14 T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-554 (-774))) (|has| (-51) (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-573) (-13 (-1109 (-1075) (-51)) (-241 (-1092) (-51)) (-10 -8 (-15 -2274 ($ (-338))) (-15 -2273 ($ $)) (-15 -3791 ((-51) $ (-1092) (-51)))))) (T -573)) +((-2274 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-573)))) (-2273 (*1 *1 *1) (-5 *1 (-573))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-573))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 (-632 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1731 (((-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1793 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1905 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1797 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3470 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-3111 (((-832)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1706 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1794 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1909 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1796 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3803 ((|#1| $ (-486)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3227 (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3975 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1897 (((-585 (-859 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-585 (-859 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1724 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3949 (((-774) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1709 (((-585 (-1181 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2548 (($ (-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 19 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-574 |#1| |#2|) (-13 (-685 |#1|) (-554 |#2|) (-10 -8 (-15 -3949 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-685 |#1|)) (T -574)) +((-3949 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-574 *3 *2)) (-4 *2 (-685 *3))))) +((-3952 (($ $ |#2|) 10 T ELT))) +(((-575 |#1| |#2|) (-10 -7 (-15 -3952 (|#1| |#1| |#2|))) (-576 |#2|) (-146)) (T -575)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3533 (($ $ $) 40 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-576 |#1|) (-113) (-146)) (T -576)) +((-3533 (*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-656 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3533 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3952 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2276 (((-3 (-752 |#2|) #1="failed") |#2| (-249 |#2|) (-1075)) 105 T ELT) (((-3 (-752 |#2|) (-2 (|:| |leftHandLimit| (-3 (-752 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-752 |#2|) #1#))) #1#) |#2| (-249 (-752 |#2|))) 130 T ELT)) (-2275 (((-3 (-745 |#2|) #1#) |#2| (-249 (-745 |#2|))) 135 T ELT))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2276 ((-3 (-752 |#2|) (-2 (|:| |leftHandLimit| (-3 (-752 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-752 |#2|) #1#))) #1#) |#2| (-249 (-752 |#2|)))) (-15 -2275 ((-3 (-745 |#2|) #1#) |#2| (-249 (-745 |#2|)))) (-15 -2276 ((-3 (-752 |#2|) #1#) |#2| (-249 |#2|) (-1075)))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -577)) +((-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1075)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-752 *3)) (-5 *1 (-577 *6 *3)))) (-2275 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-745 *3))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-745 *3)) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-752 *3))) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (-752 *3) (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-752 *3) #1#))) "failed")) (-5 *1 (-577 *5 *3))))) +((-2276 (((-3 (-752 (-350 (-859 |#1|))) #1="failed") (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))) (-1075)) 86 T ELT) (((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|)))) 20 T ELT) (((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-752 (-859 |#1|)))) 35 T ELT)) (-2275 (((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|)))) 23 T ELT) (((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-745 (-859 |#1|)))) 43 T ELT))) +(((-578 |#1|) (-10 -7 (-15 -2276 ((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-752 (-859 |#1|))))) (-15 -2276 ((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))))) (-15 -2275 ((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-745 (-859 |#1|))))) (-15 -2275 ((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))))) (-15 -2276 ((-3 (-752 (-350 (-859 |#1|))) #1#) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))) (-1075)))) (-393)) (T -578)) +((-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-859 *6)))) (-5 *5 (-1075)) (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-752 *3)) (-5 *1 (-578 *6)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) (-5 *2 (-745 *3)) (-5 *1 (-578 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-745 (-859 *5)))) (-4 *5 (-393)) (-5 *2 (-745 (-350 (-859 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) (-5 *2 (-3 (-752 *3) (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-752 *3) #1#))) #2="failed")) (-5 *1 (-578 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-752 (-859 *5)))) (-4 *5 (-393)) (-5 *2 (-3 (-752 (-350 (-859 *5))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 *5))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 *5))) #1#))) #2#)) (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 11 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2854 (($ (-168 |#1|)) 12 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-775 |#1|)) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-579 |#1|) (-13 (-754) (-557 (-775 |#1|)) (-10 -8 (-15 -2854 ($ (-168 |#1|))))) (-585 (-1092))) (T -579)) +((-2854 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-579 *3))))) +((-2279 (((-3 (-1181 (-350 |#1|)) #1="failed") (-1181 |#2|) |#2|) 64 (-2563 (|has| |#1| (-312))) ELT) (((-3 (-1181 |#1|) #1#) (-1181 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2277 (((-85) (-1181 |#2|)) 33 T ELT)) (-2278 (((-3 (-1181 |#1|) #1#) (-1181 |#2|)) 40 T ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2277 ((-85) (-1181 |#2|))) (-15 -2278 ((-3 (-1181 |#1|) #1="failed") (-1181 |#2|))) (IF (|has| |#1| (-312)) (-15 -2279 ((-3 (-1181 |#1|) #1#) (-1181 |#2|) |#2|)) (-15 -2279 ((-3 (-1181 (-350 |#1|)) #1#) (-1181 |#2|) |#2|)))) (-497) (-13 (-963) (-582 |#1|))) (T -580)) +((-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) (-2563 (-4 *5 (-312))) (-4 *5 (-497)) (-5 *2 (-1181 (-350 *5))) (-5 *1 (-580 *5 *4)))) (-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 (-1181 *5)) (-5 *1 (-580 *5 *4)))) (-2278 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-497)) (-5 *2 (-1181 *4)) (-5 *1 (-580 *4 *5)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-580 *4 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| (-579 |#2|))) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| (-579 |#2|)) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (($ (-585 |#1|)) 25 T ELT)) (-1985 (((-579 |#2|) $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3914 (((-107)) 16 T ELT)) (-3227 (((-1181 |#1|) $) 44 T ELT)) (-3975 (($ (-585 (-455 |#1| (-579 |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-579 |#2|)) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 20 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 17 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-581 |#1| |#2|) (-13 (-1189 |#1|) (-557 (-579 |#2|)) (-451 |#1| (-579 |#2|)) (-10 -8 (-15 -2280 ($ (-585 |#1|))) (-15 -3227 ((-1181 |#1|) $)))) (-312) (-585 (-1092))) (T -581)) +((-2280 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-585 (-1092))))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-1181 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-585 (-1092)))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2281 (((-632 |#1|) (-632 $)) 36 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 35 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2282 (((-632 |#1|) (-1181 $)) 38 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-582 |#1|) (-113) (-963)) (T -582)) +((-2282 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4)))) (-2282 (*1 *2 *3 *1) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |mat| (-632 *4)) (|:| |vec| (-1181 *4)))))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-582 *5)) (-4 *5 (-963)) (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 *5))))))) +(-13 (-592 |t#1|) (-10 -8 (-15 -2282 ((-632 |t#1|) (-1181 $))) (-15 -2282 ((-2 (|:| |mat| (-632 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-1181 $) $)) (-15 -2281 ((-632 |t#1|) (-632 $))) (-15 -2281 ((-2 (|:| |mat| (-632 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-632 $) (-1181 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1216 (((-85) $ $) NIL T ELT)) (-2283 (($ (-585 |#1|)) 23 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ (-581 |#1| |#2|)) 46 T ELT)) (-3914 (((-107)) 13 T ELT)) (-3227 (((-1181 |#1|) $) 42 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 14 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-583 |#1| |#2|) (-13 (-1189 |#1|) (-241 (-581 |#1| |#2|) |#1|) (-10 -8 (-15 -2283 ($ (-585 |#1|))) (-15 -3227 ((-1181 |#1|) $)))) (-312) (-585 (-1092))) (T -583)) +((-2283 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-583 *3 *4)) (-14 *4 (-585 (-1092))))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-1181 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-312)) (-14 *4 (-585 (-1092)))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-584 |#1|) (-113) (-1027)) (T -584)) +NIL +(-13 (-590 |t#1|) (-965 |t#1|)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 |#1|) . T) ((-965 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 68 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) $) NIL (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-1037 |#1|)) ELT)) (-2912 (($ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 26 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 24 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-2286 (($ $ $) 74 (|has| |#1| (-1015)) ELT)) (-2285 (($ $ $) 75 (|has| |#1| (-1015)) ELT)) (-2284 (($ $ $) 79 (|has| |#1| (-1015)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) 31 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 32 T ELT)) (-3802 (($ $) 21 T ELT) (($ $ (-696)) 35 T ELT)) (-2370 (($ $) 63 (|has| |#1| (-72)) ELT)) (-1355 (($ $) 73 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3409 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3422 (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) (-1 (-85) |#1|) $) NIL T ELT)) (-2288 (((-85) $) 9 T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2289 (($) 7 T CONST)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-486) $) 34 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3521 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2611 (((-585 |#1|) $) 30 T ELT)) (-3248 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3537 (($ |#1|) NIL T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) 59 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3612 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 16 T ELT) (($ $ (-696)) NIL T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 15 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) 20 T ELT)) (-3568 (($) 19 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) ((|#1| $ (-486)) 78 T ELT) ((|#1| $ (-486) |#1|) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-1573 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) 40 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 36 T ELT)) (-3975 (((-475) $) 87 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 29 T ELT)) (-3464 (($ |#1| $) 10 T ELT)) (-3794 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-585 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3949 (((-774) $) 51 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2287 (($ $ $) 11 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 13 T ELT))) +(((-585 |#1|) (-13 (-610 |#1|) (-10 -8 (-15 -2289 ($) -3955) (-15 -2288 ((-85) $)) (-15 -3464 ($ |#1| $)) (-15 -2287 ($ $ $)) (IF (|has| |#1| (-1015)) (PROGN (-15 -2286 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $))) |%noBranch|))) (-1131)) (T -585)) +((-2289 (*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-585 *3)) (-4 *3 (-1131)))) (-3464 (*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) (-2287 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) +((-3844 (((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 18 T ELT)) (-3961 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 13 T ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -3844 ((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3961 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1131) (-1131)) (T -586)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-585 *6)) (-5 *1 (-586 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-586 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-585 *5)) (-5 *1 (-586 *6 *5))))) +((-3425 ((|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|) 17 T ELT) ((|#2| (-585 |#1|) (-585 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|)) 12 T ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -3425 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|))) (-15 -3425 (|#2| (-585 |#1|) (-585 |#2|) |#1|)) (-15 -3425 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|)) (-15 -3425 (|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|)) (-15 -3425 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|))) (-15 -3425 (|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)))) (-1015) (-1131)) (T -587)) +((-3425 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1015)) (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) (-3425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *1 (-587 *5 *6)))) (-3425 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) (-3425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1015)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *6)) (-5 *1 (-587 *6 *5)))) (-3425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-587 *5 *6))))) +((-3961 (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 21 T ELT))) +(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)))) (-1131) (-1131) (-1131)) (T -588)) +((-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-585 *8)) (-5 *1 (-588 *6 *7 *8))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 11 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-589 |#1|) (-13 (-997) (-554 |#1|)) (-1015)) (T -589)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-590 |#1|) (-113) (-1027)) (T -590)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1027))))) +(-13 (-1015) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2290 (($ |#1| |#1| $) 45 T ELT)) (-1572 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2370 (($ $) 47 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) 58 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2611 (((-585 |#1|) $) 9 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 49 T ELT)) (-3612 (($ |#1| $) 30 T ELT) (($ |#1| $ (-696)) 44 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 52 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 23 T ELT)) (-3568 (($) 29 T ELT)) (-2291 (((-85) $) 56 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 69 T ELT)) (-1468 (($) 26 T ELT) (($ (-585 |#1|)) 19 T ELT)) (-1732 (((-696) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 20 T ELT)) (-3975 (((-475) $) 36 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3949 (((-774) $) 14 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 24 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 17 T ELT))) +(((-591 |#1|) (-13 (-636 |#1|) (-318 |#1|) (-10 -8 (-15 -2291 ((-85) $)) (-15 -2290 ($ |#1| |#1| $)))) (-1015)) (T -591)) +((-2291 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3)) (-4 *3 (-1015)))) (-2290 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1015))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-592 |#1|) (-113) (-972)) (T -592)) +NIL +(-13 (-21) (-590 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696) $) 17 T ELT)) (-2297 (($ $ |#1|) 68 T ELT)) (-2299 (($ $) 39 T ELT)) (-2300 (($ $) 37 T ELT)) (-3160 (((-3 |#1| "failed") $) 60 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2295 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3536 (((-774) $ (-1 (-774) (-774) (-774)) (-1 (-774) (-774) (-774)) (-486)) 55 T ELT)) (-2301 ((|#1| $ (-486)) 35 T ELT)) (-2302 ((|#2| $ (-486)) 34 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2293 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2298 (($) 13 T ELT)) (-2304 (($ |#1| |#2|) 24 T ELT)) (-2303 (($ (-585 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|)))) 25 T ELT)) (-2305 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 14 T ELT)) (-2296 (($ |#1| $) 69 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2294 (((-85) $ $) 74 T ELT)) (-3949 (((-774) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 27 T ELT))) +(((-593 |#1| |#2| |#3|) (-13 (-1015) (-952 |#1|) (-10 -8 (-15 -3536 ((-774) $ (-1 (-774) (-774) (-774)) (-1 (-774) (-774) (-774)) (-486))) (-15 -2305 ((-585 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $)) (-15 -2304 ($ |#1| |#2|)) (-15 -2303 ($ (-585 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))))) (-15 -2302 (|#2| $ (-486))) (-15 -2301 (|#1| $ (-486))) (-15 -2300 ($ $)) (-15 -2299 ($ $)) (-15 -3139 ((-696) $)) (-15 -2298 ($)) (-15 -2297 ($ $ |#1|)) (-15 -2296 ($ |#1| $)) (-15 -2295 ($ |#1| |#2| $)) (-15 -2295 ($ $ $)) (-15 -2294 ((-85) $ $)) (-15 -2293 ($ (-1 |#2| |#2|) $)) (-15 -2292 ($ (-1 |#1| |#1|) $)))) (-1015) (-23) |#2|) (T -593)) +((-3536 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-774) (-774) (-774))) (-5 *4 (-486)) (-5 *2 (-774)) (-5 *1 (-593 *5 *6 *7)) (-4 *5 (-1015)) (-4 *6 (-23)) (-14 *7 *6))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2304 (*1 *1 *2 *3) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *2 (-23)) (-5 *1 (-593 *4 *2 *5)) (-4 *4 (-1015)) (-14 *5 *2))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *2 (-1015)) (-5 *1 (-593 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *2 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-593 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2203 (((-486) $) 30 T ELT)) (-2306 (($ |#2| $ (-486)) 26 T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) 12 T ELT)) (-2206 (((-85) (-486) $) 17 T ELT)) (-3805 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT))) +(((-594 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -2203 ((-486) |#1|)) (-15 -2205 ((-585 (-486)) |#1|)) (-15 -2206 ((-85) (-486) |#1|))) (-595 |#2|) (-1131)) (T -594)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-1578 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-595 |#1|) (-113) (-1131)) (T -595)) +((-3617 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-3805 (*1 *1 *1 *2) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-3961 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-2306 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-2306 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1148 (-486))) (-4 *1 (-1037 *2)) (-4 *1 (-595 *2)) (-4 *2 (-1131))))) +(-13 (-540 (-486) |t#1|) (-124 |t#1|) (-241 (-1148 (-486)) $) (-10 -8 (-15 -3617 ($ (-696) |t#1|)) (-15 -3805 ($ $ |t#1|)) (-15 -3805 ($ |t#1| $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ (-585 $))) (-15 -3961 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2307 ($ $ (-486))) (-15 -2307 ($ $ (-1148 (-486)))) (-15 -2306 ($ |t#1| $ (-486))) (-15 -2306 ($ $ $ (-486))) (IF (|has| $ (-1037 |t#1|)) (-15 -3791 (|t#1| $ (-1148 (-486)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 15 T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-716)) ELT)) (-3727 (($) NIL T CONST)) (-3189 (((-85) $) NIL (|has| |#1| (-716)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3001 ((|#1| $) 23 T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-716)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-716)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-716)) ELT)) (-3245 (((-1075) $) 48 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3000 ((|#3| $) 24 T ELT)) (-3949 (((-774) $) 43 T ELT)) (-1267 (((-85) $ $) 22 T ELT)) (-3386 (($ $) NIL (|has| |#1| (-716)) ELT)) (-2663 (($) 10 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-3059 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-2688 (((-85) $ $) 26 (|has| |#1| (-716)) ELT)) (-3952 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3840 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 29 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-596 |#1| |#2| |#3|) (-13 (-656 |#2|) (-10 -8 (IF (|has| |#1| (-716)) (-6 (-716)) |%noBranch|) (-15 -3952 ($ $ |#3|)) (-15 -3952 ($ |#1| |#3|)) (-15 -3001 (|#1| $)) (-15 -3000 (|#3| $)))) (-656 |#2|) (-146) (|SubsetCategory| (-665) |#2|)) (T -596)) +((-3952 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)) (-4 *2 (|SubsetCategory| (-665) *4)))) (-3952 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-596 *2 *4 *3)) (-4 *2 (-656 *4)) (-4 *3 (|SubsetCategory| (-665) *4)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-656 *3)) (-5 *1 (-596 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-665) *3)))) (-3000 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4))))) +((-3576 (((-3 |#2| #1="failed") |#3| |#2| (-1092) |#2| (-585 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) #1#) |#3| |#2| (-1092)) 44 T ELT))) +(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) #1="failed") |#3| |#2| (-1092))) (-15 -3576 ((-3 |#2| #1#) |#3| |#2| (-1092) |#2| (-585 |#2|)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873)) (-602 |#2|)) (T -597)) +((-3576 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-602 *2)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-4 *4 (-13 (-29 *6) (-1117) (-873))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-602 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) 31 (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) 24 T ELT)) (-2312 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3951 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 8 T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-598 |#1| |#2|) (-602 |#1|) (-963) (-1 |#1| |#1|)) (T -598)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) NIL (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3951 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-599 |#1|) (-602 |#1|) (-190)) (T -599)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) NIL (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3951 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-600 |#1| |#2|) (-13 (-602 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-592 |#1|) (-10 -8 (-15 -3761 ($ $))))) (T -600)) +NIL +((-2308 (($ $) 29 T ELT)) (-2523 (($ $) 27 T ELT)) (-2672 (($) 13 T ELT))) +(((-601 |#1| |#2|) (-10 -7 (-15 -2308 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2672 (|#1|))) (-602 |#2|) (-963)) (T -601)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2308 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) 97 (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2539 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #2="failed") $) 88 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #2#) $) 85 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3159 (((-486) $) 87 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 84 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 83 T ELT)) (-3962 (($ $) 77 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 68 (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2896 (($ |#1| (-696)) 75 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 70 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) 79 T ELT)) (-2545 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) 78 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) 101 T ELT)) (-2312 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3951 (((-696) $) 80 T ELT)) (-2820 ((|#1| $) 69 (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 86 (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 81 T ELT)) (-3820 (((-585 |#1|) $) 74 T ELT)) (-3680 ((|#1| $ (-696)) 76 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2548 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2523 (($ $) 99 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($) 100 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-602 |#1|) (-113) (-963)) (T -602)) +((-2672 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) (-2523 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-602 *3)) (-4 *3 (-963)) (-4 *3 (-312)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2312 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(-13 (-763 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2672 ($)) (-15 -2523 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2310 ($ $ $)) (-15 -2311 ($ $ (-696))) (-15 -2308 ($ $)) (-15 -2312 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-763 |#1|) . T)) +((-2309 (((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3735 (((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 19 T ELT))) +(((-603 |#1| |#2|) (-10 -7 (-15 -3735 ((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3735 ((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|)))) (-15 -2309 ((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -603)) +((-2309 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-350 *5))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-350 *5))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-599 (-350 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-350 *6)))))) +((-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2311 ((|#2| |#2| (-696) (-1 |#1| |#1|)) 45 T ELT)) (-2312 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-604 |#1| |#2|) (-10 -7 (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| (-696) (-1 |#1| |#1|))) (-15 -2312 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-602 |#1|)) (T -604)) +((-2312 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) (-4 *2 (-602 *4)))) (-2311 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-604 *5 *2)) (-4 *2 (-602 *5)))) (-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) (-4 *2 (-602 *4))))) +((-2313 (($ $ $) 9 T ELT))) +(((-605 |#1|) (-10 -7 (-15 -2313 (|#1| |#1| |#1|))) (-606)) (T -605)) +NIL +((-2315 (($ $) 8 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT))) +(((-606) (-113)) (T -606)) +((-2315 (*1 *1 *1) (-4 *1 (-606))) (-2314 (*1 *1 *1 *1) (-4 *1 (-606))) (-2313 (*1 *1 *1 *1) (-4 *1 (-606)))) +(-13 (-1131) (-10 -8 (-15 -2315 ($ $)) (-15 -2314 ($ $ $)) (-15 -2313 ($ $ $)))) +(((-13) . T) ((-1131) . T)) +((-2316 (((-3 (-585 (-1087 |#1|)) "failed") (-585 (-1087 |#1|)) (-1087 |#1|)) 33 T ELT))) +(((-607 |#1|) (-10 -7 (-15 -2316 ((-3 (-585 (-1087 |#1|)) "failed") (-585 (-1087 |#1|)) (-1087 |#1|)))) (-823)) (T -607)) +((-2316 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *4))) (-5 *3 (-1087 *4)) (-4 *4 (-823)) (-5 *1 (-607 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3937 (((-585 |#1|) $) 85 T ELT)) (-3950 (($ $ (-696)) 95 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3942 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 50 T ELT)) (-3160 (((-3 (-616 |#1|) #1#) $) NIL T ELT)) (-3159 (((-616 |#1|) $) NIL T ELT)) (-3962 (($ $) 94 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ (-616 |#1|) |#2|) 70 T ELT)) (-3939 (($ $) 90 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3943 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 49 T ELT)) (-1754 (((-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-616 |#1|) $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 (($ $ |#1| $) 32 T ELT) (($ $ (-585 |#1|) (-585 $)) 34 T ELT)) (-3951 (((-696) $) 92 T ELT)) (-3533 (($ $ $) 20 T ELT) (($ (-616 |#1|) (-616 |#1|)) 79 T ELT) (($ (-616 |#1|) $) 77 T ELT) (($ $ (-616 |#1|)) 78 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1197 |#1| |#2|) $) 60 T ELT) (((-1206 |#1| |#2|) $) 43 T ELT) (($ (-616 |#1|)) 27 T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-616 |#1|)) NIL T ELT)) (-3957 ((|#2| (-1206 |#1| |#2|) $) 45 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 23 T CONST)) (-2668 (((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3948 (((-3 $ #1#) (-1197 |#1| |#2|)) 62 T ELT)) (-1738 (($ (-616 |#1|)) 14 T ELT)) (-3059 (((-85) $ $) 46 T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 31 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-616 |#1|)) NIL T ELT))) +(((-608 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-616 |#1|)) (-10 -8 (-15 -3948 ((-3 $ "failed") (-1197 |#1| |#2|))) (-15 -3533 ($ (-616 |#1|) (-616 |#1|))) (-15 -3533 ($ (-616 |#1|) $)) (-15 -3533 ($ $ (-616 |#1|))))) (-758) (-146)) (T -608)) +((-3948 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *1 (-608 *3 *4)))) (-3533 (*1 *1 *2 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146))))) +((-1737 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1735 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1572 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2299 (($ $) 65 T ELT)) (-2370 (($ $) 74 T ELT)) (-3408 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3422 (((-486) |#2| $ (-486)) 71 T ELT) (((-486) |#2| $) NIL T ELT) (((-486) (-1 (-85) |#2|) $) 54 T ELT)) (-3617 (($ (-696) |#2|) 63 T ELT)) (-2859 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3521 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3537 (($ |#2|) 15 T ELT)) (-3612 (($ $ $ (-486)) 42 T ELT) (($ |#2| $ (-486)) 40 T ELT)) (-1356 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1573 (($ $ (-1148 (-486))) 51 T ELT) (($ $ (-486)) 44 T ELT)) (-1736 (($ $ $ (-486)) 70 T ELT)) (-3403 (($ $) 68 T ELT)) (-2688 (((-85) $ $) 76 T ELT))) +(((-609 |#1| |#2|) (-10 -7 (-15 -3537 (|#1| |#2|)) (-15 -1573 (|#1| |#1| (-486))) (-15 -1573 (|#1| |#1| (-1148 (-486)))) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3612 (|#1| |#2| |#1| (-486))) (-15 -3612 (|#1| |#1| |#1| (-486))) (-15 -2859 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1572 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3521 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3422 ((-486) (-1 (-85) |#2|) |#1|)) (-15 -3422 ((-486) |#2| |#1|)) (-15 -3422 ((-486) |#2| |#1| (-486))) (-15 -3521 (|#1| |#1| |#1|)) (-15 -1737 ((-85) |#1|)) (-15 -1736 (|#1| |#1| |#1| (-486))) (-15 -2299 (|#1| |#1|)) (-15 -1735 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -2688 ((-85) |#1| |#1|)) (-15 -1356 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3617 (|#1| (-696) |#2|)) (-15 -3961 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3403 (|#1| |#1|))) (-610 |#2|) (-1131)) (T -609)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 99 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) $) 155 (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 149 T ELT)) (-1735 (($ $) 159 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT) (($ (-1 (-85) |#1| |#1|) $) 158 (|has| $ (-1037 |#1|)) ELT)) (-2912 (($ $) 154 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-3445 (((-85) $ (-696)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 116 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 88 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) 132 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 157 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 147 T ELT)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-2370 (($ $) 134 (|has| |#1| (-72)) ELT)) (-1355 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 133 (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 128 T ELT)) (-3409 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 140 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 136 (|has| |#1| (-72)) ELT)) (-1578 ((|#1| $ (-486) |#1|) 87 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 89 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-3422 (((-486) |#1| $ (-486)) 152 (|has| |#1| (-72)) ELT) (((-486) |#1| $) 151 (|has| |#1| (-72)) ELT) (((-486) (-1 (-85) |#1|) $) 150 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 108 T ELT)) (-3722 (((-85) $ (-696)) 83 T ELT)) (-2202 (((-486) $) 97 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 165 (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) 135 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 131 T ELT)) (-3521 (($ $ $) 153 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 146 T ELT)) (-2611 (((-585 |#1|) $) 141 T ELT)) (-3248 (((-85) |#1| $) 137 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 96 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 164 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3537 (($ |#1|) 124 T ELT)) (-3719 (((-85) $ (-696)) 84 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-3612 (($ $ $ (-486)) 130 T ELT) (($ |#1| $ (-486)) 129 T ELT)) (-2306 (($ $ $ (-486)) 115 T ELT) (($ |#1| $ (-486)) 114 T ELT)) (-2205 (((-585 (-486)) $) 94 T ELT)) (-2206 (((-85) (-486) $) 93 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) 86 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 143 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 92 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1148 (-486))) 107 T ELT) ((|#1| $ (-486)) 91 T ELT) ((|#1| $ (-486) |#1|) 90 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-1573 (($ $ (-1148 (-486))) 127 T ELT) (($ $ (-486)) 126 T ELT)) (-2307 (($ $ (-1148 (-486))) 113 T ELT) (($ $ (-486)) 112 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 142 T ELT) (((-696) |#1| $) 138 (|has| |#1| (-72)) ELT)) (-1736 (($ $ $ (-486)) 156 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 100 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 106 T ELT)) (-3794 (($ $ $) 58 T ELT) (($ $ |#1|) 57 T ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-585 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 144 T ELT)) (-2569 (((-85) $ $) 163 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 161 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 162 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 160 (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 145 T ELT))) +(((-610 |#1|) (-113) (-1131)) (T -610)) +((-3537 (*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1131))))) +(-13 (-1066 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3537 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-925 |#1|) . T) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1066 |#1|) . T) ((-1131) . T) ((-1170 |#1|) . T)) +((-3576 (((-585 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-585 |#3|)))) |#4| (-585 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-585 |#3|))) |#4| |#3|) 60 T ELT)) (-3111 (((-696) |#4| |#3|) 18 T ELT)) (-3343 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2317 (((-85) |#4| |#3|) 14 T ELT))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3576 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|)) (-15 -3576 ((-585 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-585 |#3|)))) |#4| (-585 |#3|))) (-15 -3343 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2317 ((-85) |#4| |#3|)) (-15 -3111 ((-696) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-1037 |#1|)) (-13 (-324 |#1|) (-1037 |#1|)) (-629 |#1| |#2| |#3|)) (T -611)) +((-3111 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-696)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-2317 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-85)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-3343 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1037 *4))) (-4 *2 (-13 (-324 *4) (-1037 *4))) (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-629 *4 *5 *2)))) (-3576 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *7 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2014 (-585 *7))))) (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-629 *5 *6 *7)))) (-3576 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) +((-3576 (((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1="failed")) (|:| -2014 (-585 (-1181 |#1|))))) (-585 (-585 |#1|)) (-585 (-1181 |#1|))) 22 T ELT) (((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|))))) (-632 |#1|) (-585 (-1181 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-585 (-585 |#1|)) (-1181 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|)) 14 T ELT)) (-3111 (((-696) (-632 |#1|) (-1181 |#1|)) 30 T ELT)) (-3343 (((-3 (-1181 |#1|) #1#) (-632 |#1|) (-1181 |#1|)) 24 T ELT)) (-2317 (((-85) (-632 |#1|) (-1181 |#1|)) 27 T ELT))) +(((-612 |#1|) (-10 -7 (-15 -3576 ((-2 (|:| |particular| (-3 (-1181 |#1|) #1="failed")) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|))) (-15 -3576 ((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-585 (-585 |#1|)) (-1181 |#1|))) (-15 -3576 ((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|))))) (-632 |#1|) (-585 (-1181 |#1|)))) (-15 -3576 ((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|))))) (-585 (-585 |#1|)) (-585 (-1181 |#1|)))) (-15 -3343 ((-3 (-1181 |#1|) #1#) (-632 |#1|) (-1181 |#1|))) (-15 -2317 ((-85) (-632 |#1|) (-1181 |#1|))) (-15 -3111 ((-696) (-632 |#1|) (-1181 |#1|)))) (-312)) (T -612)) +((-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-696)) (-5 *1 (-612 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-612 *5)))) (-3343 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *1 (-612 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1181 *5) #1="failed")) (|:| -2014 (-585 (-1181 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1181 *5) #1#)) (|:| -2014 (-585 (-1181 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) #1#)) (|:| -2014 (-585 (-1181 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1181 *5)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) #1#)) (|:| -2014 (-585 (-1181 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1181 *5))))) +((-2318 (((-2 (|:| |particular| (-3 (-1181 (-350 |#4|)) "failed")) (|:| -2014 (-585 (-1181 (-350 |#4|))))) (-585 |#4|) (-585 |#3|)) 51 T ELT))) +(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2318 ((-2 (|:| |particular| (-3 (-1181 (-350 |#4|)) "failed")) (|:| -2014 (-585 (-1181 (-350 |#4|))))) (-585 |#4|) (-585 |#3|)))) (-497) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -613)) +((-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 (-350 *8)) "failed")) (|:| -2014 (-585 (-1181 (-350 *8)))))) (-5 *1 (-613 *5 *6 *7 *8))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| |#2| (-497)) ELT)) (-3333 ((|#2| $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#2|))) NIL T ELT) (((-1181 (-632 |#2|)) (-1181 $)) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-1731 (((-1181 $)) 41 T ELT)) (-3336 (($ |#2|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3114 (((-197 |#1| |#2|) $ (-486)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#2| (-497)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-497)) ELT)) (-1793 (((-632 |#2|)) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1791 (((-632 |#2|) $) NIL T ELT) (((-632 |#2|) $ (-1181 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-497)) ELT)) (-1905 (((-1087 (-859 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1087 |#2|) $) NIL (|has| |#2| (-497)) ELT)) (-1795 ((|#2|) NIL T ELT) ((|#2| (-1181 $)) NIL T ELT)) (-1725 (((-1087 |#2|) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) NIL T ELT)) (-1797 (($ (-1181 |#2|)) NIL T ELT) (($ (-1181 |#2|) (-1181 $)) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3111 (((-696) $) NIL (|has| |#2| (-497)) ELT) (((-832)) 42 T ELT)) (-3115 ((|#2| $ (-486) (-486)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3110 (((-696) $) NIL (|has| |#2| (-497)) ELT)) (-3109 (((-585 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3330 ((|#2| $) NIL (|has| |#2| (-6 (-4000 #2="*"))) ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#2|))) NIL T ELT)) (-3961 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3597 (((-585 (-585 |#2|)) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#2| (-497)) ELT)) (-1706 (((-3 $ #1#)) NIL (|has| |#2| (-497)) ELT)) (-1794 (((-632 |#2|)) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-1730 ((|#2| $) NIL T ELT)) (-1792 (((-632 |#2|) $) NIL T ELT) (((-632 |#2|) $ (-1181 $)) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#2| (-497)) ELT)) (-1909 (((-1087 (-859 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1708 (((-1087 |#2|) $) NIL (|has| |#2| (-497)) ELT)) (-1796 ((|#2|) NIL T ELT) ((|#2| (-1181 $)) NIL T ELT)) (-1726 (((-1087 |#2|) $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3593 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) (-486) |#2|) NIL T ELT) ((|#2| $ (-486) (-486)) 27 T ELT) ((|#2| $ (-486)) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3335 (($ (-585 |#2|)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3334 (((-197 |#1| |#2|) $) NIL T ELT)) (-3331 ((|#2| $) NIL (|has| |#2| (-6 (-4000 #2#))) ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) NIL T ELT) (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3227 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $ (-1181 $)) 30 T ELT)) (-3975 (($ (-1181 |#2|)) NIL T ELT) (((-1181 |#2|) $) NIL T ELT)) (-1897 (((-585 (-859 |#2|))) NIL T ELT) (((-585 (-859 |#2|)) (-1181 $)) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-1724 (((-85)) NIL T ELT)) (-3113 (((-197 |#1| |#2|) $ (-486)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) NIL T ELT) (((-632 |#2|) $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 40 T ELT)) (-1709 (((-585 (-1181 |#2|))) NIL (|has| |#2| (-497)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-2548 (($ (-632 |#2|) $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-614 |#1| |#2|) (-13 (-1039 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-554 (-632 |#2|)) (-361 |#2|)) (-832) (-146)) (T -614)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3251 (((-585 (-1051)) $) 12 T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-615) (-13 (-997) (-10 -8 (-15 -3251 ((-585 (-1051)) $))))) (T -615)) +((-3251 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-615))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3937 (((-585 |#1|) $) NIL T ELT)) (-3140 (($ $) 62 T ELT)) (-2667 (((-85) $) NIL T ELT)) (-3160 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2321 (((-3 $ #1#) (-741 |#1|)) 28 T ELT)) (-2323 (((-85) (-741 |#1|)) 18 T ELT)) (-2322 (($ (-741 |#1|)) 29 T ELT)) (-2514 (((-85) $ $) 36 T ELT)) (-3836 (((-832) $) 43 T ELT)) (-3141 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3735 (((-585 $) (-741 |#1|)) 20 T ELT)) (-3949 (((-774) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-741 |#1|) $) 47 T ELT) (((-620 |#1|) $) 52 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2320 (((-58 (-585 $)) (-585 |#1|) (-832)) 67 T ELT)) (-2319 (((-585 $) (-585 |#1|) (-832)) 70 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 63 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 46 T ELT))) +(((-616 |#1|) (-13 (-758) (-952 |#1|) (-10 -8 (-15 -2667 ((-85) $)) (-15 -3141 ($ $)) (-15 -3140 ($ $)) (-15 -3836 ((-832) $)) (-15 -2514 ((-85) $ $)) (-15 -3949 ((-741 |#1|) $)) (-15 -3949 ((-620 |#1|) $)) (-15 -3735 ((-585 $) (-741 |#1|))) (-15 -2323 ((-85) (-741 |#1|))) (-15 -2322 ($ (-741 |#1|))) (-15 -2321 ((-3 $ "failed") (-741 |#1|))) (-15 -3937 ((-585 |#1|) $)) (-15 -2320 ((-58 (-585 $)) (-585 |#1|) (-832))) (-15 -2319 ((-585 $) (-585 |#1|) (-832))))) (-758)) (T -616)) +((-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3141 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-2514 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-616 *4))) (-5 *1 (-616 *4)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-85)) (-5 *1 (-616 *4)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3)))) (-2321 (*1 *1 *2) (|partial| -12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-58 (-585 (-616 *5)))) (-5 *1 (-616 *5)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-585 (-616 *5))) (-5 *1 (-616 *5))))) +((-3405 ((|#2| $) 96 T ELT)) (-3800 (($ $) 117 T ELT)) (-3445 (((-85) $ (-696)) 35 T ELT)) (-3802 (($ $) 105 T ELT) (($ $ (-696)) 108 T ELT)) (-3446 (((-85) $) 118 T ELT)) (-3034 (((-585 $) $) 92 T ELT)) (-3030 (((-85) $ $) 88 T ELT)) (-3722 (((-85) $ (-696)) 33 T ELT)) (-2202 (((-486) $) 62 T ELT)) (-2203 (((-486) $) 61 T ELT)) (-3719 (((-85) $ (-696)) 31 T ELT)) (-3530 (((-85) $) 94 T ELT)) (-3801 ((|#2| $) 109 T ELT) (($ $ (-696)) 113 T ELT)) (-2306 (($ $ $ (-486)) 79 T ELT) (($ |#2| $ (-486)) 78 T ELT)) (-2205 (((-585 (-486)) $) 60 T ELT)) (-2206 (((-85) (-486) $) 55 T ELT)) (-3804 ((|#2| $) NIL T ELT) (($ $ (-696)) 104 T ELT)) (-3772 (($ $ (-486)) 121 T ELT)) (-3447 (((-85) $) 120 T ELT)) (-2207 (((-585 |#2|) $) 42 T ELT)) (-3803 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1148 (-486))) 75 T ELT) ((|#2| $ (-486)) 53 T ELT) ((|#2| $ (-486) |#2|) 54 T ELT)) (-3032 (((-486) $ $) 87 T ELT)) (-2307 (($ $ (-1148 (-486))) 74 T ELT) (($ $ (-486)) 68 T ELT)) (-3636 (((-85) $) 83 T ELT)) (-3795 (($ $) 101 T ELT)) (-3796 (((-696) $) 100 T ELT)) (-3797 (($ $) 99 T ELT)) (-3533 (($ (-585 |#2|)) 49 T ELT)) (-2894 (($ $) 122 T ELT)) (-3525 (((-585 $) $) 86 T ELT)) (-3031 (((-85) $ $) 85 T ELT)) (-3059 (((-85) $ $) 20 T ELT))) +(((-617 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3772 (|#1| |#1| (-486))) (-15 -3445 ((-85) |#1| (-696))) (-15 -3722 ((-85) |#1| (-696))) (-15 -3719 ((-85) |#1| (-696))) (-15 -3446 ((-85) |#1|)) (-15 -3447 ((-85) |#1|)) (-15 -3803 (|#2| |#1| (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486))) (-15 -2207 ((-585 |#2|) |#1|)) (-15 -2206 ((-85) (-486) |#1|)) (-15 -2205 ((-585 (-486)) |#1|)) (-15 -2203 ((-486) |#1|)) (-15 -2202 ((-486) |#1|)) (-15 -3533 (|#1| (-585 |#2|))) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -2307 (|#1| |#1| (-486))) (-15 -2307 (|#1| |#1| (-1148 (-486)))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -3795 (|#1| |#1|)) (-15 -3796 ((-696) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| "last")) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#1| |#1| (-696))) (-15 -3803 (|#1| |#1| "rest")) (-15 -3802 (|#1| |#1|)) (-15 -3804 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| "first")) (-15 -3804 (|#2| |#1|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3031 ((-85) |#1| |#1|)) (-15 -3032 ((-486) |#1| |#1|)) (-15 -3636 ((-85) |#1|)) (-15 -3803 (|#2| |#1| "value")) (-15 -3405 (|#2| |#1|)) (-15 -3530 ((-85) |#1|)) (-15 -3034 ((-585 |#1|) |#1|)) (-15 -3525 ((-585 |#1|) |#1|))) (-618 |#2|) (-1131)) (T -617)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 99 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-3445 (((-85) $ (-696)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 116 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 88 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 103 T ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-2325 (($ $) 124 T ELT)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-1355 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 104 T ELT)) (-1578 ((|#1| $ (-486) |#1|) 87 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 89 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-2324 (((-696) $) 123 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 108 T ELT)) (-3722 (((-85) $ (-696)) 83 T ELT)) (-2202 (((-486) $) 97 (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) 96 (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3719 (((-85) $ (-696)) 84 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-2327 (($ $) 126 T ELT)) (-2328 (((-85) $) 127 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-2306 (($ $ $ (-486)) 115 T ELT) (($ |#1| $ (-486)) 114 T ELT)) (-2205 (((-585 (-486)) $) 94 T ELT)) (-2206 (((-85) (-486) $) 93 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-2326 ((|#1| $) 125 T ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-486)) 122 T ELT)) (-3447 (((-85) $) 86 T ELT)) (-2329 (((-85) $) 128 T ELT)) (-2330 (((-85) $) 129 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 92 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1148 (-486))) 107 T ELT) ((|#1| $ (-486)) 91 T ELT) ((|#1| $ (-486) |#1|) 90 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-2307 (($ $ (-1148 (-486))) 113 T ELT) (($ $ (-486)) 112 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 100 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 106 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-585 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-2894 (($ $) 121 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-618 |#1|) (-113) (-1131)) (T -618)) +((-3409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) +(-13 (-1066 |t#1|) (-10 -8 (-15 -3409 ($ (-1 (-85) |t#1|) $)) (-15 -3713 ($ (-1 (-85) |t#1|) $)) (-15 -2330 ((-85) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ($ $)) (-15 -2326 (|t#1| $)) (-15 -2325 ($ $)) (-15 -2324 ((-696) $)) (-15 -3772 ($ $ (-486))) (-15 -2894 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1066 |#1|) . T) ((-1131) . T) ((-1170 |#1|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3181 (((-424) $) 15 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 17 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-619) (-13 (-997) (-10 -8 (-15 -3181 ((-424) $)) (-15 -3236 ((-1051) $))))) (T -619)) +((-3181 (*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-619)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-619))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3937 (((-585 |#1|) $) 15 T ELT)) (-3140 (($ $) 19 T ELT)) (-2667 (((-85) $) 20 T ELT)) (-3160 (((-3 |#1| "failed") $) 23 T ELT)) (-3159 ((|#1| $) 21 T ELT)) (-3802 (($ $) 37 T ELT)) (-3939 (($ $) 25 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2514 (((-85) $ $) 46 T ELT)) (-3836 (((-832) $) 40 T ELT)) (-3141 (($ $) 18 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#1| $) 36 T ELT)) (-3949 (((-774) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-741 |#1|) $) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-620 |#1|) (-13 (-758) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3949 ((-741 |#1|) $)) (-15 -3804 (|#1| $)) (-15 -3141 ($ $)) (-15 -3836 ((-832) $)) (-15 -2514 ((-85) $ $)) (-15 -3939 ($ $)) (-15 -3802 ($ $)) (-15 -2667 ((-85) $)) (-15 -3140 ($ $)) (-15 -3937 ((-585 |#1|) $)))) (-758)) (T -620)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3804 (*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3141 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-2514 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758))))) +((-2339 ((|#1| (-1 |#1| (-696) |#1|) (-696) |#1|) 11 T ELT)) (-2331 ((|#1| (-1 |#1| |#1|) (-696) |#1|) 9 T ELT))) +(((-621 |#1|) (-10 -7 (-15 -2331 (|#1| (-1 |#1| |#1|) (-696) |#1|)) (-15 -2339 (|#1| (-1 |#1| (-696) |#1|) (-696) |#1|))) (-1015)) (T -621)) +((-2339 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-696) *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2)))) (-2331 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2))))) +((-2333 ((|#2| |#1| |#2|) 9 T ELT)) (-2332 ((|#1| |#1| |#2|) 8 T ELT))) +(((-622 |#1| |#2|) (-10 -7 (-15 -2332 (|#1| |#1| |#2|)) (-15 -2333 (|#2| |#1| |#2|))) (-1015) (-1015)) (T -622)) +((-2333 (*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-2332 (*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +((-2334 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -2334 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1015) (-1015) (-1015)) (T -623)) +((-2334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)) (-5 *1 (-623 *5 *6 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 22 T ELT)) (-3320 (((-585 (-1132)) $) 20 T ELT)) (-2335 (($ (-585 (-1132)) (-1132)) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 30 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) (((-1132) $) 23 T ELT) (($ (-1030)) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-624) (-13 (-997) (-554 (-1132)) (-10 -8 (-15 -3949 ($ (-1030))) (-15 -2335 ($ (-585 (-1132)) (-1132))) (-15 -3320 ((-585 (-1132)) $)) (-15 -3321 ((-1132) $))))) (T -624)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-624)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1132))) (-5 *3 (-1132)) (-5 *1 (-624)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-624)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624))))) +((-2339 (((-1 |#1| (-696) |#1|) (-1 |#1| (-696) |#1|)) 26 T ELT)) (-2336 (((-1 |#1|) |#1|) 8 T ELT)) (-2338 ((|#1| |#1|) 19 T ELT)) (-2337 (((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-486)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3949 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-696)) 23 T ELT))) +(((-625 |#1|) (-10 -7 (-15 -2336 ((-1 |#1|) |#1|)) (-15 -3949 ((-1 |#1|) |#1|)) (-15 -2337 (|#1| (-1 |#1| |#1|))) (-15 -2337 ((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-486))) (-15 -2338 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-696))) (-15 -2339 ((-1 |#1| (-696) |#1|) (-1 |#1| (-696) |#1|)))) (-1015)) (T -625)) +((-2339 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-696) *3)) (-4 *3 (-1015)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *4 (-1015)) (-5 *1 (-625 *4)))) (-2338 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1015)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-486)) (-5 *2 (-585 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1015)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1015)))) (-3949 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015))))) +((-2342 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2341 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3955 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2340 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-626 |#1| |#2|) (-10 -7 (-15 -2340 ((-1 |#2| |#1|) |#2|)) (-15 -2341 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3955 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2342 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1015) (-1015)) (T -626)) +((-2342 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1015)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1015)) (-4 *3 (-1015))))) +((-2347 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2343 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2344 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2346 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -2343 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2344 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2346 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2347 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1015) (-1015) (-1015)) (T -627)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1015)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1015)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1015)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) +((-3841 (($ (-696) (-696)) 42 T ELT)) (-2352 (($ $ $) 73 T ELT)) (-3417 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3123 (((-85) $) 36 T ELT)) (-2351 (($ $ (-486) (-486)) 84 T ELT)) (-2350 (($ $ (-486) (-486)) 85 T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) 90 T ELT)) (-2354 (($ $) 71 T ELT)) (-3125 (((-85) $) 15 T ELT)) (-2348 (($ $ (-486) (-486) $) 91 T ELT)) (-3791 ((|#2| $ (-486) (-486) |#2|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) 89 T ELT)) (-3336 (($ (-696) |#2|) 55 T ELT)) (-3126 (($ (-585 (-585 |#2|))) 51 T ELT) (($ (-696) (-696) (-1 |#2| (-486) (-486))) 53 T ELT)) (-3597 (((-585 (-585 |#2|)) $) 80 T ELT)) (-2353 (($ $ $) 72 T ELT)) (-3469 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3803 ((|#2| $ (-486) (-486)) NIL T ELT) ((|#2| $ (-486) (-486) |#2|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486))) 88 T ELT)) (-3335 (($ (-585 |#2|)) 56 T ELT) (($ (-585 $)) 58 T ELT)) (-3124 (((-85) $) 28 T ELT)) (-3949 (($ |#4|) 63 T ELT) (((-774) $) NIL T ELT)) (-3122 (((-85) $) 38 T ELT)) (-3952 (($ $ |#2|) 124 T ELT)) (-3840 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3842 (($ $ $) 93 T ELT)) (** (($ $ (-696)) 111 T ELT) (($ $ (-486)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-486) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3949 ((-774) |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3469 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| (-486) (-486) |#1|)) (-15 -2349 (|#1| |#1| (-486) (-486) (-486) (-486))) (-15 -2350 (|#1| |#1| (-486) (-486))) (-15 -2351 (|#1| |#1| (-486) (-486))) (-15 -3791 (|#1| |#1| (-585 (-486)) (-585 (-486)) |#1|)) (-15 -3803 (|#1| |#1| (-585 (-486)) (-585 (-486)))) (-15 -3597 ((-585 (-585 |#2|)) |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3417 (|#1| |#3|)) (-15 -3949 (|#1| |#4|)) (-15 -3335 (|#1| (-585 |#1|))) (-15 -3335 (|#1| (-585 |#2|))) (-15 -3336 (|#1| (-696) |#2|)) (-15 -3126 (|#1| (-696) (-696) (-1 |#2| (-486) (-486)))) (-15 -3126 (|#1| (-585 (-585 |#2|)))) (-15 -3841 (|#1| (-696) (-696))) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3125 ((-85) |#1|)) (-15 -3791 (|#2| |#1| (-486) (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) (-486)))) (-629 |#2| |#3| |#4|) (-963) (-324 |#2|) (-324 |#2|)) (T -628)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3841 (($ (-696) (-696)) 107 T ELT)) (-2352 (($ $ $) 96 T ELT)) (-3417 (($ |#2|) 100 T ELT) (($ $) 99 T ELT)) (-3123 (((-85) $) 109 T ELT)) (-2351 (($ $ (-486) (-486)) 92 T ELT)) (-2350 (($ $ (-486) (-486)) 91 T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) 90 T ELT)) (-2354 (($ $) 98 T ELT)) (-3125 (((-85) $) 111 T ELT)) (-2348 (($ $ (-486) (-486) $) 89 T ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) 51 T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) 93 T ELT)) (-1259 (($ $ (-486) |#2|) 49 T ELT)) (-1258 (($ $ (-486) |#3|) 48 T ELT)) (-3336 (($ (-696) |#1|) 104 T ELT)) (-3727 (($) 6 T CONST)) (-3112 (($ $) 76 (|has| |#1| (-258)) ELT)) (-3114 ((|#2| $ (-486)) 53 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-3111 (((-696) $) 75 (|has| |#1| (-497)) ELT)) (-1578 ((|#1| $ (-486) (-486) |#1|) 50 T ELT)) (-3115 ((|#1| $ (-486) (-486)) 55 T ELT)) (-3110 (((-696) $) 74 (|has| |#1| (-497)) ELT)) (-3109 (((-585 |#3|) $) 73 (|has| |#1| (-497)) ELT)) (-3117 (((-696) $) 58 T ELT)) (-3617 (($ (-696) (-696) |#1|) 64 T ELT)) (-3116 (((-696) $) 57 T ELT)) (-3330 ((|#1| $) 71 (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-3121 (((-486) $) 62 T ELT)) (-3119 (((-486) $) 60 T ELT)) (-2611 (((-585 |#1|) $) 39 T ELT)) (-3248 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 61 T ELT)) (-3118 (((-486) $) 59 T ELT)) (-3126 (($ (-585 (-585 |#1|))) 106 T ELT) (($ (-696) (-696) (-1 |#1| (-486) (-486))) 105 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 65 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 47 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 46 T ELT)) (-3597 (((-585 (-585 |#1|)) $) 95 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3593 (((-3 $ "failed") $) 70 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) 97 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) 63 T ELT)) (-3469 (((-3 $ "failed") $ |#1|) 78 (|has| |#1| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) (-486)) 56 T ELT) ((|#1| $ (-486) (-486) |#1|) 54 T ELT) (($ $ (-585 (-486)) (-585 (-486))) 94 T ELT)) (-3335 (($ (-585 |#1|)) 103 T ELT) (($ (-585 $)) 102 T ELT)) (-3124 (((-85) $) 110 T ELT)) (-3331 ((|#1| $) 72 (|has| |#1| (-6 (-4000 #1#))) ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 40 T ELT) (((-696) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3113 ((|#3| $ (-486)) 52 T ELT)) (-3949 (($ |#3|) 101 T ELT) (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3122 (((-85) $) 108 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3952 (($ $ |#1|) 77 (|has| |#1| (-312)) ELT)) (-3840 (($ $ $) 87 T ELT) (($ $) 86 T ELT)) (-3842 (($ $ $) 88 T ELT)) (** (($ $ (-696)) 79 T ELT) (($ $ (-486)) 69 (|has| |#1| (-312)) ELT)) (* (($ $ $) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#1|) 83 T ELT) (($ (-486) $) 82 T ELT) ((|#3| $ |#3|) 81 T ELT) ((|#2| |#2| $) 80 T ELT)) (-3960 (((-696) $) 43 T ELT))) +(((-629 |#1| |#2| |#3|) (-113) (-963) (-324 |t#1|) (-324 |t#1|)) (T -629)) +((-3125 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3841 (*1 *1 *2 *2) (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3126 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-1 *4 (-486) (-486))) (-4 *4 (-963)) (-4 *1 (-629 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3336 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3949 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3417 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2353 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-585 (-585 *3))))) (-3803 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3791 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2351 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-497)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3112 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-585 *5)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-4000 #1="*"))) (-4 *2 (-963)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-4000 #1#))) (-4 *2 (-963)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3125 ((-85) $)) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3841 ($ (-696) (-696))) (-15 -3126 ($ (-585 (-585 |t#1|)))) (-15 -3126 ($ (-696) (-696) (-1 |t#1| (-486) (-486)))) (-15 -3336 ($ (-696) |t#1|)) (-15 -3335 ($ (-585 |t#1|))) (-15 -3335 ($ (-585 $))) (-15 -3949 ($ |t#3|)) (-15 -3417 ($ |t#2|)) (-15 -3417 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -3597 ((-585 (-585 |t#1|)) $)) (-15 -3803 ($ $ (-585 (-486)) (-585 (-486)))) (-15 -3791 ($ $ (-585 (-486)) (-585 (-486)) $)) (-15 -2351 ($ $ (-486) (-486))) (-15 -2350 ($ $ (-486) (-486))) (-15 -2349 ($ $ (-486) (-486) (-486) (-486))) (-15 -2348 ($ $ (-486) (-486) $)) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3840 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-486) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-696))) (IF (|has| |t#1| (-497)) (-15 -3469 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3952 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3112 ($ $)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-15 -3111 ((-696) $)) (-15 -3110 ((-696) $)) (-15 -3109 ((-585 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4000 "*"))) (PROGN (-15 -3331 (|t#1| $)) (-15 -3330 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3593 ((-3 $ "failed") $)) (-15 ** ($ $ (-486)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1131) . T)) +((-3845 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3961 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-630 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3961 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3961 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3845 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-963) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|) (-963) (-324 |#5|) (-324 |#5|) (-629 |#5| |#6| |#7|)) (T -630)) +((-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-630 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) (-4 *10 (-629 *2 *8 *9)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))) +((-3112 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3111 (((-696) |#4|) 92 (|has| |#1| (-497)) ELT)) (-3110 (((-696) |#4|) 94 (|has| |#1| (-497)) ELT)) (-3109 (((-585 |#3|) |#4|) 101 (|has| |#1| (-497)) ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3330 ((|#1| |#4|) 52 T ELT)) (-2359 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-497)) ELT)) (-3593 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2358 ((|#4| |#4|) 76 (|has| |#1| (-497)) ELT)) (-2356 ((|#4| |#4| |#1| (-486) (-486)) 60 T ELT)) (-2355 ((|#4| |#4| (-486) (-486)) 55 T ELT)) (-2357 ((|#4| |#4| |#1| (-486) (-486)) 65 T ELT)) (-3331 ((|#1| |#4|) 96 T ELT)) (-2523 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-497)) ELT))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3331 (|#1| |#4|)) (-15 -3330 (|#1| |#4|)) (-15 -2355 (|#4| |#4| (-486) (-486))) (-15 -2356 (|#4| |#4| |#1| (-486) (-486))) (-15 -2357 (|#4| |#4| |#1| (-486) (-486))) (IF (|has| |#1| (-497)) (PROGN (-15 -3111 ((-696) |#4|)) (-15 -3110 ((-696) |#4|)) (-15 -3109 ((-585 |#3|) |#4|)) (-15 -2358 (|#4| |#4|)) (-15 -2359 ((-3 |#4| #1="failed") |#4|)) (-15 -2523 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3112 (|#4| |#4|)) (-15 -2382 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3593 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -631)) +((-3593 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2382 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-629 *3 *4 *5)))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2523 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2359 (*1 *2 *2) (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-585 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2357 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696) (-696)) 63 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3417 (($ (-1181 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2351 (($ $ (-486) (-486)) 21 T ELT)) (-2350 (($ $ (-486) (-486)) NIL T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-2348 (($ $ (-486) (-486) $) NIL T ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) NIL T ELT)) (-1259 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-1258 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-3336 (($ (-696) |#1|) 37 T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3114 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3111 (((-696) $) 48 (|has| |#1| (-497)) ELT)) (-1578 ((|#1| $ (-486) (-486) |#1|) 68 T ELT)) (-3115 ((|#1| $ (-486) (-486)) NIL T ELT)) (-3110 (((-696) $) 50 (|has| |#1| (-497)) ELT)) (-3109 (((-585 (-1181 |#1|)) $) 53 (|has| |#1| (-497)) ELT)) (-3117 (((-696) $) 31 T ELT)) (-3617 (($ (-696) (-696) |#1|) 27 T ELT)) (-3116 (((-696) $) 32 T ELT)) (-3330 ((|#1| $) 44 (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-3121 (((-486) $) 9 T ELT)) (-3119 (((-486) $) 10 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 13 T ELT)) (-3118 (((-486) $) 64 T ELT)) (-3126 (($ (-585 (-585 |#1|))) NIL T ELT) (($ (-696) (-696) (-1 |#1| (-486) (-486))) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3597 (((-585 (-585 |#1|)) $) 75 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3593 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3469 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) NIL T ELT) ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486))) NIL T ELT)) (-3335 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ (-1181 |#1|)) 69 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3331 ((|#1| $) 42 (|has| |#1| (-6 (-4000 #1#))) ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 79 (|has| |#1| (-555 (-475))) ELT)) (-3113 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-3949 (($ (-1181 |#1|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) 38 T ELT) (($ $ (-486)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-486) $) NIL T ELT) (((-1181 |#1|) $ (-1181 |#1|)) NIL T ELT) (((-1181 |#1|) (-1181 |#1|) $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-632 |#1|) (-13 (-629 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -3335 ($ (-1181 |#1|))) (IF (|has| |#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3593 ((-3 $ "failed") $)) |%noBranch|))) (-963)) (T -632)) +((-3593 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-312)) (-4 *2 (-963)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-632 *3))))) +((-2365 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 37 T ELT)) (-2364 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 32 T ELT)) (-2366 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-696)) 43 T ELT)) (-2361 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25 T ELT)) (-2362 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 29 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 27 T ELT)) (-2363 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 31 T ELT)) (-2360 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 23 T ELT)) (** (((-632 |#1|) (-632 |#1|) (-696)) 46 T ELT))) +(((-633 |#1|) (-10 -7 (-15 -2360 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2361 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2362 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2362 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2363 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -2364 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2365 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2366 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-696))) (-15 ** ((-632 |#1|) (-632 |#1|) (-696)))) (-963)) (T -633)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) (-2366 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) (-2365 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2364 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2363 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2362 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +((-3160 (((-3 |#1| "failed") $) 18 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2367 (($) 7 T CONST)) (-2368 (($ |#1|) 8 T ELT)) (-3949 (($ |#1|) 16 T ELT) (((-774) $) 23 T ELT)) (-3569 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2367)) 11 T ELT)) (-3575 ((|#1| $) 15 T ELT))) +(((-634 |#1|) (-13 (-1177) (-952 |#1|) (-554 (-774)) (-10 -8 (-15 -2368 ($ |#1|)) (-15 -3569 ((-85) $ (|[\|\|]| |#1|))) (-15 -3569 ((-85) $ (|[\|\|]| -2367))) (-15 -3575 (|#1| $)) (-15 -2367 ($) -3955))) (-554 (-774))) (T -634)) +((-2368 (*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-554 (-774))) (-5 *2 (-85)) (-5 *1 (-634 *4)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-85)) (-5 *1 (-634 *4)) (-4 *4 (-554 (-774))))) (-3575 (*1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) (-2367 (*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) +((-3744 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20 T ELT)) (-3742 ((|#1| (-632 |#2|)) 9 T ELT)) (-3743 (((-632 |#1|) (-632 |#2|)) 18 T ELT))) +(((-635 |#1| |#2|) (-10 -7 (-15 -3742 (|#1| (-632 |#2|))) (-15 -3743 ((-632 |#1|) (-632 |#2|))) (-15 -3744 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-497) (-906 |#1|)) (T -635)) +((-3744 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-635 *2 *4))))) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1572 (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 43 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-696)) 56 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 47 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 54 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 |#1|)) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 46 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-636 |#1|) (-113) (-1015)) (T -636)) +((-3612 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-636 *2)) (-4 *2 (-1015)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1015)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-636 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-2 (|:| |entry| *3) (|:| -1732 (-696)))))))) +(-13 (-193 |t#1|) (-10 -8 (-15 -3612 ($ |t#1| $ (-696))) (-15 -2370 ($ $)) (-15 -2369 ((-585 (-2 (|:| |entry| |t#1|) (|:| -1732 (-696)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2373 (((-585 |#1|) (-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486)))) (-486)) 66 T ELT)) (-2371 ((|#1| |#1| (-486)) 63 T ELT)) (-3147 ((|#1| |#1| |#1| (-486)) 46 T ELT)) (-3735 (((-585 |#1|) |#1| (-486)) 49 T ELT)) (-2374 ((|#1| |#1| (-486) |#1| (-486)) 40 T ELT)) (-2372 (((-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486)))) |#1| (-486)) 62 T ELT))) +(((-637 |#1|) (-10 -7 (-15 -3147 (|#1| |#1| |#1| (-486))) (-15 -2371 (|#1| |#1| (-486))) (-15 -3735 ((-585 |#1|) |#1| (-486))) (-15 -2372 ((-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486)))) |#1| (-486))) (-15 -2373 ((-585 |#1|) (-585 (-2 (|:| -3735 |#1|) (|:| -3951 (-486)))) (-486))) (-15 -2374 (|#1| |#1| (-486) |#1| (-486)))) (-1157 (-486))) (T -637)) +((-2374 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| -3735 *5) (|:| -3951 (-486))))) (-5 *4 (-486)) (-4 *5 (-1157 *4)) (-5 *2 (-585 *5)) (-5 *1 (-637 *5)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -3951 *4)))) (-5 *1 (-637 *3)) (-4 *3 (-1157 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-5 *2 (-585 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1157 *4)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3)))) (-3147 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3))))) +((-2378 (((-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2375 (((-1049 (-179)) (-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 53 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 55 T ELT) (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 57 T ELT)) (-2377 (((-1049 (-179)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-585 (-221))) NIL T ELT)) (-2376 (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 58 T ELT))) +(((-638) (-10 -7 (-15 -2375 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2375 ((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2375 ((-1049 (-179)) (-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2376 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2377 ((-1049 (-179)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2378 ((-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -638)) +((-2378 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *1 (-638)))) (-2377 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) (-2376 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) (-2375 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *1 (-638)))) (-2375 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638))))) +((-3735 (((-348 (-1087 |#4|)) (-1087 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT))) +(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|)) (-15 -3735 ((-348 (-1087 |#4|)) (-1087 |#4|)))) (-758) (-719) (-299) (-863 |#3| |#2| |#1|)) (T -639)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) +((-2381 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 85 T ELT)) (-3112 (((-632 |#1|) (-632 |#1|) |#1|) 66 T ELT)) (-2380 (((-632 |#1|) (-632 |#1|) |#1|) 86 T ELT)) (-2379 (((-632 |#1|) (-632 |#1|)) 67 T ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 84 T ELT))) +(((-640 |#1|) (-10 -7 (-15 -2379 ((-632 |#1|) (-632 |#1|))) (-15 -3112 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2380 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2381 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2382 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|))) (-258)) (T -640)) +((-2382 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-640 *3)) (-4 *3 (-258)))) (-2381 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) +((-2388 (((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)) 19 T ELT)) (-2383 (((-1 |#4| |#2| |#3|) (-1092)) 12 T ELT))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2383 ((-1 |#4| |#2| |#3|) (-1092))) (-15 -2388 ((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)))) (-555 (-475)) (-1131) (-1131) (-1131)) (T -641)) +((-2388 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131))))) +((-2384 (((-1 (-179) (-179) (-179)) |#1| (-1092) (-1092)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1092)) 48 T ELT))) +(((-642 |#1|) (-10 -7 (-15 -2384 ((-1 (-179) (-179)) |#1| (-1092))) (-15 -2384 ((-1 (-179) (-179) (-179)) |#1| (-1092) (-1092)))) (-555 (-475))) (T -642)) +((-2384 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-642 *3)) (-4 *3 (-555 (-475))))) (-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-642 *3)) (-4 *3 (-555 (-475)))))) +((-2385 (((-1092) |#1| (-1092) (-585 (-1092))) 10 T ELT) (((-1092) |#1| (-1092) (-1092) (-1092)) 13 T ELT) (((-1092) |#1| (-1092) (-1092)) 12 T ELT) (((-1092) |#1| (-1092)) 11 T ELT))) +(((-643 |#1|) (-10 -7 (-15 -2385 ((-1092) |#1| (-1092))) (-15 -2385 ((-1092) |#1| (-1092) (-1092))) (-15 -2385 ((-1092) |#1| (-1092) (-1092) (-1092))) (-15 -2385 ((-1092) |#1| (-1092) (-585 (-1092))))) (-555 (-475))) (T -643)) +((-2385 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-585 (-1092))) (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) (-2385 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) (-2385 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) (-2385 (*1 *2 *3 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475)))))) +((-2386 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-644 |#1| |#2|) (-10 -7 (-15 -2386 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1131) (-1131)) (T -644)) +((-2386 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +((-2387 (((-1 |#3| |#2|) (-1092)) 11 T ELT)) (-2388 (((-1 |#3| |#2|) |#1| (-1092)) 21 T ELT))) +(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -2387 ((-1 |#3| |#2|) (-1092))) (-15 -2388 ((-1 |#3| |#2|) |#1| (-1092)))) (-555 (-475)) (-1131) (-1131)) (T -645)) +((-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131))))) +((-2391 (((-3 (-585 (-1087 |#4|)) #1="failed") (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#4|)))) (-585 (-696)) (-1181 (-585 (-1087 |#3|))) |#3|) 92 T ELT)) (-2390 (((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-696)) |#3|) 110 T ELT)) (-2389 (((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-696)) (-585 (-1087 |#4|)) (-1181 (-585 (-1087 |#3|))) |#3|) 48 T ELT))) +(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2389 ((-3 (-585 (-1087 |#4|)) #1="failed") (-1087 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-696)) (-585 (-1087 |#4|)) (-1181 (-585 (-1087 |#3|))) |#3|)) (-15 -2390 ((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-696)) |#3|)) (-15 -2391 ((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#4|)))) (-585 (-696)) (-1181 (-585 (-1087 |#3|))) |#3|))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -646)) +((-2391 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-585 (-1087 *13))) (-5 *3 (-1087 *13)) (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) (-5 *7 (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *13))))) (-5 *8 (-585 (-696))) (-5 *9 (-1181 (-585 (-1087 *10)))) (-4 *12 (-758)) (-4 *10 (-258)) (-4 *13 (-863 *10 *11 *12)) (-4 *11 (-719)) (-5 *1 (-646 *11 *12 *10 *13)))) (-2390 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1087 *9))) (-5 *6 (-585 *9)) (-5 *7 (-585 *12)) (-5 *8 (-585 (-696))) (-4 *11 (-758)) (-4 *9 (-258)) (-4 *12 (-863 *9 *10 *11)) (-4 *10 (-719)) (-5 *2 (-585 (-1087 *12))) (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1087 *12)))) (-2389 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-585 (-1087 *11))) (-5 *3 (-1087 *11)) (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-696))) (-5 *7 (-1181 (-585 (-1087 *8)))) (-4 *10 (-758)) (-4 *8 (-258)) (-4 *11 (-863 *8 *9 *10)) (-4 *9 (-719)) (-5 *1 (-646 *9 *10 *8 *11))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 56 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2896 (($ |#1| (-696)) 54 T ELT)) (-2823 (((-696) $) 58 T ELT)) (-3177 ((|#1| $) 57 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3951 (((-696) $) 59 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ (-696)) 55 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) +(((-647 |#1|) (-113) (-963)) (T -647)) +((-3951 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963))))) +(-13 (-963) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3951 ((-696) $)) (-15 -2823 ((-696) $)) (-15 -3177 (|t#1| $)) (-15 -3962 ($ $)) (-15 -3680 (|t#1| $ (-696))) (-15 -2896 ($ |t#1| (-696))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3961 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-648 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3961 (|#6| (-1 |#4| |#1|) |#3|))) (-497) (-1157 |#1|) (-1157 (-350 |#2|)) (-497) (-1157 |#4|) (-1157 (-350 |#5|))) (T -648)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-497)) (-4 *7 (-497)) (-4 *6 (-1157 *5)) (-4 *2 (-1157 (-350 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1157 (-350 *6))) (-4 *8 (-1157 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2392 (((-1075) (-774)) 36 T ELT)) (-3620 (((-1187) (-1075)) 29 T ELT)) (-2394 (((-1075) (-774)) 26 T ELT)) (-2393 (((-1075) (-774)) 27 T ELT)) (-3949 (((-774) $) NIL T ELT) (((-1075) (-774)) 25 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-649) (-13 (-1015) (-10 -7 (-15 -3949 ((-1075) (-774))) (-15 -2394 ((-1075) (-774))) (-15 -2393 ((-1075) (-774))) (-15 -2392 ((-1075) (-774))) (-15 -3620 ((-1187) (-1075)))))) (T -649)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-649))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3845 (($ |#1| |#2|) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 ((|#2| $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-650 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2617 (|#2| $)) (-15 -3949 (|#1| $)) (-15 -3845 ($ |#1| |#2|)) (-15 -2404 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -650)) +((-2617 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3845 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 37 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#1|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3139 (((-696)) 55 (|has| |#1| (-320)) ELT)) (-3764 (($ $ (-696)) NIL T ELT)) (-3763 (($ $ (-696)) NIL T ELT)) (-2401 ((|#2| |#2|) 51 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-996) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 72 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3845 (($ |#2|) 49 T ELT)) (-3470 (((-3 $ #1#) $) 98 T ELT)) (-2997 (($) 59 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3957 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-2397 (((-871 $)) 89 T ELT)) (-1626 (($ $ |#1| (-696) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) NIL (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) NIL T ELT) (($ (-1087 $) (-996)) NIL T ELT)) (-3780 (($ $ (-696)) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 86 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2617 ((|#2|) 52 T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1627 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1087 |#1|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3082 ((|#2| $) 48 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) 35 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2395 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3951 (((-696) $) 39 T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-2396 (((-871 $)) 43 T ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-497)) ELT)) (-3949 (((-774) $) 69 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-996)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) 71 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 26 T CONST)) (-2400 (((-1181 |#1|) $) 84 T ELT)) (-2399 (($ (-1181 |#1|)) 58 T ELT)) (-2669 (($) 9 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-2398 (((-1181 |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 77 T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 40 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 93 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-651 |#1| |#2|) (-13 (-1157 |#1|) (-557 |#2|) (-10 -8 (-15 -2401 (|#2| |#2|)) (-15 -2617 (|#2|)) (-15 -3845 ($ |#2|)) (-15 -3082 (|#2| $)) (-15 -2400 ((-1181 |#1|) $)) (-15 -2399 ($ (-1181 |#1|))) (-15 -2398 ((-1181 |#1|) $)) (-15 -2397 ((-871 $))) (-15 -2396 ((-871 $))) (IF (|has| |#1| (-299)) (-15 -2395 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-963) (-1157 |#1|)) (T -651)) +((-2401 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3)))) (-2617 (*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) (-2400 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2397 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2395 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-963)) (-5 *1 (-651 *2 *3)) (-4 *3 (-1157 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2403 ((|#2| $) 12 T ELT)) (-3533 (($ |#1| |#2|) 16 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) 15 T ELT) (((-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 11 T ELT))) +(((-652 |#1| |#2| |#3|) (-13 (-758) (-431 (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) (-10 -8 (-15 -2403 (|#2| $)) (-15 -2402 (|#1| $)) (-15 -3533 ($ |#1| |#2|)))) (-758) (-1015) (-1 (-85) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)))) (T -652)) +((-2403 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-652 *3 *2 *4)) (-4 *3 (-758)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *2)) (-2 (|:| -2402 *3) (|:| -2403 *2)))))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-652 *2 *3 *4)) (-4 *3 (-1015)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3)))))) (-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-1015)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 66 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3470 (((-3 $ #1#) $) 102 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2519 ((|#2| (-86) |#2|) 93 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2518 (($ |#1| (-310 (-86))) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2520 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2521 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3803 ((|#2| $ |#2|) 33 T ELT)) (-2522 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3949 (((-774) $) 73 T ELT) (($ (-486)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 37 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 9 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 83 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ (-86) (-486)) NIL T ELT) (($ $ (-486)) 64 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) +(((-653 |#1| |#2|) (-13 (-963) (-952 |#1|) (-952 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2523 ($ $)) (-15 -2523 ($ $ $)) (-15 -2522 (|#1| |#1|))) |%noBranch|) (-15 -2521 ($ $ (-1 |#2| |#2|))) (-15 -2520 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-486))) (-15 ** ($ $ (-486))) (-15 -2519 (|#2| (-86) |#2|)) (-15 -2518 ($ |#1| (-310 (-86)))))) (-963) (-592 |#1|)) (T -653)) +((-2523 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2522 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-653 *4 *5)) (-4 *5 (-592 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)) (-4 *4 (-592 *3)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-963)) (-5 *1 (-653 *4 *2)) (-4 *2 (-592 *4)))) (-2518 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-963)) (-5 *1 (-653 *2 *4)) (-4 *4 (-592 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 33 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ |#1| |#2|) 25 T ELT)) (-3470 (((-3 $ #1#) $) 51 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 35 T ELT)) (-2617 ((|#2| $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 52 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) 50 T ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-486)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3129 (((-696)) 28 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 16 T CONST)) (-2669 (($) 30 T CONST)) (-3059 (((-85) $ $) 41 T ELT)) (-3840 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3842 (($ $ $) 43 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-963) (-10 -8 (-15 -2617 (|#2| $)) (-15 -3949 (|#1| $)) (-15 -3845 ($ |#1| |#2|)) (-15 -2404 ((-3 $ #1="failed") $ $)) (-15 -3470 ((-3 $ #1#) $)) (-15 -2487 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -654)) +((-3470 (*1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2617 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3845 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2487 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-655 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-656 |#2|) (-146)) (T -655)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-656 |#1|) (-113) (-146)) (T -656)) +NIL +(-13 (-82 |t#1| |t#1|) (-584 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2444 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3850 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2405 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 ((|#1| $ |#1|) 24 T ELT) (((-745 |#1|) $ (-745 |#1|)) 32 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3949 (((-774) $) 39 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 9 T CONST)) (-3059 (((-85) $ $) 48 T ELT)) (-3952 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-657 |#1|) (-13 (-414) (-10 -8 (-15 -2405 ($ |#1| |#1| |#1| |#1|)) (-15 -2444 ($ |#1|)) (-15 -3850 ($ |#1|)) (-15 -3470 ($)) (-15 -2444 ($ $ |#1|)) (-15 -3850 ($ $ |#1|)) (-15 -3470 ($ $)) (-15 -3771 (|#1| $ |#1|)) (-15 -3771 ((-745 |#1|) $ (-745 |#1|))))) (-312)) (T -657)) +((-2405 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-2444 (*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3850 (*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3470 (*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-2444 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3850 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3470 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3771 (*1 *2 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3771 (*1 *2 *1 *2) (-12 (-5 *2 (-745 *3)) (-4 *3 (-312)) (-5 *1 (-657 *3))))) +((-2409 (($ $ (-832)) 19 T ELT)) (-2408 (($ $ (-832)) 20 T ELT)) (** (($ $ (-832)) 10 T ELT))) +(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-832))) (-15 -2408 (|#1| |#1| (-832))) (-15 -2409 (|#1| |#1| (-832)))) (-659)) (T -658)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-2409 (($ $ (-832)) 19 T ELT)) (-2408 (($ $ (-832)) 18 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-659) (-113)) (T -659)) +((* (*1 *1 *1 *1) (-4 *1 (-659))) (-2409 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832))))) +(-13 (-1015) (-10 -8 (-15 * ($ $ $)) (-15 -2409 ($ $ (-832))) (-15 -2408 ($ $ (-832))) (-15 ** ($ $ (-832))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2409 (($ $ (-832)) NIL T ELT) (($ $ (-696)) 18 T ELT)) (-2412 (((-85) $) 10 T ELT)) (-2408 (($ $ (-832)) NIL T ELT) (($ $ (-696)) 19 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 16 T ELT))) +(((-660 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-696))) (-15 -2408 (|#1| |#1| (-696))) (-15 -2409 (|#1| |#1| (-696))) (-15 -2412 ((-85) |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 -2408 (|#1| |#1| (-832))) (-15 -2409 (|#1| |#1| (-832)))) (-661)) (T -660)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-2406 (((-3 $ "failed") $) 22 T ELT)) (-2409 (($ $ (-832)) 19 T ELT) (($ $ (-696)) 27 T ELT)) (-3470 (((-3 $ "failed") $) 24 T ELT)) (-2412 (((-85) $) 28 T ELT)) (-2407 (((-3 $ "failed") $) 23 T ELT)) (-2408 (($ $ (-832)) 18 T ELT) (($ $ (-696)) 26 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 29 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-661) (-113)) (T -661)) +((-2669 (*1 *1) (-4 *1 (-661))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-85)))) (-2409 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (-3470 (*1 *1 *1) (|partial| -4 *1 (-661))) (-2407 (*1 *1 *1) (|partial| -4 *1 (-661))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-661)))) +(-13 (-659) (-10 -8 (-15 -2669 ($) -3955) (-15 -2412 ((-85) $)) (-15 -2409 ($ $ (-696))) (-15 -2408 ($ $ (-696))) (-15 ** ($ $ (-696))) (-15 -3470 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-659) . T) ((-1015) . T) ((-1131) . T)) +((-3139 (((-696)) 39 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3845 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3470 (((-3 $ #1#) $) 69 T ELT)) (-2997 (($) 43 T ELT)) (-3135 ((|#2| $) 21 T ELT)) (-2411 (($) 18 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-632 |#2|) (-1181 $) (-1 |#2| |#2|)) 64 T ELT)) (-3975 (((-1181 |#2|) $) NIL T ELT) (($ (-1181 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2452 ((|#3| $) 36 T ELT)) (-2014 (((-1181 $)) 33 T ELT))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -2997 (|#1|)) (-15 -3139 ((-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2410 ((-632 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -3845 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3975 (|#1| |#3|)) (-15 -3845 (|#1| |#3|)) (-15 -2411 (|#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3975 (|#3| |#1|)) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -2014 ((-1181 |#1|))) (-15 -2452 (|#3| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3470 ((-3 |#1| #1#) |#1|))) (-663 |#2| |#3|) (-146) (-1157 |#2|)) (T -662)) +((-3139 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-696)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-663 *4 *5))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2065 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2063 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) 167 (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1610 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3139 (((-696)) 108 (|has| |#1| (-320)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 194 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 192 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3159 (((-486) $) 193 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 191 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 190 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT) (($ (-1181 |#1|)) 80 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 186 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 185 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 184 T ELT) (((-632 |#1|) (-632 $)) 183 T ELT)) (-3845 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-832)) 69 T ELT)) (-2997 (($) 111 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| |#1| (-312)) ELT)) (-2836 (($) 169 (|has| |#1| (-299)) ELT)) (-1682 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3775 (((-832) $) 172 (|has| |#1| (-299)) ELT) (((-745 (-832)) $) 158 (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-3448 (((-634 $) $) 162 (|has| |#1| (-299)) ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| |#1| (-312)) ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2012 (((-832) $) 110 (|has| |#1| (-320)) ELT)) (-3082 ((|#2| $) 176 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 188 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 187 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 182 T ELT) (((-632 |#1|) (-1181 $)) 181 T ELT)) (-1896 (($ (-585 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3449 (($) 163 (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 122 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 166 (|has| |#1| (-299)) ELT)) (-3735 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 124 (|has| |#1| (-312)) ELT)) (-1609 (((-696) $) 126 (|has| |#1| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1770 (((-696) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-696)) 156 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 150 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092) (-696)) 149 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092))) 148 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092)) 146 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) 144 (|has| |#1| (-312)) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3188 ((|#2|) 179 T ELT)) (-1676 (($) 168 (|has| |#1| (-299)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 |#1|) $) 82 T ELT) (((-632 |#1|) (-1181 $)) 81 T ELT)) (-3975 (((-1181 |#1|) $) 79 T ELT) (($ (-1181 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 165 (|has| |#1| (-299)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-486))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (($ $) 164 (|has| |#1| (-299)) ELT) (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-2064 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-696)) 157 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 153 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092) (-696)) 152 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092))) 151 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092)) 147 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) 142 (|has| |#1| (-312)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-486)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) 139 (|has| |#1| (-312)) ELT))) +(((-663 |#1| |#2|) (-113) (-146) (-1157 |t#1|)) (T -663)) +((-2411 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-663 *2 *3)) (-4 *3 (-1157 *2)))) (-3188 (*1 *2) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) (-3975 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) (-3845 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-663 *3 *4)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-663 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *5))))) +(-13 (-353 |t#1| |t#2|) (-146) (-555 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2411 ($)) (-15 -3188 (|t#2|)) (-15 -3845 ($ |t#2|)) (-15 -3975 ($ |t#2|)) (-15 -3082 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3845 ((-3 $ "failed") (-350 |t#2|))) (-15 -2410 ((-632 |t#1|) (-1181 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) . T) ((-555 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-497) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-584 |#1|) . T) ((-584 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-656 |#1|) . T) ((-656 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))))) ((-811 (-1092)) -12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) ((-813 (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))))) ((-834) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-299)) ((-1131) . T) ((-1136) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) +((-3727 (($) 11 T CONST)) (-3470 (((-3 $ "failed") $) 14 T ELT)) (-2412 (((-85) $) 10 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 20 T ELT))) +(((-664 |#1|) (-10 -7 (-15 -3470 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 -2412 ((-85) |#1|)) (-15 -3727 (|#1|) -3955) (-15 ** (|#1| |#1| (-832)))) (-665)) (T -664)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-665) (-113)) (T -665)) +((-2669 (*1 *1) (-4 *1 (-665))) (-3727 (*1 *1) (-4 *1 (-665))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-696)))) (-3470 (*1 *1 *1) (|partial| -4 *1 (-665)))) +(-13 (-1027) (-10 -8 (-15 -2669 ($) -3955) (-15 -3727 ($) -3955) (-15 -2412 ((-85) $)) (-15 ** ($ $ (-696))) (-15 -3470 ((-3 $ "failed") $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2414 ((|#1| $) 16 T ELT)) (-2413 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3949 (((-774) $) NIL T ELT) (((-1024 |#1|) $) 17 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-666 |#1|) (-13 (-667 |#1|) (-1015) (-554 (-1024 |#1|)) (-10 -8 (-15 -2413 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -666)) +((-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-666 *3))))) +((-2414 ((|#1| $) 8 T ELT)) (-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-667 |#1|) (-113) (-72)) (T -667)) +((-2414 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-72))))) +(-13 (-1025 |t#1|) (-10 -8 (-15 -2414 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1025 |#1|) . T) ((-1131) . T)) +((-2415 (((-2 (|:| -3092 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3421 (((-2 (|:| -3092 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2416 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3438 (((-2 (|:| |poly| |#2|) (|:| -3092 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-668 |#1| |#2|) (-10 -7 (-15 -3421 ((-2 (|:| -3092 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2415 ((-2 (|:| -3092 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2416 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3438 ((-2 (|:| |poly| |#2|) (|:| -3092 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1157 |#1|)) (T -668)) +((-3438 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3092 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-668 *5 *6)) (-5 *3 (-350 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-668 *5 *2)) (-4 *5 (-312)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3092 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-668 *5 *3)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3092 *3) (|:| |special| *3))) (-5 *1 (-668 *5 *3))))) +((-2417 ((|#7| (-585 |#5|) |#6|) NIL T ELT)) (-3961 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3961 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2417 (|#7| (-585 |#5|) |#6|))) (-758) (-719) (-719) (-963) (-963) (-863 |#4| |#2| |#1|) (-863 |#5| |#3| |#1|)) (T -669)) +((-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *9)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-963)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5))))) +((-3961 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-670 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3961 (|#7| (-1 |#2| |#1|) |#6|))) (-758) (-758) (-719) (-719) (-963) (-863 |#5| |#3| |#1|) (-863 |#5| |#4| |#2|)) (T -670)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-758)) (-4 *6 (-758)) (-4 *7 (-719)) (-4 *9 (-963)) (-4 *2 (-863 *9 *8 *6)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-719)) (-4 *4 (-863 *9 *7 *5))))) +((-3735 (((-348 |#4|) |#4|) 42 T ELT))) +(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|))) (-719) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092))))) (-258) (-863 (-859 |#3|) |#1| |#2|)) (T -671)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-863 (-859 *6) *4 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1626 (($ $ |#2| (-471 (-775 |#1|)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1087 $) (-775 |#1|)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-471 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 (((-471 (-775 |#1|)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1627 (($ (-1 (-471 (-775 |#1|)) (-471 (-775 |#1|))) $) NIL T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3951 (((-471 (-775 |#1|)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-497)) ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-471 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-672 |#1| |#2|) (-863 |#2| (-471 (-775 |#1|)) (-775 |#1|)) (-585 (-1092)) (-963)) (T -672)) +NIL +((-2418 (((-2 (|:| -2486 (-859 |#3|)) (|:| -2060 (-859 |#3|))) |#4|) 14 T ELT)) (-2989 ((|#4| |#4| |#2|) 33 T ELT)) (-2421 ((|#4| (-350 (-859 |#3|)) |#2|) 62 T ELT)) (-2420 ((|#4| (-1087 (-859 |#3|)) |#2|) 74 T ELT)) (-2419 ((|#4| (-1087 |#4|) |#2|) 49 T ELT)) (-2988 ((|#4| |#4| |#2|) 52 T ELT)) (-3735 (((-348 |#4|) |#4|) 40 T ELT))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2418 ((-2 (|:| -2486 (-859 |#3|)) (|:| -2060 (-859 |#3|))) |#4|)) (-15 -2988 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1087 |#4|) |#2|)) (-15 -2989 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1087 (-859 |#3|)) |#2|)) (-15 -2421 (|#4| (-350 (-859 |#3|)) |#2|)) (-15 -3735 ((-348 |#4|) |#4|))) (-719) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)))) (-497) (-863 (-350 (-859 |#3|)) |#1| |#2|)) (T -673)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-350 (-859 *6)) *4 *5)))) (-2421 (*1 *2 *3 *4) (-12 (-4 *6 (-497)) (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-5 *3 (-350 (-859 *6))) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 (-859 *6))) (-4 *6 (-497)) (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))))) (-2989 (*1 *2 *2 *3) (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *2)) (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) (-2418 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497)) (-5 *2 (-2 (|:| -2486 (-859 *6)) (|:| -2060 (-859 *6)))) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-350 (-859 *6)) *4 *5))))) +((-3735 (((-348 |#4|) |#4|) 54 T ELT))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|))) (-719) (-758) (-13 (-258) (-120)) (-863 (-350 |#3|) |#1| |#2|)) (T -674)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-863 (-350 *6) *4 *5))))) +((-3961 (((-676 |#2| |#3|) (-1 |#2| |#1|) (-676 |#1| |#3|)) 18 T ELT))) +(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-676 |#2| |#3|) (-1 |#2| |#1|) (-676 |#1| |#3|)))) (-963) (-963) (-665)) (T -675)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-676 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *7 (-665)) (-5 *2 (-676 *6 *7)) (-5 *1 (-675 *5 *6 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 36 T ELT)) (-3777 (((-585 (-2 (|:| -3957 |#1|) (|:| -3941 |#2|))) $) 37 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3159 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) 99 (|has| |#2| (-758)) ELT)) (-3470 (((-3 $ #1#) $) 83 T ELT)) (-2997 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 70 T ELT)) (-2824 (((-585 $) $) 52 T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| |#2|) 17 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2012 (((-832) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2897 ((|#2| $) 98 (|has| |#2| (-758)) ELT)) (-3177 ((|#1| $) 97 (|has| |#2| (-758)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 96 T ELT) (($ (-486)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-585 (-2 (|:| -3957 |#1|) (|:| -3941 |#2|)))) 11 T ELT)) (-3820 (((-585 |#1|) $) 54 T ELT)) (-3680 ((|#1| $ |#2|) 114 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-2669 (($) 44 T CONST)) (-3059 (((-85) $ $) 104 T ELT)) (-3840 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 33 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-676 |#1| |#2|) (-13 (-963) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -2896 ($ |#1| |#2|)) (-15 -3680 (|#1| $ |#2|)) (-15 -3949 ($ (-585 (-2 (|:| -3957 |#1|) (|:| -3941 |#2|))))) (-15 -3777 ((-585 (-2 (|:| -3957 |#1|) (|:| -3941 |#2|))) $)) (-15 -3961 ($ (-1 |#1| |#1|) $)) (-15 -3940 ((-85) $)) (-15 -3820 ((-585 |#1|) $)) (-15 -2824 ((-585 $) $)) (-15 -2422 ((-696) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-758)) (PROGN (-15 -2897 (|#2| $)) (-15 -3177 (|#1| $)) (-15 -3962 ($ $))) |%noBranch|))) (-963) (-665)) (T -676)) +((-2896 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3)) (-4 *2 (-963)) (-4 *3 (-665)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-665)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3957 *3) (|:| -3941 *4)))) (-4 *3 (-963)) (-4 *4 (-665)) (-5 *1 (-676 *3 *4)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3957 *3) (|:| -3941 *4)))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-676 *3 *4)) (-4 *4 (-665)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-585 (-676 *3 *4))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2897 (*1 *2 *1) (-12 (-4 *2 (-665)) (-4 *2 (-758)) (-5 *1 (-676 *3 *2)) (-4 *3 (-963)))) (-3177 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *3 (-665)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *2 (-963)) (-4 *3 (-665))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2423 (((-585 |#1|) $) 38 T ELT)) (-3237 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3239 (($ $ $) 99 T ELT)) (-3238 (((-85) $ $) 107 T ELT)) (-3242 (($ (-585 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1572 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2370 (($ $) 88 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) 71 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-486)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-486)) 81 T ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-486)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-486)) 84 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3244 (((-85) $ $) 106 T ELT)) (-2424 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-585 |#1|)) 23 T ELT)) (-2611 (((-585 |#1|) $) 32 T ELT)) (-3248 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 97 T ELT)) (-1276 ((|#1| $) 63 T ELT)) (-3612 (($ |#1| $) 64 T ELT) (($ |#1| $ (-696)) 89 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 62 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 14 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 56 T ELT)) (-3240 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1468 (($) 16 T ELT) (($ (-585 |#1|)) 25 T ELT)) (-1732 (((-696) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 82 T ELT)) (-3975 (((-475) $) 36 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 22 T ELT)) (-3949 (((-774) $) 50 T ELT)) (-3243 (($ (-585 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 |#1|)) 24 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 103 T ELT)) (-3960 (((-696) $) 68 T ELT))) +(((-677 |#1|) (-13 (-678 |#1|) (-318 |#1|) (-1037 |#1|) (-10 -8 (-15 -2424 ($)) (-15 -2424 ($ |#1|)) (-15 -2424 ($ (-585 |#1|))) (-15 -2423 ((-585 |#1|) $)) (-15 -3409 ($ |#1| $ (-486))) (-15 -3409 ($ (-1 (-85) |#1|) $ (-486))) (-15 -3408 ($ |#1| $ (-486))) (-15 -3408 ($ (-1 (-85) |#1|) $ (-486))))) (-1015)) (T -677)) +((-2424 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-2424 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-677 *3)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1015)))) (-3409 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-3409 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4))))) +((-2571 (((-85) $ $) 18 T ELT)) (-3237 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3239 (($ $ $) 67 T ELT)) (-3238 (((-85) $ $) 68 T ELT)) (-3242 (($ (-585 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1572 (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 43 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3244 (((-85) $ $) 59 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 T ELT)) (-3241 (($ $ $) 64 T ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-696)) 56 T ELT)) (-3246 (((-1035) $) 20 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 47 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 54 T ELT)) (-3240 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 |#1|)) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 46 T ELT)) (-3949 (((-774) $) 16 T ELT)) (-3243 (($ (-585 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1267 (((-85) $ $) 19 T ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 T ELT))) +(((-678 |#1|) (-113) (-1015)) (T -678)) +NIL +(-13 (-636 |t#1|) (-1013 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-636 |#1|) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1037 |#1|) . T) ((-1131) . T)) +((-2425 (((-1187) (-1075)) 8 T ELT))) +(((-679) (-10 -7 (-15 -2425 ((-1187) (-1075))))) (T -679)) +((-2425 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-679))))) +((-2426 (((-585 |#1|) (-585 |#1|) (-585 |#1|)) 15 T ELT))) +(((-680 |#1|) (-10 -7 (-15 -2426 ((-585 |#1|) (-585 |#1|) (-585 |#1|)))) (-758)) (T -680)) +((-2426 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-680 *3))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#2|) $) 159 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 152 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 151 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 149 (|has| |#1| (-497)) ELT)) (-3495 (($ $) 108 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 91 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 90 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 107 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 92 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3497 (($ $) 106 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 93 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 143 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 121 T ELT) (((-859 |#1|) $ (-696) (-696)) 120 T ELT)) (-2895 (((-85) $) 160 T ELT)) (-3630 (($) 118 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $ |#2|) 123 T ELT) (((-696) $ |#2| (-696)) 122 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 89 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3940 (((-85) $) 141 T ELT)) (-2896 (($ $ (-585 |#2|) (-585 (-471 |#2|))) 158 T ELT) (($ $ |#2| (-471 |#2|)) 157 T ELT) (($ |#1| (-471 |#2|)) 142 T ELT) (($ $ |#2| (-696)) 125 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 124 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3945 (($ $) 115 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 138 T ELT)) (-3177 ((|#1| $) 137 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3815 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3772 (($ $ (-696)) 126 T ELT)) (-3469 (((-3 $ "failed") $ $) 153 (|has| |#1| (-497)) ELT)) (-3946 (($ $) 116 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (($ $ |#2| $) 134 T ELT) (($ $ (-585 |#2|) (-585 $)) 133 T ELT) (($ $ (-585 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-585 $) (-585 $)) 129 T ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) 52 T ELT) (($ $ |#2| (-696)) 51 T ELT) (($ $ (-585 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3951 (((-471 |#2|) $) 139 T ELT)) (-3498 (($ $) 105 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 94 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 104 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 95 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 103 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 96 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 161 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-497)) ELT) (($ (-350 (-486))) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3680 ((|#1| $ (-471 |#2|)) 144 T ELT) (($ $ |#2| (-696)) 128 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 127 T ELT)) (-2705 (((-634 $) $) 155 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 114 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 102 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 150 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 113 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 101 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 112 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 100 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 111 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 99 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 110 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 98 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 109 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 97 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) 55 T ELT) (($ $ |#2| (-696)) 54 T ELT) (($ $ (-585 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 88 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 148 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) +(((-681 |#1| |#2|) (-113) (-963) (-758)) (T -681)) +((-3680 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) (-3680 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-681 *3 *4)) (-4 *3 (-963)) (-4 *4 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3775 (*1 *2 *1 *3) (-12 (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3775 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-696)) (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) (-5 *2 (-859 *4)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) (-5 *2 (-859 *4)))) (-3815 (*1 *1 *1 *2) (-12 (-4 *1 (-681 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)) (-4 *3 (-38 (-350 (-486))))))) +(-13 (-811 |t#2|) (-888 |t#1| (-471 |t#2|) |t#2|) (-457 |t#2| $) (-260 $) (-10 -8 (-15 -3680 ($ $ |t#2| (-696))) (-15 -3680 ($ $ (-585 |t#2|) (-585 (-696)))) (-15 -3772 ($ $ (-696))) (-15 -2896 ($ $ |t#2| (-696))) (-15 -2896 ($ $ (-585 |t#2|) (-585 (-696)))) (-15 -3775 ((-696) $ |t#2|)) (-15 -3775 ((-696) $ |t#2| (-696))) (-15 -3817 ((-859 |t#1|) $ (-696))) (-15 -3817 ((-859 |t#1|) $ (-696) (-696))) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $ |t#2|)) (-6 (-917)) (-6 (-1117))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-471 |#2|)) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-246) |has| |#1| (-497)) ((-260 $) . T) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-457 |#2| $) . T) ((-457 $ $) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-808 $ |#2|) . T) ((-811 |#2|) . T) ((-813 |#2|) . T) ((-888 |#1| (-471 |#2|) |#2|) . T) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T)) +((-3735 (((-348 (-1087 |#4|)) (-1087 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|)) (-15 -3735 ((-348 (-1087 |#4|)) (-1087 |#4|)))) (-758) (-719) (-13 (-258) (-120)) (-863 |#3| |#2| |#1|)) (T -682)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) +((-2429 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2427 (((-348 |#4|) |#4|) NIL T ELT)) (-3974 (((-348 (-1087 |#4|)) (-1087 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2431 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 |#4|)) (|:| -2403 (-486)))))) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 81 T ELT)) (-2435 (((-1087 |#3|) (-1087 |#3|) (-486)) 169 T ELT)) (-2434 (((-585 (-696)) (-1087 |#4|) (-585 |#2|) (-696)) 75 T ELT)) (-3082 (((-3 (-585 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-585 |#2|) (-585 (-696)) (-585 |#3|)) 79 T ELT)) (-2432 (((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 27 T ELT)) (-2430 (((-2 (|:| -2006 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-486)) 72 T ELT)) (-2428 (((-486) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) 165 T ELT)) (-2433 ((|#4| (-486) (-348 |#4|)) 73 T ELT)) (-3360 (((-85) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) NIL T ELT))) +(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-348 |#4|) |#4|)) (-15 -3974 ((-348 (-1087 |#4|)) (-1087 |#4|))) (-15 -2427 ((-348 |#4|) |#4|)) (-15 -2428 ((-486) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))))) (-15 -2429 ((-348 |#4|) |#4| |#2|)) (-15 -2430 ((-2 (|:| -2006 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-486))) (-15 -2431 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 |#4|)) (|:| -2403 (-486)))))) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2432 ((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2433 (|#4| (-486) (-348 |#4|))) (-15 -3360 ((-85) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))))) (-15 -3082 ((-3 (-585 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-585 |#2|) (-585 (-696)) (-585 |#3|))) (-15 -2434 ((-585 (-696)) (-1087 |#4|) (-585 |#2|) (-696))) (-15 -2435 ((-1087 |#3|) (-1087 |#3|) (-486)))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -683)) +((-2435 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 *6)) (-5 *3 (-486)) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-4 *7 (-758)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-4 *8 (-258)) (-5 *2 (-585 (-696))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *5 (-696)))) (-3082 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1087 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-696))) (-5 *8 (-585 *11)) (-4 *10 (-758)) (-4 *11 (-258)) (-4 *9 (-719)) (-4 *5 (-863 *11 *9 *10)) (-5 *2 (-585 (-1087 *5))) (-5 *1 (-683 *9 *10 *11 *5)) (-5 *3 (-1087 *5)))) (-3360 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-486)) (-5 *4 (-348 *2)) (-4 *2 (-863 *7 *5 *6)) (-5 *1 (-683 *5 *6 *7 *2)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-258)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-2 (|:| |upol| (-1087 *8)) (|:| |Lval| (-585 *8)) (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 *8)) (|:| -2403 (-486))))) (|:| |ctpol| *8))) (-5 *1 (-683 *6 *7 *8 *9)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *6 (-719)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 *9)) (|:| -2403 (-486))))))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-486)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| -2006 (-1087 *9)) (|:| |polval| (-1087 *8)))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9)) (-5 *4 (-1087 *8)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-683 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5))))) +((-2436 (($ $ (-832)) 17 T ELT))) +(((-684 |#1| |#2|) (-10 -7 (-15 -2436 (|#1| |#1| (-832)))) (-685 |#2|) (-146)) (T -684)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2409 (($ $ (-832)) 37 T ELT)) (-2436 (($ $ (-832)) 44 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-685 |#1|) (-113) (-146)) (T -685)) +((-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-685 *3)) (-4 *3 (-146))))) +(-13 (-687) (-656 |t#1|) (-10 -8 (-15 -2436 ($ $ (-832))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2438 (($ $ $) 10 T ELT)) (-2439 (($ $ $ $) 9 T ELT)) (-2437 (($ $ $) 12 T ELT))) +(((-686 |#1|) (-10 -7 (-15 -2437 (|#1| |#1| |#1|)) (-15 -2438 (|#1| |#1| |#1|)) (-15 -2439 (|#1| |#1| |#1| |#1|))) (-687)) (T -686)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2409 (($ $ (-832)) 37 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-687) (-113)) (T -687)) +((-2439 (*1 *1 *1 *1 *1) (-4 *1 (-687))) (-2438 (*1 *1 *1 *1) (-4 *1 (-687))) (-2437 (*1 *1 *1 *1) (-4 *1 (-687)))) +(-13 (-21) (-659) (-10 -8 (-15 -2439 ($ $ $ $)) (-15 -2438 ($ $ $)) (-15 -2437 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-659) . T) ((-1015) . T) ((-1131) . T)) +((-3949 (((-774) $) NIL T ELT) (($ (-486)) 10 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-689)) (T -688)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2406 (((-3 $ #1="failed") $) 49 T ELT)) (-2409 (($ $ (-832)) 37 T ELT) (($ $ (-696)) 44 T ELT)) (-3470 (((-3 $ #1#) $) 47 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 43 T ELT)) (-2407 (((-3 $ #1#) $) 48 T ELT)) (-2408 (($ $ (-832)) 38 T ELT) (($ $ (-696)) 45 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 40 T ELT)) (-3129 (((-696)) 41 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 42 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT) (($ $ (-696)) 46 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-689) (-113)) (T -689)) +((-3129 (*1 *2) (-12 (-4 *1 (-689)) (-5 *2 (-696)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-689))))) +(-13 (-687) (-661) (-10 -8 (-15 -3129 ((-696)) -3955) (-15 -3949 ($ (-486))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-659) . T) ((-661) . T) ((-687) . T) ((-1015) . T) ((-1131) . T)) +((-2441 (((-585 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 (-142 |#1|)))))) (-632 (-142 (-350 (-486)))) |#1|) 33 T ELT)) (-2440 (((-585 (-142 |#1|)) (-632 (-142 (-350 (-486)))) |#1|) 23 T ELT)) (-2452 (((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486)))) (-1092)) 20 T ELT) (((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486))))) 19 T ELT))) +(((-690 |#1|) (-10 -7 (-15 -2452 ((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486)))))) (-15 -2452 ((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486)))) (-1092))) (-15 -2440 ((-585 (-142 |#1|)) (-632 (-142 (-350 (-486)))) |#1|)) (-15 -2441 ((-585 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 (-142 |#1|)))))) (-632 (-142 (-350 (-486)))) |#1|))) (-13 (-312) (-757))) (T -690)) +((-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-585 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 (-142 *4))))))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *4 (-1092)) (-5 *2 (-859 (-142 (-350 (-486))))) (-5 *1 (-690 *5)) (-4 *5 (-13 (-312) (-757))))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-859 (-142 (-350 (-486))))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) +((-2619 (((-148 (-486)) |#1|) 27 T ELT))) +(((-691 |#1|) (-10 -7 (-15 -2619 ((-148 (-486)) |#1|))) (-347)) (T -691)) +((-2619 (*1 *2 *3) (-12 (-5 *2 (-148 (-486))) (-5 *1 (-691 *3)) (-4 *3 (-347))))) +((-2545 ((|#1| |#1| |#1|) 28 T ELT)) (-2546 ((|#1| |#1| |#1|) 27 T ELT)) (-2535 ((|#1| |#1| |#1|) 38 T ELT)) (-2543 ((|#1| |#1| |#1|) 33 T ELT)) (-2544 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2551 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 26 T ELT))) +(((-692 |#1| |#2|) (-10 -7 (-15 -2551 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -2546 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2544 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|))) (-647 |#2|) (-312)) (T -692)) +((-2535 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2544 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2545 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2546 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2551 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-692 *3 *4)) (-4 *3 (-647 *4))))) +((-2558 (((-634 (-1140)) $ (-1140)) 27 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 26 T ELT)) (-2557 (((-696) $ (-102)) 28 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 25 T ELT)) (-2002 (((-634 (-1140)) $) 12 T ELT)) (-1998 (((-634 (-1138)) $) 8 T ELT)) (-2000 (((-634 (-1137)) $) 10 T ELT)) (-2003 (((-634 (-490)) $) 13 T ELT)) (-1999 (((-634 (-488)) $) 9 T ELT)) (-2001 (((-634 (-487)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-2442 (((-85) $) 32 T ELT)) (-2443 (((-634 $) |#1| (-867)) 33 T ELT)) (-1702 (($ $) 6 T ELT))) +(((-693 |#1|) (-113) (-1015)) (T -693)) +((-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-867)) (-4 *3 (-1015)) (-5 *2 (-634 *1)) (-4 *1 (-693 *3)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-514) (-10 -8 (-15 -2443 ((-634 $) |t#1| (-867))) (-15 -2442 ((-85) $)))) +(((-147) . T) ((-467) . T) ((-514) . T) ((-772) . T)) +((-3922 (((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486)))) (-486)) 72 T ELT)) (-3921 (((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486))))) 70 T ELT)) (-3760 (((-486)) 86 T ELT))) +(((-694 |#1| |#2|) (-10 -7 (-15 -3760 ((-486))) (-15 -3921 ((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486)))))) (-15 -3922 ((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486)))) (-486)))) (-1157 (-486)) (-353 (-486) |#1|)) (T -694)) +((-3922 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-694 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3921 (*1 *2) (-12 (-4 *3 (-1157 (-486))) (-5 *2 (-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486))))) (-5 *1 (-694 *3 *4)) (-4 *4 (-353 (-486) *3)))) (-3760 (*1 *2) (-12 (-4 *3 (-1157 *2)) (-5 *2 (-486)) (-5 *1 (-694 *3 *4)) (-4 *4 (-353 *2 *3))))) +((-2511 (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|))) 19 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092))) 18 T ELT)) (-3576 (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|))) 21 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092))) 20 T ELT))) +(((-695 |#1|) (-10 -7 (-15 -2511 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -2511 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|))))) (-497)) (T -695)) +((-3576 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2486 (($ $ $) 10 T ELT)) (-1314 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2444 (($ $ (-486)) 11 T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3147 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 6 T CONST)) (-2669 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-696) (-13 (-719) (-665) (-10 -8 (-15 -2566 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -2882 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3469 ((-3 $ "failed") $ $)) (-15 -2444 ($ $ (-486))) (-15 -2997 ($ $)) (-6 (-4000 "*"))))) (T -696)) +((-2566 (*1 *1 *1 *1) (-5 *1 (-696))) (-2567 (*1 *1 *1 *1) (-5 *1 (-696))) (-3147 (*1 *1 *1 *1) (-5 *1 (-696))) (-2882 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1974 (-696)) (|:| -2905 (-696)))) (-5 *1 (-696)))) (-3469 (*1 *1 *1 *1) (|partial| -5 *1 (-696))) (-2444 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-696)))) (-2997 (*1 *1 *1) (-5 *1 (-696)))) +((-486) (|%not| (|%ilt| |#1| 0))) +((-3576 (((-3 |#2| "failed") |#2| |#2| (-86) (-1092)) 37 T ELT))) +(((-697 |#1| |#2|) (-10 -7 (-15 -3576 ((-3 |#2| "failed") |#2| |#2| (-86) (-1092)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873))) (T -697)) +((-3576 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-697 *5 *2)) (-4 *2 (-13 (-29 *5) (-1117) (-873)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) +(((-698) (-1015)) (T -698)) +NIL +((-3949 (((-698) |#1|) 8 T ELT))) +(((-699 |#1|) (-10 -7 (-15 -3949 ((-698) |#1|))) (-1131)) (T -699)) +((-3949 (*1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-699 *3)) (-4 *3 (-1131))))) +((-3135 ((|#2| |#4|) 35 T ELT))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3135 (|#2| |#4|))) (-393) (-1157 |#1|) (-663 |#1| |#2|) (-1157 |#3|)) (T -700)) +((-3135 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-663 *4 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-700 *4 *2 *5 *3)) (-4 *3 (-1157 *5))))) +((-3470 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2447 (((-1187) (-1075) (-1075) |#4| |#5|) 33 T ELT)) (-2445 ((|#4| |#4| |#5|) 74 T ELT)) (-2446 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#5|) 79 T ELT)) (-2448 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|) 16 T ELT))) +(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3470 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2445 (|#4| |#4| |#5|)) (-15 -2446 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#5|)) (-15 -2447 ((-1187) (-1075) (-1075) |#4| |#5|)) (-15 -2448 ((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -701)) +((-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-2447 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1075)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *4 (-979 *6 *7 *8)) (-5 *2 (-1187)) (-5 *1 (-701 *6 *7 *8 *4 *5)) (-4 *5 (-985 *6 *7 *8 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-2445 (*1 *2 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-701 *4 *5 *6 *2 *3)) (-4 *3 (-985 *4 *5 *6 *2)))) (-3470 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) +((-3160 (((-3 (-1087 (-1087 |#1|)) "failed") |#4|) 53 T ELT)) (-2449 (((-585 |#4|) |#4|) 22 T ELT)) (-3931 ((|#4| |#4|) 17 T ELT))) +(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 ((-585 |#4|) |#4|)) (-15 -3160 ((-3 (-1087 (-1087 |#1|)) "failed") |#4|)) (-15 -3931 (|#4| |#4|))) (-299) (-280 |#1|) (-1157 |#2|) (-1157 |#3|) (-832)) (T -702)) +((-3931 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-702 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-832)))) (-3160 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-832)))) (-2449 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-585 *3)) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-832))))) +((-2450 (((-2 (|:| |deter| (-585 (-1087 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1087 |#5|) (-585 |#1|) (-585 |#5|)) 72 T ELT)) (-2451 (((-585 (-696)) |#1|) 20 T ELT))) +(((-703 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2450 ((-2 (|:| |deter| (-585 (-1087 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1087 |#5|) (-585 |#1|) (-585 |#5|))) (-15 -2451 ((-585 (-696)) |#1|))) (-1157 |#4|) (-719) (-758) (-258) (-863 |#4| |#2| |#3|)) (T -703)) +((-2451 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-585 (-696))) (-5 *1 (-703 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-863 *6 *4 *5)))) (-2450 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1157 *9)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-258)) (-4 *10 (-863 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-585 (-1087 *10))) (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *10))))) (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) (-5 *1 (-703 *6 *7 *8 *9 *10)) (-5 *3 (-1087 *10)) (-5 *4 (-585 *6)) (-5 *5 (-585 *10))))) +((-2454 (((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#1|))))) (-632 (-350 (-486))) |#1|) 31 T ELT)) (-2453 (((-585 |#1|) (-632 (-350 (-486))) |#1|) 21 T ELT)) (-2452 (((-859 (-350 (-486))) (-632 (-350 (-486))) (-1092)) 18 T ELT) (((-859 (-350 (-486))) (-632 (-350 (-486)))) 17 T ELT))) +(((-704 |#1|) (-10 -7 (-15 -2452 ((-859 (-350 (-486))) (-632 (-350 (-486))))) (-15 -2452 ((-859 (-350 (-486))) (-632 (-350 (-486))) (-1092))) (-15 -2453 ((-585 |#1|) (-632 (-350 (-486))) |#1|)) (-15 -2454 ((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#1|))))) (-632 (-350 (-486))) |#1|))) (-13 (-312) (-757))) (T -704)) +((-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-585 (-2 (|:| |outval| *4) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 *4)))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *4 (-1092)) (-5 *2 (-859 (-350 (-486)))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-312) (-757))))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-859 (-350 (-486)))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 36 T ELT)) (-3084 (((-585 |#2|) $) NIL T ELT)) (-3086 (((-1087 $) $ |#2|) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 |#2|)) NIL T ELT)) (-3800 (($ $) 30 T ELT)) (-3169 (((-85) $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) 110 (|has| |#1| (-497)) ELT)) (-3151 (((-585 $) $ $) 123 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-859 (-350 (-486)))) NIL (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092)))) ELT) (((-3 $ #1#) (-859 (-486))) NIL (OR (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486)))))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))))) ELT) (((-3 $ #1#) (-859 |#1|)) NIL (OR (-12 (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486))))) (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-485)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-906 (-486)))))) ELT) (((-3 (-1041 |#1| |#2|) #1#) $) 21 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) ((|#2| $) NIL T ELT) (($ (-859 (-350 (-486)))) NIL (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092)))) ELT) (($ (-859 (-486))) NIL (OR (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486)))))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))))) ELT) (($ (-859 |#1|)) NIL (OR (-12 (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486))))) (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-485)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-906 (-486)))))) ELT) (((-1041 |#1| |#2|) $) NIL T ELT)) (-3759 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-497)) ELT)) (-3962 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3175 (((-85) $) NIL T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 81 T ELT)) (-3146 (($ $) 136 (|has| |#1| (-393)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ |#2|) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-3157 (($ $) NIL (|has| |#1| (-497)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-497)) ELT)) (-3168 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3167 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1626 (($ $ |#1| (-471 |#2|) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 57 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3148 (($ $ $ $ $) 107 (|has| |#1| (-497)) ELT)) (-3183 ((|#2| $) 22 T ELT)) (-3087 (($ (-1087 |#1|) |#2|) NIL T ELT) (($ (-1087 $) |#2|) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 38 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3162 (($ $ $) 63 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3176 (((-85) $) NIL T ELT)) (-2823 (((-471 |#2|) $) NIL T ELT) (((-696) $ |#2|) NIL T ELT) (((-585 (-696)) $ (-585 |#2|)) NIL T ELT)) (-3182 (((-696) $) 23 T ELT)) (-1627 (($ (-1 (-471 |#2|) (-471 |#2|)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3085 (((-3 |#2| #1#) $) NIL T ELT)) (-3143 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3144 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3171 (((-585 $) $) NIL T ELT)) (-3174 (($ $) 39 T ELT)) (-3145 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3172 (((-585 $) $) 43 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3173 (($ $) 41 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $) 96 T ELT)) (-3163 (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 78 T ELT) (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3164 (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $) NIL T ELT) (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3166 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3193 (($ $ $) 125 (|has| |#1| (-497)) ELT)) (-3179 (((-585 $) $) 32 T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3689 (($ $ $) NIL T ELT)) (-3449 (($ $) 24 T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3690 (($ $ $) NIL T ELT)) (-3181 (($ $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-497)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-497)) ELT)) (-1802 (((-85) $) 56 T ELT)) (-1801 ((|#1| $) 58 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 ((|#1| |#1| $) 133 (|has| |#1| (-393)) ELT) (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-497)) ELT)) (-3155 (($ $ |#1|) 129 (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3156 (($ $ |#1|) 128 (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-585 |#2|) (-585 $)) NIL T ELT)) (-3760 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3951 (((-471 |#2|) $) NIL T ELT) (((-696) $ |#2|) 45 T ELT) (((-585 (-696)) $ (-585 |#2|)) NIL T ELT)) (-3180 (($ $) NIL T ELT)) (-3178 (($ $) 35 T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT) (($ (-859 (-350 (-486)))) NIL (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092)))) ELT) (($ (-859 (-486))) NIL (OR (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486)))))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))))) ELT) (($ (-859 |#1|)) NIL (|has| |#2| (-555 (-1092))) ELT) (((-1075) $) NIL (-12 (|has| |#1| (-952 (-486))) (|has| |#2| (-555 (-1092)))) ELT) (((-859 |#1|) $) NIL (|has| |#2| (-555 (-1092))) ELT)) (-2820 ((|#1| $) 132 (|has| |#1| (-393)) ELT) (($ $ |#2|) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-859 |#1|) $) NIL (|has| |#2| (-555 (-1092))) ELT) (((-1041 |#1| |#2|) $) 18 T ELT) (($ (-1041 |#1| |#2|)) 19 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 47 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 13 T CONST)) (-3170 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2669 (($) 37 T CONST)) (-3149 (($ $ $ $ (-696)) 105 (|has| |#1| (-497)) ELT)) (-3150 (($ $ $ (-696)) 104 (|has| |#1| (-497)) ELT)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3842 (($ $ $) 85 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 70 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-705 |#1| |#2|) (-13 (-979 |#1| (-471 |#2|) |#2|) (-554 (-1041 |#1| |#2|)) (-952 (-1041 |#1| |#2|))) (-963) (-758)) (T -705)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 12 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#1|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2458 (((-585 $) $ $) 54 (|has| |#1| (-497)) ELT)) (-3758 (($ $ $) 50 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3764 (($ $ (-696)) NIL T ELT)) (-3763 (($ $ (-696)) NIL T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT) (((-3 (-1087 |#1|) #1#) $) 10 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-996) $) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) 87 (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3957 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) 86 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-696) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) NIL (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) NIL T ELT) (($ (-1087 $) (-996)) NIL T ELT)) (-3780 (($ $ (-696)) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3162 (($ $ $) 27 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1627 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1087 |#1|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3484 (-696))) $ $) 37 T ELT)) (-2460 (($ $ $) 41 T ELT)) (-2459 (($ $ $) 47 T ELT)) (-3163 (((-2 (|:| -3957 |#1|) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 46 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3193 (($ $ $) 56 (|has| |#1| (-497)) ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-497)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-497)) ELT)) (-2455 (((-2 (|:| -3759 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-497)) ELT)) (-2456 (((-2 (|:| -3759 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-497)) ELT)) (-1802 (((-85) $) 13 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3741 (($ $ (-696) |#1| $) 26 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-497)) ELT)) (-2457 (((-2 (|:| -3759 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-497)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3951 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-497)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-996)) NIL T ELT) (((-1087 |#1|) $) 7 T ELT) (($ (-1087 |#1|)) 8 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 32 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-706 |#1|) (-13 (-1157 |#1|) (-554 (-1087 |#1|)) (-952 (-1087 |#1|)) (-10 -8 (-15 -3741 ($ $ (-696) |#1| $)) (-15 -3162 ($ $ $)) (-15 -3161 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3484 (-696))) $ $)) (-15 -2460 ($ $ $)) (-15 -3163 ((-2 (|:| -3957 |#1|) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2459 ($ $ $)) (IF (|has| |#1| (-497)) (PROGN (-15 -2458 ((-585 $) $ $)) (-15 -3193 ($ $ $)) (-15 -3154 ((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3153 ((-2 (|:| -3147 $) (|:| |coef1| $)) $ $)) (-15 -3152 ((-2 (|:| -3147 $) (|:| |coef2| $)) $ $)) (-15 -2457 ((-2 (|:| -3759 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2456 ((-2 (|:| -3759 |#1|) (|:| |coef1| $)) $ $)) (-15 -2455 ((-2 (|:| -3759 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-963)) (T -706)) +((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-3162 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-3161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-706 *3)) (|:| |polden| *3) (|:| -3484 (-696)))) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-2460 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-3163 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3957 *3) (|:| |gap| (-696)) (|:| -1974 (-706 *3)) (|:| -2905 (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-2459 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-2458 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-706 *3))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-3193 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-497)) (-4 *2 (-963)))) (-3154 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-2457 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963))))) +((-3961 (((-706 |#2|) (-1 |#2| |#1|) (-706 |#1|)) 13 T ELT))) +(((-707 |#1| |#2|) (-10 -7 (-15 -3961 ((-706 |#2|) (-1 |#2| |#1|) (-706 |#1|)))) (-963) (-963)) (T -707)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-706 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-706 *6)) (-5 *1 (-707 *5 *6))))) +((-2462 ((|#1| (-696) |#1|) 33 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2804 ((|#1| (-696) |#1|) 23 T ELT)) (-2461 ((|#1| (-696) |#1|) 35 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-708 |#1|) (-10 -7 (-15 -2804 (|#1| (-696) |#1|)) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -2461 (|#1| (-696) |#1|)) (-15 -2462 (|#1| (-696) |#1|))) |%noBranch|)) (-146)) (T -708)) +((-2462 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146)))) (-2461 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146)))) (-2804 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-146))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 58 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 53 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 52 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1356 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 54 T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 56 T ELT)) (-3951 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 51 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 55 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 64 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3949 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3936 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-709 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -709)) +NIL +(-13 (-985 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) +((-2465 (((-3 (-330) #1="failed") (-265 |#1|) (-832)) 60 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-330) #1#) (-350 (-859 |#1|)) (-832)) 39 (|has| |#1| (-497)) ELT) (((-3 (-330) #1#) (-350 (-859 |#1|))) 35 (|has| |#1| (-497)) ELT) (((-3 (-330) #1#) (-859 |#1|) (-832)) 30 (|has| |#1| (-963)) ELT) (((-3 (-330) #1#) (-859 |#1|)) 24 (|has| |#1| (-963)) ELT)) (-2463 (((-330) (-265 |#1|) (-832)) 92 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-330) (-350 (-859 |#1|)) (-832)) 84 (|has| |#1| (-497)) ELT) (((-330) (-350 (-859 |#1|))) 81 (|has| |#1| (-497)) ELT) (((-330) (-859 |#1|) (-832)) 80 (|has| |#1| (-963)) ELT) (((-330) (-859 |#1|)) 77 (|has| |#1| (-963)) ELT) (((-330) |#1| (-832)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2466 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-832)) 68 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-832)) 61 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|))) (-832)) 44 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|)))) 43 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 |#1|)) (-832)) 38 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 |#1|))) 37 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-859 |#1|) (-832)) 28 (|has| |#1| (-963)) ELT) (((-3 (-142 (-330)) #1#) (-859 |#1|)) 26 (|has| |#1| (-963)) ELT) (((-3 (-142 (-330)) #1#) (-859 (-142 |#1|)) (-832)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-859 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2464 (((-142 (-330)) (-265 (-142 |#1|)) (-832)) 95 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-265 |#1|) (-832)) 93 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-350 (-859 (-142 |#1|))) (-832)) 86 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-350 (-859 (-142 |#1|)))) 85 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-350 (-859 |#1|)) (-832)) 83 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-350 (-859 |#1|))) 82 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-859 |#1|) (-832)) 79 (|has| |#1| (-963)) ELT) (((-142 (-330)) (-859 |#1|)) 78 (|has| |#1| (-963)) ELT) (((-142 (-330)) (-859 (-142 |#1|)) (-832)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-859 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-832)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-832)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT))) +(((-710 |#1|) (-10 -7 (-15 -2463 ((-330) |#1|)) (-15 -2463 ((-330) |#1| (-832))) (-15 -2464 ((-142 (-330)) |#1|)) (-15 -2464 ((-142 (-330)) |#1| (-832))) (IF (|has| |#1| (-146)) (PROGN (-15 -2464 ((-142 (-330)) (-142 |#1|))) (-15 -2464 ((-142 (-330)) (-142 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-859 (-142 |#1|)))) (-15 -2464 ((-142 (-330)) (-859 (-142 |#1|)) (-832)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -2463 ((-330) (-859 |#1|))) (-15 -2463 ((-330) (-859 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-859 |#1|))) (-15 -2464 ((-142 (-330)) (-859 |#1|) (-832)))) |%noBranch|) (IF (|has| |#1| (-497)) (PROGN (-15 -2463 ((-330) (-350 (-859 |#1|)))) (-15 -2463 ((-330) (-350 (-859 |#1|)) (-832))) (-15 -2464 ((-142 (-330)) (-350 (-859 |#1|)))) (-15 -2464 ((-142 (-330)) (-350 (-859 |#1|)) (-832))) (-15 -2464 ((-142 (-330)) (-350 (-859 (-142 |#1|))))) (-15 -2464 ((-142 (-330)) (-350 (-859 (-142 |#1|))) (-832))) (IF (|has| |#1| (-758)) (PROGN (-15 -2463 ((-330) (-265 |#1|))) (-15 -2463 ((-330) (-265 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-265 |#1|))) (-15 -2464 ((-142 (-330)) (-265 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2464 ((-142 (-330)) (-265 (-142 |#1|)) (-832)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2466 ((-3 (-142 (-330)) #1="failed") (-859 (-142 |#1|)))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-859 (-142 |#1|)) (-832)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -2465 ((-3 (-330) #1#) (-859 |#1|))) (-15 -2465 ((-3 (-330) #1#) (-859 |#1|) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-859 |#1|))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-859 |#1|) (-832)))) |%noBranch|) (IF (|has| |#1| (-497)) (PROGN (-15 -2465 ((-3 (-330) #1#) (-350 (-859 |#1|)))) (-15 -2465 ((-3 (-330) #1#) (-350 (-859 |#1|)) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 |#1|)))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 |#1|)) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|))))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|))) (-832))) (IF (|has| |#1| (-758)) (PROGN (-15 -2465 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2465 ((-3 (-330) #1#) (-265 |#1|) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-832)))) |%noBranch|)) |%noBranch|)) (-555 (-330))) (T -710)) +((-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-330))))) (-2464 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-330))))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2))))) +((-2470 (((-832) (-1075)) 90 T ELT)) (-2472 (((-3 (-330) "failed") (-1075)) 36 T ELT)) (-2471 (((-330) (-1075)) 34 T ELT)) (-2468 (((-832) (-1075)) 64 T ELT)) (-2469 (((-1075) (-832)) 74 T ELT)) (-2467 (((-1075) (-832)) 63 T ELT))) +(((-711) (-10 -7 (-15 -2467 ((-1075) (-832))) (-15 -2468 ((-832) (-1075))) (-15 -2469 ((-1075) (-832))) (-15 -2470 ((-832) (-1075))) (-15 -2471 ((-330) (-1075))) (-15 -2472 ((-3 (-330) "failed") (-1075))))) (T -711)) +((-2472 (*1 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711))))) +((-2475 (((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330))) 54 T ELT) (((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 51 T ELT)) (-2476 (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 61 T ELT)) (-2474 (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 49 T ELT)) (-2473 (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330))) 63 T ELT) (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 62 T ELT))) +(((-712) (-10 -7 (-15 -2473 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))) (-15 -2473 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)))) (-15 -2474 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))) (-15 -2475 ((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))) (-15 -2475 ((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)))) (-15 -2476 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))))) (T -712)) +((-2476 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2475 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-486)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330)))) (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2475 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-486)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330)))) (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2474 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2473 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2473 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) +((-2485 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 65 T ELT)) (-2482 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 40 T ELT)) (-2484 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 64 T ELT)) (-2481 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 38 T ELT)) (-2483 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 63 T ELT)) (-2480 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 24 T ELT)) (-2479 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486)) 41 T ELT)) (-2478 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486)) 39 T ELT)) (-2477 (((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486)) 37 T ELT))) +(((-713) (-10 -7 (-15 -2477 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486))) (-15 -2478 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486))) (-15 -2479 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486))) (-15 -2480 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2481 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2482 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2483 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2484 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2485 ((-2 (|:| -3405 (-330)) (|:| -1598 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))))) (T -713)) +((-2485 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486))))) +((-3708 (((-1127 |#1|) |#1| (-179) (-486)) 69 T ELT))) +(((-714 |#1|) (-10 -7 (-15 -3708 ((-1127 |#1|) |#1| (-179) (-486)))) (-889)) (T -714)) +((-3708 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-486)) (-5 *2 (-1127 *3)) (-5 *1 (-714 *3)) (-4 *3 (-889))))) +((-3626 (((-486) $) 17 T ELT)) (-3190 (((-85) $) 10 T ELT)) (-3386 (($ $) 19 T ELT))) +(((-715 |#1|) (-10 -7 (-15 -3386 (|#1| |#1|)) (-15 -3626 ((-486) |#1|)) (-15 -3190 ((-85) |#1|))) (-716)) (T -715)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3626 (((-486) $) 38 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3386 (($ $) 37 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ (-486) $) 40 T ELT))) +(((-716) (-113)) (T -716)) +((-3190 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-486)))) (-3386 (*1 *1 *1) (-4 *1 (-716)))) +(-13 (-723) (-21) (-10 -8 (-15 -3190 ((-85) $)) (-15 -3626 ((-486) $)) (-15 -3386 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-3189 (((-85) $) 10 T ELT))) +(((-717 |#1|) (-10 -7 (-15 -3189 ((-85) |#1|))) (-718)) (T -717)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) (((-718) (-113)) (T -718)) -((-2485 (*1 *1 *1 *1) (-4 *1 (-718)))) -(-13 (-722) (-10 -8 (-15 -2485 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT))) +((-3189 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85))))) +(-13 (-720) (-23) (-10 -8 (-15 -3189 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-2486 (($ $ $) 36 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) (((-719) (-113)) (T -719)) -NIL -(-13 (-757) (-25)) -(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-3190 (((-85) $) 42 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3025 (((-85) $) 72 T ELT)) (-3024 (((-350 (-485)) $) 76 T ELT)) (-3134 ((|#2| $) 26 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2486 (($ $) 58 T ELT)) (-3974 (((-474) $) 67 T ELT)) (-3011 (($ $) 21 T ELT)) (-3948 (((-773) $) 53 T ELT) (($ (-485)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) 10 T CONST)) (-3385 ((|#2| $) 71 T ELT)) (-3058 (((-85) $ $) 30 T ELT)) (-2687 (((-85) $ $) 69 T ELT)) (-3839 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-720 |#1| |#2|) (-10 -7 (-15 -2687 ((-85) |#1| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -3026 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-721 |#2|) (-146)) (T -720)) -((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3138 (((-695)) 67 (|has| |#1| (-320)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3158 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 104 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3645 ((|#1| $) 93 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 80 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 82 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 81 (|has| |#1| (-484)) ELT)) (-2996 (($) 70 (|has| |#1| (-320)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2491 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3134 ((|#1| $) 85 T ELT)) (-2533 (($ $ $) 71 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 72 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2011 (((-831) $) 69 (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) 68 (|has| |#1| (-320)) ELT)) (-2488 ((|#1| $) 90 T ELT)) (-2489 ((|#1| $) 91 T ELT)) (-2490 ((|#1| $) 92 T ELT)) (-3008 ((|#1| $) 86 T ELT)) (-3009 ((|#1| $) 87 T ELT)) (-3010 ((|#1| $) 88 T ELT)) (-2487 ((|#1| $) 89 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 97 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 96 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3974 (((-474) $) 77 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 94 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (|has| |#1| (-951 (-350 (-485)))) ELT)) (-2704 (((-633 $) $) 78 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 ((|#1| $) 83 (|has| |#1| (-974)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 73 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 75 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 74 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 76 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-721 |#1|) (-113) (-146)) (T -721)) -((-3011 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2491 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3011 ($ $)) (-15 -3645 (|t#1| $)) (-15 -2490 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -2491 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3385 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2486 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) -(((-722) (-113)) (T -722)) -NIL -(-13 (-717) (-104)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-485) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3645 ((|#1| $) 16 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2491 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2488 ((|#1| $) 22 T ELT)) (-2489 ((|#1| $) 20 T ELT)) (-2490 ((|#1| $) 18 T ELT)) (-3008 ((|#1| $) 26 T ELT)) (-3009 ((|#1| $) 25 T ELT)) (-3010 ((|#1| $) 24 T ELT)) (-2487 ((|#1| $) 23 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-350 (-485))) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 12 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-723 |#1|) (-13 (-721 |#1|) (-355 (-910 |#1|)) (-10 -8 (-15 -2491 ($ (-910 |#1|) (-910 |#1|))))) (-146)) (T -723)) -((-2491 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3))))) -((-3960 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-146) (-721 |#4|) (-146)) (T -724)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))) -((-2492 (((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1091)) 19 T ELT))) -(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2492 ((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872)) (-601 |#2|)) (T -725)) -((-2492 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4))))) -((-3575 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1091)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1091)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1091)) 26 T ELT) (((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-631 |#2|) (-1180 |#2|) (-1091)) 35 T ELT))) -(((-726 |#1| |#2|) (-10 -7 (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1="failed") (-631 |#2|) (-1180 |#2|) (-1091))) (-15 -3575 ((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1091))) (-15 -3575 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -3575 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -726)) -((-3575 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-726 *6 *2)))) (-3575 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))))) (-3575 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-872))))) (-3575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1091)) (-4 *6 (-13 (-29 *5) (-1116) (-872))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7))))) -((-3472 ((|#2| |#2| (-1091)) 17 T ELT)) (-2493 ((|#2| |#2| (-1091)) 56 T ELT)) (-2494 (((-1 |#2| |#2|) (-1091)) 11 T ELT))) -(((-727 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2| (-1091))) (-15 -2493 (|#2| |#2| (-1091))) (-15 -2494 ((-1 |#2| |#2|) (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -727)) -((-2494 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-13 (-29 *4) (-1116) (-872))))) (-2493 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872)))))) -((-2495 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -728)) -((-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4))))) -((-3743 (((-2 (|:| -3268 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))) 53 T ELT)) (-2497 (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3|) 21 T ELT)) (-2498 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2496 ((|#2| |#3| (-584 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2496 (|#2| |#3| (-584 (-350 |#2|)))) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3|)) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3| |#2|)) (-15 -2498 (|#2| |#3| |#1|)) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4|)) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4| |#2|)) (-15 -2498 (|#2| |#4| |#1|)) (-15 -3743 ((-2 (|:| -3268 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -729)) -((-3743 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -3268 *7) (|:| |rh| (-584 (-350 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-350 *6))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-350 *2))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-350 *2))))) (-2496 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))) -((-2506 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2507 (((-584 (-2 (|:| |poly| |#2|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2500 (((-584 (-2 (|:| |deg| (-695)) (|:| -3268 |#2|))) |#3|) 123 T ELT)) (-2499 ((|#2| |#3|) 42 T ELT)) (-2501 (((-584 (-2 (|:| -3954 |#1|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2502 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 (|#2| |#3|)) (-15 -2500 ((-584 (-2 (|:| |deg| (-695)) (|:| -3268 |#2|))) |#3|)) (-15 -2501 ((-584 (-2 (|:| -3954 |#1|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2507 ((-584 (-2 (|:| |poly| |#2|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2502 (|#3| |#3| |#2|)) (-15 -2502 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -730)) -((-2502 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2502 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1156 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3))))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3268 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3954 *5) (|:| -3268 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3268 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2499 (*1 *2 *3) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2)))))) -((-2503 (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2504 ((|#2| (-599 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-598 (-350 |#2|))) 89 T ELT))) -(((-731 |#1| |#2|) (-10 -7 (-15 -2503 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|))) (-15 -2503 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2503 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2503 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2504 (|#2| (-598 (-350 |#2|)))) (-15 -2504 (|#2| (-599 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -731)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6))))) -((-2505 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|) 49 T ELT))) -(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2505 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|))) (-312) (-601 |#1|) (-1156 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732)) -((-2505 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) -((-2506 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2508 (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2507 (((-584 (-2 (|:| |poly| |#2|) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT))) -(((-733 |#1| |#2|) (-10 -7 (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-584 (-2 (|:| |poly| |#2|) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)))) (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -733)) -((-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3268 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))) -((-2509 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3268 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|)) 15 T ELT)) (-2510 (((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3575 (((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2013 (-631 |#1|))) #1#) (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3268 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|))) (-15 -2509 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|))) (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2013 (-631 |#1|))) #1="failed") (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|))) (-15 -2510 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)))) (-312) (-601 |#1|)) (T -734)) -((-2510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *6) "failed")) (|:| -2013 (-584 (-1180 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2013 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3268 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *6 (-601 *5))))) -((-2511 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2512 (((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3342 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-735 |#1| |#2|) (-10 -7 (-15 -2511 ((-631 |#1|) (-584 |#1|))) (-15 -2511 ((-631 |#1|) (-584 |#1|) (-695))) (-15 -2512 ((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-15 -3342 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -735)) -((-3342 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2512 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4))))) -((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#2|)) ELT)) (-2485 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2996 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3838 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2662 (($) NIL (|has| |#2| (-23)) CONST)) (-2668 (($) NIL (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 11 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-736 |#1| |#2| |#3|) (-196 |#1| |#2|) (-695) (-718) (-1 (-85) (-1180 |#2|) (-1180 |#2|))) (T -736)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3083 (((-584 (-739 (-1091))) $) NIL T ELT)) (-3085 (((-1086 $) $ (-739 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-739 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-739 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3758 (($ $ $ (-739 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-739 (-1091))) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-739 (-1091)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-739 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-739 (-1091))) NIL T ELT) (($ (-1086 $) (-739 (-1091))) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-739 (-1091))) NIL T ELT)) (-2822 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-739 (-1091))) (-470 (-739 (-1091)))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 (-739 (-1091)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 (((-739 (-1091)) $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-739 (-1091))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1091)) $) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3759 (($ $ (-739 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3950 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-737 |#1|) (-13 (-213 |#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -737)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-485)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-312)) ELT))) -(((-738 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1014) (-810 |#1|) |#1|) (T -738)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3833 ((|#1| $) 10 T ELT)) (-3159 (((-3 |#1| "failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3774 (((-695) $) 11 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-739 |#1|) (-228 |#1|) (-757)) (T -739)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) 39 T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3941 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3801 (($ $) 43 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1754 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-3938 (($ $) 55 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2292 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3942 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2513 (((-85) $ $) 52 T ELT)) (-3835 (((-695) $) 35 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1755 (($ $ $) NIL T ELT)) (-1756 (($ $ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $) 42 T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) NIL T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2567 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-740 |#1|) (-13 (-336 |#1|) (-755) (-10 -8 (-15 -3803 (|#1| $)) (-15 -3801 ($ $)) (-15 -3938 ($ $)) (-15 -2513 ((-85) $ $)) (-15 -3942 ((-3 $ #1="failed") $ |#1|)) (-15 -3941 ((-3 $ #1#) $ |#1|)) (-15 -2567 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3835 ((-695) $)) (-15 -3936 ((-584 |#1|) $)))) (-757)) (T -740)) -((-3803 (*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3942 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3941 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2567 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3625 (((-485) $) 69 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3188 (((-85) $) 67 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3189 (((-85) $) 68 T ELT)) (-2533 (($ $ $) 61 T ELT)) (-2859 (($ $ $) 62 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 70 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 63 T ELT)) (-2569 (((-85) $ $) 65 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 64 T ELT)) (-2687 (((-85) $ $) 66 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-741) (-113)) (T -741)) -NIL -(-13 (-496) (-756)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2514 ((|#1| $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2515 (($ |#1|) 9 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-695)) NIL T ELT)) (-2822 (((-695) $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3760 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3679 ((|#2| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-742 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2515 ($ |#1|)) (-15 -2514 (|#1| $)))) (-646 |#2|) (-962)) (T -742)) -((-2515 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962))))) -((-2570 (((-85) $ $) 17 T ELT)) (-3236 (($ |#1| $) 70 T ELT) (($ $ |#1|) 69 T ELT) (($ $ $) 68 T ELT)) (-3238 (($ $ $) 66 T ELT)) (-3237 (((-85) $ $) 67 T ELT)) (-3241 (($ (-584 |#1|)) 62 T ELT) (($) 61 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 54 T ELT)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 78 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 77 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| (-72)) ELT)) (-3243 (((-85) $ $) 58 T ELT)) (-2533 ((|#1| $) 73 T ELT)) (-2858 (($ $ $) 86 T ELT)) (-3520 (($ $ $) 85 T ELT)) (-2610 (((-584 |#1|) $) 79 T ELT)) (-3247 (((-85) |#1| $) 75 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 84 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 T ELT)) (-3240 (($ $ $) 63 T ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT) (($ |#1| $ (-695)) 55 T ELT)) (-3245 (((-1034) $) 19 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 81 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 53 T ELT)) (-3239 (($ $ |#1|) 65 T ELT) (($ $ $) 64 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 80 T ELT) (((-695) |#1| $) 76 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 T ELT)) (-3242 (($ (-584 |#1|)) 60 T ELT) (($) 59 T ELT)) (-1266 (((-85) $ $) 18 T ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 82 T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-3959 (((-695) $) 83 T ELT))) -(((-743 |#1|) (-113) (-757)) (T -743)) -((-2533 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757))))) -(-13 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-15 -2533 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3726 (($) NIL (|has| |#1| (-21)) CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3469 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 51 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 46 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 48 (|has| |#1| (-484)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2516 (($) 13 T ELT)) (-2526 (((-85) $) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2527 (((-85) $) 11 T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3128 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1266 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2662 (($) 23 (|has| |#1| (-21)) CONST)) (-2668 (($) 33 (|has| |#1| (-756)) CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2687 (((-85) $ $) 45 (|has| |#1| (-756)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-485) $) 27 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT))) -(((-744 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2516 ($)) (-15 -2527 ((-85) $)) (-15 -2526 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -744)) -((-2516 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))) -((-3960 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT))) -(((-745 |#1| |#2|) (-10 -7 (-15 -3960 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3960 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1014) (-1014)) (T -745)) -((-3960 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2518 ((|#1| (-86) |#1|) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2517 (($ |#1| (-310 (-86))) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2519 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2520 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT)) (-2521 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-746 |#1|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2521 (|#1| |#1|))) |%noBranch|) (-15 -2520 ($ $ (-1 |#1| |#1|))) (-15 -2519 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2518 (|#1| (-86) |#1|)) (-15 -2517 ($ |#1| (-310 (-86)))))) (-962)) (T -746)) -((-2522 (*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2522 (*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2521 (*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962))))) -((-2635 (((-85) $ |#2|) 14 T ELT)) (-3948 (((-773) $) 11 T ELT))) -(((-747 |#1| |#2|) (-10 -7 (-15 -2635 ((-85) |#1| |#2|)) (-15 -3948 ((-773) |#1|))) (-748 |#2|) (-1014)) (T -747)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3544 ((|#1| $) 19 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2635 (((-85) $ |#1|) 17 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2523 (((-55) $) 18 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-748 |#1|) (-113) (-1014)) (T -748)) -((-3544 (*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) -(-13 (-1014) (-10 -8 (-15 -3544 (|t#1| $)) (-15 -2523 ((-55) $)) (-15 -2635 ((-85) $ |t#1|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2524 (((-167 (-442)) (-1074)) 9 T ELT))) -(((-749) (-10 -7 (-15 -2524 ((-167 (-442)) (-1074))))) (T -749)) -((-2524 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-442))) (-5 *1 (-749))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1029) $) 10 T ELT)) (-3544 (((-447) $) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3532 (($ (-447) (-1029)) 8 T ELT)) (-3948 (((-773) $) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 20 T ELT)) (-3058 (((-85) $ $) 12 T ELT))) -(((-750) (-13 (-748 (-447)) (-10 -8 (-15 -3321 ((-1029) $)) (-15 -3532 ($ (-447) (-1029)))))) (T -750)) -((-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750)))) (-3532 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2525 (((-1034) $) 31 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3726 (($) NIL (|has| |#1| (-21)) CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3469 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 65 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 60 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 63 (|has| |#1| (-484)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2529 (($) 14 T ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2528 (($) 16 T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2526 (((-85) $) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2527 (((-85) $) 11 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3128 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2662 (($) 37 (|has| |#1| (-21)) CONST)) (-2668 (($) 47 (|has| |#1| (-756)) CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2687 (((-85) $ $) 59 (|has| |#1| (-756)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-485) $) 41 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT))) -(((-751 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2529 ($)) (-15 -2528 ($)) (-15 -2527 ((-85) $)) (-15 -2526 ((-85) $)) (-15 -2525 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -751)) -((-2529 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2528 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))) -((-3960 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT))) -(((-752 |#1| |#2|) (-10 -7 (-15 -3960 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-15 -3960 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1014) (-1014)) (T -752)) -((-3960 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-695)) 27 T ELT)) (-2996 (($) 30 T ELT)) (-2533 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2859 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT))) -(((-753) (-113)) (T -753)) -((-2533 (*1 *1) (-4 *1 (-753))) (-2859 (*1 *1) (-4 *1 (-753)))) -(-13 (-757) (-320) (-10 -8 (-15 -2533 ($) -3954) (-15 -2859 ($) -3954))) -(((-72) . T) ((-553 (-773)) . T) ((-320) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-2531 (((-85) (-1180 |#2|) (-1180 |#2|)) 19 T ELT)) (-2532 (((-85) (-1180 |#2|) (-1180 |#2|)) 20 T ELT)) (-2530 (((-85) (-1180 |#2|) (-1180 |#2|)) 16 T ELT))) -(((-754 |#1| |#2|) (-10 -7 (-15 -2530 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2531 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2532 ((-85) (-1180 |#2|) (-1180 |#2|)))) (-695) (-717)) (T -754)) -((-2532 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3726 (($) 29 T CONST)) (-3469 (((-3 $ "failed") $) 32 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 28 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-755) (-113)) (T -755)) -NIL -(-13 (-767) (-664)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3625 (((-485) $) 38 T ELT)) (-3726 (($) 30 T CONST)) (-3469 (((-3 $ "failed") $) 55 T ELT)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 53 T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 56 T ELT)) (-3128 (((-695)) 57 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 51 T ELT)) (-3385 (($ $) 37 T ELT)) (-2662 (($) 29 T CONST)) (-2668 (($) 52 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3841 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 54 T ELT) (($ $ (-831)) 49 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT) (($ $ $) 50 T ELT))) +((-2486 (*1 *1 *1 *1) (-4 *1 (-719)))) +(-13 (-723) (-10 -8 (-15 -2486 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT))) +(((-720) (-113)) (T -720)) +NIL +(-13 (-758) (-25)) +(((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-3191 (((-85) $) 42 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 78 T ELT)) (-3026 (((-85) $) 72 T ELT)) (-3025 (((-350 (-486)) $) 76 T ELT)) (-3135 ((|#2| $) 26 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2487 (($ $) 58 T ELT)) (-3975 (((-475) $) 67 T ELT)) (-3012 (($ $) 21 T ELT)) (-3949 (((-774) $) 53 T ELT) (($ (-486)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) 10 T CONST)) (-3386 ((|#2| $) 71 T ELT)) (-3059 (((-85) $ $) 30 T ELT)) (-2688 (((-85) $ $) 69 T ELT)) (-3840 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 31 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-721 |#1| |#2|) (-10 -7 (-15 -2688 ((-85) |#1| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3027 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -3386 (|#2| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3129 ((-696)) -3955) (-15 -3949 (|#1| (-486))) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3191 ((-85) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-722 |#2|) (-146)) (T -721)) +((-3129 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-721 *3 *4)) (-4 *3 (-722 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3139 (((-696)) 67 (|has| |#1| (-320)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 109 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 106 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3159 (((-486) $) 108 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 105 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 104 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 93 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 80 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 82 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 81 (|has| |#1| (-485)) ELT)) (-2997 (($) 70 (|has| |#1| (-320)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2492 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3135 ((|#1| $) 85 T ELT)) (-2534 (($ $ $) 71 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 72 (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2012 (((-832) $) 69 (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2402 (($ (-832)) 68 (|has| |#1| (-320)) ELT)) (-2489 ((|#1| $) 90 T ELT)) (-2490 ((|#1| $) 91 T ELT)) (-2491 ((|#1| $) 92 T ELT)) (-3009 ((|#1| $) 86 T ELT)) (-3010 ((|#1| $) 87 T ELT)) (-3011 ((|#1| $) 88 T ELT)) (-2488 ((|#1| $) 89 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 97 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 96 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3975 (((-475) $) 77 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 94 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-486))) 107 (|has| |#1| (-952 (-350 (-486)))) ELT)) (-2705 (((-634 $) $) 78 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 ((|#1| $) 83 (|has| |#1| (-975)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 73 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 75 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 74 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 76 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-722 |#1|) (-113) (-146)) (T -722)) +((-3012 (*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2492 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-2487 (*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3012 ($ $)) (-15 -3646 (|t#1| $)) (-15 -2491 (|t#1| $)) (-15 -2490 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -3011 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3135 (|t#1| $)) (-15 -2492 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3386 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2487 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) +(((-723) (-113)) (T -723)) +NIL +(-13 (-718) (-104)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-718) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-911 |#1|) #1#) $) 35 T ELT) (((-3 (-486) #1#) $) NIL (OR (|has| (-911 |#1|) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (OR (|has| (-911 |#1|) (-952 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 ((|#1| $) NIL T ELT) (((-911 |#1|) $) 33 T ELT) (((-486) $) NIL (OR (|has| (-911 |#1|) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT) (((-350 (-486)) $) NIL (OR (|has| (-911 |#1|) (-952 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 16 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) NIL (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) NIL (|has| |#1| (-485)) ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2492 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-911 |#1|) (-911 |#1|)) 29 T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2489 ((|#1| $) 22 T ELT)) (-2490 ((|#1| $) 20 T ELT)) (-2491 ((|#1| $) 18 T ELT)) (-3009 ((|#1| $) 26 T ELT)) (-3010 ((|#1| $) 25 T ELT)) (-3011 ((|#1| $) 24 T ELT)) (-2488 ((|#1| $) 23 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-911 |#1|)) 30 T ELT) (($ (-350 (-486))) NIL (OR (|has| (-911 |#1|) (-952 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 ((|#1| $) NIL (|has| |#1| (-975)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 12 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-724 |#1|) (-13 (-722 |#1|) (-355 (-911 |#1|)) (-10 -8 (-15 -2492 ($ (-911 |#1|) (-911 |#1|))))) (-146)) (T -724)) +((-2492 (*1 *1 *2 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-146)) (-5 *1 (-724 *3))))) +((-3961 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#3| (-1 |#4| |#2|) |#1|))) (-722 |#2|) (-146) (-722 |#4|) (-146)) (T -725)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-722 *6)) (-5 *1 (-725 *4 *5 *2 *6)) (-4 *4 (-722 *5))))) +((-2493 (((-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#3| |#2| (-1092)) 19 T ELT))) +(((-726 |#1| |#2| |#3|) (-10 -7 (-15 -2493 ((-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#3| |#2| (-1092)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873)) (-602 |#2|)) (T -726)) +((-2493 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-4 *4 (-13 (-29 *6) (-1117) (-873))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) (-5 *1 (-726 *6 *4 *3)) (-4 *3 (-602 *4))))) +((-3576 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-585 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) |#2| (-86) (-1092)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1092)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 |#2|) (-585 (-86)) (-1092)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 (-249 |#2|)) (-585 (-86)) (-1092)) 26 T ELT) (((-3 (-585 (-1181 |#2|)) #1#) (-632 |#2|) (-1092)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-632 |#2|) (-1181 |#2|) (-1092)) 35 T ELT))) +(((-727 |#1| |#2|) (-10 -7 (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1="failed") (-632 |#2|) (-1181 |#2|) (-1092))) (-15 -3576 ((-3 (-585 (-1181 |#2|)) #1#) (-632 |#2|) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 (-249 |#2|)) (-585 (-86)) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 |#2|) (-585 (-86)) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) |#2| (-86) (-1092))) (-15 -3576 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|))) (-15 -3576 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-585 |#2|)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873))) (T -727)) +((-3576 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-727 *6 *2)))) (-3576 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-5 *1 (-727 *6 *2)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))))) (-3576 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-585 *3))) *3 #1="failed")) (-5 *1 (-727 *6 *3)) (-4 *3 (-13 (-29 *6) (-1117) (-873))))) (-3576 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-585 *7))) *7 #1#)) (-5 *1 (-727 *6 *7)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) (-5 *1 (-727 *6 *7)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) (-5 *1 (-727 *6 *7)))) (-3576 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092)) (-4 *6 (-13 (-29 *5) (-1117) (-873))) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-1181 *6))) (-5 *1 (-727 *5 *6)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) (-5 *1 (-727 *6 *7)) (-5 *4 (-1181 *7))))) +((-3473 ((|#2| |#2| (-1092)) 17 T ELT)) (-2494 ((|#2| |#2| (-1092)) 56 T ELT)) (-2495 (((-1 |#2| |#2|) (-1092)) 11 T ELT))) +(((-728 |#1| |#2|) (-10 -7 (-15 -3473 (|#2| |#2| (-1092))) (-15 -2494 (|#2| |#2| (-1092))) (-15 -2495 ((-1 |#2| |#2|) (-1092)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873))) (T -728)) +((-2495 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-728 *4 *5)) (-4 *5 (-13 (-29 *4) (-1117) (-873))))) (-2494 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873))))) (-3473 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873)))))) +((-2496 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-585 |#4|))) (-599 |#4|) |#4|) 33 T ELT))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-585 |#4|))) (-599 |#4|) |#4|))) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -729)) +((-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-729 *5 *6 *7 *4))))) +((-3744 (((-2 (|:| -3269 |#3|) (|:| |rh| (-585 (-350 |#2|)))) |#4| (-585 (-350 |#2|))) 53 T ELT)) (-2498 (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4| |#2|) 62 T ELT) (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4|) 61 T ELT) (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3| |#2|) 20 T ELT) (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3|) 21 T ELT)) (-2499 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2497 ((|#2| |#3| (-585 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2497 (|#2| |#3| (-585 (-350 |#2|)))) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3|)) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3| |#2|)) (-15 -2499 (|#2| |#3| |#1|)) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4|)) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4| |#2|)) (-15 -2499 (|#2| |#4| |#1|)) (-15 -3744 ((-2 (|:| -3269 |#3|) (|:| |rh| (-585 (-350 |#2|)))) |#4| (-585 (-350 |#2|))))) (-13 (-312) (-120) (-952 (-350 (-486)))) (-1157 |#1|) (-602 |#2|) (-602 (-350 |#2|))) (T -730)) +((-3744 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -3269 *7) (|:| |rh| (-585 (-350 *6))))) (-5 *1 (-730 *5 *6 *7 *3)) (-5 *4 (-585 (-350 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-350 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-350 *2))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-350 *4))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-350 *5))))) (-2499 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-350 *2))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-350 *4))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-350 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-350 *2))))) (-2497 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *6 (-602 *4))))) +((-2507 (((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1087 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2508 (((-585 (-2 (|:| |poly| |#2|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 52 T ELT)) (-2501 (((-585 (-2 (|:| |deg| (-696)) (|:| -3269 |#2|))) |#3|) 123 T ELT)) (-2500 ((|#2| |#3|) 42 T ELT)) (-2502 (((-585 (-2 (|:| -3955 |#1|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 100 T ELT)) (-2503 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 (|#2| |#3|)) (-15 -2501 ((-585 (-2 (|:| |deg| (-696)) (|:| -3269 |#2|))) |#3|)) (-15 -2502 ((-585 (-2 (|:| -3955 |#1|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -2508 ((-585 (-2 (|:| |poly| |#2|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -2507 ((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1087 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2503 (|#3| |#3| |#2|)) (-15 -2503 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-952 (-350 (-486)))) (-1157 |#1|) (-602 |#2|) (-602 (-350 |#2|))) (T -731)) +((-2503 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *1 (-731 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))) (-2503 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-1157 *4)) (-5 *1 (-731 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-350 *3))))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-585 *7) *7 (-1087 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-312) (-120) (-952 (-350 (-486))))) (-5 *2 (-585 (-2 (|:| |frac| (-350 *7)) (|:| -3269 *3)))) (-5 *1 (-731 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-350 *7))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -3955 *5) (|:| -3269 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6))))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -3269 *5)))) (-5 *1 (-731 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5))))) (-2500 (*1 *2 *3) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-731 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-350 *2)))))) +((-2504 (((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-600 |#2| (-350 |#2|)) (-585 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2014 (-585 (-350 |#2|)))) (-600 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-599 (-350 |#2|)) (-585 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2014 (-585 (-350 |#2|)))) (-599 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2505 ((|#2| (-600 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-599 (-350 |#2|))) 89 T ELT))) +(((-732 |#1| |#2|) (-10 -7 (-15 -2504 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2014 (-585 (-350 |#2|)))) (-599 (-350 |#2|)) (-350 |#2|))) (-15 -2504 ((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-599 (-350 |#2|)) (-585 (-350 |#2|)))) (-15 -2504 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2014 (-585 (-350 |#2|)))) (-600 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2504 ((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-600 |#2| (-350 |#2|)) (-585 (-350 |#2|)))) (-15 -2505 (|#2| (-599 (-350 |#2|)))) (-15 -2505 (|#2| (-600 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -732)) +((-2505 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-599 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-732 *5 *6)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-732 *5 *6))))) +((-2506 (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|) 49 T ELT))) +(((-733 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2506 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|))) (-312) (-602 |#1|) (-1157 |#1|) (-663 |#1| |#3|) (-602 |#4|)) (T -733)) +((-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1157 *5)) (-4 *4 (-663 *5 *7)) (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-733 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) +((-2507 (((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2509 (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 39 T ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 37 T ELT)) (-2508 (((-585 (-2 (|:| |poly| |#2|) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 96 T ELT))) +(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2508 ((-585 (-2 (|:| |poly| |#2|) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)))) (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -734)) +((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-599 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 (-600 *6 (-350 *6)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-2 (|:| |frac| (-350 *6)) (|:| -3269 (-600 *6 (-350 *6)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6))))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6))))) +((-2510 (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) (-632 |#2|) (-1181 |#1|)) 110 T ELT) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -3269 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1181 |#1|)) 15 T ELT)) (-2511 (((-2 (|:| |particular| (-3 (-1181 |#1|) #1="failed")) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-585 |#1|))) |#2| |#1|)) 116 T ELT)) (-3576 (((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -2014 (-632 |#1|))) #1#) (-632 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-735 |#1| |#2|) (-10 -7 (-15 -2510 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -3269 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1181 |#1|))) (-15 -2510 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) (-632 |#2|) (-1181 |#1|))) (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -2014 (-632 |#1|))) #1="failed") (-632 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#) |#2| |#1|))) (-15 -2511 ((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-585 |#1|))) |#2| |#1|)))) (-312) (-602 |#1|)) (T -735)) +((-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2014 (-585 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *6) "failed")) (|:| -2014 (-585 (-1181 *6))))) (-5 *1 (-735 *6 *7)) (-5 *4 (-1181 *6)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-585 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -2014 (-632 *6)))) (-5 *1 (-735 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *6)))) (-2510 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *5)))) (-2510 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5)) (|:| -3269 *6) (|:| |rh| *5)))))) (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *6 (-602 *5))))) +((-2512 (((-632 |#1|) (-585 |#1|) (-696)) 14 T ELT) (((-632 |#1|) (-585 |#1|)) 15 T ELT)) (-2513 (((-3 (-1181 |#1|) #1="failed") |#2| |#1| (-585 |#1|)) 39 T ELT)) (-3343 (((-3 |#1| #1#) |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-736 |#1| |#2|) (-10 -7 (-15 -2512 ((-632 |#1|) (-585 |#1|))) (-15 -2512 ((-632 |#1|) (-585 |#1|) (-696))) (-15 -2513 ((-3 (-1181 |#1|) #1="failed") |#2| |#1| (-585 |#1|))) (-15 -3343 ((-3 |#1| #1#) |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)))) (-312) (-602 |#1|)) (T -736)) +((-3343 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-736 *2 *3)) (-4 *3 (-602 *2)))) (-2513 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-1181 *4)) (-5 *1 (-736 *4 *3)) (-4 *3 (-602 *4)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-632 *5)) (-5 *1 (-736 *5 *6)) (-4 *6 (-602 *5)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)) (-5 *1 (-736 *4 *5)) (-4 *5 (-602 *4))))) +((-2571 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) NIL (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) NIL (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) NIL (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#2| (-963)) ELT)) (-2997 (($) NIL (|has| |#2| (-320)) ELT)) (-1578 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) NIL (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) NIL (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) NIL T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1470 (($ (-1181 |#2|)) NIL T ELT)) (-3914 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1181 |#2|) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) NIL (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2663 (($) NIL (|has| |#2| (-23)) CONST)) (-2669 (($) NIL (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 11 (|has| |#2| (-758)) ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) NIL (|has| |#2| (-963)) ELT) (($ $ |#2|) NIL (|has| |#2| (-665)) ELT) (($ |#2| $) NIL (|has| |#2| (-665)) ELT) (($ (-486) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-737 |#1| |#2| |#3|) (-196 |#1| |#2|) (-696) (-719) (-1 (-85) (-1181 |#2|) (-1181 |#2|))) (T -737)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1490 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ (-1092)) NIL T ELT)) (-1524 (((-696) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3084 (((-585 (-740 (-1092))) $) NIL T ELT)) (-3086 (((-1087 $) $ (-740 (-1092))) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-740 (-1092)))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1486 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-740 (-1092)) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 (-1041 |#1| (-1092)) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-740 (-1092)) $) NIL T ELT) (((-1092) $) NIL T ELT) (((-1041 |#1| (-1092)) $) NIL T ELT)) (-3759 (($ $ $ (-740 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-740 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-471 (-740 (-1092))) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-740 (-1092)) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-740 (-1092)) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ (-1092)) NIL T ELT) (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) (-740 (-1092))) NIL T ELT) (($ (-1087 $) (-740 (-1092))) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-740 (-1092))) NIL T ELT)) (-2823 (((-471 (-740 (-1092))) $) NIL T ELT) (((-696) $ (-740 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-740 (-1092)))) NIL T ELT)) (-1627 (($ (-1 (-471 (-740 (-1092))) (-471 (-740 (-1092)))) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1525 (((-1 $ (-696)) (-1092)) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3085 (((-3 (-740 (-1092)) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1488 (((-740 (-1092)) $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1489 (((-85) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-740 (-1092))) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-740 (-1092)) |#1|) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 |#1|)) NIL T ELT) (($ $ (-740 (-1092)) $) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 $)) NIL T ELT) (($ $ (-1092) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3760 (($ $ (-740 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1491 (((-585 (-1092)) $) NIL T ELT)) (-3951 (((-471 (-740 (-1092))) $) NIL T ELT) (((-696) $ (-740 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-740 (-1092)))) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-740 (-1092)) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-740 (-1092)) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-740 (-1092)) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-740 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1092))) NIL T ELT) (($ (-1092)) NIL T ELT) (($ (-1041 |#1| (-1092))) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-738 |#1|) (-13 (-213 |#1| (-1092) (-740 (-1092)) (-471 (-740 (-1092)))) (-952 (-1041 |#1| (-1092)))) (-963)) (T -738)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#2| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-1609 (((-696) $) NIL (|has| |#2| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $) 13 T ELT) (($ $ (-696)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ $ (-486)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-312)) ELT))) +(((-739 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-431 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1015) (-811 |#1|) |#1|) (T -739)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-1524 (((-696) $) NIL T ELT)) (-3834 ((|#1| $) 10 T ELT)) (-3160 (((-3 |#1| "failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3775 (((-696) $) 11 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-1525 (($ |#1| (-696)) 9 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2672 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-740 |#1|) (-228 |#1|) (-758)) (T -740)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3937 (((-585 |#1|) $) 39 T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3942 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3802 (($ $) 43 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-2302 (((-696) $ (-486)) NIL T ELT)) (-3939 (($ $) 55 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2293 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3943 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2514 (((-85) $ $) 52 T ELT)) (-3836 (((-696) $) 35 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1756 (($ $ $) NIL T ELT)) (-1757 (($ $ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#1| $) 42 T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3946 (-696)))) $) NIL T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2568 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 54 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ |#1| (-696)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-741 |#1|) (-13 (-336 |#1|) (-756) (-10 -8 (-15 -3804 (|#1| $)) (-15 -3802 ($ $)) (-15 -3939 ($ $)) (-15 -2514 ((-85) $ $)) (-15 -3943 ((-3 $ #1="failed") $ |#1|)) (-15 -3942 ((-3 $ #1#) $ |#1|)) (-15 -2568 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3836 ((-696) $)) (-15 -3937 ((-585 |#1|) $)))) (-758)) (T -741)) +((-3804 (*1 *2 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-2514 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3943 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3942 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-2568 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-741 *3)) (|:| |rm| (-741 *3)))) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-741 *3)) (-4 *3 (-758))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3626 (((-486) $) 69 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3189 (((-85) $) 67 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3190 (((-85) $) 68 T ELT)) (-2534 (($ $ $) 61 T ELT)) (-2860 (($ $ $) 62 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 70 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 63 T ELT)) (-2570 (((-85) $ $) 65 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 64 T ELT)) (-2688 (((-85) $ $) 66 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-742) (-113)) (T -742)) +NIL +(-13 (-497) (-757)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2515 ((|#1| $) 10 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2516 (($ |#1|) 9 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-696)) NIL T ELT)) (-2823 (((-696) $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3761 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-696)) NIL (|has| |#1| (-190)) ELT)) (-3951 (((-696) $) NIL T ELT)) (-3949 (((-774) $) 17 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3680 ((|#2| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-696)) NIL (|has| |#1| (-190)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-743 |#1| |#2|) (-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2516 ($ |#1|)) (-15 -2515 (|#1| $)))) (-647 |#2|) (-963)) (T -743)) +((-2516 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-743 *2 *3)) (-4 *2 (-647 *3)))) (-2515 (*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-743 *2 *3)) (-4 *3 (-963))))) +((-2571 (((-85) $ $) 18 T ELT)) (-3237 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3239 (($ $ $) 67 T ELT)) (-3238 (((-85) $ $) 68 T ELT)) (-3242 (($ (-585 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1572 (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 43 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 79 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 78 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 75 (|has| |#1| (-72)) ELT)) (-3244 (((-85) $ $) 59 T ELT)) (-2534 ((|#1| $) 74 T ELT)) (-2859 (($ $ $) 87 T ELT)) (-3521 (($ $ $) 86 T ELT)) (-2611 (((-585 |#1|) $) 80 T ELT)) (-3248 (((-85) |#1| $) 76 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 85 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 T ELT)) (-3241 (($ $ $) 64 T ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-696)) 56 T ELT)) (-3246 (((-1035) $) 20 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 47 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 82 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 54 T ELT)) (-3240 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 |#1|)) 44 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 81 T ELT) (((-696) |#1| $) 77 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 46 T ELT)) (-3949 (((-774) $) 16 T ELT)) (-3243 (($ (-585 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1267 (((-85) $ $) 19 T ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 83 T ELT)) (-3059 (((-85) $ $) 17 T ELT)) (-3960 (((-696) $) 84 T ELT))) +(((-744 |#1|) (-113) (-758)) (T -744)) +((-2534 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-758))))) +(-13 (-678 |t#1|) (-883 |t#1|) (-10 -8 (-15 -2534 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-636 |#1|) . T) ((-678 |#1|) . T) ((-883 |#1|) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-757)) ELT)) (-3727 (($) NIL (|has| |#1| (-21)) CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 9 T ELT)) (-3470 (((-3 $ #1#) $) 42 (|has| |#1| (-757)) ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 51 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 46 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 48 (|has| |#1| (-485)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2517 (($) 13 T ELT)) (-2527 (((-85) $) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2528 (((-85) $) 11 T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 8 T ELT) (($ (-486)) NIL (OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ELT)) (-3129 (((-696)) 36 (|has| |#1| (-757)) CONST)) (-1267 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2663 (($) 23 (|has| |#1| (-21)) CONST)) (-2669 (($) 33 (|has| |#1| (-757)) CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-85) $ $) 45 (|has| |#1| (-757)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-832)) NIL (|has| |#1| (-757)) ELT) (($ $ (-696)) NIL (|has| |#1| (-757)) ELT)) (* (($ $ $) 39 (|has| |#1| (-757)) ELT) (($ (-486) $) 27 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-21)) ELT))) +(((-745 |#1|) (-13 (-1015) (-355 |#1|) (-10 -8 (-15 -2517 ($)) (-15 -2528 ((-85) $)) (-15 -2527 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|))) (-1015)) (T -745)) +((-2517 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1015)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3027 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015))))) +((-3961 (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|)) 12 T ELT) (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)) 13 T ELT))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3961 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|))) (-15 -3961 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|)))) (-1015) (-1015)) (T -746)) +((-3961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *1 (-746 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2519 ((|#1| (-86) |#1|) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2518 (($ |#1| (-310 (-86))) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2520 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2521 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT)) (-2522 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ (-86) (-486)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-747 |#1|) (-13 (-963) (-952 |#1|) (-952 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2523 ($ $)) (-15 -2523 ($ $ $)) (-15 -2522 (|#1| |#1|))) |%noBranch|) (-15 -2521 ($ $ (-1 |#1| |#1|))) (-15 -2520 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-486))) (-15 ** ($ $ (-486))) (-15 -2519 (|#1| (-86) |#1|)) (-15 -2518 ($ |#1| (-310 (-86)))))) (-963)) (T -747)) +((-2523 (*1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2523 (*1 *1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2522 (*1 *2 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-5 *1 (-747 *4)) (-4 *4 (-963)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-747 *3)) (-4 *3 (-963)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-747 *2)) (-4 *2 (-963)))) (-2518 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-747 *2)) (-4 *2 (-963))))) +((-2636 (((-85) $ |#2|) 14 T ELT)) (-3949 (((-774) $) 11 T ELT))) +(((-748 |#1| |#2|) (-10 -7 (-15 -2636 ((-85) |#1| |#2|)) (-15 -3949 ((-774) |#1|))) (-749 |#2|) (-1015)) (T -748)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3545 ((|#1| $) 19 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2636 (((-85) $ |#1|) 17 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2524 (((-55) $) 18 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-749 |#1|) (-113) (-1015)) (T -749)) +((-3545 (*1 *2 *1) (-12 (-4 *1 (-749 *2)) (-4 *2 (-1015)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-55)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-1015) (-10 -8 (-15 -3545 (|t#1| $)) (-15 -2524 ((-55) $)) (-15 -2636 ((-85) $ |t#1|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2525 (((-167 (-443)) (-1075)) 9 T ELT))) +(((-750) (-10 -7 (-15 -2525 ((-167 (-443)) (-1075))))) (T -750)) +((-2525 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-167 (-443))) (-5 *1 (-750))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3322 (((-1030) $) 10 T ELT)) (-3545 (((-448) $) 9 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3533 (($ (-448) (-1030)) 8 T ELT)) (-3949 (((-774) $) 25 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) 20 T ELT)) (-3059 (((-85) $ $) 12 T ELT))) +(((-751) (-13 (-749 (-448)) (-10 -8 (-15 -3322 ((-1030) $)) (-15 -3533 ($ (-448) (-1030)))))) (T -751)) +((-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-751)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-751))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2526 (((-1035) $) 31 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-757)) ELT)) (-3727 (($) NIL (|has| |#1| (-21)) CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 9 T ELT)) (-3470 (((-3 $ #1#) $) 57 (|has| |#1| (-757)) ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 65 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 60 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 63 (|has| |#1| (-485)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2530 (($) 14 T ELT)) (-1216 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2529 (($) 16 T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2527 (((-85) $) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2528 (((-85) $) 11 T ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 8 T ELT) (($ (-486)) NIL (OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ELT)) (-3129 (((-696)) 50 (|has| |#1| (-757)) CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2663 (($) 37 (|has| |#1| (-21)) CONST)) (-2669 (($) 47 (|has| |#1| (-757)) CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-85) $ $) 35 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-85) $ $) 59 (|has| |#1| (-757)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-832)) NIL (|has| |#1| (-757)) ELT) (($ $ (-696)) NIL (|has| |#1| (-757)) ELT)) (* (($ $ $) 54 (|has| |#1| (-757)) ELT) (($ (-486) $) 41 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-21)) ELT))) +(((-752 |#1|) (-13 (-1015) (-355 |#1|) (-10 -8 (-15 -2530 ($)) (-15 -2529 ($)) (-15 -2528 ((-85) $)) (-15 -2527 ((-85) $)) (-15 -2526 ((-1035) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|))) (-1015)) (T -752)) +((-2530 (*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015)))) (-2529 (*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3027 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015))))) +((-3961 (((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|) (-752 |#2|) (-752 |#2|)) 13 T ELT) (((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|)) 14 T ELT))) +(((-753 |#1| |#2|) (-10 -7 (-15 -3961 ((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|))) (-15 -3961 ((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|) (-752 |#2|) (-752 |#2|)))) (-1015) (-1015)) (T -753)) +((-3961 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-752 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *1 (-753 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-752 *6)) (-5 *1 (-753 *5 *6))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3139 (((-696)) 27 T ELT)) (-2997 (($) 30 T ELT)) (-2534 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2860 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2402 (($ (-832)) 28 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT))) +(((-754) (-113)) (T -754)) +((-2534 (*1 *1) (-4 *1 (-754))) (-2860 (*1 *1) (-4 *1 (-754)))) +(-13 (-758) (-320) (-10 -8 (-15 -2534 ($) -3955) (-15 -2860 ($) -3955))) +(((-72) . T) ((-554 (-774)) . T) ((-320) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-2532 (((-85) (-1181 |#2|) (-1181 |#2|)) 19 T ELT)) (-2533 (((-85) (-1181 |#2|) (-1181 |#2|)) 20 T ELT)) (-2531 (((-85) (-1181 |#2|) (-1181 |#2|)) 16 T ELT))) +(((-755 |#1| |#2|) (-10 -7 (-15 -2531 ((-85) (-1181 |#2|) (-1181 |#2|))) (-15 -2532 ((-85) (-1181 |#2|) (-1181 |#2|))) (-15 -2533 ((-85) (-1181 |#2|) (-1181 |#2|)))) (-696) (-718)) (T -755)) +((-2533 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696)))) (-2532 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696)))) (-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3727 (($) 29 T CONST)) (-3470 (((-3 $ "failed") $) 32 T ELT)) (-2412 (((-85) $) 30 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 28 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (** (($ $ (-832)) 26 T ELT) (($ $ (-696)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-756) (-113)) (T -756)) NIL -(-13 (-715) (-120) (-664)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT))) +(-13 (-768) (-665)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-768) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3626 (((-486) $) 38 T ELT)) (-3727 (($) 30 T CONST)) (-3470 (((-3 $ "failed") $) 55 T ELT)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2412 (((-85) $) 53 T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 56 T ELT)) (-3129 (((-696)) 57 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 51 T ELT)) (-3386 (($ $) 37 T ELT)) (-2663 (($) 29 T CONST)) (-2669 (($) 52 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3842 (($ $ $) 25 T ELT)) (** (($ $ (-696)) 54 T ELT) (($ $ (-832)) 49 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ (-486) $) 40 T ELT) (($ $ $) 50 T ELT))) (((-757) (-113)) (T -757)) NIL -(-13 (-1014) (-760)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3948 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 12 T ELT))) -(((-758 |#1| |#2|) (-13 (-760) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1130) (-1 (-85) |#1| |#1|)) (T -758)) -NIL -((-2533 (($ $ $) 16 T ELT)) (-2859 (($ $ $) 15 T ELT)) (-1266 (((-85) $ $) 17 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-2569 (((-85) $ $) 9 T ELT)) (-3058 (((-85) $ $) 14 T ELT)) (-2686 (((-85) $ $) 11 T ELT))) -(((-759 |#1|) (-10 -7 (-15 -2533 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-760)) (T -759)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 10 T ELT)) (-2859 (($ $ $) 11 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-2569 (((-85) $ $) 14 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) 15 T ELT))) -(((-760) (-113)) (T -760)) -((-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2859 (*1 *1 *1 *1) (-4 *1 (-760))) (-2533 (*1 *1 *1 *1) (-4 *1 (-760)))) -(-13 (-72) (-10 -8 (-15 -2687 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -2859 ($ $ $)) (-15 -2533 ($ $ $)))) -(((-72) . T) ((-13) . T) ((-1130) . T)) -((-2538 (($ $ $) 49 T ELT)) (-2539 (($ $ $) 48 T ELT)) (-2540 (($ $ $) 46 T ELT)) (-2536 (($ $ $) 55 T ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 50 T ELT)) (-2537 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3505 (($ $) 39 T ELT)) (-2544 (($ $ $) 43 T ELT)) (-2545 (($ $ $) 42 T ELT)) (-2534 (($ $ $) 51 T ELT)) (-2542 (($ $ $) 57 T ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 45 T ELT)) (-2543 (((-3 $ #1#) $ $) 52 T ELT)) (-3468 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2819 ((|#2| $) 36 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3819 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-761 |#1| |#2|) (-10 -7 (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3819 ((-584 |#2|) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3948 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2538 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3158 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3961 (($ $) 77 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-695)) 75 T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 79 T ELT)) (-2544 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) 78 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3950 (((-695) $) 80 T ELT)) (-2819 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3819 (((-584 |#1|) $) 74 T ELT)) (-3679 ((|#1| $ (-695)) 76 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2547 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-762 |#1|) (-113) (-962)) (T -762)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2547 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2545 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2541 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(-13 (-962) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3950 ((-695) $)) (-15 -2822 ((-695) $)) (-15 -3176 (|t#1| $)) (-15 -3961 ($ $)) (-15 -3679 (|t#1| $ (-695))) (-15 -2895 ($ |t#1| (-695))) (-15 -3819 ((-584 |t#1|) $)) (-15 -2547 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3468 ((-3 $ "failed") $ |t#1|)) (-15 -2548 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2549 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2819 (|t#1| $)) (-15 -3505 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2550 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ((-3 $ "failed") $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2540 ($ $ $)) (-15 -2551 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2534 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2546 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2551 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-496)) ELT)) (-2550 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2547 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-763 |#1| |#2|) (-10 -7 (-15 -2546 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2547 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-496)) (PROGN (-15 -2548 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2549 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2550 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2551 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763)) -((-2551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2547 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2546 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3535 (((-773) $ (-773)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 30 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 28 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 23 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-764 |#1| |#2| |#3|) (-13 (-762 |#1|) (-10 -8 (-15 -3535 ((-773) $ (-773))))) (-962) (-69 |#1|) (-1 |#1| |#1|)) (T -764)) -((-3535 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-695)) 17 T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (($ (-1177 |#1|)) 19 T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 13 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-765 |#1| |#2| |#3| |#4|) (-13 (-762 |#2|) (-556 (-1177 |#1|))) (-1091) (-962) (-69 |#2|) (-1 |#2| |#2|)) (T -765)) -NIL -((-2554 ((|#1| (-695) |#1|) 45 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2553 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2552 ((|#1| (-695) |#1|) 40 T ELT)) (-2802 ((|#1| (-695) |#1|) 38 T ELT)) (-2801 ((|#1| (-695) |#1|) 37 T ELT))) -(((-766 |#1|) (-10 -7 (-15 -2801 (|#1| (-695) |#1|)) (-15 -2802 (|#1| (-695) |#1|)) (-15 -2552 (|#1| (-695) |#1|)) (-15 -2553 (|#1| (-695) |#1|)) (-15 -2553 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -2554 (|#1| (-695) |#1|)) |%noBranch|)) (-146)) (T -766)) -((-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) -((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-767) (-113)) (T -767)) -NIL -(-13 (-757) (-1026)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3404 (((-485) $) 14 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-485)) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 12 T ELT))) -(((-768) (-13 (-757) (-10 -8 (-15 -3948 ($ (-485))) (-15 -3404 ((-485) $))))) (T -768)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768))))) -((-2555 (((-1186) (-584 (-51))) 23 T ELT)) (-3462 (((-1186) (-1074) (-773)) 13 T ELT) (((-1186) (-773)) 8 T ELT) (((-1186) (-1074)) 10 T ELT))) -(((-769) (-10 -7 (-15 -3462 ((-1186) (-1074))) (-15 -3462 ((-1186) (-773))) (-15 -3462 ((-1186) (-1074) (-773))) (-15 -2555 ((-1186) (-584 (-51)))))) (T -769)) -((-2555 (*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769))))) -((-2557 (((-633 (-1139)) $ (-1139)) 15 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 12 T ELT)) (-2556 (((-695) $ (-102)) 30 T ELT))) -(((-770 |#1|) (-10 -7 (-15 -2556 ((-695) |#1| (-102))) (-15 -2557 ((-633 (-1139)) |#1| (-1139))) (-15 -2558 ((-633 (-489)) |#1| (-489)))) (-771)) (T -770)) -NIL -((-2557 (((-633 (-1139)) $ (-1139)) 8 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 9 T ELT)) (-2556 (((-695) $ (-102)) 7 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 10 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-771) (-113)) (T -771)) -((-2559 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695))))) -(-13 (-147) (-10 -8 (-15 -2559 ((-633 (-101)) $ (-101))) (-15 -2558 ((-633 (-489)) $ (-489))) (-15 -2557 ((-633 (-1139)) $ (-1139))) (-15 -2556 ((-695) $ (-102))))) +(-13 (-716) (-120) (-665)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT))) +(((-758) (-113)) (T -758)) +NIL +(-13 (-1015) (-761)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3949 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-774) $) 15 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 12 T ELT))) +(((-759 |#1| |#2|) (-13 (-761) (-431 |#1|) (-10 -7 (IF (|has| |#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|))) (-1131) (-1 (-85) |#1| |#1|)) (T -759)) +NIL +((-2534 (($ $ $) 16 T ELT)) (-2860 (($ $ $) 15 T ELT)) (-1267 (((-85) $ $) 17 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-2570 (((-85) $ $) 9 T ELT)) (-3059 (((-85) $ $) 14 T ELT)) (-2687 (((-85) $ $) 11 T ELT))) +(((-760 |#1|) (-10 -7 (-15 -2534 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -2570 ((-85) |#1| |#1|)) (-15 -1267 ((-85) |#1| |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-761)) (T -760)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 10 T ELT)) (-2860 (($ $ $) 11 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-2570 (((-85) $ $) 14 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 13 T ELT)) (-2688 (((-85) $ $) 15 T ELT))) +(((-761) (-113)) (T -761)) +((-2688 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2570 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2860 (*1 *1 *1 *1) (-4 *1 (-761))) (-2534 (*1 *1 *1 *1) (-4 *1 (-761)))) +(-13 (-72) (-10 -8 (-15 -2688 ((-85) $ $)) (-15 -2570 ((-85) $ $)) (-15 -2687 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -2860 ($ $ $)) (-15 -2534 ($ $ $)))) +(((-72) . T) ((-13) . T) ((-1131) . T)) +((-2539 (($ $ $) 49 T ELT)) (-2540 (($ $ $) 48 T ELT)) (-2541 (($ $ $) 46 T ELT)) (-2537 (($ $ $) 55 T ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 50 T ELT)) (-2538 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3506 (($ $) 39 T ELT)) (-2545 (($ $ $) 43 T ELT)) (-2546 (($ $ $) 42 T ELT)) (-2535 (($ $ $) 51 T ELT)) (-2543 (($ $ $) 57 T ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 45 T ELT)) (-2544 (((-3 $ #1#) $ $) 52 T ELT)) (-3469 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2820 ((|#2| $) 36 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3820 (((-585 |#2|) $) 21 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-762 |#1| |#2|) (-10 -7 (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2546 (|#1| |#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3820 ((-585 |#2|) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3949 (|#1| (-486))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3949 ((-774) |#1|))) (-763 |#2|) (-963)) (T -762)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2539 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1="failed") $) 88 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 85 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3159 (((-486) $) 87 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 84 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 83 T ELT)) (-3962 (($ $) 77 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 68 (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2896 (($ |#1| (-696)) 75 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 70 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) 79 T ELT)) (-2545 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) 78 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-497)) ELT)) (-3951 (((-696) $) 80 T ELT)) (-2820 ((|#1| $) 69 (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 86 (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 81 T ELT)) (-3820 (((-585 |#1|) $) 74 T ELT)) (-3680 ((|#1| $ (-696)) 76 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2548 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-763 |#1|) (-113) (-963)) (T -763)) +((-3951 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-585 *3)))) (-2548 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2546 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2545 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2544 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-763 *3)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2538 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2536 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-763 *3)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(-13 (-963) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3951 ((-696) $)) (-15 -2823 ((-696) $)) (-15 -3177 (|t#1| $)) (-15 -3962 ($ $)) (-15 -3680 (|t#1| $ (-696))) (-15 -2896 ($ |t#1| (-696))) (-15 -3820 ((-585 |t#1|) $)) (-15 -2548 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-15 -3469 ((-3 $ "failed") $ |t#1|)) (-15 -2549 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2550 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-15 -2820 (|t#1| $)) (-15 -3506 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2551 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2546 ($ $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ((-3 $ "failed") $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -2541 ($ $ $)) (-15 -2552 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ((-3 $ "failed") $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -2535 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-355 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2547 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2552 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-497)) ELT)) (-2551 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2548 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-764 |#1| |#2|) (-10 -7 (-15 -2547 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2548 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-497)) (PROGN (-15 -2549 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2550 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2551 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2552 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-963) (-763 |#1|)) (T -764)) +((-2552 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2548 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-764 *2 *3)) (-4 *3 (-763 *2)))) (-2547 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-764 *5 *2)) (-4 *2 (-763 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3536 (((-774) $ (-774)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 30 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 28 (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3951 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 23 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 19 T ELT) (($ $ (-696)) 24 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-765 |#1| |#2| |#3|) (-13 (-763 |#1|) (-10 -8 (-15 -3536 ((-774) $ (-774))))) (-963) (-69 |#1|) (-1 |#1| |#1|)) (T -765)) +((-3536 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-765 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-696)) 17 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT)) (-3951 (((-696) $) NIL T ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) NIL T ELT) (($ (-1178 |#1|)) 19 T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 13 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-766 |#1| |#2| |#3| |#4|) (-13 (-763 |#2|) (-557 (-1178 |#1|))) (-1092) (-963) (-69 |#2|) (-1 |#2| |#2|)) (T -766)) +NIL +((-2555 ((|#1| (-696) |#1|) 45 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2554 ((|#1| (-696) (-696) |#1|) 36 T ELT) ((|#1| (-696) |#1|) 24 T ELT)) (-2553 ((|#1| (-696) |#1|) 40 T ELT)) (-2803 ((|#1| (-696) |#1|) 38 T ELT)) (-2802 ((|#1| (-696) |#1|) 37 T ELT))) +(((-767 |#1|) (-10 -7 (-15 -2802 (|#1| (-696) |#1|)) (-15 -2803 (|#1| (-696) |#1|)) (-15 -2553 (|#1| (-696) |#1|)) (-15 -2554 (|#1| (-696) |#1|)) (-15 -2554 (|#1| (-696) (-696) |#1|)) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -2555 (|#1| (-696) |#1|)) |%noBranch|)) (-146)) (T -767)) +((-2555 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146)))) (-2554 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) +((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (** (($ $ (-832)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-768) (-113)) (T -768)) +NIL +(-13 (-758) (-1027)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3405 (((-486) $) 14 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-486)) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 12 T ELT))) +(((-769) (-13 (-758) (-10 -8 (-15 -3949 ($ (-486))) (-15 -3405 ((-486) $))))) (T -769)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-769)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-769))))) +((-2556 (((-1187) (-585 (-51))) 23 T ELT)) (-3463 (((-1187) (-1075) (-774)) 13 T ELT) (((-1187) (-774)) 8 T ELT) (((-1187) (-1075)) 10 T ELT))) +(((-770) (-10 -7 (-15 -3463 ((-1187) (-1075))) (-15 -3463 ((-1187) (-774))) (-15 -3463 ((-1187) (-1075) (-774))) (-15 -2556 ((-1187) (-585 (-51)))))) (T -770)) +((-2556 (*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1187)) (-5 *1 (-770)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-770))))) +((-2558 (((-634 (-1140)) $ (-1140)) 15 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 12 T ELT)) (-2557 (((-696) $ (-102)) 30 T ELT))) +(((-771 |#1|) (-10 -7 (-15 -2557 ((-696) |#1| (-102))) (-15 -2558 ((-634 (-1140)) |#1| (-1140))) (-15 -2559 ((-634 (-490)) |#1| (-490)))) (-772)) (T -771)) +NIL +((-2558 (((-634 (-1140)) $ (-1140)) 8 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 9 T ELT)) (-2557 (((-696) $ (-102)) 7 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 10 T ELT)) (-1702 (($ $) 6 T ELT))) +(((-772) (-113)) (T -772)) +((-2560 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-101))) (-5 *3 (-101)))) (-2559 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-490))) (-5 *3 (-490)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-1140))) (-5 *3 (-1140)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *3 (-102)) (-5 *2 (-696))))) +(-13 (-147) (-10 -8 (-15 -2560 ((-634 (-101)) $ (-101))) (-15 -2559 ((-634 (-490)) $ (-490))) (-15 -2558 ((-634 (-1140)) $ (-1140))) (-15 -2557 ((-696) $ (-102))))) (((-147) . T)) -((-2557 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-695) $ (-102)) NIL T ELT)) (-2559 (((-633 (-101)) $ (-101)) 22 T ELT)) (-2561 (($ (-338)) 12 T ELT) (($ (-1074)) 14 T ELT)) (-2560 (((-85) $) 19 T ELT)) (-3948 (((-773) $) 26 T ELT)) (-1701 (($ $) 23 T ELT))) -(((-772) (-13 (-771) (-553 (-773)) (-10 -8 (-15 -2561 ($ (-338))) (-15 -2561 ($ (-1074))) (-15 -2560 ((-85) $))))) (T -772)) -((-2561 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-772)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) -((-2570 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2591 (($ $ $) 125 T ELT)) (-2606 (((-485) $) 31 T ELT) (((-485)) 36 T ELT)) (-2601 (($ (-485)) 53 T ELT)) (-2598 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2582 (($ $ (-584 $)) 82 T ELT)) (-2603 (((-485) $) 34 T ELT)) (-2585 (($ $ $) 73 T ELT)) (-3534 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2604 (((-485) $) 33 T ELT)) (-2586 (($ $ $) 72 T ELT)) (-3537 (($ $) 114 T ELT)) (-2589 (($ $ $) 129 T ELT)) (-2572 (($ (-584 $)) 61 T ELT)) (-3542 (($ $ (-584 $)) 79 T ELT)) (-2600 (($ (-485) (-485)) 55 T ELT)) (-2613 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3139 (($ $ (-485)) 43 T ELT) (($ $) 46 T ELT)) (-2566 (($ $ $) 97 T ELT)) (-2587 (($ $ $) 132 T ELT)) (-2581 (($ $) 115 T ELT)) (-2565 (($ $ $) 98 T ELT)) (-2577 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2839 (((-1186) $) 10 T ELT)) (-2580 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2583 (($ $ $) 75 T ELT)) (-2584 (($ $ $) 74 T ELT)) (-2597 (($ $ (-584 $)) 110 T ELT)) (-2595 (($ $ $) 113 T ELT)) (-2574 (($ (-584 $)) 59 T ELT)) (-2575 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2578 (($ $ $) 123 T ELT)) (-2579 (($ $) 116 T ELT)) (-2590 (($ $ $) 128 T ELT)) (-3535 (($ (-485)) 21 T ELT) (($ (-1091)) 23 T ELT) (($ (-1074)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2563 (($ $ $) 101 T ELT)) (-2562 (($ $) 102 T ELT)) (-2608 (((-1186) (-1074)) 15 T ELT)) (-2609 (($ (-1074)) 14 T ELT)) (-3125 (($ (-584 (-584 $))) 58 T ELT)) (-3140 (($ $ (-485)) 42 T ELT) (($ $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2593 (($ $ $) 131 T ELT)) (-3472 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2594 (((-85) $) 108 T ELT)) (-2596 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2602 (($ (-485)) 39 T ELT)) (-2605 (((-485) $) 32 T ELT) (((-485)) 35 T ELT)) (-2599 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (($ $ $) 99 T ELT)) (-3567 (($) 13 T ELT)) (-3802 (($ $ (-584 $)) 109 T ELT)) (-2607 (((-1074) (-1074)) 8 T ELT)) (-3838 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2567 (($ $ $) 96 T ELT)) (-3760 (($ $ (-695)) 139 T ELT)) (-2573 (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 19 T ELT)) (-3775 (($ $ (-485)) 41 T ELT) (($ $) 44 T ELT)) (-2576 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3242 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2592 (($ $) 124 T ELT)) (-2571 (($ (-584 $)) 65 T ELT)) (-3103 (($ $ $) 105 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2588 (($ $ $) 130 T ELT)) (-2564 (($ $ $) 100 T ELT)) (-3739 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2568 (($ $ $) 89 T ELT)) (-2569 (($ $ $) 87 T ELT)) (-3058 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2686 (($ $ $) 88 T ELT)) (-2687 (($ $ $) 86 T ELT)) (-3951 (($ $ $) 94 T ELT)) (-3839 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3841 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-773) (-13 (-1014) (-10 -8 (-15 -2839 ((-1186) $)) (-15 -2609 ($ (-1074))) (-15 -2608 ((-1186) (-1074))) (-15 -3535 ($ (-485))) (-15 -3535 ($ (-1091))) (-15 -3535 ($ (-1074))) (-15 -3535 ($ (-179))) (-15 -3567 ($)) (-15 -2607 ((-1074) (-1074))) (-15 -2606 ((-485) $)) (-15 -2605 ((-485) $)) (-15 -2606 ((-485))) (-15 -2605 ((-485))) (-15 -2604 ((-485) $)) (-15 -2603 ((-485) $)) (-15 -2602 ($ (-485))) (-15 -2601 ($ (-485))) (-15 -2600 ($ (-485) (-485))) (-15 -3140 ($ $ (-485))) (-15 -3139 ($ $ (-485))) (-15 -3775 ($ $ (-485))) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3775 ($ $)) (-15 -2599 ($ $ $)) (-15 -2598 ($ $ $)) (-15 -2599 ($ (-584 $))) (-15 -2598 ($ (-584 $))) (-15 -2597 ($ $ (-584 $))) (-15 -2596 ($ $ (-584 $))) (-15 -2596 ($ $ $ $)) (-15 -2595 ($ $ $)) (-15 -2594 ((-85) $)) (-15 -3802 ($ $ (-584 $))) (-15 -3537 ($ $)) (-15 -2593 ($ $ $)) (-15 -2592 ($ $)) (-15 -3125 ($ (-584 (-584 $)))) (-15 -2591 ($ $ $)) (-15 -2613 ($ $)) (-15 -2613 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3760 ($ $ (-695))) (-15 -3103 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -3542 ($ $ (-584 $))) (-15 -2582 ($ $ (-584 $))) (-15 -2581 ($ $)) (-15 -3838 ($ $)) (-15 -3838 ($ $ (-695))) (-15 -2580 ($ $)) (-15 -2580 ($ $ (-695))) (-15 -2579 ($ $)) (-15 -2578 ($ $ $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ $)) (-15 -3534 ($ $ $ $)) (-15 -2577 ($ $)) (-15 -2577 ($ $ $)) (-15 -2577 ($ $ $ $)) (-15 -3472 ($ $)) (-15 -3472 ($ $ $)) (-15 -3472 ($ $ $ $)) (-15 -3242 ($ $)) (-15 -3242 ($ (-584 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-584 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-584 $))) (-15 -2574 ($ (-584 $))) (-15 -2573 ($ (-584 $))) (-15 -2572 ($ (-584 $))) (-15 -2571 ($ (-584 $))) (-15 -3058 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3839 ($ $)) (-15 * ($ $ $)) (-15 -3951 ($ $ $)) (-15 ** ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3468 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $)) (-15 -3739 ($ $ $)) (-15 -3739 ($ $))))) (T -773)) -((-2839 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-773)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) (-3567 (*1 *1) (-5 *1 (-773))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2606 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2600 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3140 (*1 *1 *1) (-5 *1 (-773))) (-3139 (*1 *1 *1) (-5 *1 (-773))) (-3775 (*1 *1 *1) (-5 *1 (-773))) (-2599 (*1 *1 *1 *1) (-5 *1 (-773))) (-2598 (*1 *1 *1 *1) (-5 *1 (-773))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2596 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2595 (*1 *1 *1 *1) (-5 *1 (-773))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3537 (*1 *1 *1) (-5 *1 (-773))) (-2593 (*1 *1 *1 *1) (-5 *1 (-773))) (-2592 (*1 *1 *1) (-5 *1 (-773))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2591 (*1 *1 *1 *1) (-5 *1 (-773))) (-2613 (*1 *1 *1) (-5 *1 (-773))) (-2613 (*1 *1 *1 *1) (-5 *1 (-773))) (-2590 (*1 *1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1 *1) (-5 *1 (-773))) (-2588 (*1 *1 *1 *1) (-5 *1 (-773))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-3103 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-2583 (*1 *1 *1 *1) (-5 *1 (-773))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2581 (*1 *1 *1) (-5 *1 (-773))) (-3838 (*1 *1 *1) (-5 *1 (-773))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2580 (*1 *1 *1) (-5 *1 (-773))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2579 (*1 *1 *1) (-5 *1 (-773))) (-2578 (*1 *1 *1 *1) (-5 *1 (-773))) (-3534 (*1 *1 *1) (-5 *1 (-773))) (-3534 (*1 *1 *1 *1) (-5 *1 (-773))) (-3534 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3472 (*1 *1 *1) (-5 *1 (-773))) (-3472 (*1 *1 *1 *1) (-5 *1 (-773))) (-3472 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3242 (*1 *1 *1) (-5 *1 (-773))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2575 (*1 *1 *1) (-5 *1 (-773))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3058 (*1 *1 *1 *1) (-5 *1 (-773))) (-2570 (*1 *1 *1 *1) (-5 *1 (-773))) (-2687 (*1 *1 *1 *1) (-5 *1 (-773))) (-2569 (*1 *1 *1 *1) (-5 *1 (-773))) (-2686 (*1 *1 *1 *1) (-5 *1 (-773))) (-2568 (*1 *1 *1 *1) (-5 *1 (-773))) (-3841 (*1 *1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3951 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2567 (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-3468 (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1 *1) (-5 *1 (-773))) (-2562 (*1 *1 *1) (-5 *1 (-773))) (-3739 (*1 *1 *1 *1) (-5 *1 (-773))) (-3739 (*1 *1 *1) (-5 *1 (-773)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3833 (((-3 $ "failed") (-1091)) 36 T ELT)) (-3138 (((-695)) 32 T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3244 (((-1074) $) 43 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (((-1091) $) 13 T ELT) (((-474) $) 19 T ELT) (((-801 (-330)) $) 26 T ELT) (((-801 (-485)) $) 22 T ELT)) (-3948 (((-773) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 40 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 38 T ELT))) -(((-774 |#1|) (-13 (-753) (-554 (-1091)) (-554 (-474)) (-554 (-801 (-330))) (-554 (-801 (-485))) (-10 -8 (-15 -3833 ((-3 $ "failed") (-1091))))) (-584 (-1091))) (T -774)) -((-3833 (*1 *1 *2) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-447) $) 12 T ELT)) (-2610 (((-584 (-381)) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT))) -(((-775) (-13 (-1014) (-10 -8 (-15 -3544 ((-447) $)) (-15 -2610 ((-584 (-381)) $))))) (T -775)) -((-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3925 (((-1186) (-695)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-776 |#1| |#2| |#3| |#4|) (-13 (-962) (-430 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3951 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3925 ((-1186) (-695))))) (-962) (-584 (-1091)) (-584 (-695)) (-695)) (T -776)) -((-3951 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 *3)) (-14 *7 *3)))) -((-2611 (((-3 (-148 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2612 (((-3 (-350 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT))) -(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2612 ((-3 (-350 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-15 -2611 ((-3 (-148 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-312) (-1173 |#1|) (-1156 |#1|)) (T -777)) -((-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) (-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))) -((-2612 (((-3 (-350 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) 28 T ELT))) -(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2612 ((-3 (-350 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (-15 -2612 ((-3 (-350 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|)))) (-312) (-1091) |#1|) (T -778)) -((-2612 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3774 (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 (((-485)) NIL T ELT)) (-2615 (((-485) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3771 (($ $ (-485)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-1070 (-485)) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-485) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-779 |#1|) (-780 |#1|) (-485)) (T -779)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $ (-485)) 78 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2613 (($ (-1086 (-485)) (-485)) 77 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2614 (($ $) 80 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3774 (((-695) $) 85 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2616 (((-485)) 82 T ELT)) (-2615 (((-485) $) 81 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3771 (($ $ (-485)) 84 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-2617 (((-1070 (-485)) $) 86 T ELT)) (-2893 (($ $) 83 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3772 (((-485) $ (-485)) 79 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-780 |#1|) (-113) (-485)) (T -780)) -((-2617 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2893 (*1 *1 *1) (-4 *1 (-780 *2))) (-2616 (*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2614 (*1 *1 *1) (-4 *1 (-780 *2))) (-3772 (*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4))))) -(-13 (-258) (-120) (-10 -8 (-15 -2617 ((-1070 (-485)) $)) (-15 -3774 ((-695) $)) (-15 -3771 ($ $ (-485))) (-15 -2893 ($ $)) (-15 -2616 ((-485))) (-15 -2615 ((-485) $)) (-15 -2614 ($ $)) (-15 -3772 ((-485) $ (-485))) (-15 -3039 ($ $ (-485))) (-15 -2613 ($ (-1086 (-485)) (-485))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3158 (((-779 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3732 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-779 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-779 |#1|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-779 |#1|) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-779 |#1|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3960 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-779 |#1|) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-3132 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-249 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-249 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT) (($ $ (-1091) (-779 |#1|)) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-779 |#1|) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-779 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2618 (((-148 (-350 (-485))) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT))) -(((-781 |#1|) (-13 (-905 (-779 |#1|)) (-10 -8 (-15 -3772 ((-350 (-485)) $ (-485))) (-15 -2618 ((-148 (-350 (-485))) $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)))) (-485)) (T -781)) -((-3772 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#2| (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3158 ((|#2| $) NIL T ELT) (((-1091) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3732 (($ $) 35 T ELT) (($ (-485) $) 38 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 64 T ELT)) (-2996 (($) NIL (|has| |#2| (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#2| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#2| (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#2| $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 60 T ELT)) (-3448 (($) NIL (|has| |#2| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3132 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT) (($ $ (-1091) |#2|) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#2| $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| |#2| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#2| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#2| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#2| (-934)) ELT) (((-179) $) NIL (|has| |#2| (-934)) ELT)) (-2618 (((-148 (-350 (-485))) $) 78 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) 105 T ELT) (($ (-485)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1091)) NIL (|has| |#2| (-951 (-1091))) ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ (-485)) 71 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) 46 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3951 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3839 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3841 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-782 |#1| |#2|) (-13 (-905 |#2|) (-10 -8 (-15 -3772 ((-350 (-485)) $ (-485))) (-15 -2618 ((-148 (-350 (-485))) $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)))) (-485) (-780 |#1|)) (T -782)) -((-3772 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) (-4 *5 (-780 *4)))) (-2618 (*1 *2 *1) (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3732 (*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))) -((-2570 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3798 ((|#2| $) 12 T ELT)) (-2619 (($ |#1| |#2|) 9 T ELT)) (-3244 (((-1074) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3245 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#1| $) 11 T ELT)) (-3532 (($ |#1| |#2|) 10 T ELT)) (-3948 (((-773) $) 18 (OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) ELT)) (-1266 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3058 (((-85) $ $) 23 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT))) -(((-783 |#1| |#2|) (-13 (-1130) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2619 ($ |#1| |#2|)) (-15 -3532 ($ |#1| |#2|)) (-15 -3803 (|#1| $)) (-15 -3798 (|#2| $)))) (-1130) (-1130)) (T -783)) -((-2619 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3803 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2959 (((-485) $) 16 T ELT)) (-2621 (($ (-130)) 13 T ELT)) (-2620 (($ (-130)) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2958 (((-130) $) 15 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2623 (($ (-130)) 11 T ELT)) (-2624 (($ (-130)) 10 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2622 (($ (-130)) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-784) (-13 (-1014) (-556 (-130)) (-10 -8 (-15 -2624 ($ (-130))) (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2958 ((-130) $)) (-15 -2959 ((-485) $))))) (T -784)) -((-2624 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784))))) -((-3948 (((-265 (-485)) (-350 (-858 (-48)))) 23 T ELT) (((-265 (-485)) (-858 (-48))) 18 T ELT))) -(((-785) (-10 -7 (-15 -3948 ((-265 (-485)) (-858 (-48)))) (-15 -3948 ((-265 (-485)) (-350 (-858 (-48))))))) (T -785)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3568 (((-85) $ (|[\|\|]| (-447))) 9 T ELT) (((-85) $ (|[\|\|]| (-1074))) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3574 (((-447) $) 10 T ELT) (((-1074) $) 14 T ELT)) (-3058 (((-85) $ $) 15 T ELT))) -(((-786) (-13 (-996) (-1176) (-10 -8 (-15 -3568 ((-85) $ (|[\|\|]| (-447)))) (-15 -3574 ((-447) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3574 ((-1074) $))))) (T -786)) -((-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-786))))) -((-3960 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT))) -(((-787 |#1| |#2|) (-10 -7 (-15 -3960 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1130) (-1130)) (T -787)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))) -((-3373 (($ |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-695)) 15 T ELT))) -(((-788 |#1|) (-10 -8 (-15 -3373 ($ |#1| |#1|)) (-15 -2627 (|#1| $ (-695)))) (-1130)) (T -788)) -((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130)))) (-3373 (*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1130))))) -((-3960 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT))) -(((-789 |#1| |#2|) (-10 -7 (-15 -3960 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1130) (-1130)) (T -789)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))) -((-3373 (($ |#1| |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-695)) 15 T ELT))) -(((-790 |#1|) (-10 -8 (-15 -3373 ($ |#1| |#1| |#1|)) (-15 -2627 (|#1| $ (-695)))) (-1130)) (T -790)) -((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130)))) (-3373 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1130))))) -((-2625 (((-584 (-1096)) (-1074)) 9 T ELT))) -(((-791) (-10 -7 (-15 -2625 ((-584 (-1096)) (-1074))))) (T -791)) -((-2625 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791))))) -((-3960 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT))) -(((-792 |#1| |#2|) (-10 -7 (-15 -3960 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1130) (-1130)) (T -792)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) -((-2626 (($ |#1| |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-695)) 15 T ELT))) -(((-793 |#1|) (-10 -8 (-15 -2626 ($ |#1| |#1| |#1|)) (-15 -2627 (|#1| $ (-695)))) (-1130)) (T -793)) -((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130)))) (-2626 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1130))))) -((-2630 (((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485)))) 41 T ELT)) (-2629 (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 31 T ELT)) (-2631 (((-1070 (-584 (-485))) (-584 (-485))) 53 T ELT) (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 50 T ELT)) (-2632 (((-1070 (-584 (-485))) (-485)) 55 T ELT)) (-2628 (((-1070 (-584 (-831))) (-1070 (-584 (-831)))) 22 T ELT)) (-3011 (((-584 (-831)) (-584 (-831))) 18 T ELT))) -(((-794) (-10 -7 (-15 -3011 ((-584 (-831)) (-584 (-831)))) (-15 -2628 ((-1070 (-584 (-831))) (-1070 (-584 (-831))))) (-15 -2629 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2630 ((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485))))) (-15 -2631 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2631 ((-1070 (-584 (-485))) (-584 (-485)))) (-15 -2632 ((-1070 (-584 (-485))) (-485))))) (T -794)) -((-2632 (*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2631 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2630 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))) (-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794))))) -((-3974 (((-801 (-330)) $) 9 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 8 (|has| |#1| (-554 (-801 (-485)))) ELT))) -(((-795 |#1|) (-113) (-1130)) (T -795)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|))) -(((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3616 (($) 14 T ELT)) (-2634 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2633 (((-799 |#1| |#3|) $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2642 (((-85) $) 22 T ELT)) (-2641 (($) 19 T ELT)) (-3948 (((-773) $) 31 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2852 (((-799 |#1| |#2|) $) 15 T ELT)) (-3058 (((-85) $ $) 26 T ELT))) -(((-796 |#1| |#2| |#3|) (-13 (-1014) (-10 -8 (-15 -2642 ((-85) $)) (-15 -2641 ($)) (-15 -3616 ($)) (-15 -2634 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-15 -2852 ((-799 |#1| |#2|) $)) (-15 -2633 ((-799 |#1| |#3|) $)))) (-1014) (-1014) (-609 |#2|)) (T -796)) -((-2642 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2641 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-3616 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-2634 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2852 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2633 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-2798 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-797 |#1|) (-113) (-1014)) (T -797)) -((-2798 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -2798 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2635 (((-85) (-584 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2636 (((-799 |#1| |#2|) |#2| |#3|) 45 (-12 (-2562 (|has| |#2| (-951 (-1091)))) (-2562 (|has| |#2| (-962)))) ELT) (((-584 (-249 (-858 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-962)) (-2562 (|has| |#2| (-951 (-1091))))) ELT) (((-584 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1091))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT))) -(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2635 ((-85) |#2| |#3|)) (-15 -2635 ((-85) (-584 |#2|) |#3|)) (-15 -2636 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1091))) (-15 -2636 ((-584 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2636 ((-584 (-249 (-858 |#2|))) |#2| |#3|)) (-15 -2636 ((-799 |#1| |#2|) |#2| |#3|))))) (-1014) (-797 |#1|) (-554 (-801 |#1|))) (T -798)) -((-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2562 (-4 *3 (-951 (-1091)))) (-2562 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2562 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3236 (($ $ $) 40 T ELT)) (-2663 (((-3 (-85) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3616 (($) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2638 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2640 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2642 (((-85) $) 15 T ELT)) (-2641 (($) 13 T ELT)) (-3259 (((-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|)))) 23 T ELT)) (-3948 (((-773) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2637 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2639 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3058 (((-85) $ $) 42 T ELT))) -(((-799 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2642 ((-85) $)) (-15 -2641 ($)) (-15 -3616 ($)) (-15 -3236 ($ $ $)) (-15 -2640 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-15 -2639 ($ (-801 |#1|) |#2| $)) (-15 -2638 ($ (-801 |#1|) |#2| $)) (-15 -2637 ($ (-801 |#1|) |#2| $ |#2|)) (-15 -3259 ((-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|))) $)) (-15 -3532 ($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|))))) (-15 -2663 ((-3 (-85) #1#) $ (-801 |#1|))))) (-1014) (-1014)) (T -799)) -((-2642 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2641 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3616 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3236 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2640 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-799 *4 *2)))) (-2639 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2638 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2637 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) (-2663 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1014))))) -((-3960 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT))) -(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -800)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2650 (($ $ (-584 (-51))) 74 T ELT)) (-3083 (((-584 $) $) 139 T ELT)) (-2647 (((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))) $) 30 T ELT)) (-3262 (((-85) $) 35 T ELT)) (-2648 (($ $ (-584 (-1091)) (-51)) 31 T ELT)) (-2651 (($ $ (-584 (-51))) 73 T ELT)) (-3159 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1091) #1#) $) 167 T ELT)) (-3158 ((|#1| $) 68 T ELT) (((-1091) $) NIL T ELT)) (-2645 (($ $) 126 T ELT)) (-2657 (((-85) $) 55 T ELT)) (-2652 (((-584 (-51)) $) 50 T ELT)) (-2649 (($ (-1091) (-85) (-85) (-85)) 75 T ELT)) (-2643 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2654 (((-85) $) 58 T ELT)) (-2655 (((-85) $) 57 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2660 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $) 97 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2661 (((-3 (-584 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2659 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $) 45 T ELT)) (-2658 (((-85) $) 34 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2646 (((-85) $) 28 T ELT)) (-2653 (((-85) $) 52 T ELT)) (-2644 (((-584 (-51)) $) 130 T ELT)) (-2656 (((-85) $) 56 T ELT)) (-3802 (($ (-86) (-584 $)) 104 T ELT)) (-3324 (((-695) $) 33 T ELT)) (-3402 (($ $) 72 T ELT)) (-3974 (($ (-584 $)) 69 T ELT)) (-3955 (((-85) $) 32 T ELT)) (-3948 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1091)) 76 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2664 (($ $ (-51)) 129 T ELT)) (-2662 (($) 103 T CONST)) (-2668 (($) 83 T CONST)) (-3058 (((-85) $ $) 93 T ELT)) (-3951 (($ $ $) 117 T ELT)) (-3841 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-801 |#1|) (-13 (-1014) (-951 |#1|) (-951 (-1091)) (-10 -8 (-15 -2662 ($) -3954) (-15 -2668 ($) -3954) (-15 -2824 ((-3 (-584 $) #1="failed") $)) (-15 -2825 ((-3 (-584 $) #1#) $)) (-15 -2661 ((-3 (-584 $) #1#) $ (-86))) (-15 -2661 ((-3 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 $))) #1#) $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $)) (-15 -2660 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2659 ((-3 (-584 $) #1#) $)) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $)) (-15 -3802 ($ (-86) (-584 $))) (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ $)) (-15 -3951 ($ $ $)) (-15 -3324 ((-695) $)) (-15 -3974 ($ (-584 $))) (-15 -3402 ($ $)) (-15 -2658 ((-85) $)) (-15 -2657 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3955 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-584 (-51)) $)) (-15 -2651 ($ $ (-584 (-51)))) (-15 -2650 ($ $ (-584 (-51)))) (-15 -2649 ($ (-1091) (-85) (-85) (-85))) (-15 -2648 ($ $ (-584 (-1091)) (-51))) (-15 -2647 ((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))) $)) (-15 -2646 ((-85) $)) (-15 -2645 ($ $)) (-15 -2664 ($ $ (-51))) (-15 -2644 ((-584 (-51)) $)) (-15 -3083 ((-584 $) $)) (-15 -2643 ((-3 (-584 $) #1#) (-584 $))))) (-1014)) (T -801)) -((-2662 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2668 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2661 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2661 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2827 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-3841 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3402 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2649 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2643 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -((-3211 (((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-85) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2663 (((-85) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-85) |#2| (-801 |#1|)) 36 T ELT)) (-3533 (((-1 (-85) |#2|) (-801 |#1|)) 16 T ELT)) (-2665 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2664 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3211 ((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|))) (-15 -3211 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|)))) (-15 -3211 ((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-85) (-584 |#2|)))) (-15 -3533 ((-1 (-85) |#2|) (-801 |#1|))) (-15 -2663 ((-85) |#2| (-801 |#1|))) (-15 -2663 ((-85) (-584 |#2|) (-801 |#1|))) (-15 -2664 ((-801 |#1|) (-801 |#1|) |#2|)) (-15 -2665 ((-584 |#2|) (-801 |#1|)))) (-1014) (-1130)) (T -802)) -((-2665 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-2664 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1130)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-3211 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-85) (-584 *6))) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5))))) -((-3960 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT))) -(((-803 |#1| |#2|) (-10 -7 (-15 -3960 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1014) (-1014)) (T -803)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) 20 T ELT)) (-2666 (((-85) $) 49 T ELT)) (-3159 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3158 (((-615 |#1|) $) 53 T ELT)) (-3801 (($ $) 24 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3835 (((-695) $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-615 |#1|) $) 22 T ELT)) (-3948 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 11 T CONST)) (-2667 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 66 T ELT))) -(((-804 |#1|) (-13 (-757) (-951 (-615 |#1|)) (-10 -8 (-15 -2668 ($) -3954) (-15 -3948 ((-740 |#1|) $)) (-15 -3948 ($ |#1|)) (-15 -3803 ((-615 |#1|) $)) (-15 -3835 ((-695) $)) (-15 -2667 ((-584 (-615 |#1|)) $)) (-15 -3801 ($ $)) (-15 -2666 ((-85) $)) (-15 -3936 ((-584 |#1|) $)))) (-757)) (T -804)) -((-2668 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3948 (*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))) -((-3476 ((|#1| |#1| |#1|) 19 T ELT))) -(((-805 |#1| |#2|) (-10 -7 (-15 -3476 (|#1| |#1| |#1|))) (-1156 |#2|) (-962)) (T -805)) -((-3476 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3))))) -((-2671 ((|#2| $ |#3|) 10 T ELT))) -(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2671 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1130) (-1130)) (T -806)) -NIL -((-3760 ((|#1| $ |#2|) 7 T ELT)) (-2671 ((|#1| $ |#2|) 6 T ELT))) -(((-807 |#1| |#2|) (-113) (-1130) (-1130)) (T -807)) -((-3760 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -3760 (|t#1| $ |t#2|)) (-15 -2671 (|t#1| $ |t#2|)))) -(((-13) . T) ((-1130) . T)) -((-2670 ((|#1| |#1| (-695)) 26 T ELT)) (-2669 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3437 (((-3 (-2 (|:| -3140 |#1|) (|:| -3139 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT))) -(((-808 |#1| |#2|) (-10 -7 (-15 -3437 ((-584 |#1|) |#1|)) (-15 -3437 ((-3 (-2 (|:| -3140 |#1|) (|:| -3139 |#1|)) #1="failed") |#1| (-695) (-695))) (-15 -2669 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2670 (|#1| |#1| (-695)))) (-1156 |#2|) (-312)) (T -808)) -((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4)))) (-2669 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3)))) (-3437 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1156 *5)))) (-3437 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) 45 T ELT) (($ $ |#2| (-695)) 44 T ELT) (($ $ (-584 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) 48 T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-809 |#1| |#2|) (-113) (-962) (-1014)) (T -809)) -NIL -(-13 (-82 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-584 |#1|) (-584 (-695))) 52 T ELT) (($ $ |#1| (-695)) 51 T ELT) (($ $ (-584 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#1|) (-584 (-695))) 55 T ELT) (($ $ |#1| (-695)) 54 T ELT) (($ $ (-584 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-810 |#1|) (-113) (-1014)) (T -810)) -NIL -(-13 (-962) (-812 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3760 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2671 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT))) -(((-811 |#1| |#2|) (-10 -7 (-15 -2671 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -2671 (|#1| |#1| |#2| (-695))) (-15 -2671 (|#1| |#1| (-584 |#2|))) (-15 -3760 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -3760 (|#1| |#1| |#2| (-695))) (-15 -3760 (|#1| |#1| (-584 |#2|))) (-15 -2671 (|#1| |#1| |#2|)) (-15 -3760 (|#1| |#1| |#2|))) (-812 |#2|) (-1014)) (T -811)) -NIL -((-3760 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2671 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT))) -(((-812 |#1|) (-113) (-1014)) (T -812)) -((-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014))))) -(-13 (-807 $ |t#1|) (-10 -8 (-15 -3760 ($ $ (-584 |t#1|))) (-15 -3760 ($ $ |t#1| (-695))) (-15 -3760 ($ $ (-584 |t#1|) (-584 (-695)))) (-15 -2671 ($ $ (-584 |t#1|))) (-15 -2671 ($ $ |t#1| (-695))) (-15 -2671 ($ $ (-584 |t#1|) (-584 (-695)))))) -(((-13) . T) ((-807 $ |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 26 T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 25 T ELT)) (-2672 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 23 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) 20 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1117 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 21 (|has| |#1| (-72)) ELT))) -(((-813 |#1|) (-13 (-92 |#1|) (-553 (-1117 |#1|)) (-10 -8 (-15 -2672 ($ |#1|)) (-15 -2672 ($ $ $)))) (-1014)) (T -813)) -((-2672 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) (-2672 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2688 (((-1010 |#1|) $) 61 T ELT)) (-2911 (((-584 $) (-584 $)) 104 T ELT)) (-3625 (((-485) $) 84 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-3774 (((-695) $) 81 T ELT)) (-2692 (((-1010 |#1|) $ |#1|) 71 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2675 (((-85) $) 89 T ELT)) (-2677 (((-695) $) 85 T ELT)) (-2533 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2859 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2681 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 131 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2674 (((-1010 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2676 (((-85) $) 82 T ELT)) (-3802 ((|#1| $ |#1|) 69 T ELT)) (-3950 (((-695) $) 63 T ELT)) (-2683 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2678 (((-885) $) 75 T ELT)) (-2684 (($ (-584 |#1|)) 32 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-2680 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2679 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2673 (($ (-584 |#1|)) 133 T ELT)) (-3948 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2569 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-3058 (((-85) $ $) 67 T ELT)) (-2686 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2687 (((-85) $ $) 91 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-814 |#1|) (-13 (-816 |#1|) (-10 -8 (-15 -2681 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-15 -2680 ($ (-584 (-584 |#1|)))) (-15 -3948 ($ (-584 (-584 |#1|)))) (-15 -3948 ($ (-584 |#1|))) (-15 -2679 ($ (-584 (-584 |#1|)))) (-15 -3950 ((-695) $)) (-15 -2678 ((-885) $)) (-15 -3774 ((-695) $)) (-15 -2677 ((-695) $)) (-15 -3625 ((-485) $)) (-15 -2676 ((-85) $)) (-15 -2675 ((-85) $)) (-15 -2911 ((-584 $) (-584 $))) (IF (|has| |#1| (-320)) (-15 -2674 ((-1010 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-484)) (-15 -2673 ($ (-584 |#1|))) (IF (|has| |#1| (-320)) (-15 -2673 ($ (-584 |#1|))) |%noBranch|)))) (-1014)) (T -814)) -((-2681 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) -((-2682 ((|#2| (-1057 |#1| |#2|)) 48 T ELT))) -(((-815 |#1| |#2|) (-10 -7 (-15 -2682 (|#2| (-1057 |#1| |#2|)))) (-831) (-13 (-962) (-10 -7 (-6 (-3999 "*"))))) (T -815)) -((-2682 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-831)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-3999 "*"))))) (-5 *1 (-815 *4 *2))))) -((-2570 (((-85) $ $) 7 T ELT)) (-2688 (((-1010 |#1|) $) 42 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-2692 (((-1010 |#1|) $ |#1|) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2533 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2859 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 30 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3802 ((|#1| $ |#1|) 45 T ELT)) (-2683 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2684 (($ (-584 |#1|)) 44 T ELT)) (-3011 (($ $ $) 27 T ELT)) (-2437 (($ $ $) 26 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2569 (((-85) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2687 (((-85) $ $) 40 T ELT)) (-3951 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-816 |#1|) (-113) (-1014)) (T -816)) -((-2684 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) -(-13 (-413) (-241 |t#1| |t#1|) (-10 -8 (-15 -2684 ($ (-584 |t#1|))) (-15 -2683 ($ (-584 (-584 |t#1|)))) (-15 -2688 ((-1010 |t#1|) $)) (-15 -2692 ((-1010 |t#1|) $ |t#1|)) (-15 -2687 ((-85) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-757)) |%noBranch|))) -(((-72) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-413) . T) ((-13) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2694 (((-584 (-584 (-695))) $) 163 T ELT)) (-2690 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2689 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2688 (((-1010 |#1|) $) 155 T ELT)) (-2695 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2996 (((-814 |#1|) $ (-485)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2693 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3774 (((-695) $) 159 T ELT)) (-2691 (((-1010 (-1010 |#1|)) $) 189 T ELT)) (-2692 (((-1010 |#1|) $ |#1|) 180 T ELT) (((-1010 (-1010 |#1|)) $ (-1010 |#1|)) 201 T ELT) (((-1010 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3247 (((-85) (-814 |#1|) $) 140 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2685 (((-1186) $) 145 T ELT) (((-1186) $ (-485) (-485)) 205 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2697 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3802 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3950 (((-695) $) 160 T ELT)) (-3948 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-584 |#1|) $) 162 T ELT)) (-3058 (((-85) $ $) 198 T ELT)) (-2686 (((-85) $ $) 195 T ELT)) (-2687 (((-85) $ $) 194 T ELT))) -(((-817 |#1|) (-13 (-1014) (-10 -8 (-15 -3948 ((-584 (-814 |#1|)) $)) (-15 -2697 ((-584 (-814 |#1|)) $)) (-15 -3802 ((-814 |#1|) $ (-695))) (-15 -2996 ((-814 |#1|) $ (-485))) (-15 -2996 ((-814 |#1|) $)) (-15 -3774 ((-695) $)) (-15 -3950 ((-695) $)) (-15 -2696 ((-584 |#1|) $)) (-15 -2695 ((-584 (-814 |#1|)) $)) (-15 -2694 ((-584 (-584 (-695))) $)) (-15 -3948 ($ (-584 (-814 |#1|)))) (-15 -2693 ($ (-584 (-814 |#1|)))) (-15 -2692 ((-1010 |#1|) $ |#1|)) (-15 -2691 ((-1010 (-1010 |#1|)) $)) (-15 -2692 ((-1010 (-1010 |#1|)) $ (-1010 |#1|))) (-15 -2692 ((-1010 (-584 |#1|)) $ (-584 |#1|))) (-15 -3247 ((-85) (-814 |#1|) $)) (-15 -2690 ((-584 (-695)) (-814 |#1|) $)) (-15 -2689 ((-584 (-695)) (-814 |#1|) $)) (-15 -2688 ((-1010 |#1|) $)) (-15 -2687 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2685 ((-1186) $)) (-15 -2685 ((-1186) $ (-485) (-485))))) (-1014)) (T -817)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2996 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1010 *4)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) (-2690 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2687 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2685 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 $ #1#) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1796 (($ (-1180 $)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1768 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3134 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL T ELT)) (-2011 (((-831) $) NIL T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2401 (($ (-831)) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| $ (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3950 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3187 (((-1086 $)) NIL T ELT)) (-1675 (($) NIL T ELT)) (-1630 (($) NIL (|has| $ (-320)) ELT)) (-3226 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) NIL T ELT)) (-3974 (((-485) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $) (-831)) NIL T ELT) (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-818 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -818)) -NIL -((-2699 (((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|)) 164 T ELT)) (-2702 ((|#1|) 101 T ELT)) (-2701 (((-348 (-1086 |#4|)) (-1086 |#4|)) 173 T ELT)) (-2703 (((-348 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)) 83 T ELT)) (-2700 (((-348 (-1086 |#4|)) (-1086 |#4|)) 183 T ELT)) (-2698 (((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|) 117 T ELT))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2699 ((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|))) (-15 -2700 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2701 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2702 (|#1|)) (-15 -2698 ((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -2703 ((-348 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819)) -((-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-2698 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2699 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7))))) -((-2699 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 39 T ELT)) (-2702 ((|#1|) 71 T ELT)) (-2701 (((-348 (-1086 |#2|)) (-1086 |#2|)) 125 T ELT)) (-2703 (((-348 (-1086 |#2|)) (-1086 |#2|)) 109 T ELT)) (-2700 (((-348 (-1086 |#2|)) (-1086 |#2|)) 136 T ELT))) -(((-820 |#1| |#2|) (-10 -7 (-15 -2699 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|))) (-15 -2700 ((-348 (-1086 |#2|)) (-1086 |#2|))) (-15 -2701 ((-348 (-1086 |#2|)) (-1086 |#2|))) (-15 -2702 (|#1|)) (-15 -2703 ((-348 (-1086 |#2|)) (-1086 |#2|)))) (-822) (-1156 |#1|)) (T -820)) -((-2703 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2702 (*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2699 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5))))) -((-2706 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 46 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 18 T ELT)) (-2704 (((-633 $) $) 40 T ELT))) -(((-821 |#1|) (-10 -7 (-15 -2704 ((-633 |#1|) |#1|)) (-15 -2706 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-822)) (T -821)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 75 T ELT)) (-3777 (($ $) 66 T ELT)) (-3973 (((-348 $) $) 67 T ELT)) (-2706 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 72 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3725 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 73 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 74 T ELT)) (-3734 (((-348 $) $) 65 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 71 (|has| $ (-118)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-2704 (((-633 $) $) 70 (|has| $ (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-822) (-113)) (T -822)) -((-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-822)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822)))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) (-5 *2 (-1180 *1)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822))))) -(-13 (-1135) (-10 -8 (-15 -2709 ((-348 (-1086 $)) (-1086 $))) (-15 -2708 ((-348 (-1086 $)) (-1086 $))) (-15 -2707 ((-348 (-1086 $)) (-1086 $))) (-15 -2710 ((-1086 $) (-1086 $) (-1086 $))) (-15 -2706 ((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $))) (IF (|has| $ (-118)) (PROGN (-15 -2705 ((-3 (-1180 $) "failed") (-631 $))) (-15 -2704 ((-633 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-2712 (((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2711 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3774 (((-3 (-695) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3774 ((-3 (-695) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2711 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2712 ((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -823)) -((-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3774 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8))))) -((-2712 (((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#3|)) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|)) 64 T ELT)) (-2711 (((-85) (-283 (-350 (-485)) |#1| |#2| |#3|)) 16 T ELT)) (-3774 (((-3 (-695) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)) 14 T ELT))) -(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -3774 ((-3 (-695) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2711 ((-85) (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2712 ((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#3|)) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)))) (-1156 (-350 (-485))) (-1156 (-350 |#1|)) (-291 (-350 (-485)) |#1| |#2|)) (T -824)) -((-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6)))) (-3774 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))) -((-2717 ((|#2| |#2|) 26 T ELT)) (-2715 (((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) 15 T ELT)) (-2713 (((-831) (-485)) 38 T ELT)) (-2716 (((-485) |#2|) 45 T ELT)) (-2714 (((-485) |#2|) 21 T ELT) (((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|) 20 T ELT))) -(((-825 |#1| |#2|) (-10 -7 (-15 -2713 ((-831) (-485))) (-15 -2714 ((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|)) (-15 -2714 ((-485) |#2|)) (-15 -2715 ((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))) (-15 -2716 ((-485) |#2|)) (-15 -2717 (|#2| |#2|))) (-1156 (-350 (-485))) (-1156 (-350 |#1|))) (T -825)) -((-2717 (*1 *2 *2) (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1156 (-350 *3))))) (-2716 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1156 (-350 *3))))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-350 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) 99 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 93 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2725 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2719 (((-1086 |#1|) |#1| |#1|) 52 T ELT)) (-2718 (($ $) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2720 (((-485) $) 96 T ELT)) (-2721 (($ $ (-485)) 98 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2722 ((|#1| $) 95 T ELT)) (-2723 (((-348 |#1|) $) 94 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 92 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2724 (($ $) 49 T ELT)) (-3948 (((-773) $) 123 T ELT) (($ (-485)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3128 (((-695)) 70 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 12 T CONST)) (-3058 (((-85) $ $) 86 T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-826 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3948 ((-350 |#1|) $)) (-15 -3948 ($ (-350 (-348 |#1|)))) (-15 -2724 ($ $)) (-15 -2723 ((-348 |#1|) $)) (-15 -2722 (|#1| $)) (-15 -2721 ($ $ (-485))) (-15 -2720 ((-485) $)) (-15 -2719 ((-1086 |#1|) |#1| |#1|)) (-15 -2718 ($ $)) (-15 -2725 ($ |#1| (-348 |#1|))) (-15 -3131 (|#1| $)))) (-258)) (T -826)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2722 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2)))) (-3131 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) -((-2725 (((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1091)) 17 T ELT) (((-51) (-350 (-858 |#1|)) (-1091)) 18 T ELT))) -(((-827 |#1|) (-10 -7 (-15 -2725 ((-51) (-350 (-858 |#1|)) (-1091))) (-15 -2725 ((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -827)) -((-2725 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *5))))) -((-2726 ((|#4| (-584 |#4|)) 148 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3146 (((-1086 |#4|) (-584 (-1086 |#4|))) 141 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3146 (|#4| |#4| |#4|)) (-15 -3146 (|#4| (-584 |#4|))) (-15 -3146 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3146 ((-1086 |#4|) (-584 (-1086 |#4|)))) (-15 -2726 (|#4| |#4| |#4|)) (-15 -2726 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2726 (|#4| (-584 |#4|)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -828)) -((-2726 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-2726 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2726 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4))))) -((-2739 (((-817 (-485)) (-885)) 38 T ELT) (((-817 (-485)) (-584 (-485))) 34 T ELT)) (-2727 (((-817 (-485)) (-584 (-485))) 66 T ELT) (((-817 (-485)) (-831)) 67 T ELT)) (-2738 (((-817 (-485))) 39 T ELT)) (-2736 (((-817 (-485))) 53 T ELT) (((-817 (-485)) (-584 (-485))) 52 T ELT)) (-2735 (((-817 (-485))) 51 T ELT) (((-817 (-485)) (-584 (-485))) 50 T ELT)) (-2734 (((-817 (-485))) 49 T ELT) (((-817 (-485)) (-584 (-485))) 48 T ELT)) (-2733 (((-817 (-485))) 47 T ELT) (((-817 (-485)) (-584 (-485))) 46 T ELT)) (-2732 (((-817 (-485))) 45 T ELT) (((-817 (-485)) (-584 (-485))) 44 T ELT)) (-2737 (((-817 (-485))) 55 T ELT) (((-817 (-485)) (-584 (-485))) 54 T ELT)) (-2731 (((-817 (-485)) (-584 (-485))) 71 T ELT) (((-817 (-485)) (-831)) 73 T ELT)) (-2730 (((-817 (-485)) (-584 (-485))) 68 T ELT) (((-817 (-485)) (-831)) 69 T ELT)) (-2728 (((-817 (-485)) (-584 (-485))) 64 T ELT) (((-817 (-485)) (-831)) 65 T ELT)) (-2729 (((-817 (-485)) (-584 (-831))) 57 T ELT))) -(((-829) (-10 -7 (-15 -2727 ((-817 (-485)) (-831))) (-15 -2727 ((-817 (-485)) (-584 (-485)))) (-15 -2728 ((-817 (-485)) (-831))) (-15 -2728 ((-817 (-485)) (-584 (-485)))) (-15 -2729 ((-817 (-485)) (-584 (-831)))) (-15 -2730 ((-817 (-485)) (-831))) (-15 -2730 ((-817 (-485)) (-584 (-485)))) (-15 -2731 ((-817 (-485)) (-831))) (-15 -2731 ((-817 (-485)) (-584 (-485)))) (-15 -2732 ((-817 (-485)) (-584 (-485)))) (-15 -2732 ((-817 (-485)))) (-15 -2733 ((-817 (-485)) (-584 (-485)))) (-15 -2733 ((-817 (-485)))) (-15 -2734 ((-817 (-485)) (-584 (-485)))) (-15 -2734 ((-817 (-485)))) (-15 -2735 ((-817 (-485)) (-584 (-485)))) (-15 -2735 ((-817 (-485)))) (-15 -2736 ((-817 (-485)) (-584 (-485)))) (-15 -2736 ((-817 (-485)))) (-15 -2737 ((-817 (-485)) (-584 (-485)))) (-15 -2737 ((-817 (-485)))) (-15 -2738 ((-817 (-485)))) (-15 -2739 ((-817 (-485)) (-584 (-485)))) (-15 -2739 ((-817 (-485)) (-885))))) (T -829)) -((-2739 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2738 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -((-2741 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 14 T ELT)) (-2740 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 13 T ELT))) -(((-830 |#1|) (-10 -7 (-15 -2740 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2741 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))))) (-392)) (T -830)) -((-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4)))) (-2740 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3146 (($ $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-831) (-13 (-719) (-664) (-10 -8 (-15 -3146 ($ $ $)) (-6 (-3999 "*"))))) (T -831)) -((-3146 (*1 *1 *1 *1) (-5 *1 (-831)))) -((-695) (|%ilt| 0 |#1|)) -((-3948 (((-265 |#1|) (-417)) 16 T ELT))) -(((-832 |#1|) (-10 -7 (-15 -3948 ((-265 |#1|) (-417)))) (-496)) (T -832)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-833) (-113)) (T -833)) -((-2743 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3956 (-584 *1)) (|:| -2410 *1))) (-5 *3 (-584 *1)))) (-2742 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1))))) -(-13 (-392) (-10 -8 (-15 -2743 ((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $))) (-15 -2742 ((-633 (-584 $)) (-584 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3107 (((-1086 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -3107 ((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-15 -3107 ((-1086 |#2|) (-584 |#2|) (-584 |#2|)))) (-1091) (-312)) (T -834)) -((-3107 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5)) (-14 *4 (-1091)))) (-3107 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) (-5 *1 (-834 *4 *5))))) -((-2744 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT))) -(((-835 |#1| |#2|) (-10 -7 (-15 -2744 (|#2| (-584 |#1|) (-584 |#1|)))) (-312) (-1156 |#1|)) (T -835)) -((-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) (-5 *1 (-835 *4 *2))))) -((-2746 (((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074)) 175 T ELT)) (-2765 ((|#4| |#4|) 194 T ELT)) (-2750 (((-584 (-350 (-858 |#1|))) (-584 (-1091))) 146 T ELT)) (-2764 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485)) 88 T ELT)) (-2754 (((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2763 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2747 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074)) 187 T ELT)) (-2745 (((-485) (-631 |#4|) (-831) (-1074)) 167 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074)) 166 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074)) 165 T ELT) (((-485) (-631 |#4|) (-1074)) 154 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-1074)) 153 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-1074)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2751 ((|#4| (-858 |#1|)) 80 T ELT)) (-2761 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2760 (((-584 (-584 (-485))) (-485) (-485)) 161 T ELT)) (-2759 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2758 (((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2757 (((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2766 (((-85) (-584 (-858 |#1|))) 19 T ELT) (((-85) (-584 |#4|)) 15 T ELT)) (-2752 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2756 (((-584 |#4|) |#4|) 57 T ELT)) (-2749 (((-584 (-350 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-350 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-350 (-858 |#1|)) |#4|) 139 T ELT)) (-2748 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1074) (-485)) 112 T ELT)) (-2753 (((-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2762 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695)) 121 T ELT)) (-2755 (((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) 56 T ELT))) -(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-15 -2745 ((-485) (-631 |#4|) (-584 |#4|) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-584 (-1091)) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-831) (-1074))) (-15 -2746 ((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074))) (-15 -2747 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074))) (-15 -2748 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1074) (-485))) (-15 -2749 ((-350 (-858 |#1|)) |#4|)) (-15 -2749 ((-631 (-350 (-858 |#1|))) (-631 |#4|))) (-15 -2749 ((-584 (-350 (-858 |#1|))) (-584 |#4|))) (-15 -2750 ((-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -2751 (|#4| (-858 |#1|))) (-15 -2752 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-15 -2753 ((-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-15 -2754 ((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-584 |#4|))) (-15 -2755 ((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-15 -2756 ((-584 |#4|) |#4|)) (-15 -2757 ((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2758 ((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2759 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-15 -2760 ((-584 (-584 (-485))) (-485) (-485))) (-15 -2761 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2762 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695))) (-15 -2763 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-15 -2764 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485))) (-15 -2765 (|#4| |#4|)) (-15 -2766 ((-85) (-584 |#4|))) (-15 -2766 ((-85) (-584 (-858 |#1|))))) (-13 (-258) (-120)) (-13 (-757) (-554 (-1091))) (-718) (-862 |#1| |#3| |#2|)) (T -836)) -((-2766 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2764 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1091)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *9)))) (|:| -2013 (-584 (-1180 (-350 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2763 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4)))) (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2748 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-13 (-757) (-554 (-1091)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *8)))) (|:| -2013 (-584 (-1180 (-350 (-858 *8)))))))))) (|:| |rgsz| (-485)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2745 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) -((-3876 (($ $ (-1002 (-179))) 125 T ELT) (($ $ (-1002 (-179)) (-1002 (-179))) 126 T ELT)) (-2898 (((-1002 (-179)) $) 73 T ELT)) (-2899 (((-1002 (-179)) $) 72 T ELT)) (-2790 (((-1002 (-179)) $) 74 T ELT)) (-2771 (((-485) (-485)) 66 T ELT)) (-2775 (((-485) (-485)) 61 T ELT)) (-2773 (((-485) (-485)) 64 T ELT)) (-2769 (((-85) (-85)) 68 T ELT)) (-2772 (((-485)) 65 T ELT)) (-3136 (($ $ (-1002 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2792 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 148 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 149 T ELT)) (-2778 (($ (-1 (-179) (-179)) (-1002 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2791 (($ (-1 (-179) (-179)) (-1002 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179))) 145 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179))) 153 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 147 T ELT) (($ $ (-1002 (-179))) 131 T ELT)) (-2777 (((-85) $) 69 T ELT)) (-2768 (((-485)) 70 T ELT)) (-2776 (((-485)) 59 T ELT)) (-2774 (((-485)) 62 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 35 T ELT)) (-2767 (((-85) (-85)) 71 T ELT)) (-3948 (((-773) $) 174 T ELT)) (-2770 (((-85)) 67 T ELT))) -(((-837) (-13 (-867) (-10 -8 (-15 -2791 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)))) (-15 -2791 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2778 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2778 ($ (-1 (-179) (-179)))) (-15 -2791 ($ $ (-1002 (-179)))) (-15 -2777 ((-85) $)) (-15 -3876 ($ $ (-1002 (-179)))) (-15 -3876 ($ $ (-1002 (-179)) (-1002 (-179)))) (-15 -3136 ($ $ (-1002 (-179)))) (-15 -3136 ($ $)) (-15 -2790 ((-1002 (-179)) $)) (-15 -2776 ((-485))) (-15 -2775 ((-485) (-485))) (-15 -2774 ((-485))) (-15 -2773 ((-485) (-485))) (-15 -2772 ((-485))) (-15 -2771 ((-485) (-485))) (-15 -2770 ((-85))) (-15 -2769 ((-85) (-85))) (-15 -2768 ((-485))) (-15 -2767 ((-85) (-85)))))) (T -837)) -((-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-3876 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3876 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3136 (*1 *1 *1) (-5 *1 (-837))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2776 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2774 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2772 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2770 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2768 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -((-2778 (((-837) |#1| (-1091)) 17 T ELT) (((-837) |#1| (-1091) (-1002 (-179))) 21 T ELT)) (-2791 (((-837) |#1| |#1| (-1091) (-1002 (-179))) 19 T ELT) (((-837) |#1| (-1091) (-1002 (-179))) 15 T ELT))) -(((-838 |#1|) (-10 -7 (-15 -2791 ((-837) |#1| (-1091) (-1002 (-179)))) (-15 -2791 ((-837) |#1| |#1| (-1091) (-1002 (-179)))) (-15 -2778 ((-837) |#1| (-1091) (-1002 (-179)))) (-15 -2778 ((-837) |#1| (-1091)))) (-554 (-474))) (T -838)) -((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2791 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474)))))) -((-3876 (($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 123 T ELT)) (-2897 (((-1002 (-179)) $) 64 T ELT)) (-2898 (((-1002 (-179)) $) 63 T ELT)) (-2899 (((-1002 (-179)) $) 62 T ELT)) (-2789 (((-584 (-584 (-179))) $) 69 T ELT)) (-2790 (((-1002 (-179)) $) 65 T ELT)) (-2783 (((-485) (-485)) 57 T ELT)) (-2787 (((-485) (-485)) 52 T ELT)) (-2785 (((-485) (-485)) 55 T ELT)) (-2781 (((-85) (-85)) 59 T ELT)) (-2784 (((-485)) 56 T ELT)) (-3136 (($ $ (-1002 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2792 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 133 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 134 T ELT)) (-2791 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 141 T ELT) (($ $ (-1002 (-179))) 129 T ELT)) (-2780 (((-485)) 60 T ELT)) (-2788 (((-485)) 50 T ELT)) (-2786 (((-485)) 53 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 157 T ELT)) (-2779 (((-85) (-85)) 61 T ELT)) (-3948 (((-773) $) 155 T ELT)) (-2782 (((-85)) 58 T ELT))) -(((-839) (-13 (-888) (-10 -8 (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ $ (-1002 (-179)))) (-15 -3876 ($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -3136 ($ $ (-1002 (-179)))) (-15 -3136 ($ $)) (-15 -2790 ((-1002 (-179)) $)) (-15 -2789 ((-584 (-584 (-179))) $)) (-15 -2788 ((-485))) (-15 -2787 ((-485) (-485))) (-15 -2786 ((-485))) (-15 -2785 ((-485) (-485))) (-15 -2784 ((-485))) (-15 -2783 ((-485) (-485))) (-15 -2782 ((-85))) (-15 -2781 ((-85) (-85))) (-15 -2780 ((-485))) (-15 -2779 ((-85) (-85)))))) (T -839)) -((-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2792 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3876 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3136 (*1 *1 *1) (-5 *1 (-839))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))) (-2788 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2786 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2784 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2782 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2780 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -((-2793 (((-584 (-1002 (-179))) (-584 (-584 (-855 (-179))))) 34 T ELT))) -(((-840) (-10 -7 (-15 -2793 ((-584 (-1002 (-179))) (-584 (-584 (-855 (-179)))))))) (T -840)) -((-2793 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179)))) (-5 *1 (-840))))) -((-2795 (((-265 (-485)) (-1091)) 16 T ELT)) (-2796 (((-265 (-485)) (-1091)) 14 T ELT)) (-3954 (((-265 (-485)) (-1091)) 12 T ELT)) (-2794 (((-265 (-485)) (-1091) (-447)) 19 T ELT))) -(((-841) (-10 -7 (-15 -2794 ((-265 (-485)) (-1091) (-447))) (-15 -3954 ((-265 (-485)) (-1091))) (-15 -2795 ((-265 (-485)) (-1091))) (-15 -2796 ((-265 (-485)) (-1091))))) (T -841)) -((-2796 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))) -((-2795 ((|#2| |#2|) 28 T ELT)) (-2796 ((|#2| |#2|) 29 T ELT)) (-3954 ((|#2| |#2|) 27 T ELT)) (-2794 ((|#2| |#2| (-447)) 26 T ELT))) -(((-842 |#1| |#2|) (-10 -7 (-15 -2794 (|#2| |#2| (-447))) (-15 -3954 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2796 (|#2| |#2|))) (-1014) (-364 |#1|)) (T -842)) -((-2796 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-3954 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4))))) -((-2798 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2797 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) -(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2798 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-797 |#1|) (-13 (-1014) (-951 |#2|))) (T -843)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6))))) -((-2798 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT))) -(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|)) (-13 (-364 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))) -((-2798 (((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)) 13 T ELT))) -(((-845 |#1|) (-10 -7 (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)))) (-484)) (T -845)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) (-5 *1 (-845 *3))))) -((-2798 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT))) -(((-846 |#1| |#2|) (-10 -7 (-15 -2798 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1014) (-13 (-1014) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6))))) -((-2798 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT))) -(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1014) (-797 |#1|) (-609 |#2|)) (T -847)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))) -((-2798 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT))) -(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2798 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-15 -2798 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1014) (-718) (-757) (-13 (-962) (-797 |#1|)) (-13 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2798 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))) -((-3211 (((-265 (-485)) (-1091) (-584 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-485)) (-1091) (-1 (-85) |#1|)) 15 T ELT))) -(((-849 |#1|) (-10 -7 (-15 -3211 ((-265 (-485)) (-1091) (-1 (-85) |#1|))) (-15 -3211 ((-265 (-485)) (-1091) (-584 (-1 (-85) |#1|))))) (-1130)) (T -849)) -((-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5))))) -((-3211 ((|#2| |#2| (-584 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) -(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3211 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3211 (|#2| |#2| (-584 (-1 (-85) |#3|))))) (-1014) (-364 |#1|) (-1130)) (T -850)) -((-3211 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4))))) -((-2798 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT))) -(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3))))) -((-2798 (((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))) 18 T ELT))) -(((-852 |#1|) (-10 -7 (-15 -2798 ((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))))) (-1014)) (T -852)) -((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *1 (-852 *5))))) -((-2799 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2798 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT))) -(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-15 -2799 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1014) (-962) (-13 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853)) -((-2799 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2798 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9))))) -((-2807 (((-1086 (-350 (-485))) (-485)) 80 T ELT)) (-2806 (((-1086 (-485)) (-485)) 83 T ELT)) (-3336 (((-1086 (-485)) (-485)) 77 T ELT)) (-2805 (((-485) (-1086 (-485))) 73 T ELT)) (-2804 (((-1086 (-350 (-485))) (-485)) 66 T ELT)) (-2803 (((-1086 (-485)) (-485)) 49 T ELT)) (-2802 (((-1086 (-485)) (-485)) 85 T ELT)) (-2801 (((-1086 (-485)) (-485)) 84 T ELT)) (-2800 (((-1086 (-350 (-485))) (-485)) 68 T ELT))) -(((-854) (-10 -7 (-15 -2800 ((-1086 (-350 (-485))) (-485))) (-15 -2801 ((-1086 (-485)) (-485))) (-15 -2802 ((-1086 (-485)) (-485))) (-15 -2803 ((-1086 (-485)) (-485))) (-15 -2804 ((-1086 (-350 (-485))) (-485))) (-15 -2805 ((-485) (-1086 (-485)))) (-15 -3336 ((-1086 (-485)) (-485))) (-15 -2806 ((-1086 (-485)) (-485))) (-15 -2807 ((-1086 (-350 (-485))) (-485))))) (T -854)) -((-2807 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-3336 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3708 (($ (-584 |#1|)) 9 T ELT)) (-3837 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3771 (($ $ (-584 |#1|)) 25 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3838 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3913 (((-831) $) 13 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3836 (($ $ $) 23 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) 11 T ELT))) -(((-855 |#1|) (-894 |#1|) (-962)) (T -855)) -NIL -((-2810 (((-421 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2813 (((-206 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2811 (((-858 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2809 (((-206 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2812 (((-858 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2808 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) -(((-856 |#1| |#2|) (-10 -7 (-15 -2808 ((-421 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2809 ((-206 |#1| |#2|) (-421 |#1| |#2|))) (-15 -2810 ((-421 |#1| |#2|) (-858 |#2|))) (-15 -2811 ((-858 |#2|) (-421 |#1| |#2|))) (-15 -2812 ((-858 |#2|) (-206 |#1| |#2|))) (-15 -2813 ((-206 |#1| |#2|) (-858 |#2|)))) (-584 (-1091)) (-962)) (T -856)) -((-2813 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5))))) -((-2814 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2817 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2815 (((-584 |#2|) |#2|) 11 T ELT)) (-2818 (((-695) (-584 |#1|) (-485) (-485)) 45 (|has| |#1| (-756)) ELT)) (-2816 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT))) -(((-857 |#1| |#2|) (-10 -7 (-15 -2814 ((-584 |#2|) |#2| |#2|)) (-15 -2815 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-15 -2816 (|#1| |#2|)) (-15 -2817 ((-695) (-584 |#1|))) (-15 -2818 ((-695) (-584 |#1|) (-485) (-485)))) |%noBranch|)) (-312) (-1156 |#1|)) (T -857)) -((-2818 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4)))) (-2816 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2)))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4)))) (-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-1091)) $) 16 T ELT)) (-3085 (((-1086 $) $ (-1091)) 21 T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1091))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1091) $) NIL T ELT)) (-3758 (($ $ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1091)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1091) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1091) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-1091)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-1091)) NIL T ELT)) (-2822 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1091)) (-470 (-1091))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3084 (((-3 (-1091) #1#) $) 19 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-1091)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $ (-1091)) 29 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1091) |#1|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL T ELT) (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3950 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-1091) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1091) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1091) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 25 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1091)) 27 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-858 |#1|) (-13 (-862 |#1| (-470 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1091))) |%noBranch|))) (-962)) (T -858)) -((-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962))))) -((-3960 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT))) -(((-859 |#1| |#2|) (-10 -7 (-15 -3960 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))) -((-3085 (((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)) 18 T ELT))) -(((-860 |#1| |#2|) (-10 -7 (-15 -3085 ((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)))) (-1091) (-962)) (T -860)) -((-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-962)) (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))) -((-2821 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3777 (($ $) 214 T ELT)) (-3973 (((-348 $) $) 206 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 141 T ELT)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3758 (($ $ $ |#4|) 95 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3505 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2820 (((-584 $) $) 77 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 240 T ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 233 T ELT)) (-2823 (((-584 $) $) 34 T ELT)) (-2895 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#4|) 203 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) $) 57 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 134 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 147 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 145 T ELT)) (-3734 (((-348 $) $) 165 T ELT)) (-3770 (($ $ (-584 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3759 (($ $ |#4|) 97 T ELT)) (-3974 (((-801 (-330)) $) 254 T ELT) (((-801 (-485)) $) 247 T ELT) (((-474) $) 262 T ELT)) (-2819 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 185 T ELT)) (-3679 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2704 (((-633 $) $) 195 T ELT)) (-1266 (((-85) $ $) 227 T ELT))) -(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -2704 ((-633 |#1|) |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-584 (-1086 |#1|)) #1="failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2705 ((-3 (-1180 |#1|) #1#) (-631 |#1|))) (-15 -3505 (|#1| |#1| |#4|)) (-15 -2819 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#1| |#4|)) (-15 -2820 ((-584 |#1|) |#1|)) (-15 -2821 ((-695) |#1| (-584 |#4|))) (-15 -2821 ((-695) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) |#1|)) (-15 -2825 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2895 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -2895 (|#1| |#1| |#4| (-695))) (-15 -3765 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -2823 ((-584 |#1|) |#1|)) (-15 -3679 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3679 (|#1| |#1| |#4| (-695))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3158 (|#4| |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#4| |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#4| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -2895 (|#1| |#2| |#3|)) (-15 -3679 (|#2| |#1| |#3|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT)) (-3758 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3961 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-2822 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3084 (((-3 |#3| "failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2825 (((-3 (-584 $) "failed") $) 127 T ELT)) (-2824 (((-3 (-584 $) "failed") $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) "failed") $) 126 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3759 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3950 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-862 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -862)) -((-3505 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2823 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3085 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *3)))) (-3084 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2822 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3765 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695)))))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3758 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-2819 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5))))) -(-13 (-810 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-456 |t#3| |t#1|) (-456 |t#3| $) (-951 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3950 ((-695) $ |t#3|)) (-15 -3950 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3679 ($ $ |t#3| (-695))) (-15 -3679 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -2823 ((-584 $) $)) (-15 -3085 ((-1086 $) $ |t#3|)) (-15 -3085 ((-1086 |t#1|) $)) (-15 -3084 ((-3 |t#3| "failed") $)) (-15 -2822 ((-695) $ |t#3|)) (-15 -2822 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3765 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |t#3|)) (-15 -2895 ($ $ |t#3| (-695))) (-15 -2895 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -3086 ($ (-1086 |t#1|) |t#3|)) (-15 -3086 ($ (-1086 $) |t#3|)) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -2825 ((-3 (-584 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |var| |t#3|) (|:| -2402 (-695))) "failed") $)) (-15 -2821 ((-695) $)) (-15 -2821 ((-695) $ (-584 |t#3|))) (-15 -3083 ((-584 |t#3|) $)) (-15 -2820 ((-584 $) $)) (IF (|has| |t#1| (-554 (-474))) (IF (|has| |t#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-485)))) (IF (|has| |t#3| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (IF (|has| |t#3| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-485))) (IF (|has| |t#3| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (IF (|has| |t#3| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3758 ($ $ $ |t#3|)) (-15 -3759 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-15 -2819 ($ $ |t#3|)) (-15 -3505 ($ $)) (-15 -3505 ($ $ |t#3|)) (-15 -3973 ((-348 $) $)) (-15 -3777 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822))) -((-3083 (((-584 |#2|) |#5|) 40 T ELT)) (-3085 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23 T ELT) (((-350 (-1086 |#5|)) |#5| |#2|) 16 T ELT)) (-3086 ((|#5| (-350 (-1086 |#5|)) |#2|) 30 T ELT)) (-3084 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2825 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2827 (((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|) 53 T ELT)) (-2824 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|) 56 T ELT))) -(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3083 ((-584 |#2|) |#5|)) (-15 -3084 ((-3 |#2| #1="failed") |#5|)) (-15 -3085 ((-350 (-1086 |#5|)) |#5| |#2|)) (-15 -3086 (|#5| (-350 (-1086 |#5|)) |#2|)) (-15 -3085 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -2824 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2825 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2826 ((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|)) (-15 -2827 ((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3948 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -863)) -((-2827 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-3085 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-350 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-3084 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *6)) (-15 -3000 (*6 $)) (-15 -2999 (*6 $))))))) (-3083 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) -((-3960 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3960 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (T -864)) -((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))) -((-2828 (((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2829 (((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695)) 43 T ELT)) (-2831 (((-2 (|:| -2402 (-695)) (|:| -3956 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2830 (((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-392)) ELT))) -(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2828 ((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-15 -2829 ((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695))) (IF (|has| |#3| (-392)) (-15 -2830 ((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-15 -2831 ((-2 (|:| -2402 (-695)) (|:| -3956 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3948 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -865)) -((-2831 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3948 ($ *3)) (-15 -3000 (*3 $)) (-15 -2999 (*3 $))))))) (-2830 (*1 *2 *3 *4) (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2832 (($ (-1034)) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 15 T ELT) (((-1034) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) -(((-866) (-13 (-1014) (-553 (-1034)) (-10 -8 (-15 -2832 ($ (-1034)))))) (T -866)) -((-2832 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866))))) -((-2898 (((-1002 (-179)) $) 8 T ELT)) (-2899 (((-1002 (-179)) $) 9 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 10 T ELT)) (-3948 (((-773) $) 6 T ELT))) -(((-867) (-113)) (T -867)) -((-2900 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179)))))) -(-13 (-553 (-773)) (-10 -8 (-15 -2900 ((-584 (-584 (-855 (-179)))) $)) (-15 -2899 ((-1002 (-179)) $)) (-15 -2898 ((-1002 (-179)) $)))) -(((-553 (-773)) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 80 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 81 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) 32 T ELT)) (-3469 (((-3 $ #1#) $) 43 T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 18 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2822 ((|#2| $) 25 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2896 (($ $) 29 T ELT)) (-3176 ((|#1| $) 27 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 52 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-3740 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-496))) ELT)) (-3468 (((-3 $ #1#) $ $) 92 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 23 T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 47 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ |#2|) 38 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 15 T CONST)) (-1624 (($ $ $ (-695)) 76 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 86 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 12 T CONST)) (-3058 (((-85) $ $) 85 T ELT)) (-3951 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-868 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| |#2| (-104)) (-15 -3740 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962) (-717)) (T -868)) -((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962)) (-4 *2 (-717))))) -((-2833 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT))) -(((-869 |#1| |#2|) (-10 -7 (-15 -2833 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-496) (-601 |#1|)) (T -869)) -((-2833 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 18 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) 17 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 15 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 14 T ELT)) (-2201 (((-485) $) 10 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 23 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 22 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 19 (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 11 T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 16 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 20 T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 13 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 8 T ELT))) -(((-870 |#1|) (-19 |#1|) (-1130)) (T -870)) -NIL -((-3843 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3960 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT))) -(((-871 |#1| |#2|) (-10 -7 (-15 -3843 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3960 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1130) (-1130)) (T -871)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-871 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))) -((-2834 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT))) -(((-872) (-113)) (T -872)) -((-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1091))))) -(-13 (-10 -8 (-15 -2834 ($ $ (-1091))) (-15 -2834 ($ $ (-1005 $))))) -((-2835 (((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)) 26 T ELT) (((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091))) 27 T ELT) (((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091)) 49 T ELT))) -(((-873 |#1|) (-10 -7 (-15 -2835 ((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091))) (-15 -2835 ((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2835 ((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)))) (-13 (-312) (-120))) (T -873)) -((-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-873 *6)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5)))) (-2835 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5))))) -((-2838 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3725 (((-85) |#1|) 44 T ELT)) (-2837 ((|#1| |#1|) 80 T ELT)) (-2836 ((|#1| |#1|) 79 T ELT))) -(((-874 |#1|) (-10 -7 (-15 -3725 ((-85) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2837 (|#1| |#1|)) (-15 -2838 ((-584 |#1|) |#1| |#1|))) (-484)) (T -874)) -((-2838 (*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) (-2837 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-2836 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-3725 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484))))) -((-2839 (((-1186) (-773)) 9 T ELT))) -(((-875) (-10 -7 (-15 -2839 ((-1186) (-773))))) (T -875)) -((-2839 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2485 (($ $ $) 65 (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1313 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3138 (((-695)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2840 ((|#2| $) 22 T ELT)) (-2841 ((|#1| $) 21 T ELT)) (-3726 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3469 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2996 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1215 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2411 (((-85) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2842 (($ |#1| |#2|) 20 T ELT)) (-2011 (((-831) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 39 (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2401 (($ (-831)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3011 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2437 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3948 (((-773) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2668 (($) 25 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3058 (((-85) $ $) 19 T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2687 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3951 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3839 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3841 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-485)) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-695)) 32 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-485) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-695) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT))) -(((-876 |#1| |#2|) (-13 (-1014) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-15 -2842 ($ |#1| |#2|)) (-15 -2841 (|#1| $)) (-15 -2840 (|#2| $)))) (-1014) (-1014)) (T -876)) -((-2842 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2841 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014))))) -((-3404 (((-1016) $) 13 T ELT)) (-2843 (($ (-447) (-1016)) 15 T ELT)) (-3544 (((-447) $) 11 T ELT)) (-3948 (((-773) $) 25 T ELT))) -(((-877) (-13 (-553 (-773)) (-10 -8 (-15 -3544 ((-447) $)) (-15 -3404 ((-1016) $)) (-15 -2843 ($ (-447) (-1016)))))) (T -877)) -((-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877)))) (-2843 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 29 T ELT)) (-2857 (($) 17 T CONST)) (-2563 (($ $ $) NIL T ELT)) (-2562 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2848 (((-633 (-783 $ $)) $) 62 T ELT)) (-2850 (((-633 $) $) 52 T ELT)) (-2847 (((-633 (-783 $ $)) $) 63 T ELT)) (-2846 (((-633 (-783 $ $)) $) 64 T ELT)) (-2851 (((-633 |#1|) $) 43 T ELT)) (-2849 (((-633 (-783 $ $)) $) 61 T ELT)) (-2855 (($ $ $) 38 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2856 (($) 16 T CONST)) (-2854 (($ $ $) 39 T ELT)) (-2844 (($ $ $) 36 T ELT)) (-2845 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2312 (($ $ $) 37 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 35 T ELT))) -(((-878 |#1|) (-13 (-881) (-556 |#1|) (-10 -8 (-15 -2851 ((-633 |#1|) $)) (-15 -2850 ((-633 $) $)) (-15 -2849 ((-633 (-783 $ $)) $)) (-15 -2848 ((-633 (-783 $ $)) $)) (-15 -2847 ((-633 (-783 $ $)) $)) (-15 -2846 ((-633 (-783 $ $)) $)) (-15 -2845 ($ $ $)) (-15 -2844 ($ $ $)))) (-1014)) (T -878)) -((-2851 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014))))) -((-3651 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2853 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2852 (((-1010 |#1|) (-878 |#1|)) 41 T ELT))) -(((-879 |#1|) (-13 (-1130) (-10 -7 (-15 -2853 ((-878 |#1|) (-878 |#1|))) (-15 -2852 ((-1010 |#1|) (-878 |#1|))) (-15 -3651 ((-878 |#1|) (-878 |#1|))))) (-1014)) (T -879)) -((-2853 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))) -((-3960 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT))) -(((-880 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3960 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1014) (-1014)) (T -880)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))) -((-2570 (((-85) $ $) 19 T ELT)) (-2314 (($ $) 8 T ELT)) (-2857 (($) 17 T CONST)) (-2563 (($ $ $) 9 T ELT)) (-2562 (($ $) 11 T ELT)) (-3244 (((-1074) $) 23 T ELT)) (-2855 (($ $ $) 15 T ELT)) (-3245 (((-1034) $) 22 T ELT)) (-2856 (($) 16 T CONST)) (-2854 (($ $ $) 14 T ELT)) (-3948 (((-773) $) 21 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 7 T ELT))) -(((-881) (-113)) (T -881)) -((-2857 (*1 *1) (-4 *1 (-881))) (-2856 (*1 *1) (-4 *1 (-881))) (-2855 (*1 *1 *1 *1) (-4 *1 (-881))) (-2854 (*1 *1 *1 *1) (-4 *1 (-881)))) -(-13 (-84) (-1014) (-10 -8 (-15 -2857 ($) -3954) (-15 -2856 ($) -3954) (-15 -2855 ($ $ $)) (-15 -2854 ($ $ $)))) -(((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-13) . T) ((-605) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 51 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 48 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 47 T ELT)) (-2858 (($ $ $) 39 T ELT)) (-3520 (($ $ $) 40 T ELT)) (-2610 (((-584 |#1|) $) 46 T ELT)) (-3247 (((-85) |#1| $) 50 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 41 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1731 (((-695) |#1| $) 49 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 45 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 42 T ELT))) -(((-882 |#1|) (-113) (-757)) (T -882)) -((-2859 (*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2859 (|t#1| $)) (-15 -3520 ($ $ $)) (-15 -2858 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2871 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 105 T ELT)) (-3757 ((|#2| |#2| |#2|) 103 T ELT)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 107 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 109 T ELT)) (-2880 (((-2 (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2887 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 56 T ELT)) (-2861 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 80 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 82 T ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2875 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|) 121 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2877 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2885 ((|#1| |#2| |#2|) 50 T ELT)) (-2879 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2878 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2886 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 54 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 79 T ELT)) (-3758 ((|#1| |#2| |#2|) 76 T ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|) 41 T ELT)) (-2884 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3192 ((|#2| |#2| |#2|) 93 T ELT)) (-2864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2863 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3146 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3468 (((-1180 |#2|) (-1180 |#2|) |#1|) 22 T ELT)) (-2881 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|) 46 T ELT)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|) 119 T ELT)) (-3759 ((|#1| |#2|) 116 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2866 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2876 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2883 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2882 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1180 |#2|) |#1| (-1180 |#2|)) 17 T ELT))) -(((-883 |#1| |#2|) (-10 -7 (-15 -3758 (|#1| |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2863 (|#2| |#2| |#2| (-695))) (-15 -2864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2866 (|#2| |#2| |#2| (-695))) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -3192 (|#2| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3757 (|#2| |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -3759 (|#1| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|)) (-15 -2875 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|)) (-15 -2876 ((-584 |#2|) |#2| |#2|)) (-15 -2877 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-15 -2878 (|#1| |#2| |#2|)) (-15 -2879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1180 |#2|) |#1| (-1180 |#2|))) (-15 -3468 ((-1180 |#2|) (-1180 |#2|) |#1|)) (-15 -3754 ((-2 (|:| -3956 |#1|) (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|)) (-15 -2882 (|#1| |#1| |#1| (-695))) (-15 -2883 (|#2| |#2| |#1| |#1| (-695))) (-15 -2884 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2885 (|#1| |#2| |#2|)) (-15 -2886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2887 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|))) (-496) (-1156 |#1|)) (T -883)) -((-2887 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2884 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2883 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2882 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3754 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3956 *4) (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3759 (*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3146 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3146 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3146 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3757 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3192 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2866 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2863 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-884) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -884)) -((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-884)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-884))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 40 T ELT)) (-1313 (((-3 $ "failed") $ $) 54 T ELT)) (-3726 (($) NIL T CONST)) (-2889 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2888 (((-831) $) 91 T ELT)) (-2891 (((-584 (-831)) $) 17 T ELT)) (-2890 (((-1070 $) (-695)) 39 T ELT)) (-2892 (($ (-584 (-831))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3011 (($ $) 67 T ELT)) (-3948 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 44 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 42 T ELT)) (-3841 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3959 (((-695) $) 22 T ELT))) -(((-885) (-13 (-722) (-553 (-584 (-831))) (-10 -8 (-15 -2892 ($ (-584 (-831)))) (-15 -2891 ((-584 (-831)) $)) (-15 -3959 ((-695) $)) (-15 -2890 ((-1070 $) (-695))) (-15 -2889 ((-584 (-783 (-831) (-831))) $)) (-15 -2888 ((-831) $)) (-15 -3011 ($ $))))) (T -885)) -((-2892 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))) (-3011 (*1 *1 *1) (-5 *1 (-885)))) -((-3951 (($ $ |#2|) 31 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-485)) $) 27 T ELT) (($ $ (-350 (-485))) 29 T ELT))) -(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3951 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#3|) $) 95 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-887 |#1| |#2| |#3|) (-113) (-962) (-717) (-757)) (T -887)) -((-3176 (*1 *2 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2895 ($ $ |t#3| |t#2|)) (-15 -2895 ($ $ (-584 |t#3|) (-584 |t#2|))) (-15 -2896 ($ $)) (-15 -3176 (|t#1| $)) (-15 -3950 (|t#2| $)) (-15 -3083 ((-584 |t#3|) $)) (-15 -2894 ((-85) $)) (-15 -2893 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2897 (((-1002 (-179)) $) 8 T ELT)) (-2898 (((-1002 (-179)) $) 9 T ELT)) (-2899 (((-1002 (-179)) $) 10 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 11 T ELT)) (-3948 (((-773) $) 6 T ELT))) -(((-888) (-113)) (T -888)) -((-2900 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) -(-13 (-553 (-773)) (-10 -8 (-15 -2900 ((-584 (-584 (-855 (-179)))) $)) (-15 -2899 ((-1002 (-179)) $)) (-15 -2898 ((-1002 (-179)) $)) (-15 -2897 ((-1002 (-179)) $)))) -(((-553 (-773)) . T)) -((-3083 (((-584 |#4|) $) 23 T ELT)) (-2910 (((-85) $) 55 T ELT)) (-2901 (((-85) $) 54 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2906 (((-85) $) 56 T ELT)) (-2908 (((-85) $ $) 62 T ELT)) (-2907 (((-85) $ $) 65 T ELT)) (-2909 (((-85) $) 60 T ELT)) (-2902 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2903 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2904 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2916 (((-584 |#4|) $) 27 T ELT)) (-2915 (((-85) |#4| $) 34 T ELT)) (-2905 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2912 (($ $ |#4|) 39 T ELT)) (-2914 (($ $ |#4|) 38 T ELT)) (-2913 (($ $ |#4|) 40 T ELT)) (-3058 (((-85) $ $) 46 T ELT))) -(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2901 ((-85) |#1|)) (-15 -2902 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2903 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2904 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2905 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2906 ((-85) |#1|)) (-15 -2907 ((-85) |#1| |#1|)) (-15 -2908 ((-85) |#1| |#1|)) (-15 -2909 ((-85) |#1|)) (-15 -2910 ((-85) |#1|)) (-15 -2911 ((-2 (|:| |under| |#1|) (|:| -3132 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -2915 ((-85) |#4| |#1|)) (-15 -2916 ((-584 |#4|) |#1|)) (-15 -3083 ((-584 |#4|) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -889)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-1354 (($ $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 67 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 64 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 69 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 63 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-890 |#1| |#2| |#3| |#4|) (-113) (-962) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -890)) -((-3159 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2915 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-2914 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2911 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3132 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2905 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2903 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2902 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) -(-13 (-1014) (-124 |t#4|) (-318 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-15 -3159 ((-3 $ "failed") (-584 |t#4|))) (-15 -3158 ($ (-584 |t#4|))) (-15 -3182 (|t#3| $)) (-15 -3083 ((-584 |t#3|) $)) (-15 -2916 ((-584 |t#3|) $)) (-15 -2915 ((-85) |t#3| $)) (-15 -2914 ($ $ |t#3|)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |t#3|)) (-15 -2910 ((-85) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -2909 ((-85) $)) (-15 -2908 ((-85) $ $)) (-15 -2907 ((-85) $ $)) (-15 -2906 ((-85) $)) (-15 -2905 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2904 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2903 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2902 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2901 ((-85) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2918 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2941 (((-584 |#4|) (-584 |#4|) (-85)) 123 (|has| |#1| (-392)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2928 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2927 (((-85) |#4|) 43 T ELT)) (-2940 (((-584 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2923 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|)) 24 T ELT)) (-2924 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 30 T ELT)) (-2925 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 31 T ELT)) (-2936 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2939 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2917 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2933 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2934 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2942 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2944 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2943 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2919 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2947 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2926 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2922 (((-85) (-584 |#4|)) 79 T ELT)) (-2921 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2930 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2929 (((-85) |#4|) 36 T ELT)) (-2946 (((-584 |#4|) (-584 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2945 (((-584 |#4|) (-584 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2935 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2937 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2920 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2932 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2931 (((-85) |#4|) 45 T ELT))) -(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2919 ((-584 |#4|) (-584 |#4|))) (-15 -2919 ((-584 |#4|) |#4| |#4|)) (-15 -2917 ((-584 |#4|) (-584 |#4|))) (-15 -2918 ((-584 |#4|) |#4| |#4|)) (-15 -2919 ((-584 |#4|) (-584 |#4|) |#4|)) (-15 -2919 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2919 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-15 -2920 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -2921 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2922 ((-85) (-584 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2926 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2929 ((-85) |#4|)) (-15 -2930 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2931 ((-85) |#4|)) (-15 -2932 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2933 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2933 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85))) (-15 -2934 (|#4| |#4| (-584 |#4|))) (-15 -2935 ((-584 |#4|) (-584 |#4|))) (-15 -2936 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|))) (-15 -2937 ((-584 |#4|) (-584 |#4|))) (-15 -2938 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-15 -2940 ((-584 |#4|) |#4|)) (-15 -2941 ((-584 |#4|) (-584 |#4|))) (-15 -2941 ((-584 |#4|) (-584 |#4|) (-85))) (-15 -2942 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2943 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2944 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2945 ((-584 |#4|) (-584 |#4|))) (-15 -2946 ((-584 |#4|) (-584 |#4|))) (-15 -2947 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -891)) -((-2947 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2939 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2938 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2936 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3325 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2934 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2933 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2933 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2920 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2919 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2919 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2919 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2919 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) -((-2948 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2950 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 45 T ELT)) (-2949 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-892 |#1|) (-10 -7 (-15 -2948 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2949 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2950 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)))) (-312)) (T -892)) -((-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)))) (-2949 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-892 *5)))) (-2948 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6))))) -((-3973 (((-348 |#4|) |#4|) 61 T ELT))) -(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3973 ((-348 |#4|) |#4|))) (-757) (-718) (-392) (-862 |#3| |#2| |#1|)) (T -893)) -((-3973 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) 122 (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 46 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 109 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 45 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-72)) ELT)) (-3708 (($ (-584 |#1|)) 128 T ELT)) (-3837 (((-631 |#1|) $ $) 115 (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 104 T ELT)) (-3247 (((-85) |#1| $) 108 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 111 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 59 T ELT)) (-3834 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 67 T ELT)) (-2200 (($ $ |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3771 (($ $ (-584 |#1|)) 126 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 39 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 44 T ELT) ((|#1| $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT)) (-3838 ((|#1| $ $) 116 (|has| |#1| (-962)) ELT)) (-3913 (((-831) $) 127 T ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-3836 (($ $ $) 114 T ELT)) (-1731 (((-695) |#1| $) 107 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 103 T ELT)) (-1735 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 129 T ELT)) (-3532 (($ (-584 |#1|)) 66 T ELT)) (-3804 (($ $ |#1|) 63 T ELT) (($ |#1| $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2568 (((-85) $ $) 82 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-664)) ELT) (($ $ |#1|) 117 (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) 100 T ELT))) -(((-894 |#1|) (-113) (-962)) (T -894)) -((-3708 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))) -(-13 (-1179 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-15 -3708 ($ (-584 |t#1|))) (-15 -3913 ((-831) $)) (-15 -3836 ($ $ $)) (-15 -3771 ($ $ (-584 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T) ((-1179 |#1|) . T)) -((-3960 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT))) -(((-895 |#1| |#2|) (-10 -7 (-15 -3960 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))) -((-2953 ((|#1| (-855 |#1|)) 14 T ELT)) (-2952 ((|#1| (-855 |#1|)) 13 T ELT)) (-2951 ((|#1| (-855 |#1|)) 12 T ELT)) (-2955 ((|#1| (-855 |#1|)) 16 T ELT)) (-2959 ((|#1| (-855 |#1|)) 24 T ELT)) (-2954 ((|#1| (-855 |#1|)) 15 T ELT)) (-2956 ((|#1| (-855 |#1|)) 17 T ELT)) (-2958 ((|#1| (-855 |#1|)) 23 T ELT)) (-2957 ((|#1| (-855 |#1|)) 22 T ELT))) -(((-896 |#1|) (-10 -7 (-15 -2951 (|#1| (-855 |#1|))) (-15 -2952 (|#1| (-855 |#1|))) (-15 -2953 (|#1| (-855 |#1|))) (-15 -2954 (|#1| (-855 |#1|))) (-15 -2955 (|#1| (-855 |#1|))) (-15 -2956 (|#1| (-855 |#1|))) (-15 -2957 (|#1| (-855 |#1|))) (-15 -2958 (|#1| (-855 |#1|))) (-15 -2959 (|#1| (-855 |#1|)))) (-962)) (T -896)) -((-2959 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -((-2977 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2960 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-897 |#1|) (-113) (-1116)) (T -897)) -((-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(-13 (-10 -7 (-15 -2960 ((-3 |t#1| "failed") |t#1| (-695))) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)))) -((-2988 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2987 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3960 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2987 (|#4| |#4| |#3|)) (-15 -2987 (|#4| |#4| (-584 |#3|))) (-15 -2988 (|#4| |#4| |#3|)) (-15 -2988 (|#4| |#4| (-584 |#3|))) (-15 -3960 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898)) -((-3960 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1="failed") (-1091)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))) -((-2989 ((|#2| |#3|) 35 T ELT)) (-3921 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT))) -(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3920 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3921 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -2989 (|#2| |#3|))) (-299) (-1156 |#1|) (-1156 |#2|) (-662 |#2| |#3|)) (T -899)) -((-2989 (*1 *2 *3) (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-662 *2 *3)))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3920 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3403 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3651 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2993 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2994 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2990 (($ $) 69 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3405 (((-85) $) 70 T ELT)) (-3567 (($) 30 T ELT)) (-2991 ((|#4| $) 74 T ELT)) (-2992 (((-584 |#4|) $) 73 T ELT)) (-3948 (((-773) $) 68 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-900 |#1| |#2| |#3| |#4|) (-13 (-1014) (-553 (-773)) (-10 -8 (-15 -3567 ($)) (-15 -2994 ($ (-584 |#4|) |#4|)) (-15 -3403 ((-3 (-85) #1="failed") $)) (-15 -2993 ($ $ (-3 (-85) #1#))) (-15 -3405 ((-85) $)) (-15 -2992 ((-584 |#4|) $)) (-15 -2991 (|#4| $)) (-15 -2990 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3651 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900)) -((-3567 (*1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2994 (*1 *1 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3403 (*1 *2 *1) (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3405 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2990 (*1 *1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3651 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))) -((-2995 (((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))) 82 T ELT))) -(((-901 |#1| |#2|) (-10 -7 (-15 -2995 ((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))))) (-584 (-1091)) (-695)) (T -901)) -((-2995 (*1 *2 *2) (-12 (-5 *2 (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4))))) -((-3271 (((-85) |#5| |#5|) 44 T ELT)) (-3274 (((-85) |#5| |#5|) 59 T ELT)) (-3279 (((-85) |#5| (-584 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3281 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3270 (((-1186)) 32 T ELT)) (-3269 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3280 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3282 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 92 T ELT)) (-3283 (((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 122 T ELT)) (-3273 (((-85) |#5| |#5|) 53 T ELT)) (-3278 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3277 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3701 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3284 (((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3272 (((-584 |#5|) (-584 |#5|)) 49 T ELT))) -(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3269 ((-1186) (-1074) (-1074) (-1074))) (-15 -3270 ((-1186))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-584 |#5|) (-584 |#5|))) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3701 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3278 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3279 ((-85) |#5| |#5|)) (-15 -3279 ((-85) |#5| (-584 |#5|))) (-15 -3280 ((-584 |#5|) (-584 |#5|))) (-15 -3281 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3282 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-15 -3283 ((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3284 ((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -902)) -((-3284 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3270 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) -((-3833 (((-1091) $) 15 T ELT)) (-3404 (((-1074) $) 16 T ELT)) (-3228 (($ (-1091) (-1074)) 14 T ELT)) (-3948 (((-773) $) 13 T ELT))) -(((-903) (-13 (-553 (-773)) (-10 -8 (-15 -3228 ($ (-1091) (-1074))) (-15 -3833 ((-1091) $)) (-15 -3404 ((-1074) $))))) (T -903)) -((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-903)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-903))))) -((-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 72 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) 102 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-1091) $) 67 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) 99 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2996 (($) 105 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 82 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 91 T ELT)) (-2998 (($ $) 10 T ELT)) (-3447 (((-633 $) $) 27 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3448 (($) 16 T CONST)) (-3130 (($ $) 61 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2997 (($ $) 12 T ELT)) (-3974 (((-801 (-485)) $) 77 T ELT) (((-801 (-330)) $) 86 T ELT) (((-474) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1091)) 64 T ELT)) (-3128 (((-695)) 38 T CONST)) (-2687 (((-85) $ $) 57 T ELT))) -(((-904 |#1| |#2|) (-10 -7 (-15 -2687 ((-85) |#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3974 ((-179) |#1|)) (-15 -3974 ((-330) |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3948 (|#1| (-1091))) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -2996 (|#1|)) (-15 -3130 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| |#1|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-905 |#2|) (-496)) (T -904)) -((-3128 (*1 *2) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 164 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 167 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3625 (((-485) $) 154 (|has| |#1| (-741)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1091) #2#) $) 162 (|has| |#1| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #2#) $) 145 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #2#) $) 143 (|has| |#1| (-951 (-485))) ELT)) (-3158 ((|#1| $) 204 T ELT) (((-1091) $) 163 (|has| |#1| (-951 (-1091))) ELT) (((-350 (-485)) $) 146 (|has| |#1| (-951 (-485))) ELT) (((-485) $) 144 (|has| |#1| (-951 (-485))) ELT)) (-2566 (($ $ $) 71 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 186 T ELT) (((-631 |#1|) (-631 $)) 185 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 171 (|has| |#1| (-484)) ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3188 (((-85) $) 156 (|has| |#1| (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 180 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 179 (|has| |#1| (-797 (-330))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2998 (($ $) 175 T ELT)) (-3000 ((|#1| $) 177 T ELT)) (-3447 (((-633 $) $) 142 (|has| |#1| (-1067)) ELT)) (-3189 (((-85) $) 155 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 68 T ELT)) (-2533 (($ $ $) 147 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 148 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 190 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 189 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 184 T ELT) (((-631 |#1|) (-1180 $)) 183 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3448 (($) 141 (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3130 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3132 ((|#1| $) 169 (|has| |#1| (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 166 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 165 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 197 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 196 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 74 T ELT)) (-3802 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-695)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 136 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 134 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 133 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 132 (|has| |#1| (-812 (-1091))) ELT)) (-2997 (($ $) 174 T ELT)) (-2999 ((|#1| $) 176 T ELT)) (-3974 (((-801 (-485)) $) 182 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 181 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 159 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 158 (|has| |#1| (-934)) ELT) (((-179) $) 157 (|has| |#1| (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 168 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1091)) 161 (|has| |#1| (-951 (-1091))) ELT)) (-2704 (((-633 $) $) 160 (OR (|has| |#1| (-118)) (-2564 (|has| $ (-118)) (|has| |#1| (-822)))) ELT)) (-3128 (((-695)) 40 T CONST)) (-3133 ((|#1| $) 170 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 153 (|has| |#1| (-741)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-695)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 135 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 131 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 130 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 129 (|has| |#1| (-812 (-1091))) ELT)) (-2568 (((-85) $ $) 149 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 151 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 150 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 152 (|has| |#1| (-757)) ELT)) (-3951 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) -(((-905 |#1|) (-113) (-496)) (T -905)) -((-3951 (*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-2996 (*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))) -(-13 (-312) (-38 |t#1|) (-951 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-795 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3951 ($ |t#1| |t#1|)) (-15 -3000 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2998 ($ $)) (-15 -2997 ($ $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-951 (-485))) (PROGN (-6 (-951 (-485))) (-6 (-951 (-350 (-485))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-951 (-1091))) (-6 (-951 (-1091))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3131 (|t#1| $)) (-15 -3130 ($ $))) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -2996 ($)) (-15 -3133 (|t#1| $)) (-15 -3132 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-741)) (|has| |#1| (-120))) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 (-1091)) |has| |#1| (-951 (-1091))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) |has| |#1| (-934)) ((-554 (-330)) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-392) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-350 (-485))) |has| |#1| (-951 (-485))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-1091)) |has| |#1| (-951 (-1091))) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) . T)) -((-3960 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#2| |#1|) |#3|))) (-496) (-496) (-905 |#1|) (-905 |#2|)) (T -906)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3001 (($ (-1057 |#1| |#2|)) 11 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3125 (((-1057 |#1| |#2|) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT))) -(((-907 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3001 ($ (-1057 |#1| |#2|))) (-15 -3125 ((-1057 |#1| |#2|) $)))) (-831) (-312)) (T -907)) -((-3001 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)) (-5 *1 (-907 *3 *4)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 10 T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-908) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $))))) (T -908)) -((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-908))))) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3004 (($ $) 42 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-2610 (((-584 |#1|) $) 49 T ELT)) (-3247 (((-85) |#1| $) 53 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3835 (((-695) $) 41 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) 40 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3006 ((|#1| |#1| $) 44 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3005 ((|#1| $) 43 T ELT)) (-1731 (((-695) |#1| $) 52 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 48 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3002 ((|#1| $) 39 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 45 T ELT))) -(((-909 |#1|) (-113) (-1130)) (T -909)) -((-3006 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3004 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3006 (|t#1| |t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3004 ($ $)) (-15 -3835 ((-695) $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3645 ((|#1| $) 12 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3007 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3008 ((|#1| $) 15 T ELT)) (-3009 ((|#1| $) 14 T ELT)) (-3010 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT))) -(((-910 |#1|) (-912 |#1|) (-146)) (T -910)) -NIL -((-3190 (((-85) $) 43 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3025 (((-85) $) 72 T ELT)) (-3024 (((-350 (-485)) $) 76 T ELT)) (-2411 (((-85) $) 42 T ELT)) (-3134 ((|#2| $) 22 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2486 (($ $) 58 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3974 (((-474) $) 67 T ELT)) (-3011 (($ $) 17 T ELT)) (-3948 (((-773) $) 53 T ELT) (($ (-485)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) 10 T CONST)) (-3385 ((|#2| $) 71 T ELT)) (-3058 (((-85) $ $) 26 T ELT)) (-2687 (((-85) $ $) 69 T ELT)) (-3839 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3841 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) -(((-911 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| (-350 (-485)))) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -2687 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 -2486 (|#1| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3026 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -2411 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-912 |#2|) (-146)) (T -911)) -((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 143 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 141 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3158 (((-485) $) 142 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 140 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 139 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 123 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 122 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#1|) (-631 $)) 120 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3645 ((|#1| $) 111 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 107 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 109 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 108 (|has| |#1| (-484)) ELT)) (-3007 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 113 T ELT)) (-2533 (($ $ $) 95 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 96 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 125 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 124 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 119 T ELT) (((-631 |#1|) (-1180 $)) 118 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3008 ((|#1| $) 114 T ELT)) (-3009 ((|#1| $) 115 T ELT)) (-3010 ((|#1| $) 116 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 128 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 127 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-695)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 90 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 88 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 87 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 86 (|has| |#1| (-812 (-1091))) ELT)) (-3974 (((-474) $) 105 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 117 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) 106 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 ((|#1| $) 110 (|has| |#1| (-974)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-695)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 89 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 85 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 84 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 83 (|has| |#1| (-812 (-1091))) ELT)) (-2568 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 99 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 98 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 100 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-485))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 101 (|has| |#1| (-312)) ELT))) -(((-912 |#1|) (-113) (-146)) (T -912)) -((-3011 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3007 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))) -(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3011 ($ $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -3007 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3385 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-312)) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-312)) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-312)) ((-583 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-312)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-312)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-969 (-350 (-485))) |has| |#1| (-312)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3960 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-146) (-912 |#4|) (-146)) (T -913)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3726 (($) NIL T CONST)) (-3004 (($ $) 24 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3012 (($ (-584 |#1|)) 34 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3835 (((-695) $) 27 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 29 T ELT)) (-3611 (($ |#1| $) 18 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) 28 T ELT)) (-1276 ((|#1| $) 23 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3006 ((|#1| |#1| $) 17 T ELT)) (-3405 (((-85) $) 19 T ELT)) (-3567 (($) NIL T ELT)) (-3005 ((|#1| $) 22 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3002 ((|#1| $) 31 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -3012 ($ (-584 |#1|))))) (-1014)) (T -914)) -((-3012 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3))))) -((-3039 (($ $) 12 T ELT)) (-3013 (($ $ (-485)) 13 T ELT))) -(((-915 |#1|) (-10 -7 (-15 -3039 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-485)))) (-916)) (T -915)) -NIL -((-3039 (($ $) 6 T ELT)) (-3013 (($ $ (-485)) 7 T ELT)) (** (($ $ (-350 (-485))) 8 T ELT))) -(((-916) (-113)) (T -916)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485))))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485)))) (-3039 (*1 *1 *1) (-4 *1 (-916)))) -(-13 (-10 -8 (-15 -3039 ($ $)) (-15 -3013 ($ $ (-485))) (-15 ** ($ $ (-350 (-485)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3332 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3138 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1796 (($ (-1180 (-350 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#2|))) 79 T ELT) (($ (-1180 |#2|) |#2|) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-631 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3844 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3110 (((-831)) NIL T ELT)) (-2996 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3505 (($ $) NIL T ELT)) (-2835 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3725 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3774 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3379 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) NIL T ELT)) (-3134 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3081 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1649 (((-631 (-350 |#2|))) 57 T ELT)) (-1651 (((-631 (-350 |#2|))) 56 T ELT)) (-2486 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 80 T ELT)) (-1650 (((-631 (-350 |#2|))) 55 T ELT)) (-1652 (((-631 (-350 |#2|))) 54 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1658 (((-1180 $)) 51 T ELT)) (-3920 (((-1180 $)) 50 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3448 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) 70 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3734 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3802 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) 68 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3759 (((-350 |#2|) (-1180 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1769 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3760 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3187 ((|#3|) 58 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3226 (((-1180 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 |#2|)) $) 81 T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-3974 (((-1180 (-350 |#2|)) $) NIL T ELT) (($ (-1180 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2704 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2451 ((|#3| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1664 (((-85)) 65 T ELT)) (-1663 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT))) -(((-917 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#1|) (-1156 (-350 |#2|)) (-350 |#2|) (-695)) (T -917)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3019 (((-584 (-485)) $) 73 T ELT)) (-3015 (($ (-584 (-485))) 81 T ELT)) (-3131 (((-485) $) 48 (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) 60 T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) 57 (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) 60 (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3017 (((-584 (-485)) $) 79 T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) 45 T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) 50 T ELT)) (-3018 (((-1070 (-485)) $) 78 T ELT)) (-3014 (($ (-584 (-485)) (-584 (-485))) 82 T ELT)) (-3132 (((-485) $) 64 (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) 15 (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) 47 T ELT)) (-3016 (((-584 (-485)) $) 80 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) 108 T ELT) (($ (-485)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 27 T ELT) (($ (-485)) 51 T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) 25 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) 13 T CONST)) (-3133 (((-485) $) 62 (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) 14 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) 40 (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) 36 T ELT) (($ (-485) (-485)) 38 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3841 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ (-485)) NIL T ELT))) -(((-918 |#1|) (-13 (-905 (-485)) (-553 (-350 (-485))) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -3019 ((-584 (-485)) $)) (-15 -3018 ((-1070 (-485)) $)) (-15 -3017 ((-584 (-485)) $)) (-15 -3016 ((-584 (-485)) $)) (-15 -3015 ($ (-584 (-485)))) (-15 -3014 ($ (-584 (-485)) (-584 (-485)))))) (-485)) (T -918)) -((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3014 (*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) -((-3020 (((-51) (-350 (-485)) (-485)) 9 T ELT))) -(((-919) (-10 -7 (-15 -3020 ((-51) (-350 (-485)) (-485))))) (T -919)) -((-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919))))) -((-3138 (((-485)) 21 T ELT)) (-3023 (((-485)) 26 T ELT)) (-3022 (((-1186) (-485)) 24 T ELT)) (-3021 (((-485) (-485)) 27 T ELT) (((-485)) 20 T ELT))) -(((-920) (-10 -7 (-15 -3021 ((-485))) (-15 -3138 ((-485))) (-15 -3021 ((-485) (-485))) (-15 -3022 ((-1186) (-485))) (-15 -3023 ((-485))))) (T -920)) -((-3023 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3138 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3021 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))) -((-3735 (((-348 |#1|) |#1|) 43 T ELT)) (-3734 (((-348 |#1|) |#1|) 41 T ELT))) -(((-921 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1|))) (-1156 (-350 (-485)))) (T -921)) -((-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485))))))) -((-3026 (((-3 (-350 (-485)) "failed") |#1|) 15 T ELT)) (-3025 (((-85) |#1|) 14 T ELT)) (-3024 (((-350 (-485)) |#1|) 10 T ELT))) -(((-922 |#1|) (-10 -7 (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3026 ((-3 (-350 (-485)) "failed") |#1|))) (-951 (-350 (-485)))) (T -922)) -((-3026 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485)))))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) -((-3790 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3802 ((|#2| $ #1#) 10 T ELT)) (-3030 (((-85) $ $) 18 T ELT))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3790 (|#2| |#1| #1="value" |#2|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3802 (|#2| |#1| #1#))) (-924 |#2|) (-1130)) (T -923)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ "value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ "value") 41 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-924 |#1|) (-113) (-1130)) (T -924)) -((-3524 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3033 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3635 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1036 *3)) (-4 *1 (-924 *3)) (-4 *3 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3027 (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130))))) -(-13 (-429 |t#1|) (-10 -8 (-15 -3524 ((-584 $) $)) (-15 -3033 ((-584 $) $)) (-15 -3529 ((-85) $)) (-15 -3404 (|t#1| $)) (-15 -3802 (|t#1| $ "value")) (-15 -3635 ((-85) $)) (-15 -3032 ((-584 |t#1|) $)) (-15 -3031 ((-485) $ $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3030 ((-85) $ $)) (-15 -3029 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3028 ($ $ (-584 $))) (-15 -3790 (|t#1| $ "value" |t#1|)) (-15 -3027 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-3039 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-350 (-485))) 13 T ELT) (($ (-485)) 15 T ELT)) (-3185 (((-3 $ #1="failed") (-1086 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1086 $) (-831)) 32 T ELT)) (-3013 (($ $ (-485)) 58 T ELT)) (-3128 (((-695)) 18 T CONST)) (-3186 (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 (-350 (-485)))) 63 T ELT) (((-584 $) (-1086 (-485))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-350 (-485)))) 76 T ELT) (((-584 $) (-858 (-485))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) 53 T ELT))) -(((-925 |#1|) (-10 -7 (-15 -3039 (|#1| (-485))) (-15 -3039 (|#1| (-350 (-485)))) (-15 -3039 (|#1| |#1| (-831))) (-15 -3186 ((-584 |#1|) (-858 (-485)))) (-15 -3186 ((-584 |#1|) (-858 (-350 (-485))))) (-15 -3186 ((-584 |#1|) (-858 |#1|))) (-15 -3186 ((-584 |#1|) (-1086 (-485)))) (-15 -3186 ((-584 |#1|) (-1086 (-350 (-485))))) (-15 -3186 ((-584 |#1|) (-1086 |#1|))) (-15 -3185 ((-3 |#1| #1="failed") (-1086 |#1|) (-831))) (-15 -3185 ((-3 |#1| #1#) (-1086 |#1|) (-831) (-773))) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3013 (|#1| |#1| (-485))) (-15 -3039 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3128 ((-695)) -3954) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-926)) (T -925)) -((-3128 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 111 T ELT)) (-2064 (($ $) 112 T ELT)) (-2062 (((-85) $) 114 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 131 T ELT)) (-3973 (((-348 $) $) 132 T ELT)) (-3039 (($ $) 95 T ELT) (($ $ (-831)) 81 T ELT) (($ (-350 (-485))) 80 T ELT) (($ (-485)) 79 T ELT)) (-1609 (((-85) $ $) 122 T ELT)) (-3625 (((-485) $) 148 T ELT)) (-3726 (($) 23 T CONST)) (-3185 (((-3 $ "failed") (-1086 $) (-831) (-773)) 89 T ELT) (((-3 $ "failed") (-1086 $) (-831)) 88 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 108 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) 103 T ELT)) (-3158 (((-485) $) 107 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 104 T ELT)) (-3035 (($ $ (-773)) 78 T ELT)) (-3034 (($ $ (-773)) 77 T ELT)) (-2566 (($ $ $) 126 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 125 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 120 T ELT)) (-3725 (((-85) $) 133 T ELT)) (-3188 (((-85) $) 146 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 94 T ELT)) (-3189 (((-85) $) 147 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 129 T ELT)) (-2533 (($ $ $) 140 T ELT)) (-2859 (($ $ $) 141 T ELT)) (-3036 (((-3 (-1086 $) "failed") $) 90 T ELT)) (-3038 (((-3 (-773) "failed") $) 92 T ELT)) (-3037 (((-3 (-1086 $) "failed") $) 91 T ELT)) (-1895 (($ (-584 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 134 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 119 T ELT)) (-3146 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3734 (((-348 $) $) 130 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 127 T ELT)) (-3468 (((-3 $ "failed") $ $) 110 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 121 T ELT)) (-1608 (((-695) $) 123 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 124 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-485))) 102 T ELT) (($ (-485)) 101 T ELT) (($ (-350 (-485))) 98 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 113 T ELT)) (-3772 (((-350 (-485)) $ $) 76 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3186 (((-584 $) (-1086 $)) 87 T ELT) (((-584 $) (-1086 (-350 (-485)))) 86 T ELT) (((-584 $) (-1086 (-485))) 85 T ELT) (((-584 $) (-858 $)) 84 T ELT) (((-584 $) (-858 (-350 (-485)))) 83 T ELT) (((-584 $) (-858 (-485))) 82 T ELT)) (-3385 (($ $) 149 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 142 T ELT)) (-2569 (((-85) $ $) 144 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 143 T ELT)) (-2687 (((-85) $ $) 145 T ELT)) (-3951 (($ $ $) 139 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 135 T ELT) (($ $ (-350 (-485))) 93 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 137 T ELT) (($ $ (-350 (-485))) 136 T ELT) (($ (-485) $) 100 T ELT) (($ $ (-485)) 99 T ELT) (($ (-350 (-485)) $) 97 T ELT) (($ $ (-350 (-485))) 96 T ELT))) -(((-926) (-113)) (T -926)) -((-3039 (*1 *1 *1) (-4 *1 (-926))) (-3038 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3185 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3185 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3772 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485)))))) -(-13 (-120) (-756) (-146) (-312) (-355 (-350 (-485))) (-38 (-485)) (-38 (-350 (-485))) (-916) (-10 -8 (-15 -3038 ((-3 (-773) "failed") $)) (-15 -3037 ((-3 (-1086 $) "failed") $)) (-15 -3036 ((-3 (-1086 $) "failed") $)) (-15 -3185 ((-3 $ "failed") (-1086 $) (-831) (-773))) (-15 -3185 ((-3 $ "failed") (-1086 $) (-831))) (-15 -3186 ((-584 $) (-1086 $))) (-15 -3186 ((-584 $) (-1086 (-350 (-485))))) (-15 -3186 ((-584 $) (-1086 (-485)))) (-15 -3186 ((-584 $) (-858 $))) (-15 -3186 ((-584 $) (-858 (-350 (-485))))) (-15 -3186 ((-584 $) (-858 (-485)))) (-15 -3039 ($ $ (-831))) (-15 -3039 ($ $)) (-15 -3039 ($ (-350 (-485)))) (-15 -3039 ($ (-485))) (-15 -3035 ($ $ (-773))) (-15 -3034 ($ $ (-773))) (-15 -3772 ((-350 (-485)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 (-485)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 (-485) (-485)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-485))) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 (-485)) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) |has| (-350 (-485)) (-951 (-485))) ((-964 (-350 (-485))) . T) ((-964 (-485)) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 (-485)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-3040 (((-2 (|:| |ans| |#2|) (|:| -3139 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3040 ((-2 (|:| |ans| |#2|) (|:| -3139 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-27) (-364 |#1|))) (T -927)) -((-3040 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85)))) (-5 *1 (-927 *8 *4))))) -((-3041 (((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-27) (-364 |#1|))) (T -928)) -((-3041 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4))))) -((-3044 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)) 39 T ELT)) (-3042 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3095 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3043 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3095 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3043 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3044 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -929)) -((-3044 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3043 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))) (-3042 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3095 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6))))) -((-3045 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3095 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3046 (((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -3045 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3095 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3046 ((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -930)) -((-3046 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))) (-3045 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3095 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) -((-3047 (((-1 |#1|) (-584 (-2 (|:| -3404 |#1|) (|:| -1523 (-485))))) 34 T ELT)) (-3102 (((-1 |#1|) (-1010 |#1|)) 42 T ELT)) (-3048 (((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)) 31 T ELT))) -(((-931 |#1|) (-10 -7 (-15 -3102 ((-1 |#1|) (-1010 |#1|))) (-15 -3047 ((-1 |#1|) (-584 (-2 (|:| -3404 |#1|) (|:| -1523 (-485)))))) (-15 -3048 ((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)))) (-1014)) (T -931)) -((-3048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3404 *4) (|:| -1523 (-485))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) -((-3774 (((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3774 ((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -932)) -((-3774 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3597 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-933) (-13 (-996) (-10 -8 (-15 -3597 ((-1050) $)) (-15 -3235 ((-1050) $))))) (T -933)) -((-3597 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933))))) -((-3974 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT))) -(((-934) (-113)) (T -934)) -NIL -(-13 (-554 (-179)) (-554 (-330))) -(((-554 (-179)) . T) ((-554 (-330)) . T)) -((-3136 (((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 32 T ELT) (((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 29 T ELT)) (-3051 (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 34 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 33 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|) 28 T ELT)) (-3050 (((-584 (-350 (-485))) (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) 20 T ELT)) (-3049 (((-350 (-485)) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 17 T ELT))) -(((-935 |#1|) (-10 -7 (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|)) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3049 ((-350 (-485)) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3050 ((-584 (-350 (-485))) (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))))) (-1156 (-485))) (T -935)) -((-3050 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3136 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3136 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-350 (-485))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))) -((-3136 (((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 35 T ELT) (((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 32 T ELT)) (-3051 (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485))) 26 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 28 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|) 24 T ELT))) -(((-936 |#1|) (-10 -7 (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|)) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) (-1156 (-350 (-485)))) (T -936)) -((-3136 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) (-3136 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *5)) (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *4) (|:| -3139 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))) (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485))))))) -((-3575 (((-584 (-330)) (-858 (-485)) (-330)) 28 T ELT) (((-584 (-330)) (-858 (-350 (-485))) (-330)) 27 T ELT)) (-3971 (((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1091)) (-330)) 37 T ELT))) -(((-937) (-10 -7 (-15 -3575 ((-584 (-330)) (-858 (-350 (-485))) (-330))) (-15 -3575 ((-584 (-330)) (-858 (-485)) (-330))) (-15 -3971 ((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1091)) (-330))))) (T -937)) -((-3971 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 75 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) 70 T ELT)) (-3726 (($) NIL T CONST)) (-3185 (((-3 $ #1#) (-1086 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1086 $) (-831)) 55 T ELT)) (-3159 (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3158 (((-350 (-485)) $) 17 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-485) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3035 (($ $ (-773)) 47 T ELT)) (-3034 (($ $ (-773)) 48 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3184 (((-350 (-485)) $ $) 21 T ELT)) (-3469 (((-3 $ #1#) $) 88 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3189 (((-85) $) 69 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3036 (((-3 (-1086 $) #1#) $) 83 T ELT)) (-3038 (((-3 (-773) #1#) $) 82 T ELT)) (-3037 (((-3 (-1086 $) #1#) $) 80 T ELT)) (-3052 (((-3 (-975 $ (-1086 $)) #1#) $) 78 T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 89 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3948 (((-773) $) 87 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ $) 27 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3186 (((-584 $) (-1086 $)) 61 T ELT) (((-584 $) (-1086 (-350 (-485)))) NIL T ELT) (((-584 $) (-1086 (-485))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-350 (-485)))) NIL T ELT) (((-584 $) (-858 (-485))) NIL T ELT)) (-3053 (($ (-975 $ (-1086 $)) (-773)) 46 T ELT)) (-3385 (($ $) 22 T ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 39 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 76 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 24 T ELT)) (-3951 (($ $ $) 37 T ELT)) (-3839 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3841 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ (-485)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-938 |#1|) (-13 (-926) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3053 ($ (-975 $ (-1086 $)) (-773))) (-15 -3052 ((-3 (-975 $ (-1086 $)) "failed") $)) (-15 -3184 ((-350 (-485)) $ $)))) (-13 (-756) (-312) (-934))) (T -938)) -((-3053 (*1 *1 *2 *3) (-12 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934))))) (-3052 (*1 *2 *1) (|partial| -12 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934))))) (-3184 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934)))))) -((-3054 (((-2 (|:| -3268 |#2|) (|:| -2515 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-939 |#1| |#2|) (-10 -7 (-15 -3054 (|#2| |#2| |#1|)) (-15 -3054 ((-2 (|:| -3268 |#2|) (|:| -2515 (-584 |#1|))) |#2| (-584 |#1|)))) (-312) (-601 |#1|)) (T -939)) -((-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3268 *3) (|:| -2515 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3054 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3055 ((|#1| $ |#1|) 12 T ELT)) (-3057 (($ |#1|) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3056 ((|#1| $) 11 T ELT)) (-3948 (((-773) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) -(((-940 |#1|) (-13 (-1014) (-10 -8 (-15 -3057 ($ |#1|)) (-15 -3056 (|#1| $)) (-15 -3055 (|#1| $ |#1|)) (-15 -3058 ((-85) $ $)))) (-1130)) (T -940)) -((-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1130)))) (-3057 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3056 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3055 (*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) 113 T ELT) (((-584 $) (-584 |#4|) (-85)) 114 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 112 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 115 T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 107 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 44 T ELT)) (-3687 ((|#4| |#4| $) 65 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3440 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 128 T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 37 T ELT)) (-2610 (((-584 |#4|) $) 18 T ELT)) (-3247 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 105 T ELT)) (-3800 (((-3 |#4| #1#) $) 41 T ELT)) (-3194 (((-584 $) |#4| $) 88 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 98 T ELT) (((-85) |#4| $) 60 T ELT)) (-3240 (((-584 $) |#4| $) 110 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 111 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3441 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 123 T ELT)) (-3442 (($ |#4| $) 77 T ELT) (($ (-584 |#4|) $) 78 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 74 T ELT)) (-3699 (((-584 |#4|) $) NIL T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 39 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3771 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 90 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 84 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 14 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 21 T ELT)) (-2912 (($ $ |#3|) 48 T ELT)) (-2914 (($ $ |#3|) 50 T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3191 (((-584 $) |#4| $) 87 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3935 (((-85) |#3| $) 61 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-941 |#1| |#2| |#3| |#4|) (-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3442 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3441 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3440 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -941)) -((-3442 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) -((-3059 (((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485))))) 67 T ELT)) (-3060 (((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485))))) 52 T ELT)) (-3061 (((-584 (-265 (-485))) (-631 (-350 (-858 (-485))))) 45 T ELT)) (-3065 (((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485))))) 85 T ELT)) (-3063 (((-631 (-265 (-485))) (-631 (-265 (-485)))) 38 T ELT)) (-3064 (((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485))))) 74 T ELT)) (-3062 (((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485))))) 82 T ELT))) -(((-942) (-10 -7 (-15 -3059 ((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485)))))) (-15 -3060 ((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485)))))) (-15 -3061 ((-584 (-265 (-485))) (-631 (-350 (-858 (-485)))))) (-15 -3062 ((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485)))))) (-15 -3063 ((-631 (-265 (-485))) (-631 (-265 (-485))))) (-15 -3064 ((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485)))))) (-15 -3065 ((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485)))))))) (T -942)) -((-3065 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3062 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485)))) (-5 *1 (-942)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)) (-5 *3 (-265 (-485))))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485)))))))) (-5 *1 (-942))))) -((-3069 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3068 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3070 (((-584 (-631 (-485))) (-584 (-584 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-814 (-485))) (-485)) 79 T ELT) (((-631 (-485)) (-584 (-485))) 76 T ELT) (((-631 (-485)) (-814 (-485)) (-485)) 74 T ELT)) (-3067 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3066 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3999 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3999 #1#))) ELT))) -(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3999 #1="*"))) (-15 -3066 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3999 #1#))) (-15 -3066 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-15 -3067 ((-631 (-858 |#1|)) (-695))) (-15 -3068 ((-631 |#1|) (-631 |#1|) (-831))) (-15 -3068 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-15 -3069 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -3069 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3069 ((-631 |#1|) (-631 |#1|))) (-15 -3069 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3070 ((-631 (-485)) (-814 (-485)) (-485))) (-15 -3070 ((-631 (-485)) (-584 (-485)))) (-15 -3070 ((-584 (-631 (-485))) (-584 (-814 (-485))) (-485))) (-15 -3070 ((-584 (-631 (-485))) (-584 (-584 (-485)))))) (-962)) (T -943)) -((-3070 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4))))) -((-3074 (((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3420 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3078 (((-1180 |#1|) (-584 (-1180 |#1|)) (-485)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3077 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3076 (((-85) (-584 (-631 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-584 (-631 |#1|)) (-485)) 100 (|has| |#1| (-312)) ELT)) (-3073 (((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3072 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3071 (((-631 |#1|) (-1180 (-1180 |#1|))) 39 T ELT)) (-3075 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485)) 93 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485)) 91 (|has| |#1| (-312)) ELT))) -(((-944 |#1|) (-10 -7 (-15 -3071 ((-631 |#1|) (-1180 (-1180 |#1|)))) (-15 -3072 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3073 ((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|))) (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485))) (-15 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485))) (-15 -3076 ((-85) (-584 (-631 |#1|)) (-485))) (-15 -3076 ((-85) (-584 (-631 |#1|)))) (-15 -3420 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|))) (-15 -3420 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485))) (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85))) (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-15 -3078 ((-1180 |#1|) (-584 (-1180 |#1|)) (-485)))) |%noBranch|) |%noBranch|)) (-962)) (T -944)) -((-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3077 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *4)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *5)))) (-3075 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962)))) (-3075 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-312)) (-4 *4 (-962)))) (-3075 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5)))) (-3072 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))))) -((-3079 ((|#1| (-831) |#1|) 18 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3079 (|#1| (-831) |#1|))) (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $))))) (T -945)) -((-3079 (*1 *2 *3 *2) (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)))))))) -((-3080 ((|#1| |#1| (-831)) 18 T ELT))) -(((-946 |#1|) (-10 -7 (-15 -3080 (|#1| |#1| (-831)))) (-13 (-1014) (-10 -8 (-15 * ($ $ $))))) (T -946)) -((-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $)))))))) -((-3948 ((|#1| (-262)) 11 T ELT) (((-1186) |#1|) 9 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -3948 ((-1186) |#1|)) (-15 -3948 (|#1| (-262)))) (-1130)) (T -947)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1130)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ |#4|) 24 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3081 ((|#4| $) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3128 (((-695)) 42 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 22 T CONST)) (-3058 (((-85) $ $) 39 T ELT)) (-3839 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-948 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3844 ($ |#4|)) (-15 -3948 ($ |#4|)) (-15 -3081 (|#4| $)))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948)) -((-3844 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-949) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $))))) (T -949)) -((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-949))))) -((-3158 ((|#2| $) 10 T ELT))) -(((-950 |#1| |#2|) (-10 -7 (-15 -3158 (|#2| |#1|))) (-951 |#2|) (-1130)) (T -950)) -NIL -((-3159 (((-3 |#1| "failed") $) 9 T ELT)) (-3158 ((|#1| $) 8 T ELT)) (-3948 (($ |#1|) 6 T ELT))) -(((-951 |#1|) (-113) (-1130)) (T -951)) -((-3159 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1130))))) -(-13 (-556 |t#1|) (-10 -8 (-15 -3159 ((-3 |t#1| "failed") $)) (-15 -3158 (|t#1| $)))) -(((-556 |#1|) . T)) -((-3082 (((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))) 38 T ELT))) -(((-952 |#1| |#2|) (-10 -7 (-15 -3082 ((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))))) (-496) (-13 (-496) (-951 |#1|))) (T -952)) -((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6))))) -((-3083 (((-584 (-1091)) (-350 (-858 |#1|))) 17 T ELT)) (-3085 (((-350 (-1086 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091)) 24 T ELT)) (-3086 (((-350 (-858 |#1|)) (-350 (-1086 (-350 (-858 |#1|)))) (-1091)) 26 T ELT)) (-3084 (((-3 (-1091) "failed") (-350 (-858 |#1|))) 20 T ELT)) (-3770 (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|))))) 32 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 33 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1091)) (-584 (-350 (-858 |#1|)))) 28 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))) 29 T ELT)) (-3948 (((-350 (-858 |#1|)) |#1|) 11 T ELT))) -(((-953 |#1|) (-10 -7 (-15 -3083 ((-584 (-1091)) (-350 (-858 |#1|)))) (-15 -3084 ((-3 (-1091) "failed") (-350 (-858 |#1|)))) (-15 -3085 ((-350 (-1086 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091))) (-15 -3086 ((-350 (-858 |#1|)) (-350 (-1086 (-350 (-858 |#1|)))) (-1091))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1091)) (-584 (-350 (-858 |#1|))))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3948 ((-350 (-858 |#1|)) |#1|))) (-496)) (T -953)) -((-3948 (*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3770 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-350 (-858 *5)))) (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) (-3770 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1086 (-350 (-858 *5))))) (-5 *4 (-1091)) (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-350 (-1086 (-350 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5))))) (-3084 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) (-5 *1 (-953 *4)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091))) (-5 *1 (-953 *4))))) -((-3087 (((-330)) 17 T ELT)) (-3102 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3095 (((-1 (-330)) (-695)) 48 T ELT)) (-3088 (((-330)) 37 T ELT)) (-3091 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3089 (((-330)) 29 T ELT)) (-3092 (((-1 (-330)) (-330)) 30 T ELT)) (-3090 (((-330) (-695)) 43 T ELT)) (-3093 (((-1 (-330)) (-695)) 44 T ELT)) (-3094 (((-1 (-330)) (-695) (-695)) 47 T ELT)) (-3386 (((-1 (-330)) (-695) (-695)) 45 T ELT))) -(((-954) (-10 -7 (-15 -3087 ((-330))) (-15 -3088 ((-330))) (-15 -3089 ((-330))) (-15 -3090 ((-330) (-695))) (-15 -3102 ((-1 (-330)) (-330) (-330))) (-15 -3091 ((-1 (-330)) (-330) (-330))) (-15 -3092 ((-1 (-330)) (-330))) (-15 -3093 ((-1 (-330)) (-695))) (-15 -3386 ((-1 (-330)) (-695) (-695))) (-15 -3094 ((-1 (-330)) (-695) (-695))) (-15 -3095 ((-1 (-330)) (-695))))) (T -954)) -((-3095 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3094 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3092 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3102 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954)))) (-3089 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3087 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) -((-3734 (((-348 |#1|) |#1|) 33 T ELT))) -(((-955 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|))) (-1156 (-350 (-858 (-485))))) (T -955)) -((-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1156 (-350 (-858 (-485)))))))) -((-3096 (((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))) 14 T ELT))) -(((-956 |#1|) (-10 -7 (-15 -3096 ((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))))) (-258)) (T -956)) -((-3096 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4)))) (-5 *1 (-956 *4))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3726 (($) 23 T CONST)) (-3100 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3099 ((|#1| $) 28 T ELT)) (-3097 ((|#1|) 26 T CONST)) (-3948 (((-773) $) 13 T ELT)) (-3098 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) -(((-957 |#1|) (-113) (-23)) (T -957)) -((-3100 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3097 (*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3100 (|t#1| $)) (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1|) -3954))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3101 (($) 31 T CONST)) (-3726 (($) 23 T CONST)) (-3100 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3099 ((|#1| $) 28 T ELT)) (-3097 ((|#1|) 26 T CONST)) (-3948 (((-773) $) 13 T ELT)) (-3098 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) +((-2558 (((-634 (-1140)) $ (-1140)) NIL T ELT)) (-2559 (((-634 (-490)) $ (-490)) NIL T ELT)) (-2557 (((-696) $ (-102)) NIL T ELT)) (-2560 (((-634 (-101)) $ (-101)) 22 T ELT)) (-2562 (($ (-338)) 12 T ELT) (($ (-1075)) 14 T ELT)) (-2561 (((-85) $) 19 T ELT)) (-3949 (((-774) $) 26 T ELT)) (-1702 (($ $) 23 T ELT))) +(((-773) (-13 (-772) (-554 (-774)) (-10 -8 (-15 -2562 ($ (-338))) (-15 -2562 ($ (-1075))) (-15 -2561 ((-85) $))))) (T -773)) +((-2562 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-773)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-773)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) +((-2571 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2592 (($ $ $) 125 T ELT)) (-2607 (((-486) $) 31 T ELT) (((-486)) 36 T ELT)) (-2602 (($ (-486)) 53 T ELT)) (-2599 (($ $ $) 54 T ELT) (($ (-585 $)) 84 T ELT)) (-2583 (($ $ (-585 $)) 82 T ELT)) (-2604 (((-486) $) 34 T ELT)) (-2586 (($ $ $) 73 T ELT)) (-3535 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2605 (((-486) $) 33 T ELT)) (-2587 (($ $ $) 72 T ELT)) (-3538 (($ $) 114 T ELT)) (-2590 (($ $ $) 129 T ELT)) (-2573 (($ (-585 $)) 61 T ELT)) (-3543 (($ $ (-585 $)) 79 T ELT)) (-2601 (($ (-486) (-486)) 55 T ELT)) (-2614 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3140 (($ $ (-486)) 43 T ELT) (($ $) 46 T ELT)) (-2567 (($ $ $) 97 T ELT)) (-2588 (($ $ $) 132 T ELT)) (-2582 (($ $) 115 T ELT)) (-2566 (($ $ $) 98 T ELT)) (-2578 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2840 (((-1187) $) 10 T ELT)) (-2581 (($ $) 118 T ELT) (($ $ (-696)) 122 T ELT)) (-2584 (($ $ $) 75 T ELT)) (-2585 (($ $ $) 74 T ELT)) (-2598 (($ $ (-585 $)) 110 T ELT)) (-2596 (($ $ $) 113 T ELT)) (-2575 (($ (-585 $)) 59 T ELT)) (-2576 (($ $) 70 T ELT) (($ (-585 $)) 71 T ELT)) (-2579 (($ $ $) 123 T ELT)) (-2580 (($ $) 116 T ELT)) (-2591 (($ $ $) 128 T ELT)) (-3536 (($ (-486)) 21 T ELT) (($ (-1092)) 23 T ELT) (($ (-1075)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2564 (($ $ $) 101 T ELT)) (-2563 (($ $) 102 T ELT)) (-2609 (((-1187) (-1075)) 15 T ELT)) (-2610 (($ (-1075)) 14 T ELT)) (-3126 (($ (-585 (-585 $))) 58 T ELT)) (-3141 (($ $ (-486)) 42 T ELT) (($ $) 45 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2594 (($ $ $) 131 T ELT)) (-3473 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2595 (((-85) $) 108 T ELT)) (-2597 (($ $ (-585 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2603 (($ (-486)) 39 T ELT)) (-2606 (((-486) $) 32 T ELT) (((-486)) 35 T ELT)) (-2600 (($ $ $) 40 T ELT) (($ (-585 $)) 83 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (($ $ $) 99 T ELT)) (-3568 (($) 13 T ELT)) (-3803 (($ $ (-585 $)) 109 T ELT)) (-2608 (((-1075) (-1075)) 8 T ELT)) (-3839 (($ $) 117 T ELT) (($ $ (-696)) 121 T ELT)) (-2568 (($ $ $) 96 T ELT)) (-3761 (($ $ (-696)) 139 T ELT)) (-2574 (($ (-585 $)) 60 T ELT)) (-3949 (((-774) $) 19 T ELT)) (-3776 (($ $ (-486)) 41 T ELT) (($ $) 44 T ELT)) (-2577 (($ $) 68 T ELT) (($ (-585 $)) 69 T ELT)) (-3243 (($ $) 66 T ELT) (($ (-585 $)) 67 T ELT)) (-2593 (($ $) 124 T ELT)) (-2572 (($ (-585 $)) 65 T ELT)) (-3104 (($ $ $) 105 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2589 (($ $ $) 130 T ELT)) (-2565 (($ $ $) 100 T ELT)) (-3740 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2569 (($ $ $) 89 T ELT)) (-2570 (($ $ $) 87 T ELT)) (-3059 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2687 (($ $ $) 88 T ELT)) (-2688 (($ $ $) 86 T ELT)) (-3952 (($ $ $) 94 T ELT)) (-3840 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3842 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-774) (-13 (-1015) (-10 -8 (-15 -2840 ((-1187) $)) (-15 -2610 ($ (-1075))) (-15 -2609 ((-1187) (-1075))) (-15 -3536 ($ (-486))) (-15 -3536 ($ (-1092))) (-15 -3536 ($ (-1075))) (-15 -3536 ($ (-179))) (-15 -3568 ($)) (-15 -2608 ((-1075) (-1075))) (-15 -2607 ((-486) $)) (-15 -2606 ((-486) $)) (-15 -2607 ((-486))) (-15 -2606 ((-486))) (-15 -2605 ((-486) $)) (-15 -2604 ((-486) $)) (-15 -2603 ($ (-486))) (-15 -2602 ($ (-486))) (-15 -2601 ($ (-486) (-486))) (-15 -3141 ($ $ (-486))) (-15 -3140 ($ $ (-486))) (-15 -3776 ($ $ (-486))) (-15 -3141 ($ $)) (-15 -3140 ($ $)) (-15 -3776 ($ $)) (-15 -2600 ($ $ $)) (-15 -2599 ($ $ $)) (-15 -2600 ($ (-585 $))) (-15 -2599 ($ (-585 $))) (-15 -2598 ($ $ (-585 $))) (-15 -2597 ($ $ (-585 $))) (-15 -2597 ($ $ $ $)) (-15 -2596 ($ $ $)) (-15 -2595 ((-85) $)) (-15 -3803 ($ $ (-585 $))) (-15 -3538 ($ $)) (-15 -2594 ($ $ $)) (-15 -2593 ($ $)) (-15 -3126 ($ (-585 (-585 $)))) (-15 -2592 ($ $ $)) (-15 -2614 ($ $)) (-15 -2614 ($ $ $)) (-15 -2591 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -3761 ($ $ (-696))) (-15 -3104 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3543 ($ $ (-585 $))) (-15 -2583 ($ $ (-585 $))) (-15 -2582 ($ $)) (-15 -3839 ($ $)) (-15 -3839 ($ $ (-696))) (-15 -2581 ($ $)) (-15 -2581 ($ $ (-696))) (-15 -2580 ($ $)) (-15 -2579 ($ $ $)) (-15 -3535 ($ $)) (-15 -3535 ($ $ $)) (-15 -3535 ($ $ $ $)) (-15 -2578 ($ $)) (-15 -2578 ($ $ $)) (-15 -2578 ($ $ $ $)) (-15 -3473 ($ $)) (-15 -3473 ($ $ $)) (-15 -3473 ($ $ $ $)) (-15 -3243 ($ $)) (-15 -3243 ($ (-585 $))) (-15 -2577 ($ $)) (-15 -2577 ($ (-585 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-585 $))) (-15 -2575 ($ (-585 $))) (-15 -2574 ($ (-585 $))) (-15 -2573 ($ (-585 $))) (-15 -2572 ($ (-585 $))) (-15 -3059 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -2688 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3840 ($ $)) (-15 * ($ $ $)) (-15 -3952 ($ $ $)) (-15 ** ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3469 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $)) (-15 -3740 ($ $ $)) (-15 -3740 ($ $))))) (T -774)) +((-2840 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-774)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-774)))) (-3568 (*1 *1) (-5 *1 (-774))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2607 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2606 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2601 (*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3141 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3141 (*1 *1 *1) (-5 *1 (-774))) (-3140 (*1 *1 *1) (-5 *1 (-774))) (-3776 (*1 *1 *1) (-5 *1 (-774))) (-2600 (*1 *1 *1 *1) (-5 *1 (-774))) (-2599 (*1 *1 *1 *1) (-5 *1 (-774))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2597 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-2596 (*1 *1 *1 *1) (-5 *1 (-774))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-774)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-3538 (*1 *1 *1) (-5 *1 (-774))) (-2594 (*1 *1 *1 *1) (-5 *1 (-774))) (-2593 (*1 *1 *1) (-5 *1 (-774))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-774)))) (-2592 (*1 *1 *1 *1) (-5 *1 (-774))) (-2614 (*1 *1 *1) (-5 *1 (-774))) (-2614 (*1 *1 *1 *1) (-5 *1 (-774))) (-2591 (*1 *1 *1 *1) (-5 *1 (-774))) (-2590 (*1 *1 *1 *1) (-5 *1 (-774))) (-2589 (*1 *1 *1 *1) (-5 *1 (-774))) (-2588 (*1 *1 *1 *1) (-5 *1 (-774))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-3104 (*1 *1 *1 *1) (-5 *1 (-774))) (-2587 (*1 *1 *1 *1) (-5 *1 (-774))) (-2586 (*1 *1 *1 *1) (-5 *1 (-774))) (-2585 (*1 *1 *1 *1) (-5 *1 (-774))) (-2584 (*1 *1 *1 *1) (-5 *1 (-774))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2583 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2582 (*1 *1 *1) (-5 *1 (-774))) (-3839 (*1 *1 *1) (-5 *1 (-774))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-2581 (*1 *1 *1) (-5 *1 (-774))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-2580 (*1 *1 *1) (-5 *1 (-774))) (-2579 (*1 *1 *1 *1) (-5 *1 (-774))) (-3535 (*1 *1 *1) (-5 *1 (-774))) (-3535 (*1 *1 *1 *1) (-5 *1 (-774))) (-3535 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-3473 (*1 *1 *1) (-5 *1 (-774))) (-3473 (*1 *1 *1 *1) (-5 *1 (-774))) (-3473 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-3243 (*1 *1 *1) (-5 *1 (-774))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2577 (*1 *1 *1) (-5 *1 (-774))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2576 (*1 *1 *1) (-5 *1 (-774))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-3059 (*1 *1 *1 *1) (-5 *1 (-774))) (-2571 (*1 *1 *1 *1) (-5 *1 (-774))) (-2688 (*1 *1 *1 *1) (-5 *1 (-774))) (-2570 (*1 *1 *1 *1) (-5 *1 (-774))) (-2687 (*1 *1 *1 *1) (-5 *1 (-774))) (-2569 (*1 *1 *1 *1) (-5 *1 (-774))) (-3842 (*1 *1 *1 *1) (-5 *1 (-774))) (-3840 (*1 *1 *1 *1) (-5 *1 (-774))) (-3840 (*1 *1 *1) (-5 *1 (-774))) (* (*1 *1 *1 *1) (-5 *1 (-774))) (-3952 (*1 *1 *1 *1) (-5 *1 (-774))) (** (*1 *1 *1 *1) (-5 *1 (-774))) (-2568 (*1 *1 *1 *1) (-5 *1 (-774))) (-2567 (*1 *1 *1 *1) (-5 *1 (-774))) (-2566 (*1 *1 *1 *1) (-5 *1 (-774))) (-3469 (*1 *1 *1 *1) (-5 *1 (-774))) (-2565 (*1 *1 *1 *1) (-5 *1 (-774))) (-2564 (*1 *1 *1 *1) (-5 *1 (-774))) (-2563 (*1 *1 *1) (-5 *1 (-774))) (-3740 (*1 *1 *1 *1) (-5 *1 (-774))) (-3740 (*1 *1 *1) (-5 *1 (-774)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3834 (((-3 $ "failed") (-1092)) 36 T ELT)) (-3139 (((-696)) 32 T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3245 (((-1075) $) 43 T ELT)) (-2402 (($ (-832)) 28 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (((-1092) $) 13 T ELT) (((-475) $) 19 T ELT) (((-802 (-330)) $) 26 T ELT) (((-802 (-486)) $) 22 T ELT)) (-3949 (((-774) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 40 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 38 T ELT))) +(((-775 |#1|) (-13 (-754) (-555 (-1092)) (-555 (-475)) (-555 (-802 (-330))) (-555 (-802 (-486))) (-10 -8 (-15 -3834 ((-3 $ "failed") (-1092))))) (-585 (-1092))) (T -775)) +((-3834 (*1 *1 *2) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-775 *3)) (-14 *3 (-585 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-448) $) 12 T ELT)) (-2611 (((-585 (-382)) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT))) +(((-776) (-13 (-1015) (-10 -8 (-15 -3545 ((-448) $)) (-15 -2611 ((-585 (-382)) $))))) (T -776)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-776)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-585 (-382))) (-5 *1 (-776))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-859 |#1|)) NIL T ELT) (((-859 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3926 (((-1187) (-696)) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-777 |#1| |#2| |#3| |#4|) (-13 (-963) (-431 (-859 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3952 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3926 ((-1187) (-696))))) (-963) (-585 (-1092)) (-585 (-696)) (-696)) (T -777)) +((-3952 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-777 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))) (-14 *4 (-585 (-696))) (-14 *5 (-696)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-777 *4 *5 *6 *7)) (-4 *4 (-963)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 *3)) (-14 *7 *3)))) +((-2612 (((-3 (-148 |#3|) #1="failed") (-696) (-696) |#2| |#2|) 38 T ELT)) (-2613 (((-3 (-350 |#3|) #1#) (-696) (-696) |#2| |#2|) 29 T ELT))) +(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-3 (-350 |#3|) #1="failed") (-696) (-696) |#2| |#2|)) (-15 -2612 ((-3 (-148 |#3|) #1#) (-696) (-696) |#2| |#2|))) (-312) (-1174 |#1|) (-1157 |#1|)) (T -778)) +((-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5)))) (-2613 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5))))) +((-2613 (((-3 (-350 (-1150 |#2| |#1|)) #1="failed") (-696) (-696) (-1171 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1150 |#2| |#1|)) #1#) (-696) (-696) (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) 28 T ELT))) +(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-3 (-350 (-1150 |#2| |#1|)) #1="failed") (-696) (-696) (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (-15 -2613 ((-3 (-350 (-1150 |#2| |#1|)) #1#) (-696) (-696) (-1171 |#1| |#2| |#3|)))) (-312) (-1092) |#1|) (T -779)) +((-2613 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) (-5 *1 (-779 *5 *6 *7)))) (-2613 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) (-5 *1 (-779 *5 *6 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-486)) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1087 (-486)) (-486)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2615 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3775 (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 (((-486)) NIL T ELT)) (-2616 (((-486) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-486)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-1071 (-486)) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-486) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-780 |#1|) (-781 |#1|) (-486)) (T -780)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $ (-486)) 78 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2614 (($ (-1087 (-486)) (-486)) 77 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2615 (($ $) 80 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3775 (((-696) $) 85 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2617 (((-486)) 82 T ELT)) (-2616 (((-486) $) 81 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3772 (($ $ (-486)) 84 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-2618 (((-1071 (-486)) $) 86 T ELT)) (-2894 (($ $) 83 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3773 (((-486) $ (-486)) 79 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-781 |#1|) (-113) (-486)) (T -781)) +((-2618 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-1071 (-486))))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-696)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2894 (*1 *1 *1) (-4 *1 (-781 *2))) (-2617 (*1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2615 (*1 *1 *1) (-4 *1 (-781 *2))) (-3773 (*1 *2 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-3040 (*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *3 (-486)) (-4 *1 (-781 *4))))) +(-13 (-258) (-120) (-10 -8 (-15 -2618 ((-1071 (-486)) $)) (-15 -3775 ((-696) $)) (-15 -3772 ($ $ (-486))) (-15 -2894 ($ $)) (-15 -2617 ((-486))) (-15 -2616 ((-486) $)) (-15 -2615 ($ $)) (-15 -3773 ((-486) $ (-486))) (-15 -3040 ($ $ (-486))) (-15 -2614 ($ (-1087 (-486)) (-486))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-780 |#1|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-780 |#1|) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT)) (-3159 (((-780 |#1|) $) NIL T ELT) (((-1092) $) NIL (|has| (-780 |#1|) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-486) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-780 |#1|))) (|:| |vec| (-1181 (-780 |#1|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-780 |#1|)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-780 |#1|) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-780 |#1|) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-780 |#1|) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-780 |#1|) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-780 |#1|) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3961 (($ (-1 (-780 |#1|) (-780 |#1|)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-780 |#1|))) (|:| |vec| (-1181 (-780 |#1|)))) (-1181 $) $) NIL T ELT) (((-632 (-780 |#1|)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-780 |#1|) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-780 |#1|) (-258)) ELT)) (-3133 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-780 |#1|)) (-585 (-780 |#1|))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-780 |#1|) (-780 |#1|)) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-249 (-780 |#1|))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-585 (-249 (-780 |#1|)))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-585 (-1092)) (-585 (-780 |#1|))) NIL (|has| (-780 |#1|) (-457 (-1092) (-780 |#1|))) ELT) (($ $ (-1092) (-780 |#1|)) NIL (|has| (-780 |#1|) (-457 (-1092) (-780 |#1|))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-780 |#1|)) NIL (|has| (-780 |#1|) (-241 (-780 |#1|) (-780 |#1|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-780 |#1|) (-780 |#1|))) NIL T ELT) (($ $ (-1 (-780 |#1|) (-780 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-780 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-780 |#1|) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-780 |#1|) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-780 |#1|) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-780 |#1|) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-780 |#1|) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-780 |#1|) (-935)) ELT) (((-179) $) NIL (|has| (-780 |#1|) (-935)) ELT)) (-2619 (((-148 (-350 (-486))) $) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-780 |#1|) (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-780 |#1|)) NIL T ELT) (($ (-1092)) NIL (|has| (-780 |#1|) (-952 (-1092))) ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-780 |#1|) (-823))) (|has| (-780 |#1|) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-780 |#1|) (-780 |#1|))) NIL T ELT) (($ $ (-1 (-780 |#1|) (-780 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-780 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-780 |#1|) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3952 (($ $ $) NIL T ELT) (($ (-780 |#1|) (-780 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-780 |#1|) $) NIL T ELT) (($ $ (-780 |#1|)) NIL T ELT))) +(((-782 |#1|) (-13 (-906 (-780 |#1|)) (-10 -8 (-15 -3773 ((-350 (-486)) $ (-486))) (-15 -2619 ((-148 (-350 (-486))) $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)))) (-486)) (T -782)) +((-3773 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-782 *4)) (-14 *4 *3) (-5 *3 (-486)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-782 *3)) (-14 *3 (-486)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-14 *2 (-486)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-782 *3)) (-14 *3 *2)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#2| (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| |#2| (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT)) (-3159 ((|#2| $) NIL T ELT) (((-1092) $) NIL (|has| |#2| (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT)) (-3733 (($ $) 35 T ELT) (($ (-486) $) 38 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 64 T ELT)) (-2997 (($) NIL (|has| |#2| (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| |#2| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| |#2| (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 ((|#2| $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#2| (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 60 T ELT)) (-3449 (($) NIL (|has| |#2| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3133 ((|#2| $) NIL (|has| |#2| (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 |#2|) (-585 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-585 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-585 (-1092)) (-585 |#2|)) NIL (|has| |#2| (-457 (-1092) |#2|)) ELT) (($ $ (-1092) |#2|) NIL (|has| |#2| (-457 (-1092) |#2|)) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#2| $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| |#2| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#2| (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| |#2| (-555 (-475))) ELT) (((-330) $) NIL (|has| |#2| (-935)) ELT) (((-179) $) NIL (|has| |#2| (-935)) ELT)) (-2619 (((-148 (-350 (-486))) $) 78 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3949 (((-774) $) 105 T ELT) (($ (-486)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1092)) NIL (|has| |#2| (-952 (-1092))) ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 ((|#2| $) NIL (|has| |#2| (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ (-486)) 71 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#2| (-742)) ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) 46 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3952 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3840 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3842 (($ $ $) 48 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 61 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-783 |#1| |#2|) (-13 (-906 |#2|) (-10 -8 (-15 -3773 ((-350 (-486)) $ (-486))) (-15 -2619 ((-148 (-350 (-486))) $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)))) (-486) (-781 |#1|)) (T -783)) +((-3773 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-486))) (-5 *1 (-783 *4 *5)) (-5 *3 (-486)) (-4 *5 (-781 *4)))) (-2619 (*1 *2 *1) (-12 (-14 *3 (-486)) (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3)))) (-3733 (*1 *1 *1) (-12 (-14 *2 (-486)) (-5 *1 (-783 *2 *3)) (-4 *3 (-781 *2)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-14 *3 *2) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3))))) +((-2571 (((-85) $ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3799 ((|#2| $) 12 T ELT)) (-2620 (($ |#1| |#2|) 9 T ELT)) (-3245 (((-1075) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3246 (((-1035) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#1| $) 11 T ELT)) (-3533 (($ |#1| |#2|) 10 T ELT)) (-3949 (((-774) $) 18 (OR (-12 (|has| |#1| (-554 (-774))) (|has| |#2| (-554 (-774)))) (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015)))) ELT)) (-1267 (((-85) $ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3059 (((-85) $ $) 23 (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT))) +(((-784 |#1| |#2|) (-13 (-1131) (-10 -8 (IF (|has| |#1| (-554 (-774))) (IF (|has| |#2| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1015)) (IF (|has| |#2| (-1015)) (-6 (-1015)) |%noBranch|) |%noBranch|) (-15 -2620 ($ |#1| |#2|)) (-15 -3533 ($ |#1| |#2|)) (-15 -3804 (|#1| $)) (-15 -3799 (|#2| $)))) (-1131) (-1131)) (T -784)) +((-2620 (*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3804 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *2 *3)) (-4 *3 (-1131)))) (-3799 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *3 *2)) (-4 *3 (-1131))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2960 (((-486) $) 16 T ELT)) (-2622 (($ (-130)) 13 T ELT)) (-2621 (($ (-130)) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2959 (((-130) $) 15 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2624 (($ (-130)) 11 T ELT)) (-2625 (($ (-130)) 10 T ELT)) (-3949 (((-774) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2623 (($ (-130)) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-785) (-13 (-1015) (-557 (-130)) (-10 -8 (-15 -2625 ($ (-130))) (-15 -2624 ($ (-130))) (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2959 ((-130) $)) (-15 -2960 ((-486) $))))) (T -785)) +((-2625 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-785))))) +((-3949 (((-265 (-486)) (-350 (-859 (-48)))) 23 T ELT) (((-265 (-486)) (-859 (-48))) 18 T ELT))) +(((-786) (-10 -7 (-15 -3949 ((-265 (-486)) (-859 (-48)))) (-15 -3949 ((-265 (-486)) (-350 (-859 (-48))))))) (T -786)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 (-48)))) (-5 *2 (-265 (-486))) (-5 *1 (-786)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-859 (-48))) (-5 *2 (-265 (-486))) (-5 *1 (-786))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3569 (((-85) $ (|[\|\|]| (-448))) 9 T ELT) (((-85) $ (|[\|\|]| (-1075))) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3575 (((-448) $) 10 T ELT) (((-1075) $) 14 T ELT)) (-3059 (((-85) $ $) 15 T ELT))) +(((-787) (-13 (-997) (-1177) (-10 -8 (-15 -3569 ((-85) $ (|[\|\|]| (-448)))) (-15 -3575 ((-448) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1075)))) (-15 -3575 ((-1075) $))))) (T -787)) +((-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-787)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-787)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-787)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-787))))) +((-3961 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT))) +(((-788 |#1| |#2|) (-10 -7 (-15 -3961 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1131) (-1131)) (T -788)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))) +((-3374 (($ |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-696)) 15 T ELT))) +(((-789 |#1|) (-10 -8 (-15 -3374 ($ |#1| |#1|)) (-15 -2628 (|#1| $ (-696)))) (-1131)) (T -789)) +((-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-789 *2)) (-4 *2 (-1131)))) (-3374 (*1 *1 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1131))))) +((-3961 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 15 T ELT))) +(((-790 |#1| |#2|) (-10 -7 (-15 -3961 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1131) (-1131)) (T -790)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) +((-3374 (($ |#1| |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-696)) 15 T ELT))) +(((-791 |#1|) (-10 -8 (-15 -3374 ($ |#1| |#1| |#1|)) (-15 -2628 (|#1| $ (-696)))) (-1131)) (T -791)) +((-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-791 *2)) (-4 *2 (-1131)))) (-3374 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1131))))) +((-2626 (((-585 (-1097)) (-1075)) 9 T ELT))) +(((-792) (-10 -7 (-15 -2626 ((-585 (-1097)) (-1075))))) (T -792)) +((-2626 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-792))))) +((-3961 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 15 T ELT))) +(((-793 |#1| |#2|) (-10 -7 (-15 -3961 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1131) (-1131)) (T -793)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) +((-2627 (($ |#1| |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-696)) 15 T ELT))) +(((-794 |#1|) (-10 -8 (-15 -2627 ($ |#1| |#1| |#1|)) (-15 -2628 (|#1| $ (-696)))) (-1131)) (T -794)) +((-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-794 *2)) (-4 *2 (-1131)))) (-2627 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1131))))) +((-2631 (((-1071 (-585 (-486))) (-585 (-486)) (-1071 (-585 (-486)))) 41 T ELT)) (-2630 (((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486))) 31 T ELT)) (-2632 (((-1071 (-585 (-486))) (-585 (-486))) 53 T ELT) (((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486))) 50 T ELT)) (-2633 (((-1071 (-585 (-486))) (-486)) 55 T ELT)) (-2629 (((-1071 (-585 (-832))) (-1071 (-585 (-832)))) 22 T ELT)) (-3012 (((-585 (-832)) (-585 (-832))) 18 T ELT))) +(((-795) (-10 -7 (-15 -3012 ((-585 (-832)) (-585 (-832)))) (-15 -2629 ((-1071 (-585 (-832))) (-1071 (-585 (-832))))) (-15 -2630 ((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486)))) (-15 -2631 ((-1071 (-585 (-486))) (-585 (-486)) (-1071 (-585 (-486))))) (-15 -2632 ((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486)))) (-15 -2632 ((-1071 (-585 (-486))) (-585 (-486)))) (-15 -2633 ((-1071 (-585 (-486))) (-486))))) (T -795)) +((-2633 (*1 *2 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-486)))) (-2632 (*1 *2 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) (-2632 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) (-2631 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *3 (-585 (-486))) (-5 *1 (-795)))) (-2630 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-1071 (-585 (-832)))) (-5 *1 (-795)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-795))))) +((-3975 (((-802 (-330)) $) 9 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-802 (-486)) $) 8 (|has| |#1| (-555 (-802 (-486)))) ELT))) +(((-796 |#1|) (-113) (-1131)) (T -796)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-555 (-802 (-486)))) (-6 (-555 (-802 (-486)))) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-330)))) (-6 (-555 (-802 (-330)))) |%noBranch|))) +(((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3617 (($) 14 T ELT)) (-2635 (($ (-800 |#1| |#2|) (-800 |#1| |#3|)) 28 T ELT)) (-2634 (((-800 |#1| |#3|) $) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2643 (((-85) $) 22 T ELT)) (-2642 (($) 19 T ELT)) (-3949 (((-774) $) 31 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2853 (((-800 |#1| |#2|) $) 15 T ELT)) (-3059 (((-85) $ $) 26 T ELT))) +(((-797 |#1| |#2| |#3|) (-13 (-1015) (-10 -8 (-15 -2643 ((-85) $)) (-15 -2642 ($)) (-15 -3617 ($)) (-15 -2635 ($ (-800 |#1| |#2|) (-800 |#1| |#3|))) (-15 -2853 ((-800 |#1| |#2|) $)) (-15 -2634 ((-800 |#1| |#3|) $)))) (-1015) (-1015) (-610 |#2|)) (T -797)) +((-2643 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4)))) (-2642 (*1 *1) (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) (-4 *4 (-610 *3)))) (-3617 (*1 *1) (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) (-4 *4 (-610 *3)))) (-2635 (*1 *1 *2 *3) (-12 (-5 *2 (-800 *4 *5)) (-5 *3 (-800 *4 *6)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-610 *5)) (-5 *1 (-797 *4 *5 *6)))) (-2853 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *4)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4)))) (-2634 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *5)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-2799 (((-800 |#1| $) $ (-802 |#1|) (-800 |#1| $)) 17 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-798 |#1|) (-113) (-1015)) (T -798)) +((-2799 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-800 *4 *1)) (-5 *3 (-802 *4)) (-4 *1 (-798 *4)) (-4 *4 (-1015))))) +(-13 (-1015) (-10 -8 (-15 -2799 ((-800 |t#1| $) $ (-802 |t#1|) (-800 |t#1| $))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2636 (((-85) (-585 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2637 (((-800 |#1| |#2|) |#2| |#3|) 45 (-12 (-2563 (|has| |#2| (-952 (-1092)))) (-2563 (|has| |#2| (-963)))) ELT) (((-585 (-249 (-859 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-963)) (-2563 (|has| |#2| (-952 (-1092))))) ELT) (((-585 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-952 (-1092))) ELT) (((-797 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|) 21 T ELT))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -2636 ((-85) |#2| |#3|)) (-15 -2636 ((-85) (-585 |#2|) |#3|)) (-15 -2637 ((-797 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1092))) (-15 -2637 ((-585 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-963)) (-15 -2637 ((-585 (-249 (-859 |#2|))) |#2| |#3|)) (-15 -2637 ((-800 |#1| |#2|) |#2| |#3|))))) (-1015) (-798 |#1|) (-555 (-802 |#1|))) (T -799)) +((-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-800 *5 *3)) (-5 *1 (-799 *5 *3 *4)) (-2563 (-4 *3 (-952 (-1092)))) (-2563 (-4 *3 (-963))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 (-859 *3)))) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-963)) (-2563 (-4 *3 (-952 (-1092)))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 *3))) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-952 (-1092))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-5 *2 (-797 *5 *6 (-585 *6))) (-5 *1 (-799 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-4 *6 (-798 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *6 *4)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3237 (($ $ $) 40 T ELT)) (-2664 (((-3 (-85) #1="failed") $ (-802 |#1|)) 37 T ELT)) (-3617 (($) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2639 (($ (-802 |#1|) |#2| $) 20 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2641 (((-3 |#2| #1#) (-802 |#1|) $) 51 T ELT)) (-2643 (((-85) $) 15 T ELT)) (-2642 (($) 13 T ELT)) (-3260 (((-585 (-2 (|:| -3863 (-1092)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3533 (($ (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| |#2|)))) 23 T ELT)) (-3949 (((-774) $) 45 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2638 (($ (-802 |#1|) |#2| $ |#2|) 49 T ELT)) (-2640 (($ (-802 |#1|) |#2| $) 48 T ELT)) (-3059 (((-85) $ $) 42 T ELT))) +(((-800 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -2643 ((-85) $)) (-15 -2642 ($)) (-15 -3617 ($)) (-15 -3237 ($ $ $)) (-15 -2641 ((-3 |#2| #1="failed") (-802 |#1|) $)) (-15 -2640 ($ (-802 |#1|) |#2| $)) (-15 -2639 ($ (-802 |#1|) |#2| $)) (-15 -2638 ($ (-802 |#1|) |#2| $ |#2|)) (-15 -3260 ((-585 (-2 (|:| -3863 (-1092)) (|:| |entry| |#2|))) $)) (-15 -3533 ($ (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| |#2|))))) (-15 -2664 ((-3 (-85) #1#) $ (-802 |#1|))))) (-1015) (-1015)) (T -800)) +((-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-2642 (*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3617 (*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3237 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-2641 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) (-5 *1 (-800 *4 *2)))) (-2640 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-2639 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-2638 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| *4)))) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| *4)))) (-4 *4 (-1015)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)))) (-2664 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-800 *4 *5)) (-4 *5 (-1015))))) +((-3961 (((-800 |#1| |#3|) (-1 |#3| |#2|) (-800 |#1| |#2|)) 22 T ELT))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-800 |#1| |#3|) (-1 |#3| |#2|) (-800 |#1| |#2|)))) (-1015) (-1015) (-1015)) (T -801)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-800 *5 *6)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-800 *5 *7)) (-5 *1 (-801 *5 *6 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2651 (($ $ (-585 (-51))) 74 T ELT)) (-3084 (((-585 $) $) 139 T ELT)) (-2648 (((-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51))) $) 30 T ELT)) (-3263 (((-85) $) 35 T ELT)) (-2649 (($ $ (-585 (-1092)) (-51)) 31 T ELT)) (-2652 (($ $ (-585 (-51))) 73 T ELT)) (-3160 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1092) #1#) $) 167 T ELT)) (-3159 ((|#1| $) 68 T ELT) (((-1092) $) NIL T ELT)) (-2646 (($ $) 126 T ELT)) (-2658 (((-85) $) 55 T ELT)) (-2653 (((-585 (-51)) $) 50 T ELT)) (-2650 (($ (-1092) (-85) (-85) (-85)) 75 T ELT)) (-2644 (((-3 (-585 $) #1#) (-585 $)) 82 T ELT)) (-2655 (((-85) $) 58 T ELT)) (-2656 (((-85) $) 57 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) 41 T ELT)) (-2661 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $) 97 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 40 T ELT)) (-2662 (((-3 (-585 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 $))) #1#) $) 107 T ELT)) (-2660 (((-3 (-585 $) #1#) $) 42 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-696))) #1#) $) 45 T ELT)) (-2659 (((-85) $) 34 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2647 (((-85) $) 28 T ELT)) (-2654 (((-85) $) 52 T ELT)) (-2645 (((-585 (-51)) $) 130 T ELT)) (-2657 (((-85) $) 56 T ELT)) (-3803 (($ (-86) (-585 $)) 104 T ELT)) (-3325 (((-696) $) 33 T ELT)) (-3403 (($ $) 72 T ELT)) (-3975 (($ (-585 $)) 69 T ELT)) (-3956 (((-85) $) 32 T ELT)) (-3949 (((-774) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1092)) 76 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-51)) 129 T ELT)) (-2663 (($) 103 T CONST)) (-2669 (($) 83 T CONST)) (-3059 (((-85) $ $) 93 T ELT)) (-3952 (($ $ $) 117 T ELT)) (-3842 (($ $ $) 121 T ELT)) (** (($ $ (-696)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-802 |#1|) (-13 (-1015) (-952 |#1|) (-952 (-1092)) (-10 -8 (-15 -2663 ($) -3955) (-15 -2669 ($) -3955) (-15 -2825 ((-3 (-585 $) #1="failed") $)) (-15 -2826 ((-3 (-585 $) #1#) $)) (-15 -2662 ((-3 (-585 $) #1#) $ (-86))) (-15 -2662 ((-3 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 $))) #1#) $)) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2403 (-696))) #1#) $)) (-15 -2661 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2660 ((-3 (-585 $) #1#) $)) (-15 -2828 ((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $)) (-15 -3803 ($ (-86) (-585 $))) (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696))) (-15 ** ($ $ $)) (-15 -3952 ($ $ $)) (-15 -3325 ((-696) $)) (-15 -3975 ($ (-585 $))) (-15 -3403 ($ $)) (-15 -2659 ((-85) $)) (-15 -2658 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3956 ((-85) $)) (-15 -2657 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-585 (-51)) $)) (-15 -2652 ($ $ (-585 (-51)))) (-15 -2651 ($ $ (-585 (-51)))) (-15 -2650 ($ (-1092) (-85) (-85) (-85))) (-15 -2649 ($ $ (-585 (-1092)) (-51))) (-15 -2648 ((-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51))) $)) (-15 -2647 ((-85) $)) (-15 -2646 ($ $)) (-15 -2665 ($ $ (-51))) (-15 -2645 ((-585 (-51)) $)) (-15 -3084 ((-585 $) $)) (-15 -2644 ((-3 (-585 $) #1#) (-585 $))))) (-1015)) (T -802)) +((-2663 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2669 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2662 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-802 *4))) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2662 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 (-802 *3))))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2827 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-696)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2661 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-802 *3)) (|:| |den| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2828 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 (-802 *4))) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-3952 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2650 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-85)) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2649 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-51)) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2646 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2644 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +((-3212 (((-802 |#1|) (-802 |#1|) (-585 (-1092)) (-1 (-85) (-585 |#2|))) 32 T ELT) (((-802 |#1|) (-802 |#1|) (-585 (-1 (-85) |#2|))) 46 T ELT) (((-802 |#1|) (-802 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2664 (((-85) (-585 |#2|) (-802 |#1|)) 42 T ELT) (((-85) |#2| (-802 |#1|)) 36 T ELT)) (-3534 (((-1 (-85) |#2|) (-802 |#1|)) 16 T ELT)) (-2666 (((-585 |#2|) (-802 |#1|)) 24 T ELT)) (-2665 (((-802 |#1|) (-802 |#1|) |#2|) 20 T ELT))) +(((-803 |#1| |#2|) (-10 -7 (-15 -3212 ((-802 |#1|) (-802 |#1|) (-1 (-85) |#2|))) (-15 -3212 ((-802 |#1|) (-802 |#1|) (-585 (-1 (-85) |#2|)))) (-15 -3212 ((-802 |#1|) (-802 |#1|) (-585 (-1092)) (-1 (-85) (-585 |#2|)))) (-15 -3534 ((-1 (-85) |#2|) (-802 |#1|))) (-15 -2664 ((-85) |#2| (-802 |#1|))) (-15 -2664 ((-85) (-585 |#2|) (-802 |#1|))) (-15 -2665 ((-802 |#1|) (-802 |#1|) |#2|)) (-15 -2666 ((-585 |#2|) (-802 |#1|)))) (-1015) (-1131)) (T -803)) +((-2666 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-585 *5)) (-5 *1 (-803 *4 *5)) (-4 *5 (-1131)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-803 *4 *3)) (-4 *3 (-1131)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *2 (-85)) (-5 *1 (-803 *5 *6)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-803 *5 *3)) (-4 *3 (-1131)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-803 *4 *5)) (-4 *5 (-1131)))) (-3212 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-802 *5)) (-5 *3 (-585 (-1092))) (-5 *4 (-1 (-85) (-585 *6))) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *1 (-803 *5 *6)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-5 *3 (-585 (-1 (-85) *5))) (-4 *4 (-1015)) (-4 *5 (-1131)) (-5 *1 (-803 *4 *5)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1015)) (-4 *5 (-1131)) (-5 *1 (-803 *4 *5))))) +((-3961 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 19 T ELT))) +(((-804 |#1| |#2|) (-10 -7 (-15 -3961 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1015) (-1015)) (T -804)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-802 *6)) (-5 *1 (-804 *5 *6))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3937 (((-585 |#1|) $) 20 T ELT)) (-2667 (((-85) $) 49 T ELT)) (-3160 (((-3 (-616 |#1|) "failed") $) 55 T ELT)) (-3159 (((-616 |#1|) $) 53 T ELT)) (-3802 (($ $) 24 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3836 (((-696) $) 60 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-616 |#1|) $) 22 T ELT)) (-3949 (((-774) $) 47 T ELT) (($ (-616 |#1|)) 27 T ELT) (((-741 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 11 T CONST)) (-2668 (((-585 (-616 |#1|)) $) 28 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 14 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 66 T ELT))) +(((-805 |#1|) (-13 (-758) (-952 (-616 |#1|)) (-10 -8 (-15 -2669 ($) -3955) (-15 -3949 ((-741 |#1|) $)) (-15 -3949 ($ |#1|)) (-15 -3804 ((-616 |#1|) $)) (-15 -3836 ((-696) $)) (-15 -2668 ((-585 (-616 |#1|)) $)) (-15 -3802 ($ $)) (-15 -2667 ((-85) $)) (-15 -3937 ((-585 |#1|) $)))) (-758)) (T -805)) +((-2669 (*1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3949 (*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-585 (-616 *3))) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758))))) +((-3477 ((|#1| |#1| |#1|) 19 T ELT))) +(((-806 |#1| |#2|) (-10 -7 (-15 -3477 (|#1| |#1| |#1|))) (-1157 |#2|) (-963)) (T -806)) +((-3477 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1157 *3))))) +((-2672 ((|#2| $ |#3|) 10 T ELT))) +(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -2672 (|#2| |#1| |#3|))) (-808 |#2| |#3|) (-1131) (-1131)) (T -807)) +NIL +((-3761 ((|#1| $ |#2|) 7 T ELT)) (-2672 ((|#1| $ |#2|) 6 T ELT))) +(((-808 |#1| |#2|) (-113) (-1131) (-1131)) (T -808)) +((-3761 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-2672 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3761 (|t#1| $ |t#2|)) (-15 -2672 (|t#1| $ |t#2|)))) +(((-13) . T) ((-1131) . T)) +((-2671 ((|#1| |#1| (-696)) 26 T ELT)) (-2670 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3438 (((-3 (-2 (|:| -3141 |#1|) (|:| -3140 |#1|)) #1#) |#1| (-696) (-696)) 29 T ELT) (((-585 |#1|) |#1|) 38 T ELT))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3438 ((-585 |#1|) |#1|)) (-15 -3438 ((-3 (-2 (|:| -3141 |#1|) (|:| -3140 |#1|)) #1="failed") |#1| (-696) (-696))) (-15 -2670 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2671 (|#1| |#1| (-696)))) (-1157 |#2|) (-312)) (T -809)) +((-2671 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-5 *1 (-809 *2 *4)) (-4 *2 (-1157 *4)))) (-2670 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-809 *2 *3)) (-4 *2 (-1157 *3)))) (-3438 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-809 *3 *5)) (-4 *3 (-1157 *5)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-809 *3 *4)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) 45 T ELT) (($ $ |#2| (-696)) 44 T ELT) (($ $ (-585 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) 48 T ELT) (($ $ |#2| (-696)) 47 T ELT) (($ $ (-585 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-810 |#1| |#2|) (-113) (-963) (-1015)) (T -810)) +NIL +(-13 (-82 |t#1| |t#1|) (-813 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-808 $ |#2|) . T) ((-813 |#2|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-585 |#1|) (-585 (-696))) 52 T ELT) (($ $ |#1| (-696)) 51 T ELT) (($ $ (-585 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#1|) (-585 (-696))) 55 T ELT) (($ $ |#1| (-696)) 54 T ELT) (($ $ (-585 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-811 |#1|) (-113) (-1015)) (T -811)) +NIL +(-13 (-963) (-813 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-808 $ |#1|) . T) ((-813 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3761 (($ $ |#2|) NIL T ELT) (($ $ (-585 |#2|)) 10 T ELT) (($ $ |#2| (-696)) 12 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 15 T ELT)) (-2672 (($ $ |#2|) 16 T ELT) (($ $ (-585 |#2|)) 18 T ELT) (($ $ |#2| (-696)) 19 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 21 T ELT))) +(((-812 |#1| |#2|) (-10 -7 (-15 -2672 (|#1| |#1| (-585 |#2|) (-585 (-696)))) (-15 -2672 (|#1| |#1| |#2| (-696))) (-15 -2672 (|#1| |#1| (-585 |#2|))) (-15 -3761 (|#1| |#1| (-585 |#2|) (-585 (-696)))) (-15 -3761 (|#1| |#1| |#2| (-696))) (-15 -3761 (|#1| |#1| (-585 |#2|))) (-15 -2672 (|#1| |#1| |#2|)) (-15 -3761 (|#1| |#1| |#2|))) (-813 |#2|) (-1015)) (T -812)) +NIL +((-3761 (($ $ |#1|) 7 T ELT) (($ $ (-585 |#1|)) 15 T ELT) (($ $ |#1| (-696)) 14 T ELT) (($ $ (-585 |#1|) (-585 (-696))) 13 T ELT)) (-2672 (($ $ |#1|) 6 T ELT) (($ $ (-585 |#1|)) 12 T ELT) (($ $ |#1| (-696)) 11 T ELT) (($ $ (-585 |#1|) (-585 (-696))) 10 T ELT))) +(((-813 |#1|) (-113) (-1015)) (T -813)) +((-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) (-4 *4 (-1015)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015)))) (-2672 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) (-2672 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) (-4 *4 (-1015))))) +(-13 (-808 $ |t#1|) (-10 -8 (-15 -3761 ($ $ (-585 |t#1|))) (-15 -3761 ($ $ |t#1| (-696))) (-15 -3761 ($ $ (-585 |t#1|) (-585 (-696)))) (-15 -2672 ($ $ (-585 |t#1|))) (-15 -2672 ($ $ |t#1| (-696))) (-15 -2672 ($ $ (-585 |t#1|) (-585 (-696)))))) +(((-13) . T) ((-808 $ |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 26 T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 25 T ELT)) (-2673 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 23 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) 20 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1118 |#1|) $) 9 T ELT) (((-774) $) 29 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 21 (|has| |#1| (-72)) ELT))) +(((-814 |#1|) (-13 (-92 |#1|) (-554 (-1118 |#1|)) (-10 -8 (-15 -2673 ($ |#1|)) (-15 -2673 ($ $ $)))) (-1015)) (T -814)) +((-2673 (*1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015)))) (-2673 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2689 (((-1011 |#1|) $) 61 T ELT)) (-2912 (((-585 $) (-585 $)) 104 T ELT)) (-3626 (((-486) $) 84 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-3775 (((-696) $) 81 T ELT)) (-2693 (((-1011 |#1|) $ |#1|) 71 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2676 (((-85) $) 89 T ELT)) (-2678 (((-696) $) 85 T ELT)) (-2534 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2860 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2682 (((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $) 56 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 131 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2675 (((-1011 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2677 (((-85) $) 82 T ELT)) (-3803 ((|#1| $ |#1|) 69 T ELT)) (-3951 (((-696) $) 63 T ELT)) (-2684 (($ (-585 (-585 |#1|))) 119 T ELT)) (-2679 (((-886) $) 75 T ELT)) (-2685 (($ (-585 |#1|)) 32 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-2681 (($ (-585 (-585 |#1|))) 58 T ELT)) (-2680 (($ (-585 (-585 |#1|))) 124 T ELT)) (-2674 (($ (-585 |#1|)) 133 T ELT)) (-3949 (((-774) $) 118 T ELT) (($ (-585 (-585 |#1|))) 92 T ELT) (($ (-585 |#1|)) 93 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2570 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-3059 (((-85) $ $) 67 T ELT)) (-2687 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2688 (((-85) $ $) 91 T ELT)) (-3952 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-815 |#1|) (-13 (-817 |#1|) (-10 -8 (-15 -2682 ((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $)) (-15 -2681 ($ (-585 (-585 |#1|)))) (-15 -3949 ($ (-585 (-585 |#1|)))) (-15 -3949 ($ (-585 |#1|))) (-15 -2680 ($ (-585 (-585 |#1|)))) (-15 -3951 ((-696) $)) (-15 -2679 ((-886) $)) (-15 -3775 ((-696) $)) (-15 -2678 ((-696) $)) (-15 -3626 ((-486) $)) (-15 -2677 ((-85) $)) (-15 -2676 ((-85) $)) (-15 -2912 ((-585 $) (-585 $))) (IF (|has| |#1| (-320)) (-15 -2675 ((-1011 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-485)) (-15 -2674 ($ (-585 |#1|))) (IF (|has| |#1| (-320)) (-15 -2674 ($ (-585 |#1|))) |%noBranch|)))) (-1015)) (T -815)) +((-2682 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2681 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-815 *3)) (-4 *3 (-320)) (-4 *3 (-1015)))) (-2674 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +((-2683 ((|#2| (-1058 |#1| |#2|)) 48 T ELT))) +(((-816 |#1| |#2|) (-10 -7 (-15 -2683 (|#2| (-1058 |#1| |#2|)))) (-832) (-13 (-963) (-10 -7 (-6 (-4000 "*"))))) (T -816)) +((-2683 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *2)) (-14 *4 (-832)) (-4 *2 (-13 (-963) (-10 -7 (-6 (-4000 "*"))))) (-5 *1 (-816 *4 *2))))) +((-2571 (((-85) $ $) 7 T ELT)) (-2689 (((-1011 |#1|) $) 42 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2693 (((-1011 |#1|) $ |#1|) 41 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-2534 (($ $ $) 35 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-2860 (($ $ $) 36 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 30 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3803 ((|#1| $ |#1|) 45 T ELT)) (-2684 (($ (-585 (-585 |#1|))) 43 T ELT)) (-2685 (($ (-585 |#1|)) 44 T ELT)) (-3012 (($ $ $) 27 T ELT)) (-2438 (($ $ $) 26 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-85) $ $) 37 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-2570 (((-85) $ $) 39 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 38 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-2688 (((-85) $ $) 40 T ELT)) (-3952 (($ $ $) 29 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ $ (-486)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-817 |#1|) (-113) (-1015)) (T -817)) +((-2685 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-817 *3)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-4 *1 (-817 *3)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) (-2693 (*1 *2 *1 *3) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) (-2688 (*1 *2 *1 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-414) (-241 |t#1| |t#1|) (-10 -8 (-15 -2685 ($ (-585 |t#1|))) (-15 -2684 ($ (-585 (-585 |t#1|)))) (-15 -2689 ((-1011 |t#1|) $)) (-15 -2693 ((-1011 |t#1|) $ |t#1|)) (-15 -2688 ((-85) $ $)) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-758)) |%noBranch|))) +(((-72) . T) ((-554 (-774)) . T) ((-241 |#1| |#1|) . T) ((-414) . T) ((-13) . T) ((-665) . T) ((-758) OR (|has| |#1| (-758)) (|has| |#1| (-320))) ((-761) OR (|has| |#1| (-758)) (|has| |#1| (-320))) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2695 (((-585 (-585 (-696))) $) 163 T ELT)) (-2691 (((-585 (-696)) (-815 |#1|) $) 191 T ELT)) (-2690 (((-585 (-696)) (-815 |#1|) $) 192 T ELT)) (-2689 (((-1011 |#1|) $) 155 T ELT)) (-2696 (((-585 (-815 |#1|)) $) 152 T ELT)) (-2997 (((-815 |#1|) $ (-486)) 157 T ELT) (((-815 |#1|) $) 158 T ELT)) (-2694 (($ (-585 (-815 |#1|))) 165 T ELT)) (-3775 (((-696) $) 159 T ELT)) (-2692 (((-1011 (-1011 |#1|)) $) 189 T ELT)) (-2693 (((-1011 |#1|) $ |#1|) 180 T ELT) (((-1011 (-1011 |#1|)) $ (-1011 |#1|)) 201 T ELT) (((-1011 (-585 |#1|)) $ (-585 |#1|)) 204 T ELT)) (-3248 (((-85) (-815 |#1|) $) 140 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2686 (((-1187) $) 145 T ELT) (((-1187) $ (-486) (-486)) 205 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2698 (((-585 (-815 |#1|)) $) 146 T ELT)) (-3803 (((-815 |#1|) $ (-696)) 153 T ELT)) (-3951 (((-696) $) 160 T ELT)) (-3949 (((-774) $) 177 T ELT) (((-585 (-815 |#1|)) $) 28 T ELT) (($ (-585 (-815 |#1|))) 164 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-585 |#1|) $) 162 T ELT)) (-3059 (((-85) $ $) 198 T ELT)) (-2687 (((-85) $ $) 195 T ELT)) (-2688 (((-85) $ $) 194 T ELT))) +(((-818 |#1|) (-13 (-1015) (-10 -8 (-15 -3949 ((-585 (-815 |#1|)) $)) (-15 -2698 ((-585 (-815 |#1|)) $)) (-15 -3803 ((-815 |#1|) $ (-696))) (-15 -2997 ((-815 |#1|) $ (-486))) (-15 -2997 ((-815 |#1|) $)) (-15 -3775 ((-696) $)) (-15 -3951 ((-696) $)) (-15 -2697 ((-585 |#1|) $)) (-15 -2696 ((-585 (-815 |#1|)) $)) (-15 -2695 ((-585 (-585 (-696))) $)) (-15 -3949 ($ (-585 (-815 |#1|)))) (-15 -2694 ($ (-585 (-815 |#1|)))) (-15 -2693 ((-1011 |#1|) $ |#1|)) (-15 -2692 ((-1011 (-1011 |#1|)) $)) (-15 -2693 ((-1011 (-1011 |#1|)) $ (-1011 |#1|))) (-15 -2693 ((-1011 (-585 |#1|)) $ (-585 |#1|))) (-15 -3248 ((-85) (-815 |#1|) $)) (-15 -2691 ((-585 (-696)) (-815 |#1|) $)) (-15 -2690 ((-585 (-696)) (-815 |#1|) $)) (-15 -2689 ((-1011 |#1|) $)) (-15 -2688 ((-85) $ $)) (-15 -2687 ((-85) $ $)) (-15 -2686 ((-1187) $)) (-15 -2686 ((-1187) $ (-486) (-486))))) (-1015)) (T -818)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) (-2997 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-696)))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) (-2693 (*1 *2 *1 *3) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1011 (-1011 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2693 (*1 *2 *1 *3) (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-1011 *4))) (-5 *1 (-818 *4)) (-5 *3 (-1011 *4)))) (-2693 (*1 *2 *1 *3) (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-585 *4))) (-5 *1 (-818 *4)) (-5 *3 (-585 *4)))) (-3248 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-818 *4)))) (-2691 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) (-5 *1 (-818 *4)))) (-2690 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) (-5 *1 (-818 *4)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2688 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2687 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2686 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-818 *4)) (-4 *4 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3932 (((-696)) NIL T ELT)) (-3333 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 $ #1#) $) NIL T ELT)) (-3159 (($ $) NIL T ELT)) (-1797 (($ (-1181 $)) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL T ELT)) (-1682 (((-85) $) NIL T ELT)) (-1769 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| $ (-320)) ELT)) (-2013 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3135 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 $) $ (-832)) NIL (|has| $ (-320)) ELT) (((-1087 $) $) NIL T ELT)) (-2012 (((-832) $) NIL T ELT)) (-1629 (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (((-3 (-1087 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1630 (($ $ (-1087 $)) NIL (|has| $ (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-832)) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| $ (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3933 (((-832)) NIL T ELT) (((-745 (-832))) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-3 (-696) #1#) $ $) NIL T ELT) (((-696) $) NIL T ELT)) (-3914 (((-107)) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3951 (((-832) $) NIL T ELT) (((-745 (-832)) $) NIL T ELT)) (-3188 (((-1087 $)) NIL T ELT)) (-1676 (($) NIL T ELT)) (-1631 (($) NIL (|has| $ (-320)) ELT)) (-3227 (((-632 $) (-1181 $)) NIL T ELT) (((-1181 $) $) NIL T ELT)) (-3975 (((-486) $) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $) (-832)) NIL T ELT) (((-1181 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3931 (($ $ (-696)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-819 |#1|) (-13 (-299) (-280 $) (-555 (-486))) (-832)) (T -819)) +NIL +((-2700 (((-3 (-585 (-1087 |#4|)) #1="failed") (-585 (-1087 |#4|)) (-1087 |#4|)) 164 T ELT)) (-2703 ((|#1|) 101 T ELT)) (-2702 (((-348 (-1087 |#4|)) (-1087 |#4|)) 173 T ELT)) (-2704 (((-348 (-1087 |#4|)) (-585 |#3|) (-1087 |#4|)) 83 T ELT)) (-2701 (((-348 (-1087 |#4|)) (-1087 |#4|)) 183 T ELT)) (-2699 (((-3 (-585 (-1087 |#4|)) #1#) (-585 (-1087 |#4|)) (-1087 |#4|) |#3|) 117 T ELT))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2700 ((-3 (-585 (-1087 |#4|)) #1="failed") (-585 (-1087 |#4|)) (-1087 |#4|))) (-15 -2701 ((-348 (-1087 |#4|)) (-1087 |#4|))) (-15 -2702 ((-348 (-1087 |#4|)) (-1087 |#4|))) (-15 -2703 (|#1|)) (-15 -2699 ((-3 (-585 (-1087 |#4|)) #1#) (-585 (-1087 |#4|)) (-1087 |#4|) |#3|)) (-15 -2704 ((-348 (-1087 |#4|)) (-585 |#3|) (-1087 |#4|)))) (-823) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -820)) +((-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *7)) (-4 *7 (-758)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-348 (-1087 *8))) (-5 *1 (-820 *5 *6 *7 *8)) (-5 *4 (-1087 *8)))) (-2699 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) (-4 *7 (-863 *5 *6 *4)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *4 (-758)) (-5 *1 (-820 *5 *6 *4 *7)))) (-2703 (*1 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-820 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-820 *4 *5 *6 *7))))) +((-2700 (((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|)) 39 T ELT)) (-2703 ((|#1|) 71 T ELT)) (-2702 (((-348 (-1087 |#2|)) (-1087 |#2|)) 125 T ELT)) (-2704 (((-348 (-1087 |#2|)) (-1087 |#2|)) 109 T ELT)) (-2701 (((-348 (-1087 |#2|)) (-1087 |#2|)) 136 T ELT))) +(((-821 |#1| |#2|) (-10 -7 (-15 -2700 ((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|))) (-15 -2701 ((-348 (-1087 |#2|)) (-1087 |#2|))) (-15 -2702 ((-348 (-1087 |#2|)) (-1087 |#2|))) (-15 -2703 (|#1|)) (-15 -2704 ((-348 (-1087 |#2|)) (-1087 |#2|)))) (-823) (-1157 |#1|)) (T -821)) +((-2704 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5)))) (-2703 (*1 *2) (-12 (-4 *2 (-823)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1157 *2)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5)))) (-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-823)) (-5 *1 (-821 *4 *5))))) +((-2707 (((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $)) 46 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 18 T ELT)) (-2705 (((-634 $) $) 40 T ELT))) +(((-822 |#1|) (-10 -7 (-15 -2705 ((-634 |#1|) |#1|)) (-15 -2707 ((-3 (-585 (-1087 |#1|)) "failed") (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|)))) (-823)) (T -822)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 75 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-348 $) $) 67 T ELT)) (-2707 (((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $)) 72 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-85) $) 68 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 73 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 74 T ELT)) (-3735 (((-348 $) $) 65 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 71 (|has| $ (-118)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-2705 (((-634 $) $) 70 (|has| $ (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-823) (-113)) (T -823)) +((-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-823)))) (-2710 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *1))) (-5 *3 (-1087 *1)) (-4 *1 (-823)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-823)) (-5 *2 (-1181 *1)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-823))))) +(-13 (-1136) (-10 -8 (-15 -2710 ((-348 (-1087 $)) (-1087 $))) (-15 -2709 ((-348 (-1087 $)) (-1087 $))) (-15 -2708 ((-348 (-1087 $)) (-1087 $))) (-15 -2711 ((-1087 $) (-1087 $) (-1087 $))) (-15 -2707 ((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $))) (IF (|has| $ (-118)) (PROGN (-15 -2706 ((-3 (-1181 $) "failed") (-632 $))) (-15 -2705 ((-634 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-2713 (((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2712 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3775 (((-3 (-696) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-824 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3775 ((-3 (-696) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2712 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2713 ((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-497) (-952 (-486))) (-364 |#1|) (-1157 |#2|) (-1157 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -824)) +((-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *8))) (-5 *1 (-824 *4 *5 *6 *7 *8)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6 *7 *8)))) (-3775 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-696)) (-5 *1 (-824 *4 *5 *6 *7 *8))))) +((-2713 (((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#3|)) #1="failed") (-283 (-350 (-486)) |#1| |#2| |#3|)) 64 T ELT)) (-2712 (((-85) (-283 (-350 (-486)) |#1| |#2| |#3|)) 16 T ELT)) (-3775 (((-3 (-696) #1#) (-283 (-350 (-486)) |#1| |#2| |#3|)) 14 T ELT))) +(((-825 |#1| |#2| |#3|) (-10 -7 (-15 -3775 ((-3 (-696) #1="failed") (-283 (-350 (-486)) |#1| |#2| |#3|))) (-15 -2712 ((-85) (-283 (-350 (-486)) |#1| |#2| |#3|))) (-15 -2713 ((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#3|)) #1#) (-283 (-350 (-486)) |#1| |#2| |#3|)))) (-1157 (-350 (-486))) (-1157 (-350 |#1|)) (-291 (-350 (-486)) |#1| |#2|)) (T -825)) +((-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *6))) (-5 *1 (-825 *4 *5 *6)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-825 *4 *5 *6)))) (-3775 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-696)) (-5 *1 (-825 *4 *5 *6))))) +((-2718 ((|#2| |#2|) 26 T ELT)) (-2716 (((-486) (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))))) 15 T ELT)) (-2714 (((-832) (-486)) 38 T ELT)) (-2717 (((-486) |#2|) 45 T ELT)) (-2715 (((-486) |#2|) 21 T ELT) (((-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))) |#1|) 20 T ELT))) +(((-826 |#1| |#2|) (-10 -7 (-15 -2714 ((-832) (-486))) (-15 -2715 ((-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))) |#1|)) (-15 -2715 ((-486) |#2|)) (-15 -2716 ((-486) (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486)))))) (-15 -2717 ((-486) |#2|)) (-15 -2718 (|#2| |#2|))) (-1157 (-350 (-486))) (-1157 (-350 |#1|))) (T -826)) +((-2718 (*1 *2 *2) (-12 (-4 *3 (-1157 (-350 (-486)))) (-5 *1 (-826 *3 *2)) (-4 *2 (-1157 (-350 *3))))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157 (-350 *4))))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))))) (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157 (-350 *4))))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157 (-350 *4))))) (-2715 (*1 *2 *3) (-12 (-4 *3 (-1157 (-350 (-486)))) (-5 *2 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486)))) (-5 *1 (-826 *3 *4)) (-4 *4 (-1157 (-350 *3))))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-1157 (-350 *3))) (-5 *2 (-832)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157 (-350 *4)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) 99 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 93 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2726 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2720 (((-1087 |#1|) |#1| |#1|) 52 T ELT)) (-2719 (($ $) 60 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2721 (((-486) $) 96 T ELT)) (-2722 (($ $ (-486)) 98 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2723 ((|#1| $) 95 T ELT)) (-2724 (((-348 |#1|) $) 94 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 92 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2725 (($ $) 49 T ELT)) (-3949 (((-774) $) 123 T ELT) (($ (-486)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3129 (((-696)) 70 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 12 T CONST)) (-3059 (((-85) $ $) 86 T ELT)) (-3952 (($ $ $) NIL T ELT)) (-3840 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 48 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-827 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3949 ((-350 |#1|) $)) (-15 -3949 ($ (-350 (-348 |#1|)))) (-15 -2725 ($ $)) (-15 -2724 ((-348 |#1|) $)) (-15 -2723 (|#1| $)) (-15 -2722 ($ $ (-486))) (-15 -2721 ((-486) $)) (-15 -2720 ((-1087 |#1|) |#1| |#1|)) (-15 -2719 ($ $)) (-15 -2726 ($ |#1| (-348 |#1|))) (-15 -3132 (|#1| $)))) (-258)) (T -827)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-827 *3)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2723 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2722 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *3 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2726 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-827 *2)))) (-3132 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +((-2726 (((-51) (-859 |#1|) (-348 (-859 |#1|)) (-1092)) 17 T ELT) (((-51) (-350 (-859 |#1|)) (-1092)) 18 T ELT))) +(((-828 |#1|) (-10 -7 (-15 -2726 ((-51) (-350 (-859 |#1|)) (-1092))) (-15 -2726 ((-51) (-859 |#1|) (-348 (-859 |#1|)) (-1092)))) (-13 (-258) (-120))) (T -828)) +((-2726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-859 *6))) (-5 *5 (-1092)) (-5 *3 (-859 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *6)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *5))))) +((-2727 ((|#4| (-585 |#4|)) 148 T ELT) (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3147 (((-1087 |#4|) (-585 (-1087 |#4|))) 141 T ELT) (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 61 T ELT) ((|#4| (-585 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3147 (|#4| |#4| |#4|)) (-15 -3147 (|#4| (-585 |#4|))) (-15 -3147 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -3147 ((-1087 |#4|) (-585 (-1087 |#4|)))) (-15 -2727 (|#4| |#4| |#4|)) (-15 -2727 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2727 (|#4| (-585 |#4|)))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -829)) +((-2727 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) (-2727 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) (-2727 (*1 *2 *2 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-863 *5 *3 *4)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-585 (-1087 *7))) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-1087 *7)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-3147 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) (-3147 (*1 *2 *2 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-863 *5 *3 *4))))) +((-2740 (((-818 (-486)) (-886)) 38 T ELT) (((-818 (-486)) (-585 (-486))) 34 T ELT)) (-2728 (((-818 (-486)) (-585 (-486))) 66 T ELT) (((-818 (-486)) (-832)) 67 T ELT)) (-2739 (((-818 (-486))) 39 T ELT)) (-2737 (((-818 (-486))) 53 T ELT) (((-818 (-486)) (-585 (-486))) 52 T ELT)) (-2736 (((-818 (-486))) 51 T ELT) (((-818 (-486)) (-585 (-486))) 50 T ELT)) (-2735 (((-818 (-486))) 49 T ELT) (((-818 (-486)) (-585 (-486))) 48 T ELT)) (-2734 (((-818 (-486))) 47 T ELT) (((-818 (-486)) (-585 (-486))) 46 T ELT)) (-2733 (((-818 (-486))) 45 T ELT) (((-818 (-486)) (-585 (-486))) 44 T ELT)) (-2738 (((-818 (-486))) 55 T ELT) (((-818 (-486)) (-585 (-486))) 54 T ELT)) (-2732 (((-818 (-486)) (-585 (-486))) 71 T ELT) (((-818 (-486)) (-832)) 73 T ELT)) (-2731 (((-818 (-486)) (-585 (-486))) 68 T ELT) (((-818 (-486)) (-832)) 69 T ELT)) (-2729 (((-818 (-486)) (-585 (-486))) 64 T ELT) (((-818 (-486)) (-832)) 65 T ELT)) (-2730 (((-818 (-486)) (-585 (-832))) 57 T ELT))) +(((-830) (-10 -7 (-15 -2728 ((-818 (-486)) (-832))) (-15 -2728 ((-818 (-486)) (-585 (-486)))) (-15 -2729 ((-818 (-486)) (-832))) (-15 -2729 ((-818 (-486)) (-585 (-486)))) (-15 -2730 ((-818 (-486)) (-585 (-832)))) (-15 -2731 ((-818 (-486)) (-832))) (-15 -2731 ((-818 (-486)) (-585 (-486)))) (-15 -2732 ((-818 (-486)) (-832))) (-15 -2732 ((-818 (-486)) (-585 (-486)))) (-15 -2733 ((-818 (-486)) (-585 (-486)))) (-15 -2733 ((-818 (-486)))) (-15 -2734 ((-818 (-486)) (-585 (-486)))) (-15 -2734 ((-818 (-486)))) (-15 -2735 ((-818 (-486)) (-585 (-486)))) (-15 -2735 ((-818 (-486)))) (-15 -2736 ((-818 (-486)) (-585 (-486)))) (-15 -2736 ((-818 (-486)))) (-15 -2737 ((-818 (-486)) (-585 (-486)))) (-15 -2737 ((-818 (-486)))) (-15 -2738 ((-818 (-486)) (-585 (-486)))) (-15 -2738 ((-818 (-486)))) (-15 -2739 ((-818 (-486)))) (-15 -2740 ((-818 (-486)) (-585 (-486)))) (-15 -2740 ((-818 (-486)) (-886))))) (T -830)) +((-2740 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2739 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2738 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2737 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2736 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2735 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2734 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2733 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +((-2742 (((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092))) 14 T ELT)) (-2741 (((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092))) 13 T ELT))) +(((-831 |#1|) (-10 -7 (-15 -2741 ((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -2742 ((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092))))) (-393)) (T -831)) +((-2742 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) (-5 *1 (-831 *4)))) (-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) (-5 *1 (-831 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3147 (($ $ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-832) (-13 (-720) (-665) (-10 -8 (-15 -3147 ($ $ $)) (-6 (-4000 "*"))))) (T -832)) +((-3147 (*1 *1 *1 *1) (-5 *1 (-832)))) +((-696) (|%ilt| 0 |#1|)) +((-3949 (((-265 |#1|) (-418)) 16 T ELT))) +(((-833 |#1|) (-10 -7 (-15 -3949 ((-265 |#1|) (-418)))) (-497)) (T -833)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-418)) (-5 *2 (-265 *4)) (-5 *1 (-833 *4)) (-4 *4 (-497))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-834) (-113)) (T -834)) +((-2744 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *2 (-2 (|:| -3957 (-585 *1)) (|:| -2411 *1))) (-5 *3 (-585 *1)))) (-2743 (*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *2 (-634 (-585 *1))) (-5 *3 (-585 *1))))) +(-13 (-393) (-10 -8 (-15 -2744 ((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $))) (-15 -2743 ((-634 (-585 $)) (-585 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3108 (((-1087 |#2|) (-585 |#2|) (-585 |#2|)) 17 T ELT) (((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-585 |#2|) (-585 |#2|)) 13 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -3108 ((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-585 |#2|) (-585 |#2|))) (-15 -3108 ((-1087 |#2|) (-585 |#2|) (-585 |#2|)))) (-1092) (-312)) (T -835)) +((-3108 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-312)) (-5 *2 (-1087 *5)) (-5 *1 (-835 *4 *5)) (-14 *4 (-1092)))) (-3108 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1092)) (-4 *5 (-312)) (-5 *1 (-835 *4 *5))))) +((-2745 ((|#2| (-585 |#1|) (-585 |#1|)) 28 T ELT))) +(((-836 |#1| |#2|) (-10 -7 (-15 -2745 (|#2| (-585 |#1|) (-585 |#1|)))) (-312) (-1157 |#1|)) (T -836)) +((-2745 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-4 *2 (-1157 *4)) (-5 *1 (-836 *4 *2))))) +((-2747 (((-486) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075)) 175 T ELT)) (-2766 ((|#4| |#4|) 194 T ELT)) (-2751 (((-585 (-350 (-859 |#1|))) (-585 (-1092))) 146 T ELT)) (-2765 (((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-585 (-585 |#4|)) (-696) (-696) (-486)) 88 T ELT)) (-2755 (((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-585 |#4|)) 69 T ELT)) (-2764 (((-632 |#4|) (-632 |#4|) (-585 |#4|)) 65 T ELT)) (-2748 (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075)) 187 T ELT)) (-2746 (((-486) (-632 |#4|) (-832) (-1075)) 167 T ELT) (((-486) (-632 |#4|) (-585 (-1092)) (-832) (-1075)) 166 T ELT) (((-486) (-632 |#4|) (-585 |#4|) (-832) (-1075)) 165 T ELT) (((-486) (-632 |#4|) (-1075)) 154 T ELT) (((-486) (-632 |#4|) (-585 (-1092)) (-1075)) 153 T ELT) (((-486) (-632 |#4|) (-585 |#4|) (-1075)) 152 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-832)) 151 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092)) (-832)) 150 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|) (-832)) 149 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|)) 148 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092))) 147 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|)) 143 T ELT)) (-2752 ((|#4| (-859 |#1|)) 80 T ELT)) (-2762 (((-85) (-585 |#4|) (-585 (-585 |#4|))) 191 T ELT)) (-2761 (((-585 (-585 (-486))) (-486) (-486)) 161 T ELT)) (-2760 (((-585 (-585 |#4|)) (-585 (-585 |#4|))) 106 T ELT)) (-2759 (((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|))))) 100 T ELT)) (-2758 (((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|))))) 99 T ELT)) (-2767 (((-85) (-585 (-859 |#1|))) 19 T ELT) (((-85) (-585 |#4|)) 15 T ELT)) (-2753 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|)) 84 T ELT)) (-2757 (((-585 |#4|) |#4|) 57 T ELT)) (-2750 (((-585 (-350 (-859 |#1|))) (-585 |#4|)) 142 T ELT) (((-632 (-350 (-859 |#1|))) (-632 |#4|)) 66 T ELT) (((-350 (-859 |#1|)) |#4|) 139 T ELT)) (-2749 (((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))))) (|:| |rgsz| (-486))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-696) (-1075) (-486)) 112 T ELT)) (-2754 (((-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))) (-632 |#4|) (-696)) 98 T ELT)) (-2763 (((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-632 |#4|) (-696)) 121 T ELT)) (-2756 (((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |mat| (-632 (-350 (-859 |#1|)))) (|:| |vec| (-585 (-350 (-859 |#1|)))) (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) 56 T ELT))) +(((-837 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092)))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|) (-832))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092)) (-832))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-832))) (-15 -2746 ((-486) (-632 |#4|) (-585 |#4|) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-585 (-1092)) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-585 |#4|) (-832) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-585 (-1092)) (-832) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-832) (-1075))) (-15 -2747 ((-486) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075))) (-15 -2748 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075))) (-15 -2749 ((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))))) (|:| |rgsz| (-486))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-696) (-1075) (-486))) (-15 -2750 ((-350 (-859 |#1|)) |#4|)) (-15 -2750 ((-632 (-350 (-859 |#1|))) (-632 |#4|))) (-15 -2750 ((-585 (-350 (-859 |#1|))) (-585 |#4|))) (-15 -2751 ((-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -2752 (|#4| (-859 |#1|))) (-15 -2753 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|))) (-15 -2754 ((-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))) (-632 |#4|) (-696))) (-15 -2755 ((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-585 |#4|))) (-15 -2756 ((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |mat| (-632 (-350 (-859 |#1|)))) (|:| |vec| (-585 (-350 (-859 |#1|)))) (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (-15 -2757 ((-585 |#4|) |#4|)) (-15 -2758 ((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2759 ((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2760 ((-585 (-585 |#4|)) (-585 (-585 |#4|)))) (-15 -2761 ((-585 (-585 (-486))) (-486) (-486))) (-15 -2762 ((-85) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2763 ((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-632 |#4|) (-696))) (-15 -2764 ((-632 |#4|) (-632 |#4|) (-585 |#4|))) (-15 -2765 ((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-585 (-585 |#4|)) (-696) (-696) (-486))) (-15 -2766 (|#4| |#4|)) (-15 -2767 ((-85) (-585 |#4|))) (-15 -2767 ((-85) (-585 (-859 |#1|))))) (-13 (-258) (-120)) (-13 (-758) (-555 (-1092))) (-719) (-863 |#1| |#3| |#2|)) (T -837)) +((-2767 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *2)) (-4 *2 (-863 *3 *5 *4)))) (-2765 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-5 *4 (-632 *12)) (-5 *5 (-585 (-350 (-859 *9)))) (-5 *6 (-585 (-585 *12))) (-5 *7 (-696)) (-5 *8 (-486)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-863 *9 *11 *10)) (-4 *10 (-13 (-758) (-555 (-1092)))) (-4 *11 (-719)) (-5 *2 (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) (|:| |wcond| (-585 (-859 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *9)))) (|:| -2014 (-585 (-1181 (-350 (-859 *9))))))))) (-5 *1 (-837 *9 *10 *11 *12)))) (-2764 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-696)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2761 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-585 (-486)))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-486)) (-4 *7 (-863 *4 *6 *5)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-863 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *6)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 *3)) (-5 *1 (-837 *4 *5 *6 *3)) (-4 *3 (-863 *4 *6 *5)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-632 (-350 (-859 *4)))) (|:| |vec| (-585 (-350 (-859 *4)))) (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) (-5 *3 (-585 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-863 *4 *6 *5)) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 *8))))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-696)))) (-2753 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-4 *7 (-863 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-863 *4 *6 *5)) (-5 *1 (-837 *4 *5 *6 *2)) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-632 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-350 (-859 *4))) (-5 *1 (-837 *4 *5 *6 *3)) (-4 *3 (-863 *4 *6 *5)))) (-2749 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-585 (-350 (-859 *8)))) (-5 *5 (-696)) (-5 *6 (-1075)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-863 *8 *10 *9)) (-4 *9 (-13 (-758) (-555 (-1092)))) (-4 *10 (-719)) (-5 *2 (-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) (|:| |wcond| (-585 (-859 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *8)))) (|:| -2014 (-585 (-1181 (-350 (-859 *8)))))))))) (|:| |rgsz| (-486)))) (-5 *1 (-837 *8 *9 *10 *11)) (-5 *7 (-486)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *4 (-1075)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-863 *5 *7 *6)) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-832)) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) (-5 *6 (-1075)) (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *7 *8 *9 *10)))) (-2746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 *10)) (-5 *5 (-832)) (-5 *6 (-1075)) (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *7 *8 *9 *10)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1075)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-832)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) (-5 *1 (-837 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-585 (-1092))) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) +((-3877 (($ $ (-1003 (-179))) 125 T ELT) (($ $ (-1003 (-179)) (-1003 (-179))) 126 T ELT)) (-2899 (((-1003 (-179)) $) 73 T ELT)) (-2900 (((-1003 (-179)) $) 72 T ELT)) (-2791 (((-1003 (-179)) $) 74 T ELT)) (-2772 (((-486) (-486)) 66 T ELT)) (-2776 (((-486) (-486)) 61 T ELT)) (-2774 (((-486) (-486)) 64 T ELT)) (-2770 (((-85) (-85)) 68 T ELT)) (-2773 (((-486)) 65 T ELT)) (-3137 (($ $ (-1003 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2793 (($ (-1 (-856 (-179)) (-179)) (-1003 (-179))) 148 T ELT) (($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 149 T ELT)) (-2779 (($ (-1 (-179) (-179)) (-1003 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2792 (($ (-1 (-179) (-179)) (-1003 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179))) 145 T ELT) (($ (-585 (-1 (-179) (-179))) (-1003 (-179))) 153 T ELT) (($ (-585 (-1 (-179) (-179))) (-1003 (-179)) (-1003 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 147 T ELT) (($ $ (-1003 (-179))) 131 T ELT)) (-2778 (((-85) $) 69 T ELT)) (-2769 (((-486)) 70 T ELT)) (-2777 (((-486)) 59 T ELT)) (-2775 (((-486)) 62 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 35 T ELT)) (-2768 (((-85) (-85)) 71 T ELT)) (-3949 (((-774) $) 174 T ELT)) (-2771 (((-85)) 67 T ELT))) +(((-838) (-13 (-868) (-10 -8 (-15 -2792 ($ (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-585 (-1 (-179) (-179))) (-1003 (-179)))) (-15 -2792 ($ (-585 (-1 (-179) (-179))) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)))) (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2779 ($ (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2779 ($ (-1 (-179) (-179)))) (-15 -2792 ($ $ (-1003 (-179)))) (-15 -2778 ((-85) $)) (-15 -3877 ($ $ (-1003 (-179)))) (-15 -3877 ($ $ (-1003 (-179)) (-1003 (-179)))) (-15 -3137 ($ $ (-1003 (-179)))) (-15 -3137 ($ $)) (-15 -2791 ((-1003 (-179)) $)) (-15 -2777 ((-486))) (-15 -2776 ((-486) (-486))) (-15 -2775 ((-486))) (-15 -2774 ((-486) (-486))) (-15 -2773 ((-486))) (-15 -2772 ((-486) (-486))) (-15 -2771 ((-85))) (-15 -2770 ((-85) (-85))) (-15 -2769 ((-486))) (-15 -2768 ((-85) (-85)))))) (T -838)) +((-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2793 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2779 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3877 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3137 (*1 *1 *1) (-5 *1 (-838))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-2777 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2775 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2773 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2771 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2769 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +((-2779 (((-838) |#1| (-1092)) 17 T ELT) (((-838) |#1| (-1092) (-1003 (-179))) 21 T ELT)) (-2792 (((-838) |#1| |#1| (-1092) (-1003 (-179))) 19 T ELT) (((-838) |#1| (-1092) (-1003 (-179))) 15 T ELT))) +(((-839 |#1|) (-10 -7 (-15 -2792 ((-838) |#1| (-1092) (-1003 (-179)))) (-15 -2792 ((-838) |#1| |#1| (-1092) (-1003 (-179)))) (-15 -2779 ((-838) |#1| (-1092) (-1003 (-179)))) (-15 -2779 ((-838) |#1| (-1092)))) (-555 (-475))) (T -839)) +((-2779 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475))))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475))))) (-2792 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475))))) (-2792 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475)))))) +((-3877 (($ $ (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 123 T ELT)) (-2898 (((-1003 (-179)) $) 64 T ELT)) (-2899 (((-1003 (-179)) $) 63 T ELT)) (-2900 (((-1003 (-179)) $) 62 T ELT)) (-2790 (((-585 (-585 (-179))) $) 69 T ELT)) (-2791 (((-1003 (-179)) $) 65 T ELT)) (-2784 (((-486) (-486)) 57 T ELT)) (-2788 (((-486) (-486)) 52 T ELT)) (-2786 (((-486) (-486)) 55 T ELT)) (-2782 (((-85) (-85)) 59 T ELT)) (-2785 (((-486)) 56 T ELT)) (-3137 (($ $ (-1003 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2793 (($ (-1 (-856 (-179)) (-179)) (-1003 (-179))) 133 T ELT) (($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 134 T ELT)) (-2792 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 141 T ELT) (($ $ (-1003 (-179))) 129 T ELT)) (-2781 (((-486)) 60 T ELT)) (-2789 (((-486)) 50 T ELT)) (-2787 (((-486)) 53 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 157 T ELT)) (-2780 (((-85) (-85)) 61 T ELT)) (-3949 (((-774) $) 155 T ELT)) (-2783 (((-85)) 58 T ELT))) +(((-840) (-13 (-889) (-10 -8 (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)))) (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ $ (-1003 (-179)))) (-15 -3877 ($ $ (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -3137 ($ $ (-1003 (-179)))) (-15 -3137 ($ $)) (-15 -2791 ((-1003 (-179)) $)) (-15 -2790 ((-585 (-585 (-179))) $)) (-15 -2789 ((-486))) (-15 -2788 ((-486) (-486))) (-15 -2787 ((-486))) (-15 -2786 ((-486) (-486))) (-15 -2785 ((-486))) (-15 -2784 ((-486) (-486))) (-15 -2783 ((-85))) (-15 -2782 ((-85) (-85))) (-15 -2781 ((-486))) (-15 -2780 ((-85) (-85)))))) (T -840)) +((-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2793 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3877 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3137 (*1 *1 *1) (-5 *1 (-840))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-840)))) (-2789 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2788 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2787 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2785 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2783 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2781 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +((-2794 (((-585 (-1003 (-179))) (-585 (-585 (-856 (-179))))) 34 T ELT))) +(((-841) (-10 -7 (-15 -2794 ((-585 (-1003 (-179))) (-585 (-585 (-856 (-179)))))))) (T -841)) +((-2794 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-1003 (-179)))) (-5 *1 (-841))))) +((-2796 (((-265 (-486)) (-1092)) 16 T ELT)) (-2797 (((-265 (-486)) (-1092)) 14 T ELT)) (-3955 (((-265 (-486)) (-1092)) 12 T ELT)) (-2795 (((-265 (-486)) (-1092) (-448)) 19 T ELT))) +(((-842) (-10 -7 (-15 -2795 ((-265 (-486)) (-1092) (-448))) (-15 -3955 ((-265 (-486)) (-1092))) (-15 -2796 ((-265 (-486)) (-1092))) (-15 -2797 ((-265 (-486)) (-1092))))) (T -842)) +((-2797 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-448)) (-5 *2 (-265 (-486))) (-5 *1 (-842))))) +((-2796 ((|#2| |#2|) 28 T ELT)) (-2797 ((|#2| |#2|) 29 T ELT)) (-3955 ((|#2| |#2|) 27 T ELT)) (-2795 ((|#2| |#2| (-448)) 26 T ELT))) +(((-843 |#1| |#2|) (-10 -7 (-15 -2795 (|#2| |#2| (-448))) (-15 -3955 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2797 (|#2| |#2|))) (-1015) (-364 |#1|)) (T -843)) +((-2797 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) (-2795 (*1 *2 *2 *3) (-12 (-5 *3 (-448)) (-4 *4 (-1015)) (-5 *1 (-843 *4 *2)) (-4 *2 (-364 *4))))) +((-2799 (((-800 |#1| |#3|) |#2| (-802 |#1|) (-800 |#1| |#3|)) 25 T ELT)) (-2798 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2799 ((-800 |#1| |#3|) |#2| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-798 |#1|) (-13 (-1015) (-952 |#2|))) (T -844)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-13 (-1015) (-952 *3))) (-4 *3 (-798 *5)) (-5 *1 (-844 *5 *3 *6)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1015) (-952 *5))) (-4 *5 (-798 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-844 *4 *5 *6))))) +((-2799 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 30 T ELT))) +(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-13 (-497) (-798 |#1|)) (-13 (-364 |#2|) (-555 (-802 |#1|)) (-798 |#1|) (-952 (-552 $)))) (T -845)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-13 (-364 *6) (-555 *4) (-798 *5) (-952 (-552 $)))) (-5 *4 (-802 *5)) (-4 *6 (-13 (-497) (-798 *5))) (-5 *1 (-845 *5 *6 *3))))) +((-2799 (((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|)) 13 T ELT))) +(((-846 |#1|) (-10 -7 (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|)))) (-485)) (T -846)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 (-486) *3)) (-5 *4 (-802 (-486))) (-4 *3 (-485)) (-5 *1 (-846 *3))))) +((-2799 (((-800 |#1| |#2|) (-552 |#2|) (-802 |#1|) (-800 |#1| |#2|)) 57 T ELT))) +(((-847 |#1| |#2|) (-10 -7 (-15 -2799 ((-800 |#1| |#2|) (-552 |#2|) (-802 |#1|) (-800 |#1| |#2|)))) (-1015) (-13 (-1015) (-952 (-552 $)) (-555 (-802 |#1|)) (-798 |#1|))) (T -847)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *6)) (-5 *3 (-552 *6)) (-4 *5 (-1015)) (-4 *6 (-13 (-1015) (-952 (-552 $)) (-555 *4) (-798 *5))) (-5 *4 (-802 *5)) (-5 *1 (-847 *5 *6))))) +((-2799 (((-797 |#1| |#2| |#3|) |#3| (-802 |#1|) (-797 |#1| |#2| |#3|)) 17 T ELT))) +(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-797 |#1| |#2| |#3|) |#3| (-802 |#1|) (-797 |#1| |#2| |#3|)))) (-1015) (-798 |#1|) (-610 |#2|)) (T -848)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *6 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-4 *3 (-610 *6)) (-5 *1 (-848 *5 *6 *3))))) +((-2799 (((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|)) 17 (|has| |#3| (-798 |#1|)) ELT) (((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|) (-1 (-800 |#1| |#5|) |#3| (-802 |#1|) (-800 |#1| |#5|))) 16 T ELT))) +(((-849 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2799 ((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|) (-1 (-800 |#1| |#5|) |#3| (-802 |#1|) (-800 |#1| |#5|)))) (IF (|has| |#3| (-798 |#1|)) (-15 -2799 ((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|))) |%noBranch|)) (-1015) (-719) (-758) (-13 (-963) (-798 |#1|)) (-13 (-863 |#4| |#2| |#3|) (-555 (-802 |#1|)))) (T -849)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-13 (-863 *8 *6 *7) (-555 *4))) (-5 *4 (-802 *5)) (-4 *7 (-798 *5)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-13 (-963) (-798 *5))) (-5 *1 (-849 *5 *6 *7 *8 *3)))) (-2799 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-800 *6 *3) *8 (-802 *6) (-800 *6 *3))) (-4 *8 (-758)) (-5 *2 (-800 *6 *3)) (-5 *4 (-802 *6)) (-4 *6 (-1015)) (-4 *3 (-13 (-863 *9 *7 *8) (-555 *4))) (-4 *7 (-719)) (-4 *9 (-13 (-963) (-798 *6))) (-5 *1 (-849 *6 *7 *8 *9 *3))))) +((-3212 (((-265 (-486)) (-1092) (-585 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-486)) (-1092) (-1 (-85) |#1|)) 15 T ELT))) +(((-850 |#1|) (-10 -7 (-15 -3212 ((-265 (-486)) (-1092) (-1 (-85) |#1|))) (-15 -3212 ((-265 (-486)) (-1092) (-585 (-1 (-85) |#1|))))) (-1131)) (T -850)) +((-3212 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) (-5 *2 (-265 (-486))) (-5 *1 (-850 *5)))) (-3212 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1131)) (-5 *2 (-265 (-486))) (-5 *1 (-850 *5))))) +((-3212 ((|#2| |#2| (-585 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -3212 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3212 (|#2| |#2| (-585 (-1 (-85) |#3|))))) (-1015) (-364 |#1|) (-1131)) (T -851)) +((-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) (-4 *4 (-1015)) (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1131)) (-4 *4 (-1015)) (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4))))) +((-2799 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 25 T ELT))) +(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-13 (-497) (-798 |#1|) (-555 (-802 |#1|))) (-906 |#2|)) (T -852)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-497) (-798 *5) (-555 *4))) (-5 *4 (-802 *5)) (-5 *1 (-852 *5 *6 *3))))) +((-2799 (((-800 |#1| (-1092)) (-1092) (-802 |#1|) (-800 |#1| (-1092))) 18 T ELT))) +(((-853 |#1|) (-10 -7 (-15 -2799 ((-800 |#1| (-1092)) (-1092) (-802 |#1|) (-800 |#1| (-1092))))) (-1015)) (T -853)) +((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *1 (-853 *5))))) +((-2800 (((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) 34 T ELT)) (-2799 (((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-1 |#3| (-585 |#3|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) 33 T ELT))) +(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-1 |#3| (-585 |#3|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-15 -2800 ((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))))) (-1015) (-963) (-13 (-963) (-555 (-802 |#1|)) (-952 |#2|))) (T -854)) +((-2800 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-802 *6))) (-5 *5 (-1 (-800 *6 *8) *8 (-802 *6) (-800 *6 *8))) (-4 *6 (-1015)) (-4 *8 (-13 (-963) (-555 (-802 *6)) (-952 *7))) (-5 *2 (-800 *6 *8)) (-4 *7 (-963)) (-5 *1 (-854 *6 *7 *8)))) (-2799 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-585 (-802 *7))) (-5 *5 (-1 *9 (-585 *9))) (-5 *6 (-1 (-800 *7 *9) *9 (-802 *7) (-800 *7 *9))) (-4 *7 (-1015)) (-4 *9 (-13 (-963) (-555 (-802 *7)) (-952 *8))) (-5 *2 (-800 *7 *9)) (-5 *3 (-585 *9)) (-4 *8 (-963)) (-5 *1 (-854 *7 *8 *9))))) +((-2808 (((-1087 (-350 (-486))) (-486)) 80 T ELT)) (-2807 (((-1087 (-486)) (-486)) 83 T ELT)) (-3337 (((-1087 (-486)) (-486)) 77 T ELT)) (-2806 (((-486) (-1087 (-486))) 73 T ELT)) (-2805 (((-1087 (-350 (-486))) (-486)) 66 T ELT)) (-2804 (((-1087 (-486)) (-486)) 49 T ELT)) (-2803 (((-1087 (-486)) (-486)) 85 T ELT)) (-2802 (((-1087 (-486)) (-486)) 84 T ELT)) (-2801 (((-1087 (-350 (-486))) (-486)) 68 T ELT))) +(((-855) (-10 -7 (-15 -2801 ((-1087 (-350 (-486))) (-486))) (-15 -2802 ((-1087 (-486)) (-486))) (-15 -2803 ((-1087 (-486)) (-486))) (-15 -2804 ((-1087 (-486)) (-486))) (-15 -2805 ((-1087 (-350 (-486))) (-486))) (-15 -2806 ((-486) (-1087 (-486)))) (-15 -3337 ((-1087 (-486)) (-486))) (-15 -2807 ((-1087 (-486)) (-486))) (-15 -2808 ((-1087 (-350 (-486))) (-486))))) (T -855)) +((-2808 (*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2807 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-3337 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-486)) (-5 *1 (-855)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3709 (($ (-585 |#1|)) 9 T ELT)) (-3838 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3836 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-585 |#1|)) 25 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 18 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-3914 (((-832) $) 13 T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3837 (($ $ $) 23 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT) (($ (-585 |#1|)) 14 T ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-486) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3960 (((-696) $) 11 T ELT))) +(((-856 |#1|) (-895 |#1|) (-963)) (T -856)) +NIL +((-2811 (((-422 |#1| |#2|) (-859 |#2|)) 22 T ELT)) (-2814 (((-206 |#1| |#2|) (-859 |#2|)) 35 T ELT)) (-2812 (((-859 |#2|) (-422 |#1| |#2|)) 27 T ELT)) (-2810 (((-206 |#1| |#2|) (-422 |#1| |#2|)) 57 T ELT)) (-2813 (((-859 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2809 (((-422 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) +(((-857 |#1| |#2|) (-10 -7 (-15 -2809 ((-422 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2810 ((-206 |#1| |#2|) (-422 |#1| |#2|))) (-15 -2811 ((-422 |#1| |#2|) (-859 |#2|))) (-15 -2812 ((-859 |#2|) (-422 |#1| |#2|))) (-15 -2813 ((-859 |#2|) (-206 |#1| |#2|))) (-15 -2814 ((-206 |#1| |#2|) (-859 |#2|)))) (-585 (-1092)) (-963)) (T -857)) +((-2814 (*1 *2 *3) (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092))))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-422 *4 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092))))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-422 *4 *5)) (-5 *1 (-857 *4 *5))))) +((-2815 (((-585 |#2|) |#2| |#2|) 10 T ELT)) (-2818 (((-696) (-585 |#1|)) 47 (|has| |#1| (-757)) ELT)) (-2816 (((-585 |#2|) |#2|) 11 T ELT)) (-2819 (((-696) (-585 |#1|) (-486) (-486)) 45 (|has| |#1| (-757)) ELT)) (-2817 ((|#1| |#2|) 37 (|has| |#1| (-757)) ELT))) +(((-858 |#1| |#2|) (-10 -7 (-15 -2815 ((-585 |#2|) |#2| |#2|)) (-15 -2816 ((-585 |#2|) |#2|)) (IF (|has| |#1| (-757)) (PROGN (-15 -2817 (|#1| |#2|)) (-15 -2818 ((-696) (-585 |#1|))) (-15 -2819 ((-696) (-585 |#1|) (-486) (-486)))) |%noBranch|)) (-312) (-1157 |#1|)) (T -858)) +((-2819 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-486)) (-4 *5 (-757)) (-4 *5 (-312)) (-5 *2 (-696)) (-5 *1 (-858 *5 *6)) (-4 *6 (-1157 *5)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-757)) (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1157 *4)))) (-2817 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-757)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1157 *2)))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1157 *4)))) (-2815 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-1092)) $) 16 T ELT)) (-3086 (((-1087 $) $ (-1092)) 21 T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-1092))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-1092) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-1092) $) NIL T ELT)) (-3759 (($ $ $ (-1092)) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-471 (-1092)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1092) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1092) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) (-1092)) NIL T ELT) (($ (-1087 $) (-1092)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-1092)) NIL T ELT)) (-2823 (((-471 (-1092)) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT) (((-585 (-696)) $ (-585 (-1092))) NIL T ELT)) (-1627 (($ (-1 (-471 (-1092)) (-471 (-1092))) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3085 (((-3 (-1092) #1#) $) 19 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-1092)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $ (-1092)) 29 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-1092) |#1|) NIL T ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL T ELT) (($ $ (-1092) $) NIL T ELT) (($ $ (-585 (-1092)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-1092)) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3951 (((-471 (-1092)) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT) (((-585 (-696)) $ (-585 (-1092))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-1092) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1092) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-1092) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) 25 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1092)) 27 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-859 |#1|) (-13 (-863 |#1| (-471 (-1092)) (-1092)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1092))) |%noBranch|))) (-963)) (T -859)) +((-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-859 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963))))) +((-3961 (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)) 19 T ELT))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3961 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)))) (-963) (-963)) (T -860)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-859 *6)) (-5 *1 (-860 *5 *6))))) +((-3086 (((-1150 |#1| (-859 |#2|)) (-859 |#2|) (-1178 |#1|)) 18 T ELT))) +(((-861 |#1| |#2|) (-10 -7 (-15 -3086 ((-1150 |#1| (-859 |#2|)) (-859 |#2|) (-1178 |#1|)))) (-1092) (-963)) (T -861)) +((-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 *5)) (-14 *5 (-1092)) (-4 *6 (-963)) (-5 *2 (-1150 *5 (-859 *6))) (-5 *1 (-861 *5 *6)) (-5 *3 (-859 *6))))) +((-2822 (((-696) $) 88 T ELT) (((-696) $ (-585 |#4|)) 93 T ELT)) (-3778 (($ $) 214 T ELT)) (-3974 (((-348 $) $) 206 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 141 T ELT)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3759 (($ $ $ |#4|) 95 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 131 T ELT) (((-632 |#2|) (-632 $)) 121 T ELT)) (-3506 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2821 (((-585 $) $) 77 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 240 T ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 233 T ELT)) (-2824 (((-585 $) $) 34 T ELT)) (-2896 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-696)) NIL T ELT) (($ $ (-585 |#4|) (-585 (-696))) 71 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#4|) 203 T ELT)) (-2826 (((-3 (-585 $) #1#) $) 52 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 39 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-696))) #1#) $) 57 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 134 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 147 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 145 T ELT)) (-3735 (((-348 $) $) 165 T ELT)) (-3771 (($ $ (-585 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-585 |#4|) (-585 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-585 |#4|) (-585 $)) NIL T ELT)) (-3760 (($ $ |#4|) 97 T ELT)) (-3975 (((-802 (-330)) $) 254 T ELT) (((-802 (-486)) $) 247 T ELT) (((-475) $) 262 T ELT)) (-2820 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 185 T ELT)) (-3680 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-696)) 62 T ELT) (($ $ (-585 |#4|) (-585 (-696))) 69 T ELT)) (-2705 (((-634 $) $) 195 T ELT)) (-1267 (((-85) $ $) 227 T ELT))) +(((-862 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -2705 ((-634 |#1|) |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -2709 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2708 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2707 ((-3 (-585 (-1087 |#1|)) #1="failed") (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -2706 ((-3 (-1181 |#1|) #1#) (-632 |#1|))) (-15 -3506 (|#1| |#1| |#4|)) (-15 -2820 (|#1| |#1| |#4|)) (-15 -3760 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#1| |#4|)) (-15 -2821 ((-585 |#1|) |#1|)) (-15 -2822 ((-696) |#1| (-585 |#4|))) (-15 -2822 ((-696) |#1|)) (-15 -2827 ((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-696))) #1#) |#1|)) (-15 -2826 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2825 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2896 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -2896 (|#1| |#1| |#4| (-696))) (-15 -3766 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-15 -2824 ((-585 |#1|) |#1|)) (-15 -3680 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -3680 (|#1| |#1| |#4| (-696))) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3160 ((-3 |#4| #1#) |#1|)) (-15 -3159 (|#4| |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#4| |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#4| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -2896 (|#1| |#2| |#3|)) (-15 -3680 (|#2| |#1| |#3|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -1267 ((-85) |#1| |#1|))) (-863 |#2| |#3| |#4|) (-963) (-719) (-758)) (T -862)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#3|) $) 123 T ELT)) (-3086 (((-1087 $) $ |#3|) 138 T ELT) (((-1087 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 100 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 125 T ELT) (((-696) $ (-585 |#3|)) 124 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 113 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 111 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 110 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-486)) #2#) $) 178 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 176 (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3159 ((|#1| $) 180 T ELT) (((-350 (-486)) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 177 (|has| |#1| (-952 (-486))) ELT) ((|#3| $) 154 T ELT)) (-3759 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3962 (($ $) 171 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 148 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 193 (|has| |#1| (-393)) ELT) (($ $ |#3|) 118 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 122 T ELT)) (-3726 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| |#2| $) 189 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 97 (-12 (|has| |#3| (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 96 (-12 (|has| |#3| (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3087 (($ (-1087 |#1|) |#3|) 130 T ELT) (($ (-1087 $) |#3|) 129 T ELT)) (-2824 (((-585 $) $) 139 T ELT)) (-3940 (((-85) $) 169 T ELT)) (-2896 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-696)) 132 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 131 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 133 T ELT)) (-2823 ((|#2| $) 187 T ELT) (((-696) $ |#3|) 135 T ELT) (((-585 (-696)) $ (-585 |#3|)) 134 T ELT)) (-1627 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3085 (((-3 |#3| "failed") $) 136 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 145 T ELT) (((-632 |#1|) (-1181 $)) 144 T ELT)) (-2897 (($ $) 166 T ELT)) (-3177 ((|#1| $) 165 T ELT)) (-1896 (($ (-585 $)) 107 (|has| |#1| (-393)) ELT) (($ $ $) 106 (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2826 (((-3 (-585 $) "failed") $) 127 T ELT)) (-2825 (((-3 (-585 $) "failed") $) 128 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) "failed") $) 126 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 183 T ELT)) (-1801 ((|#1| $) 184 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 108 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 105 (|has| |#1| (-393)) ELT) (($ $ $) 104 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 112 (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-585 |#3|) (-585 $)) 155 T ELT)) (-3760 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3951 ((|#2| $) 167 T ELT) (((-696) $ |#3|) 143 T ELT) (((-585 (-696)) $ (-585 |#3|)) 142 T ELT)) (-3975 (((-802 (-330)) $) 95 (-12 (|has| |#3| (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 94 (-12 (|has| |#3| (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 93 (-12 (|has| |#3| (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 192 (|has| |#1| (-393)) ELT) (($ $ |#3|) 119 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 117 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-497)) ELT) (($ (-350 (-486))) 91 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) 185 T ELT)) (-3680 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-696)) 141 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 140 T ELT)) (-2705 (((-634 $) $) 92 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1625 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 174 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-863 |#1| |#2| |#3|) (-113) (-963) (-719) (-758)) (T -863)) +((-3506 (*1 *1 *1) (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3951 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3951 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-696))))) (-3680 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *2 (-758)))) (-3680 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) (-2824 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-3086 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-1087 *1)) (-4 *1 (-863 *4 *5 *3)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-1087 *3)))) (-3085 (*1 *2 *1) (|partial| -12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-2823 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-696)))) (-2823 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-696))))) (-3766 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-863 *4 *5 *3)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *2 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) (-3087 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *4)) (-4 *4 (-963)) (-4 *1 (-863 *4 *5 *3)) (-4 *5 (-719)) (-4 *3 (-758)))) (-3087 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-696)))))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-696)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *5)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-3759 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3760 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) (-2820 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-393)))) (-3506 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-393)))) (-3778 (*1 *1 *1) (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3974 (*1 *2 *1) (-12 (-4 *3 (-393)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-348 *1)) (-4 *1 (-863 *3 *4 *5))))) +(-13 (-811 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-457 |t#3| |t#1|) (-457 |t#3| $) (-952 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3951 ((-696) $ |t#3|)) (-15 -3951 ((-585 (-696)) $ (-585 |t#3|))) (-15 -3680 ($ $ |t#3| (-696))) (-15 -3680 ($ $ (-585 |t#3|) (-585 (-696)))) (-15 -2824 ((-585 $) $)) (-15 -3086 ((-1087 $) $ |t#3|)) (-15 -3086 ((-1087 |t#1|) $)) (-15 -3085 ((-3 |t#3| "failed") $)) (-15 -2823 ((-696) $ |t#3|)) (-15 -2823 ((-585 (-696)) $ (-585 |t#3|))) (-15 -3766 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |t#3|)) (-15 -2896 ($ $ |t#3| (-696))) (-15 -2896 ($ $ (-585 |t#3|) (-585 (-696)))) (-15 -3087 ($ (-1087 |t#1|) |t#3|)) (-15 -3087 ($ (-1087 $) |t#3|)) (-15 -2825 ((-3 (-585 $) "failed") $)) (-15 -2826 ((-3 (-585 $) "failed") $)) (-15 -2827 ((-3 (-2 (|:| |var| |t#3|) (|:| -2403 (-696))) "failed") $)) (-15 -2822 ((-696) $)) (-15 -2822 ((-696) $ (-585 |t#3|))) (-15 -3084 ((-585 |t#3|) $)) (-15 -2821 ((-585 $) $)) (IF (|has| |t#1| (-555 (-475))) (IF (|has| |t#3| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-486)))) (IF (|has| |t#3| (-555 (-802 (-486)))) (-6 (-555 (-802 (-486)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-330)))) (IF (|has| |t#3| (-555 (-802 (-330)))) (-6 (-555 (-802 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-798 (-486))) (IF (|has| |t#3| (-798 (-486))) (-6 (-798 (-486))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-798 (-330))) (IF (|has| |t#3| (-798 (-330))) (-6 (-798 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3759 ($ $ $ |t#3|)) (-15 -3760 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-6 (-393)) (-15 -2820 ($ $ |t#3|)) (-15 -3506 ($ $)) (-15 -3506 ($ $ |t#3|)) (-15 -3974 ((-348 $) $)) (-15 -3778 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3996)) (-6 -3996) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393))) ((-457 |#3| |#1|) . T) ((-457 |#3| $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-665) . T) ((-808 $ |#3|) . T) ((-811 |#3|) . T) ((-813 |#3|) . T) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ((-823) |has| |#1| (-823)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-823))) +((-3084 (((-585 |#2|) |#5|) 40 T ELT)) (-3086 (((-1087 |#5|) |#5| |#2| (-1087 |#5|)) 23 T ELT) (((-350 (-1087 |#5|)) |#5| |#2|) 16 T ELT)) (-3087 ((|#5| (-350 (-1087 |#5|)) |#2|) 30 T ELT)) (-3085 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2826 (((-3 (-585 |#5|) #1#) |#5|) 64 T ELT)) (-2828 (((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-486))) #1#) |#5|) 53 T ELT)) (-2825 (((-3 (-585 |#5|) #1#) |#5|) 66 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-486))) #1#) |#5|) 56 T ELT))) +(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3084 ((-585 |#2|) |#5|)) (-15 -3085 ((-3 |#2| #1="failed") |#5|)) (-15 -3086 ((-350 (-1087 |#5|)) |#5| |#2|)) (-15 -3087 (|#5| (-350 (-1087 |#5|)) |#2|)) (-15 -3086 ((-1087 |#5|) |#5| |#2| (-1087 |#5|))) (-15 -2825 ((-3 (-585 |#5|) #1#) |#5|)) (-15 -2826 ((-3 (-585 |#5|) #1#) |#5|)) (-15 -2827 ((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-486))) #1#) |#5|)) (-15 -2828 ((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-486))) #1#) |#5|))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3949 ($ |#4|)) (-15 -3001 (|#4| $)) (-15 -3000 (|#4| $))))) (T -864)) +((-2828 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-486)))) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-2827 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-486)))) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-3086 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) (-4 *7 (-863 *6 *5 *4)) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-5 *1 (-864 *5 *4 *6 *7 *3)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1087 *2))) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) (-5 *1 (-864 *5 *4 *6 *7 *2)) (-4 *7 (-863 *6 *5 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-350 (-1087 *3))) (-5 *1 (-864 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-3085 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-963)) (-4 *6 (-863 *5 *4 *2)) (-4 *2 (-758)) (-5 *1 (-864 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *6)) (-15 -3001 (*6 $)) (-15 -3000 (*6 $))))))) (-3084 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *5)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) +((-3961 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3961 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) (T -865)) +((-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-758)) (-4 *8 (-963)) (-4 *6 (-719)) (-4 *2 (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) (-5 *1 (-865 *6 *7 *8 *5 *2)) (-4 *5 (-863 *8 *6 *7))))) +((-2829 (((-2 (|:| -2403 (-696)) (|:| -3957 |#5|) (|:| |radicand| |#5|)) |#3| (-696)) 48 T ELT)) (-2830 (((-2 (|:| -2403 (-696)) (|:| -3957 |#5|) (|:| |radicand| |#5|)) (-350 (-486)) (-696)) 43 T ELT)) (-2832 (((-2 (|:| -2403 (-696)) (|:| -3957 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-696)) 64 T ELT)) (-2831 (((-2 (|:| -2403 (-696)) (|:| -3957 |#5|) (|:| |radicand| |#5|)) |#5| (-696)) 73 (|has| |#3| (-393)) ELT))) +(((-866 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2829 ((-2 (|:| -2403 (-696)) (|:| -3957 |#5|) (|:| |radicand| |#5|)) |#3| (-696))) (-15 -2830 ((-2 (|:| -2403 (-696)) (|:| -3957 |#5|) (|:| |radicand| |#5|)) (-350 (-486)) (-696))) (IF (|has| |#3| (-393)) (-15 -2831 ((-2 (|:| -2403 (-696)) (|:| -3957 |#5|) (|:| |radicand| |#5|)) |#5| (-696))) |%noBranch|) (-15 -2832 ((-2 (|:| -2403 (-696)) (|:| -3957 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-696)))) (-719) (-758) (-497) (-863 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3949 ($ |#4|)) (-15 -3001 (|#4| $)) (-15 -3000 (|#4| $))))) (T -866)) +((-2832 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *3 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *3) (|:| |radicand| (-585 *3)))) (-5 *1 (-866 *5 *6 *7 *3 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3949 ($ *3)) (-15 -3001 (*3 $)) (-15 -3000 (*3 $))))))) (-2831 (*1 *2 *3 *4) (-12 (-4 *7 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *8 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *3) (|:| |radicand| *3))) (-5 *1 (-866 *5 *6 *7 *8 *3)) (-5 *4 (-696)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3949 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $))))))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-486))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *8 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *9) (|:| |radicand| *9))) (-5 *1 (-866 *5 *6 *7 *8 *9)) (-5 *4 (-696)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3949 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-497)) (-4 *7 (-863 *3 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *8) (|:| |radicand| *8))) (-5 *1 (-866 *5 *6 *3 *7 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2833 (($ (-1035)) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 15 T ELT) (((-1035) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) +(((-867) (-13 (-1015) (-554 (-1035)) (-10 -8 (-15 -2833 ($ (-1035)))))) (T -867)) +((-2833 (*1 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-867))))) +((-2899 (((-1003 (-179)) $) 8 T ELT)) (-2900 (((-1003 (-179)) $) 9 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 10 T ELT)) (-3949 (((-774) $) 6 T ELT))) +(((-868) (-113)) (T -868)) +((-2901 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-585 (-585 (-856 (-179))))))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179)))))) +(-13 (-554 (-774)) (-10 -8 (-15 -2901 ((-585 (-585 (-856 (-179)))) $)) (-15 -2900 ((-1003 (-179)) $)) (-15 -2899 ((-1003 (-179)) $)))) +(((-554 (-774)) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 80 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 81 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) 32 T ELT)) (-3470 (((-3 $ #1#) $) 43 T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1626 (($ $ |#1| |#2| $) 64 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 18 T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2823 ((|#2| $) 25 T ELT)) (-1627 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2897 (($ $) 29 T ELT)) (-3177 ((|#1| $) 27 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 52 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-3741 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-497))) ELT)) (-3469 (((-3 $ #1#) $ $) 92 (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-497)) ELT)) (-3951 ((|#2| $) 23 T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) 47 T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ |#2|) 38 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 15 T CONST)) (-1625 (($ $ $ (-696)) 76 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) 86 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 12 T CONST)) (-3059 (((-85) $ $) 85 T ELT)) (-3952 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 71 T ELT) (($ $ (-696)) 69 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-869 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-497)) (IF (|has| |#2| (-104)) (-15 -3741 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3996)) (-6 -3996) |%noBranch|))) (-963) (-718)) (T -869)) +((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-869 *3 *2)) (-4 *2 (-104)) (-4 *3 (-497)) (-4 *3 (-963)) (-4 *2 (-718))))) +((-2834 (((-3 (-632 |#1|) "failed") |#2| (-832)) 18 T ELT))) +(((-870 |#1| |#2|) (-10 -7 (-15 -2834 ((-3 (-632 |#1|) "failed") |#2| (-832)))) (-497) (-602 |#1|)) (T -870)) +((-2834 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-832)) (-4 *5 (-497)) (-5 *2 (-632 *5)) (-5 *1 (-870 *5 *3)) (-4 *3 (-602 *5))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 18 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) 17 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 15 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 14 T ELT)) (-2202 (((-486) $) 10 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 23 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 22 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 19 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 16 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 20 T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 13 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3960 (((-696) $) 8 T ELT))) +(((-871 |#1|) (-19 |#1|) (-1131)) (T -871)) +NIL +((-3844 (((-871 |#2|) (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|) 18 T ELT)) (-3961 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 13 T ELT))) +(((-872 |#1| |#2|) (-10 -7 (-15 -3844 ((-871 |#2|) (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|)) (-15 -3961 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-1131) (-1131)) (T -872)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-871 *6)) (-5 *1 (-872 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-872 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-871 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-871 *5)) (-5 *1 (-872 *6 *5))))) +((-2835 (($ $ (-1006 $)) 7 T ELT) (($ $ (-1092)) 6 T ELT))) +(((-873) (-113)) (T -873)) +((-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-873)))) (-2835 (*1 *1 *1 *2) (-12 (-4 *1 (-873)) (-5 *2 (-1092))))) +(-13 (-10 -8 (-15 -2835 ($ $ (-1092))) (-15 -2835 ($ $ (-1006 $))))) +((-2836 (((-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092)) (-1092)) 26 T ELT) (((-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092))) 27 T ELT) (((-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 |#1|))) (-859 |#1|) (-1092) (-859 |#1|) (-1092)) 49 T ELT))) +(((-874 |#1|) (-10 -7 (-15 -2836 ((-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 |#1|))) (-859 |#1|) (-1092) (-859 |#1|) (-1092))) (-15 -2836 ((-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -2836 ((-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092)) (-1092)))) (-13 (-312) (-120))) (T -874)) +((-2836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-5 *5 (-1092)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 *6))) (|:| |prim| (-1087 *6)))) (-5 *1 (-874 *6)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 *5))) (|:| |prim| (-1087 *5)))) (-5 *1 (-874 *5)))) (-2836 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 *5)))) (-5 *1 (-874 *5))))) +((-2839 (((-585 |#1|) |#1| |#1|) 47 T ELT)) (-3726 (((-85) |#1|) 44 T ELT)) (-2838 ((|#1| |#1|) 80 T ELT)) (-2837 ((|#1| |#1|) 79 T ELT))) +(((-875 |#1|) (-10 -7 (-15 -3726 ((-85) |#1|)) (-15 -2837 (|#1| |#1|)) (-15 -2838 (|#1| |#1|)) (-15 -2839 ((-585 |#1|) |#1| |#1|))) (-485)) (T -875)) +((-2839 (*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-875 *3)) (-4 *3 (-485)))) (-2838 (*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485)))) (-2837 (*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-875 *3)) (-4 *3 (-485))))) +((-2840 (((-1187) (-774)) 9 T ELT))) +(((-876) (-10 -7 (-15 -2840 ((-1187) (-774))))) (T -876)) +((-2840 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-876))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-2486 (($ $ $) 65 (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) ELT)) (-1314 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-3139 (((-696)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2841 ((|#2| $) 22 T ELT)) (-2842 ((|#1| $) 21 T ELT)) (-3727 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) CONST)) (-3470 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (-2997 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) ELT)) (-1216 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-2412 (((-85) $) NIL (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (-2534 (($ $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2860 (($ $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2843 (($ |#1| |#2|) 20 T ELT)) (-2012 (((-832) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 39 (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-2402 (($ (-832)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3012 (($ $ $) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-2438 (($ $ $) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-3949 (((-774) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) CONST)) (-2669 (($) 25 (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) CONST)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2570 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-3059 (((-85) $ $) 19 T ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2688 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-3952 (($ $ $) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-3840 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3842 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (** (($ $ (-486)) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT) (($ $ (-696)) 32 (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT) (($ $ (-832)) NIL (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (* (($ (-486) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-696) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT) (($ (-832) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT))) +(((-877 |#1| |#2|) (-13 (-1015) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-665)) (IF (|has| |#2| (-665)) (-6 (-665)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-414)) (IF (|has| |#2| (-414)) (-6 (-414)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-719)) (IF (|has| |#2| (-719)) (-6 (-719)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-758)) (IF (|has| |#2| (-758)) (-6 (-758)) |%noBranch|) |%noBranch|) (-15 -2843 ($ |#1| |#2|)) (-15 -2842 (|#1| $)) (-15 -2841 (|#2| $)))) (-1015) (-1015)) (T -877)) +((-2843 (*1 *1 *2 *3) (-12 (-5 *1 (-877 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-2842 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1015)))) (-2841 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *3 *2)) (-4 *3 (-1015))))) +((-3405 (((-1017) $) 13 T ELT)) (-2844 (($ (-448) (-1017)) 15 T ELT)) (-3545 (((-448) $) 11 T ELT)) (-3949 (((-774) $) 25 T ELT))) +(((-878) (-13 (-554 (-774)) (-10 -8 (-15 -3545 ((-448) $)) (-15 -3405 ((-1017) $)) (-15 -2844 ($ (-448) (-1017)))))) (T -878)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-878)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-878)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-878))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 29 T ELT)) (-2858 (($) 17 T CONST)) (-2564 (($ $ $) NIL T ELT)) (-2563 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2849 (((-634 (-784 $ $)) $) 62 T ELT)) (-2851 (((-634 $) $) 52 T ELT)) (-2848 (((-634 (-784 $ $)) $) 63 T ELT)) (-2847 (((-634 (-784 $ $)) $) 64 T ELT)) (-2852 (((-634 |#1|) $) 43 T ELT)) (-2850 (((-634 (-784 $ $)) $) 61 T ELT)) (-2856 (($ $ $) 38 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2857 (($) 16 T CONST)) (-2855 (($ $ $) 39 T ELT)) (-2845 (($ $ $) 36 T ELT)) (-2846 (($ $ $) 34 T ELT)) (-3949 (((-774) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2313 (($ $ $) 37 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) 35 T ELT))) +(((-879 |#1|) (-13 (-882) (-557 |#1|) (-10 -8 (-15 -2852 ((-634 |#1|) $)) (-15 -2851 ((-634 $) $)) (-15 -2850 ((-634 (-784 $ $)) $)) (-15 -2849 ((-634 (-784 $ $)) $)) (-15 -2848 ((-634 (-784 $ $)) $)) (-15 -2847 ((-634 (-784 $ $)) $)) (-15 -2846 ($ $ $)) (-15 -2845 ($ $ $)))) (-1015)) (T -879)) +((-2852 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-634 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2846 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) +((-3652 (((-879 |#1|) (-879 |#1|)) 46 T ELT)) (-2854 (((-879 |#1|) (-879 |#1|)) 22 T ELT)) (-2853 (((-1011 |#1|) (-879 |#1|)) 41 T ELT))) +(((-880 |#1|) (-13 (-1131) (-10 -7 (-15 -2854 ((-879 |#1|) (-879 |#1|))) (-15 -2853 ((-1011 |#1|) (-879 |#1|))) (-15 -3652 ((-879 |#1|) (-879 |#1|))))) (-1015)) (T -880)) +((-2854 (*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1015)) (-5 *2 (-1011 *4)) (-5 *1 (-880 *4)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3))))) +((-3961 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 29 T ELT))) +(((-881 |#1| |#2|) (-13 (-1131) (-10 -7 (-15 -3961 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))) (-1015) (-1015)) (T -881)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-879 *6)) (-5 *1 (-881 *5 *6))))) +((-2571 (((-85) $ $) 19 T ELT)) (-2315 (($ $) 8 T ELT)) (-2858 (($) 17 T CONST)) (-2564 (($ $ $) 9 T ELT)) (-2563 (($ $) 11 T ELT)) (-3245 (((-1075) $) 23 T ELT)) (-2856 (($ $ $) 15 T ELT)) (-3246 (((-1035) $) 22 T ELT)) (-2857 (($) 16 T CONST)) (-2855 (($ $ $) 14 T ELT)) (-3949 (((-774) $) 21 T ELT)) (-1267 (((-85) $ $) 20 T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-3059 (((-85) $ $) 18 T ELT)) (-2314 (($ $ $) 7 T ELT))) +(((-882) (-113)) (T -882)) +((-2858 (*1 *1) (-4 *1 (-882))) (-2857 (*1 *1) (-4 *1 (-882))) (-2856 (*1 *1 *1 *1) (-4 *1 (-882))) (-2855 (*1 *1 *1 *1) (-4 *1 (-882)))) +(-13 (-84) (-1015) (-10 -8 (-15 -2858 ($) -3955) (-15 -2857 ($) -3955) (-15 -2856 ($ $ $)) (-15 -2855 ($ $ $)))) +(((-72) . T) ((-84) . T) ((-554 (-774)) . T) ((-13) . T) ((-606) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-2859 (($ $ $) 40 T ELT)) (-3521 (($ $ $) 41 T ELT)) (-2611 (((-585 |#1|) $) 47 T ELT)) (-3248 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 42 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1732 (((-696) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 46 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 43 T ELT))) +(((-883 |#1|) (-113) (-758)) (T -883)) +((-2860 (*1 *2 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) (-2859 (*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) +(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2860 (|t#1| $)) (-15 -3521 ($ $ $)) (-15 -2859 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2872 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 105 T ELT)) (-3758 ((|#2| |#2| |#2|) 103 T ELT)) (-2873 (((-2 (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 107 T ELT)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 109 T ELT)) (-2881 (((-2 (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|) 132 (|has| |#1| (-393)) ELT)) (-2888 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 56 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 80 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 82 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 89 T ELT)) (-2876 (((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|) 121 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 92 T ELT)) (-2878 (((-585 (-696)) |#2| |#2|) 102 T ELT)) (-2886 ((|#1| |#2| |#2|) 50 T ELT)) (-2880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|) 130 (|has| |#1| (-393)) ELT)) (-2879 ((|#1| |#2| |#2|) 128 (|has| |#1| (-393)) ELT)) (-2887 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 54 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 79 T ELT)) (-3759 ((|#1| |#2| |#2|) 76 T ELT)) (-3755 (((-2 (|:| -3957 |#1|) (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|) 41 T ELT)) (-2885 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3193 ((|#2| |#2| |#2|) 93 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 87 T ELT)) (-2864 ((|#2| |#2| |#2| (-696)) 85 T ELT)) (-3147 ((|#2| |#2| |#2|) 136 (|has| |#1| (-393)) ELT)) (-3469 (((-1181 |#2|) (-1181 |#2|) |#1|) 22 T ELT)) (-2882 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|) 46 T ELT)) (-2875 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|) 119 T ELT)) (-3760 ((|#1| |#2|) 116 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 91 T ELT)) (-2867 ((|#2| |#2| |#2| (-696)) 90 T ELT)) (-2877 (((-585 |#2|) |#2| |#2|) 99 T ELT)) (-2884 ((|#2| |#2| |#1| |#1| (-696)) 62 T ELT)) (-2883 ((|#1| |#1| |#1| (-696)) 61 T ELT)) (* (((-1181 |#2|) |#1| (-1181 |#2|)) 17 T ELT))) +(((-884 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2864 (|#2| |#2| |#2| (-696))) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2867 (|#2| |#2| |#2| (-696))) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -3193 (|#2| |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3758 (|#2| |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-15 -3760 (|#1| |#2|)) (-15 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|)) (-15 -2876 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|)) (-15 -2877 ((-585 |#2|) |#2| |#2|)) (-15 -2878 ((-585 (-696)) |#2| |#2|)) (IF (|has| |#1| (-393)) (PROGN (-15 -2879 (|#1| |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|)) (-15 -3147 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3469 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -3755 ((-2 (|:| -3957 |#1|) (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|)) (-15 -2882 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|)) (-15 -2883 (|#1| |#1| |#1| (-696))) (-15 -2884 (|#2| |#2| |#1| |#1| (-696))) (-15 -2885 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2886 (|#1| |#2| |#2|)) (-15 -2887 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2888 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|))) (-497) (-1157 |#1|)) (T -884)) +((-2888 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) (-2885 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2884 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2883 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *2 (-497)) (-5 *1 (-884 *2 *4)) (-4 *4 (-1157 *2)))) (-2882 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3755 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -3957 *4) (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) (-5 *1 (-884 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) (-5 *1 (-884 *3 *4)))) (-3147 (*1 *2 *2 *2) (-12 (-4 *3 (-393)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-4 *2 (-393)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-696))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3760 (*1 *2 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3147 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3147 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3147 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3758 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3193 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2869 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2867 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3759 (*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3949 (((-774) $) 21 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-885) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3321 ((-1132) $))))) (T -885)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-885)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-885))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 40 T ELT)) (-1314 (((-3 $ "failed") $ $) 54 T ELT)) (-3727 (($) NIL T CONST)) (-2890 (((-585 (-784 (-832) (-832))) $) 64 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2889 (((-832) $) 91 T ELT)) (-2892 (((-585 (-832)) $) 17 T ELT)) (-2891 (((-1071 $) (-696)) 39 T ELT)) (-2893 (($ (-585 (-832))) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3012 (($ $) 67 T ELT)) (-3949 (((-774) $) 87 T ELT) (((-585 (-832)) $) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 44 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 42 T ELT)) (-3842 (($ $ $) 46 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 49 T ELT)) (-3960 (((-696) $) 22 T ELT))) +(((-886) (-13 (-723) (-554 (-585 (-832))) (-10 -8 (-15 -2893 ($ (-585 (-832)))) (-15 -2892 ((-585 (-832)) $)) (-15 -3960 ((-696) $)) (-15 -2891 ((-1071 $) (-696))) (-15 -2890 ((-585 (-784 (-832) (-832))) $)) (-15 -2889 ((-832) $)) (-15 -3012 ($ $))))) (T -886)) +((-2893 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-886)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1071 (-886))) (-5 *1 (-886)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-832) (-832)))) (-5 *1 (-886)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-886)))) (-3012 (*1 *1 *1) (-5 *1 (-886)))) +((-3952 (($ $ |#2|) 31 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-486)) $) 27 T ELT) (($ $ (-350 (-486))) 29 T ELT))) +(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-888 |#2| |#3| |#4|) (-963) (-718) (-758)) (T -887)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#3|) $) 95 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2895 (((-85) $) 94 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-585 |#3|) (-585 |#2|)) 96 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-3951 ((|#2| $) 84 T ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ |#2|) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-888 |#1| |#2| |#3|) (-113) (-963) (-718) (-758)) (T -888)) +((-3177 (*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-718)) (-4 *4 (-758)) (-4 *2 (-963)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *2 (-718)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-718)) (-4 *2 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-718)) (-4 *6 (-758)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-585 *5)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-85)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2896 ($ $ |t#3| |t#2|)) (-15 -2896 ($ $ (-585 |t#3|) (-585 |t#2|))) (-15 -2897 ($ $)) (-15 -3177 (|t#1| $)) (-15 -3951 (|t#2| $)) (-15 -3084 ((-585 |t#3|) $)) (-15 -2895 ((-85) $)) (-15 -2894 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-246) |has| |#1| (-497)) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2898 (((-1003 (-179)) $) 8 T ELT)) (-2899 (((-1003 (-179)) $) 9 T ELT)) (-2900 (((-1003 (-179)) $) 10 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 11 T ELT)) (-3949 (((-774) $) 6 T ELT))) +(((-889) (-113)) (T -889)) +((-2901 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-585 (-585 (-856 (-179))))))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(-13 (-554 (-774)) (-10 -8 (-15 -2901 ((-585 (-585 (-856 (-179)))) $)) (-15 -2900 ((-1003 (-179)) $)) (-15 -2899 ((-1003 (-179)) $)) (-15 -2898 ((-1003 (-179)) $)))) +(((-554 (-774)) . T)) +((-3084 (((-585 |#4|) $) 23 T ELT)) (-2911 (((-85) $) 55 T ELT)) (-2902 (((-85) $) 54 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2907 (((-85) $) 56 T ELT)) (-2909 (((-85) $ $) 62 T ELT)) (-2908 (((-85) $ $) 65 T ELT)) (-2910 (((-85) $) 60 T ELT)) (-2903 (((-585 |#5|) (-585 |#5|) $) 98 T ELT)) (-2904 (((-585 |#5|) (-585 |#5|) $) 95 T ELT)) (-2905 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2917 (((-585 |#4|) $) 27 T ELT)) (-2916 (((-85) |#4| $) 34 T ELT)) (-2906 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2913 (($ $ |#4|) 39 T ELT)) (-2915 (($ $ |#4|) 38 T ELT)) (-2914 (($ $ |#4|) 40 T ELT)) (-3059 (((-85) $ $) 46 T ELT))) +(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2902 ((-85) |#1|)) (-15 -2903 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -2904 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -2905 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2906 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-85) |#1| |#1|)) (-15 -2909 ((-85) |#1| |#1|)) (-15 -2910 ((-85) |#1|)) (-15 -2911 ((-85) |#1|)) (-15 -2912 ((-2 (|:| |under| |#1|) (|:| -3133 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -2915 (|#1| |#1| |#4|)) (-15 -2916 ((-85) |#4| |#1|)) (-15 -2917 ((-585 |#4|) |#1|)) (-15 -3084 ((-585 |#4|) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-891 |#2| |#3| |#4| |#5|) (-963) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -890)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT)) (-3727 (($) 58 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 53 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 52 (|has| |#4| (-72)) ELT)) (-3961 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1356 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 54 T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 56 T ELT)) (-1732 (((-696) |#4| $) 51 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 55 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 64 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3949 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-891 |#1| |#2| |#3| |#4|) (-113) (-963) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -891)) +((-3160 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-979 *3 *4 *2)) (-4 *2 (-758)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-2916 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) (-2915 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2914 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3133 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2909 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2906 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2905 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2904 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)))) (-2903 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) +(-13 (-1015) (-124 |t#4|) (-318 |t#4|) (-554 (-585 |t#4|)) (-10 -8 (-15 -3160 ((-3 $ "failed") (-585 |t#4|))) (-15 -3159 ($ (-585 |t#4|))) (-15 -3183 (|t#3| $)) (-15 -3084 ((-585 |t#3|) $)) (-15 -2917 ((-585 |t#3|) $)) (-15 -2916 ((-85) |t#3| $)) (-15 -2915 ($ $ |t#3|)) (-15 -2914 ($ $ |t#3|)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |t#3|)) (-15 -2911 ((-85) $)) (IF (|has| |t#1| (-497)) (PROGN (-15 -2910 ((-85) $)) (-15 -2909 ((-85) $ $)) (-15 -2908 ((-85) $ $)) (-15 -2907 ((-85) $)) (-15 -2906 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2905 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2904 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -2903 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -2902 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2919 (((-585 |#4|) |#4| |#4|) 135 T ELT)) (-2942 (((-585 |#4|) (-585 |#4|) (-85)) 123 (|has| |#1| (-393)) ELT) (((-585 |#4|) (-585 |#4|)) 124 (|has| |#1| (-393)) ELT)) (-2929 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 44 T ELT)) (-2928 (((-85) |#4|) 43 T ELT)) (-2941 (((-585 |#4|) |#4|) 120 (|has| |#1| (-393)) ELT)) (-2924 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-85) |#4|) (-585 |#4|)) 24 T ELT)) (-2925 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|)) 30 T ELT)) (-2926 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|)) 31 T ELT)) (-2937 (((-3 (-2 (|:| |bas| (-417 |#1| |#2| |#3| |#4|)) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|)) 90 T ELT)) (-2939 (((-585 |#4|) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2940 (((-585 |#4|) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2918 (((-585 |#4|) (-585 |#4|)) 126 T ELT)) (-2934 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-85)) 59 T ELT) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 61 T ELT)) (-2935 ((|#4| |#4| (-585 |#4|)) 60 T ELT)) (-2943 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 131 (|has| |#1| (-393)) ELT)) (-2945 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 134 (|has| |#1| (-393)) ELT)) (-2944 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 133 (|has| |#1| (-393)) ELT)) (-2920 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|))) 105 T ELT) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 107 T ELT) (((-585 |#4|) (-585 |#4|) |#4|) 139 T ELT) (((-585 |#4|) |#4| |#4|) 136 T ELT) (((-585 |#4|) (-585 |#4|)) 106 T ELT)) (-2948 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2927 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 52 T ELT)) (-2923 (((-85) (-585 |#4|)) 79 T ELT)) (-2922 (((-85) (-585 |#4|) (-585 (-585 |#4|))) 67 T ELT)) (-2931 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 37 T ELT)) (-2930 (((-85) |#4|) 36 T ELT)) (-2947 (((-585 |#4|) (-585 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2946 (((-585 |#4|) (-585 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2936 (((-585 |#4|) (-585 |#4|)) 83 T ELT)) (-2938 (((-585 |#4|) (-585 |#4|)) 97 T ELT)) (-2921 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-2933 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 50 T ELT)) (-2932 (((-85) |#4|) 45 T ELT))) +(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2920 ((-585 |#4|) (-585 |#4|))) (-15 -2920 ((-585 |#4|) |#4| |#4|)) (-15 -2918 ((-585 |#4|) (-585 |#4|))) (-15 -2919 ((-585 |#4|) |#4| |#4|)) (-15 -2920 ((-585 |#4|) (-585 |#4|) |#4|)) (-15 -2920 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2920 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|)))) (-15 -2921 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -2922 ((-85) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2923 ((-85) (-585 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-85) |#4|) (-585 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|))) (-15 -2926 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|))) (-15 -2927 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2930 ((-85) |#4|)) (-15 -2931 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2932 ((-85) |#4|)) (-15 -2933 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2934 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2934 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-85))) (-15 -2935 (|#4| |#4| (-585 |#4|))) (-15 -2936 ((-585 |#4|) (-585 |#4|))) (-15 -2937 ((-3 (-2 (|:| |bas| (-417 |#1| |#2| |#3| |#4|)) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|))) (-15 -2938 ((-585 |#4|) (-585 |#4|))) (-15 -2939 ((-585 |#4|) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2940 ((-585 |#4|) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-393)) (PROGN (-15 -2941 ((-585 |#4|) |#4|)) (-15 -2942 ((-585 |#4|) (-585 |#4|))) (-15 -2942 ((-585 |#4|) (-585 |#4|) (-85))) (-15 -2943 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2944 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2945 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2946 ((-585 |#4|) (-585 |#4|))) (-15 -2947 ((-585 |#4|) (-585 |#4|))) (-15 -2948 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) |%noBranch|)) (-497) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -892)) +((-2948 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2945 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2941 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2940 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2939 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *1 (-892 *6 *7 *8 *9)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2937 (*1 *2 *3) (|partial| -12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-417 *4 *5 *6 *7)) (|:| -3326 (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2935 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *2)))) (-2934 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2933 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2921 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2920 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2920 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *3)))) (-2919 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2920 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) +((-2949 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2951 (((-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|)) 45 T ELT)) (-2950 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-893 |#1|) (-10 -7 (-15 -2949 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2950 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2951 ((-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|)))) (-312)) (T -893)) +((-2951 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)))) (-2950 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-893 *5)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-632 *6))))) +((-3974 (((-348 |#4|) |#4|) 61 T ELT))) +(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-348 |#4|) |#4|))) (-758) (-719) (-393) (-863 |#3| |#2| |#1|)) (T -894)) +((-3974 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-393)) (-5 *2 (-348 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) 123 (|has| |#1| (-23)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1037 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 89 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 99 T ELT)) (-1355 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1578 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 96 T ELT) (((-486) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 94 (|has| |#1| (-72)) ELT)) (-3709 (($ (-585 |#1|)) 129 T ELT)) (-3838 (((-632 |#1|) $ $) 116 (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 105 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 82 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3836 ((|#1| $) 114 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-585 |#1|)) 127 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-3839 ((|#1| $ $) 117 (|has| |#1| (-963)) ELT)) (-3914 (((-832) $) 128 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3837 (($ $ $) 115 T ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 104 T ELT)) (-1736 (($ $ $ (-486)) 90 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| |#1| (-555 (-475))) ELT) (($ (-585 |#1|)) 130 T ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2569 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 86 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-486) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-665)) ELT) (($ $ |#1|) 118 (|has| |#1| (-665)) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-895 |#1|) (-113) (-963)) (T -895)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-895 *3)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-963)) (-5 *2 (-832)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-963)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-895 *3)) (-4 *3 (-963))))) +(-13 (-1180 |t#1|) (-559 (-585 |t#1|)) (-10 -8 (-15 -3709 ($ (-585 |t#1|))) (-15 -3914 ((-832) $)) (-15 -3837 ($ $ $)) (-15 -3772 ($ $ (-585 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-559 (-585 |#1|)) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-19 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1131) . T) ((-1180 |#1|) . T)) +((-3961 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 17 T ELT))) +(((-896 |#1| |#2|) (-10 -7 (-15 -3961 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-963) (-963)) (T -896)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-856 *6)) (-5 *1 (-896 *5 *6))))) +((-2954 ((|#1| (-856 |#1|)) 14 T ELT)) (-2953 ((|#1| (-856 |#1|)) 13 T ELT)) (-2952 ((|#1| (-856 |#1|)) 12 T ELT)) (-2956 ((|#1| (-856 |#1|)) 16 T ELT)) (-2960 ((|#1| (-856 |#1|)) 24 T ELT)) (-2955 ((|#1| (-856 |#1|)) 15 T ELT)) (-2957 ((|#1| (-856 |#1|)) 17 T ELT)) (-2959 ((|#1| (-856 |#1|)) 23 T ELT)) (-2958 ((|#1| (-856 |#1|)) 22 T ELT))) +(((-897 |#1|) (-10 -7 (-15 -2952 (|#1| (-856 |#1|))) (-15 -2953 (|#1| (-856 |#1|))) (-15 -2954 (|#1| (-856 |#1|))) (-15 -2955 (|#1| (-856 |#1|))) (-15 -2956 (|#1| (-856 |#1|))) (-15 -2957 (|#1| (-856 |#1|))) (-15 -2958 (|#1| (-856 |#1|))) (-15 -2959 (|#1| (-856 |#1|))) (-15 -2960 (|#1| (-856 |#1|)))) (-963)) (T -897)) +((-2960 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +((-2978 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2961 (((-3 |#1| "failed") |#1| (-696)) 1 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2987 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-898 |#1|) (-113) (-1117)) (T -898)) +((-2987 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2961 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(-13 (-10 -7 (-15 -2961 ((-3 |t#1| "failed") |t#1| (-696))) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)) (-15 -2987 ((-3 |t#1| "failed") |t#1|)))) +((-2989 ((|#4| |#4| (-585 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2988 ((|#4| |#4| (-585 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3961 ((|#4| (-1 |#4| (-859 |#1|)) |#4|) 33 T ELT))) +(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2988 (|#4| |#4| |#3|)) (-15 -2988 (|#4| |#4| (-585 |#3|))) (-15 -2989 (|#4| |#4| |#3|)) (-15 -2989 (|#4| |#4| (-585 |#3|))) (-15 -3961 (|#4| (-1 |#4| (-859 |#1|)) |#4|))) (-963) (-719) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092))))) (-863 (-859 |#1|) |#2| |#3|)) (T -899)) +((-3961 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-859 *4))) (-4 *4 (-963)) (-4 *2 (-863 (-859 *4) *5 *6)) (-4 *5 (-719)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1="failed") (-1092)))))) (-5 *1 (-899 *4 *5 *6 *2)))) (-2989 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-863 (-859 *4) *5 *6)))) (-2989 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-863 (-859 *4) *5 *6)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3))))) +((-2990 ((|#2| |#3|) 35 T ELT)) (-3922 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 79 T ELT)) (-3921 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 100 T ELT))) +(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -3922 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2990 (|#2| |#3|))) (-299) (-1157 |#1|) (-1157 |#2|) (-663 |#2| |#3|)) (T -900)) +((-2990 (*1 *2 *3) (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-663 *2 *3)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-663 *3 *5)))) (-3921 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-663 *4 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3404 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3652 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2994 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2995 (($ (-585 |#4|) |#4|) 25 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2991 (($ $) 69 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3406 (((-85) $) 70 T ELT)) (-3568 (($) 30 T ELT)) (-2992 ((|#4| $) 74 T ELT)) (-2993 (((-585 |#4|) $) 73 T ELT)) (-3949 (((-774) $) 68 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-901 |#1| |#2| |#3| |#4|) (-13 (-1015) (-554 (-774)) (-10 -8 (-15 -3568 ($)) (-15 -2995 ($ (-585 |#4|) |#4|)) (-15 -3404 ((-3 (-85) #1="failed") $)) (-15 -2994 ($ $ (-3 (-85) #1#))) (-15 -3406 ((-85) $)) (-15 -2993 ((-585 |#4|) $)) (-15 -2992 (|#4| $)) (-15 -2991 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3652 ($ $)) |%noBranch|) |%noBranch|))) (-393) (-758) (-719) (-863 |#1| |#3| |#2|)) (T -901)) +((-3568 (*1 *1) (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) (-2995 (*1 *1 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-863 *4 *6 *5)) (-4 *4 (-393)) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *1 (-901 *4 *5 *6 *3)))) (-3404 (*1 *2 *1) (|partial| -12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-3406 (*1 *2 *1) (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2993 (*1 *2 *1) (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-585 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)))) (-2991 (*1 *1 *1) (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) (-3652 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3))))) +((-2996 (((-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486)))) (-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486))))) 82 T ELT))) +(((-902 |#1| |#2|) (-10 -7 (-15 -2996 ((-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486)))) (-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486))))))) (-585 (-1092)) (-696)) (T -902)) +((-2996 (*1 *2 *2) (-12 (-5 *2 (-901 (-350 (-486)) (-775 *3) (-197 *4 (-696)) (-206 *3 (-350 (-486))))) (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-902 *3 *4))))) +((-3272 (((-85) |#5| |#5|) 44 T ELT)) (-3275 (((-85) |#5| |#5|) 59 T ELT)) (-3280 (((-85) |#5| (-585 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3276 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-3282 (((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) 70 T ELT)) (-3271 (((-1187)) 32 T ELT)) (-3270 (((-1187) (-1075) (-1075) (-1075)) 28 T ELT)) (-3281 (((-585 |#5|) (-585 |#5|)) 100 T ELT)) (-3283 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)))) 92 T ELT)) (-3284 (((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85)) 122 T ELT)) (-3274 (((-85) |#5| |#5|) 53 T ELT)) (-3279 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3277 (((-85) (-585 |#4|) (-585 |#4|)) 64 T ELT)) (-3278 (((-85) (-585 |#4|) (-585 |#4|)) 66 T ELT)) (-3702 (((-85) (-585 |#4|) (-585 |#4|)) 67 T ELT)) (-3285 (((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3273 (((-585 |#5|) (-585 |#5|)) 49 T ELT))) +(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3270 ((-1187) (-1075) (-1075) (-1075))) (-15 -3271 ((-1187))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-585 |#5|) (-585 |#5|))) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3276 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3277 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3278 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3702 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3279 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3280 ((-85) |#5| |#5|)) (-15 -3280 ((-85) |#5| (-585 |#5|))) (-15 -3281 ((-585 |#5|) (-585 |#5|))) (-15 -3282 ((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)))) (-15 -3283 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) (-15 -3284 ((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3285 ((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -903)) +((-3285 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) (-3284 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1602 *7)))) (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3271 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-3834 (((-1092) $) 15 T ELT)) (-3405 (((-1075) $) 16 T ELT)) (-3229 (($ (-1092) (-1075)) 14 T ELT)) (-3949 (((-774) $) 13 T ELT))) +(((-904) (-13 (-554 (-774)) (-10 -8 (-15 -3229 ($ (-1092) (-1075))) (-15 -3834 ((-1092) $)) (-15 -3405 ((-1075) $))))) (T -904)) +((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-904)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-904)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-904))))) +((-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1092) #1#) $) 72 T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) 102 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-1092) $) 67 T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) 99 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 121 T ELT) (((-632 |#2|) (-632 $)) 35 T ELT)) (-2997 (($) 105 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 82 T ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 91 T ELT)) (-2999 (($ $) 10 T ELT)) (-3448 (((-634 $) $) 27 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3449 (($) 16 T CONST)) (-3131 (($ $) 61 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2998 (($ $) 12 T ELT)) (-3975 (((-802 (-486)) $) 77 T ELT) (((-802 (-330)) $) 86 T ELT) (((-475) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1092)) 64 T ELT)) (-3129 (((-696)) 38 T CONST)) (-2688 (((-85) $ $) 57 T ELT))) +(((-905 |#1| |#2|) (-10 -7 (-15 -2688 ((-85) |#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3449 (|#1|) -3955) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -3160 ((-3 (-486) #1="failed") |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3975 ((-179) |#1|)) (-15 -3975 ((-330) |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3949 (|#1| (-1092))) (-15 -3160 ((-3 (-1092) #1#) |#1|)) (-15 -3159 ((-1092) |#1|)) (-15 -2997 (|#1|)) (-15 -3131 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3949 (|#1| |#1|)) (-15 -3129 ((-696)) -3955) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-906 |#2|) (-497)) (T -905)) +((-3129 (*1 *2) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 164 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 167 (|has| |#1| (-823)) ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3626 (((-486) $) 154 (|has| |#1| (-742)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1092) #2#) $) 162 (|has| |#1| (-952 (-1092))) ELT) (((-3 (-350 (-486)) #2#) $) 145 (|has| |#1| (-952 (-486))) ELT) (((-3 (-486) #2#) $) 143 (|has| |#1| (-952 (-486))) ELT)) (-3159 ((|#1| $) 204 T ELT) (((-1092) $) 163 (|has| |#1| (-952 (-1092))) ELT) (((-350 (-486)) $) 146 (|has| |#1| (-952 (-486))) ELT) (((-486) $) 144 (|has| |#1| (-952 (-486))) ELT)) (-2567 (($ $ $) 71 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 188 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 187 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 186 T ELT) (((-632 |#1|) (-632 $)) 185 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 171 (|has| |#1| (-485)) ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3189 (((-85) $) 156 (|has| |#1| (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 180 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 179 (|has| |#1| (-798 (-330))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2999 (($ $) 175 T ELT)) (-3001 ((|#1| $) 177 T ELT)) (-3448 (((-634 $) $) 142 (|has| |#1| (-1068)) ELT)) (-3190 (((-85) $) 155 (|has| |#1| (-742)) ELT)) (-1607 (((-3 (-585 $) #3="failed") (-585 $) $) 68 T ELT)) (-2534 (($ $ $) 147 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 148 (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 190 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 189 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 184 T ELT) (((-632 |#1|) (-1181 $)) 183 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 141 (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3131 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3133 ((|#1| $) 169 (|has| |#1| (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 166 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 165 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 197 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 196 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1609 (((-696) $) 74 T ELT)) (-3803 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-696)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 136 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 134 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 133 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 132 (|has| |#1| (-813 (-1092))) ELT)) (-2998 (($ $) 174 T ELT)) (-3000 ((|#1| $) 176 T ELT)) (-3975 (((-802 (-486)) $) 182 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 181 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-475) $) 159 (|has| |#1| (-555 (-475))) ELT) (((-330) $) 158 (|has| |#1| (-935)) ELT) (((-179) $) 157 (|has| |#1| (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 168 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1092)) 161 (|has| |#1| (-952 (-1092))) ELT)) (-2705 (((-634 $) $) 160 (OR (|has| |#1| (-118)) (-2565 (|has| $ (-118)) (|has| |#1| (-823)))) ELT)) (-3129 (((-696)) 40 T CONST)) (-3134 ((|#1| $) 170 (|has| |#1| (-485)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 153 (|has| |#1| (-742)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-696)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 135 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 131 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 130 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 129 (|has| |#1| (-813 (-1092))) ELT)) (-2569 (((-85) $ $) 149 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 151 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 150 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 152 (|has| |#1| (-758)) ELT)) (-3952 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) +(((-906 |#1|) (-113) (-497)) (T -906)) +((-3952 (*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-2999 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) (-3131 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) (-2997 (*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-485)) (-4 *2 (-497)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485))))) +(-13 (-312) (-38 |t#1|) (-952 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-796 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3952 ($ |t#1| |t#1|)) (-15 -3001 (|t#1| $)) (-15 -3000 (|t#1| $)) (-15 -2999 ($ $)) (-15 -2998 ($ $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-952 (-486))) (PROGN (-6 (-952 (-486))) (-6 (-952 (-350 (-486))))) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-742)) (-6 (-742)) |%noBranch|) (IF (|has| |t#1| (-935)) (-6 (-935)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-952 (-1092))) (-6 (-952 (-1092))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3132 (|t#1| $)) (-15 -3131 ($ $))) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -2997 ($)) (-15 -3134 (|t#1| $)) (-15 -3133 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-742)) (|has| |#1| (-120))) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 (-1092)) |has| |#1| (-952 (-1092))) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) |has| |#1| (-935)) ((-555 (-330)) |has| |#1| (-935)) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-393) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-716) |has| |#1| (-742)) ((-718) |has| |#1| (-742)) ((-720) |has| |#1| (-742)) ((-723) |has| |#1| (-742)) ((-742) |has| |#1| (-742)) ((-757) |has| |#1| (-742)) ((-758) OR (|has| |#1| (-758)) (|has| |#1| (-742))) ((-761) OR (|has| |#1| (-758)) (|has| |#1| (-742))) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-823) |has| |#1| (-823)) ((-834) . T) ((-935) |has| |#1| (-935)) ((-952 (-350 (-486))) |has| |#1| (-952 (-486))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-1092)) |has| |#1| (-952 (-1092))) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-1068)) ((-1131) . T) ((-1136) . T)) +((-3961 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#4| (-1 |#2| |#1|) |#3|))) (-497) (-497) (-906 |#1|) (-906 |#2|)) (T -907)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3002 (($ (-1058 |#1| |#2|)) 11 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3126 (((-1058 |#1| |#2|) $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT))) +(((-908 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3002 ($ (-1058 |#1| |#2|))) (-15 -3126 ((-1058 |#1| |#2|) $)))) (-832) (-312)) (T -908)) +((-3002 (*1 *1 *2) (-12 (-5 *2 (-1058 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)) (-5 *1 (-908 *3 *4)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-1058 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 10 T ELT)) (-3949 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-909) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $))))) (T -909)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-909))))) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3005 (($ $) 43 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 52 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 51 T ELT)) (-2611 (((-585 |#1|) $) 50 T ELT)) (-3248 (((-85) |#1| $) 54 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3836 (((-696) $) 42 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) 41 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 48 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3007 ((|#1| |#1| $) 45 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3006 ((|#1| $) 44 T ELT)) (-1732 (((-696) |#1| $) 53 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 49 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3003 ((|#1| $) 40 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 46 T ELT))) +(((-910 |#1|) (-113) (-1131)) (T -910)) +((-3007 (*1 *2 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3005 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) +(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3007 (|t#1| |t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 ($ $)) (-15 -3836 ((-696) $)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 12 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) NIL (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) NIL (|has| |#1| (-485)) ELT)) (-3008 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3009 ((|#1| $) 15 T ELT)) (-3010 ((|#1| $) 14 T ELT)) (-3011 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 ((|#1| $) NIL (|has| |#1| (-975)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-312)) ELT))) +(((-911 |#1|) (-913 |#1|) (-146)) (T -911)) +NIL +((-3191 (((-85) $) 43 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 78 T ELT)) (-3026 (((-85) $) 72 T ELT)) (-3025 (((-350 (-486)) $) 76 T ELT)) (-2412 (((-85) $) 42 T ELT)) (-3135 ((|#2| $) 22 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2487 (($ $) 58 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3975 (((-475) $) 67 T ELT)) (-3012 (($ $) 17 T ELT)) (-3949 (((-774) $) 53 T ELT) (($ (-486)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) 10 T CONST)) (-3386 ((|#2| $) 71 T ELT)) (-3059 (((-85) $ $) 26 T ELT)) (-2688 (((-85) $ $) 69 T ELT)) (-3840 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) 27 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) +(((-912 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| (-350 (-486)))) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -2688 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 * (|#1| |#1| (-350 (-486)))) (-15 -2487 (|#1| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3027 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -3386 (|#2| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3961 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3129 ((-696)) -3955) (-15 -3949 (|#1| (-486))) (-15 -2412 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3191 ((-85) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-913 |#2|) (-146)) (T -912)) +((-3129 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 143 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 141 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3159 (((-486) $) 142 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 140 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 139 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 123 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 122 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 121 T ELT) (((-632 |#1|) (-632 $)) 120 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 111 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 107 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 109 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 108 (|has| |#1| (-485)) ELT)) (-3008 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 113 T ELT)) (-2534 (($ $ $) 95 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 96 (|has| |#1| (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 125 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 124 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 119 T ELT) (((-632 |#1|) (-1181 $)) 118 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3009 ((|#1| $) 114 T ELT)) (-3010 ((|#1| $) 115 T ELT)) (-3011 ((|#1| $) 116 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 128 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 127 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-696)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 90 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 88 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 87 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 86 (|has| |#1| (-813 (-1092))) ELT)) (-3975 (((-475) $) 105 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 117 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-486))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) 106 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 ((|#1| $) 110 (|has| |#1| (-975)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-696)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 89 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 85 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 84 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 83 (|has| |#1| (-813 (-1092))) ELT)) (-2569 (((-85) $ $) 97 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 99 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 98 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 100 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-486))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) 101 (|has| |#1| (-312)) ELT))) +(((-913 |#1|) (-113) (-146)) (T -913)) +((-3012 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3008 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486)))))) +(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3012 ($ $)) (-15 -3011 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3135 (|t#1| $)) (-15 -3008 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3646 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3386 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-312))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-312)) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-312)) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-312)) ((-584 |#1|) . T) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-312)) ((-656 |#1|) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-312)) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-970 (-350 (-486))) |has| |#1| (-312)) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3961 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-146) (-913 |#4|) (-146)) (T -914)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3727 (($) NIL T CONST)) (-3005 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3013 (($ (-585 |#1|)) 34 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3836 (((-696) $) 27 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 29 T ELT)) (-3612 (($ |#1| $) 18 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) 28 T ELT)) (-1277 ((|#1| $) 23 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3007 ((|#1| |#1| $) 17 T ELT)) (-3406 (((-85) $) 19 T ELT)) (-3568 (($) NIL T ELT)) (-3006 ((|#1| $) 22 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-3003 ((|#1| $) 31 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-915 |#1|) (-13 (-910 |#1|) (-10 -8 (-15 -3013 ($ (-585 |#1|))))) (-1015)) (T -915)) +((-3013 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-915 *3))))) +((-3040 (($ $) 12 T ELT)) (-3014 (($ $ (-486)) 13 T ELT))) +(((-916 |#1|) (-10 -7 (-15 -3040 (|#1| |#1|)) (-15 -3014 (|#1| |#1| (-486)))) (-917)) (T -916)) +NIL +((-3040 (($ $) 6 T ELT)) (-3014 (($ $ (-486)) 7 T ELT)) (** (($ $ (-350 (-486))) 8 T ELT))) +(((-917) (-113)) (T -917)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-350 (-486))))) (-3014 (*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-486)))) (-3040 (*1 *1 *1) (-4 *1 (-917)))) +(-13 (-10 -8 (-15 -3040 ($ $)) (-15 -3014 ($ $ (-486))) (-15 ** ($ $ (-350 (-486)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1649 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2065 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1787 (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|))) NIL T ELT)) (-3333 (((-350 |#2|) $) NIL T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1610 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3139 (((-696)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1663 (((-85)) NIL T ELT)) (-1662 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1797 (($ (-1181 (-350 |#2|)) (-1181 $)) NIL T ELT) (($ (-1181 (-350 |#2|))) 79 T ELT) (($ (-1181 |#2|) |#2|) NIL T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2567 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-632 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-632 $)) NIL T ELT)) (-1654 (((-1181 $) (-1181 $)) NIL T ELT)) (-3845 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1641 (((-585 (-585 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1666 (((-85) |#1| |#1|) NIL T ELT)) (-3111 (((-832)) NIL T ELT)) (-2997 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3506 (($ $) NIL T ELT)) (-2836 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1682 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3726 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3775 (((-832) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-745 (-832)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3380 (((-696)) NIL T ELT)) (-1655 (((-1181 $) (-1181 $)) NIL T ELT)) (-3135 (((-350 |#2|) $) NIL T ELT)) (-1642 (((-585 (-859 |#1|)) (-1092)) NIL (|has| |#1| (-312)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2016 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2012 (((-832) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3082 ((|#3| $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-1181 $) $) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1650 (((-632 (-350 |#2|))) 57 T ELT)) (-1652 (((-632 (-350 |#2|))) 56 T ELT)) (-2487 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1647 (($ (-1181 |#2|) |#2|) 80 T ELT)) (-1651 (((-632 (-350 |#2|))) 55 T ELT)) (-1653 (((-632 (-350 |#2|))) 54 T ELT)) (-1646 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1648 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1659 (((-1181 $)) 51 T ELT)) (-3921 (((-1181 $)) 50 T ELT)) (-1658 (((-85) $) NIL T ELT)) (-1657 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3449 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1644 (((-3 |#2| #1#)) 70 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1668 (((-696)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3735 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-696) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1645 (((-3 |#2| #1#)) 68 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3760 (((-350 |#2|) (-1181 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1770 (((-696) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3761 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2410 (((-632 (-350 |#2|)) (-1181 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3188 ((|#3|) 58 T ELT)) (-1676 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3227 (((-1181 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 (-350 |#2|)) $) 81 T ELT) (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT)) (-3975 (((-1181 (-350 |#2|)) $) NIL T ELT) (($ (-1181 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1656 (((-1181 $) (-1181 $)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2705 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-634 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2452 ((|#3| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1665 (((-85)) 65 T ELT)) (-1664 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-1643 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1667 (((-85)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| (-350 |#2|) (-312)) ELT))) +(((-918 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1136) (-1157 |#1|) (-1157 (-350 |#2|)) (-350 |#2|) (-696)) (T -918)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3020 (((-585 (-486)) $) 73 T ELT)) (-3016 (($ (-585 (-486))) 81 T ELT)) (-3132 (((-486) $) 48 (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) 60 T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) 57 (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) 60 (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3018 (((-585 (-486)) $) 79 T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) 45 T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) 50 T ELT)) (-3019 (((-1071 (-486)) $) 78 T ELT)) (-3015 (($ (-585 (-486)) (-585 (-486))) 82 T ELT)) (-3133 (((-486) $) 64 (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1609 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) 15 (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) 47 T ELT)) (-3017 (((-585 (-486)) $) 80 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3949 (((-774) $) 108 T ELT) (($ (-486)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 27 T ELT) (($ (-486)) 51 T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) 25 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) 13 T CONST)) (-3134 (((-486) $) 62 (|has| (-486) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) 14 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) 40 (|has| (-486) (-758)) ELT)) (-3952 (($ $ $) 36 T ELT) (($ (-486) (-486)) 38 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3842 (($ $ $) 28 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) 32 T ELT) (($ $ (-486)) NIL T ELT))) +(((-919 |#1|) (-13 (-906 (-486)) (-554 (-350 (-486))) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -3020 ((-585 (-486)) $)) (-15 -3019 ((-1071 (-486)) $)) (-15 -3018 ((-585 (-486)) $)) (-15 -3017 ((-585 (-486)) $)) (-15 -3016 ($ (-585 (-486)))) (-15 -3015 ($ (-585 (-486)) (-585 (-486)))))) (-486)) (T -919)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3015 (*1 *1 *2 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) +((-3021 (((-51) (-350 (-486)) (-486)) 9 T ELT))) +(((-920) (-10 -7 (-15 -3021 ((-51) (-350 (-486)) (-486))))) (T -920)) +((-3021 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-486))) (-5 *4 (-486)) (-5 *2 (-51)) (-5 *1 (-920))))) +((-3139 (((-486)) 21 T ELT)) (-3024 (((-486)) 26 T ELT)) (-3023 (((-1187) (-486)) 24 T ELT)) (-3022 (((-486) (-486)) 27 T ELT) (((-486)) 20 T ELT))) +(((-921) (-10 -7 (-15 -3022 ((-486))) (-15 -3139 ((-486))) (-15 -3022 ((-486) (-486))) (-15 -3023 ((-1187) (-486))) (-15 -3024 ((-486))))) (T -921)) +((-3024 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-921)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) (-3139 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) (-3022 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921))))) +((-3736 (((-348 |#1|) |#1|) 43 T ELT)) (-3735 (((-348 |#1|) |#1|) 41 T ELT))) +(((-922 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3736 ((-348 |#1|) |#1|))) (-1157 (-350 (-486)))) (T -922)) +((-3736 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486)))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486))))))) +((-3027 (((-3 (-350 (-486)) "failed") |#1|) 15 T ELT)) (-3026 (((-85) |#1|) 14 T ELT)) (-3025 (((-350 (-486)) |#1|) 10 T ELT))) +(((-923 |#1|) (-10 -7 (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -3027 ((-3 (-350 (-486)) "failed") |#1|))) (-952 (-350 (-486)))) (T -923)) +((-3027 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-923 *3)) (-4 *3 (-952 (-350 (-486)))))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) +((-3791 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3803 ((|#2| $ #1#) 10 T ELT)) (-3031 (((-85) $ $) 18 T ELT))) +(((-924 |#1| |#2|) (-10 -7 (-15 -3791 (|#2| |#1| #1="value" |#2|)) (-15 -3031 ((-85) |#1| |#1|)) (-15 -3803 (|#2| |#1| #1#))) (-925 |#2|) (-1131)) (T -924)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ "value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ "value") 42 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-925 |#1|) (-113) (-1131)) (T -925)) +((-3525 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) (-3034 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-925 *2)) (-4 *2 (-1131)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3)))) (-3032 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-486)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1037 *3)) (-4 *1 (-925 *3)) (-4 *3 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131)))) (-3028 (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131))))) +(-13 (-430 |t#1|) (-10 -8 (-15 -3525 ((-585 $) $)) (-15 -3034 ((-585 $) $)) (-15 -3530 ((-85) $)) (-15 -3405 (|t#1| $)) (-15 -3803 (|t#1| $ "value")) (-15 -3636 ((-85) $)) (-15 -3033 ((-585 |t#1|) $)) (-15 -3032 ((-486) $ $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3031 ((-85) $ $)) (-15 -3030 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3029 ($ $ (-585 $))) (-15 -3791 (|t#1| $ "value" |t#1|)) (-15 -3028 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-3040 (($ $) 9 T ELT) (($ $ (-832)) 49 T ELT) (($ (-350 (-486))) 13 T ELT) (($ (-486)) 15 T ELT)) (-3186 (((-3 $ #1="failed") (-1087 $) (-832) (-774)) 24 T ELT) (((-3 $ #1#) (-1087 $) (-832)) 32 T ELT)) (-3014 (($ $ (-486)) 58 T ELT)) (-3129 (((-696)) 18 T CONST)) (-3187 (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-1087 (-350 (-486)))) 63 T ELT) (((-585 $) (-1087 (-486))) 68 T ELT) (((-585 $) (-859 $)) 72 T ELT) (((-585 $) (-859 (-350 (-486)))) 76 T ELT) (((-585 $) (-859 (-486))) 80 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ $ (-350 (-486))) 53 T ELT))) +(((-926 |#1|) (-10 -7 (-15 -3040 (|#1| (-486))) (-15 -3040 (|#1| (-350 (-486)))) (-15 -3040 (|#1| |#1| (-832))) (-15 -3187 ((-585 |#1|) (-859 (-486)))) (-15 -3187 ((-585 |#1|) (-859 (-350 (-486))))) (-15 -3187 ((-585 |#1|) (-859 |#1|))) (-15 -3187 ((-585 |#1|) (-1087 (-486)))) (-15 -3187 ((-585 |#1|) (-1087 (-350 (-486))))) (-15 -3187 ((-585 |#1|) (-1087 |#1|))) (-15 -3186 ((-3 |#1| #1="failed") (-1087 |#1|) (-832))) (-15 -3186 ((-3 |#1| #1#) (-1087 |#1|) (-832) (-774))) (-15 ** (|#1| |#1| (-350 (-486)))) (-15 -3014 (|#1| |#1| (-486))) (-15 -3040 (|#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3129 ((-696)) -3955) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832)))) (-927)) (T -926)) +((-3129 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-926 *3)) (-4 *3 (-927))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 111 T ELT)) (-2065 (($ $) 112 T ELT)) (-2063 (((-85) $) 114 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 131 T ELT)) (-3974 (((-348 $) $) 132 T ELT)) (-3040 (($ $) 95 T ELT) (($ $ (-832)) 81 T ELT) (($ (-350 (-486))) 80 T ELT) (($ (-486)) 79 T ELT)) (-1610 (((-85) $ $) 122 T ELT)) (-3626 (((-486) $) 148 T ELT)) (-3727 (($) 23 T CONST)) (-3186 (((-3 $ "failed") (-1087 $) (-832) (-774)) 89 T ELT) (((-3 $ "failed") (-1087 $) (-832)) 88 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 108 (|has| (-350 (-486)) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 106 (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) 103 T ELT)) (-3159 (((-486) $) 107 (|has| (-350 (-486)) (-952 (-486))) ELT) (((-350 (-486)) $) 105 (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-350 (-486)) $) 104 T ELT)) (-3036 (($ $ (-774)) 78 T ELT)) (-3035 (($ $ (-774)) 77 T ELT)) (-2567 (($ $ $) 126 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 125 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 120 T ELT)) (-3726 (((-85) $) 133 T ELT)) (-3189 (((-85) $) 146 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 94 T ELT)) (-3190 (((-85) $) 147 T ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 129 T ELT)) (-2534 (($ $ $) 140 T ELT)) (-2860 (($ $ $) 141 T ELT)) (-3037 (((-3 (-1087 $) "failed") $) 90 T ELT)) (-3039 (((-3 (-774) "failed") $) 92 T ELT)) (-3038 (((-3 (-1087 $) "failed") $) 91 T ELT)) (-1896 (($ (-585 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 134 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 119 T ELT)) (-3147 (($ (-585 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3735 (((-348 $) $) 130 T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 127 T ELT)) (-3469 (((-3 $ "failed") $ $) 110 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 121 T ELT)) (-1609 (((-696) $) 123 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 124 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-486))) 102 T ELT) (($ (-486)) 101 T ELT) (($ (-350 (-486))) 98 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 113 T ELT)) (-3773 (((-350 (-486)) $ $) 76 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3187 (((-585 $) (-1087 $)) 87 T ELT) (((-585 $) (-1087 (-350 (-486)))) 86 T ELT) (((-585 $) (-1087 (-486))) 85 T ELT) (((-585 $) (-859 $)) 84 T ELT) (((-585 $) (-859 (-350 (-486)))) 83 T ELT) (((-585 $) (-859 (-486))) 82 T ELT)) (-3386 (($ $) 149 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 142 T ELT)) (-2570 (((-85) $ $) 144 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 143 T ELT)) (-2688 (((-85) $ $) 145 T ELT)) (-3952 (($ $ $) 139 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 135 T ELT) (($ $ (-350 (-486))) 93 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-486)) $) 137 T ELT) (($ $ (-350 (-486))) 136 T ELT) (($ (-486) $) 100 T ELT) (($ $ (-486)) 99 T ELT) (($ (-350 (-486)) $) 97 T ELT) (($ $ (-350 (-486))) 96 T ELT))) +(((-927) (-113)) (T -927)) +((-3040 (*1 *1 *1) (-4 *1 (-927))) (-3039 (*1 *2 *1) (|partial| -12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3038 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927)))) (-3186 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-5 *4 (-774)) (-4 *1 (-927)))) (-3186 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1087 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3040 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-832)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-927)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-927)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-927)) (-5 *2 (-350 (-486)))))) +(-13 (-120) (-757) (-146) (-312) (-355 (-350 (-486))) (-38 (-486)) (-38 (-350 (-486))) (-917) (-10 -8 (-15 -3039 ((-3 (-774) "failed") $)) (-15 -3038 ((-3 (-1087 $) "failed") $)) (-15 -3037 ((-3 (-1087 $) "failed") $)) (-15 -3186 ((-3 $ "failed") (-1087 $) (-832) (-774))) (-15 -3186 ((-3 $ "failed") (-1087 $) (-832))) (-15 -3187 ((-585 $) (-1087 $))) (-15 -3187 ((-585 $) (-1087 (-350 (-486))))) (-15 -3187 ((-585 $) (-1087 (-486)))) (-15 -3187 ((-585 $) (-859 $))) (-15 -3187 ((-585 $) (-859 (-350 (-486))))) (-15 -3187 ((-585 $) (-859 (-486)))) (-15 -3040 ($ $ (-832))) (-15 -3040 ($ $)) (-15 -3040 ($ (-350 (-486)))) (-15 -3040 ($ (-486))) (-15 -3036 ($ $ (-774))) (-15 -3035 ($ $ (-774))) (-15 -3773 ((-350 (-486)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 (-486)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 (-486) (-486)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-486))) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 (-486)) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 (-486)) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 (-486)) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-834) . T) ((-917) . T) ((-952 (-350 (-486))) . T) ((-952 (-486)) |has| (-350 (-486)) (-952 (-486))) ((-965 (-350 (-486))) . T) ((-965 (-486)) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 (-486)) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-3041 (((-2 (|:| |ans| |#2|) (|:| -3140 |#2|) (|:| |sol?| (-85))) (-486) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-928 |#1| |#2|) (-10 -7 (-15 -3041 ((-2 (|:| |ans| |#2|) (|:| -3140 |#2|) (|:| |sol?| (-85))) (-486) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-393) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-27) (-364 |#1|))) (T -928)) +((-3041 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1117) (-27) (-364 *8))) (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85)))) (-5 *1 (-928 *8 *4))))) +((-3042 (((-3 (-585 |#2|) #1="failed") (-486) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-585 |#2|) #1="failed") (-486) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-393) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-27) (-364 |#1|))) (T -929)) +((-3042 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1117) (-27) (-364 *8))) (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) (-5 *2 (-585 *4)) (-5 *1 (-929 *8 *4))))) +((-3045 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3269 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-486)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-486) (-1 |#2| |#2|)) 39 T ELT)) (-3043 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3096 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3044 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3043 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3096 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3044 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3045 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3269 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-486)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-486) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-952 (-486))) (-1157 |#1|)) (T -930)) +((-3045 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) (-4 *6 (-13 (-312) (-120) (-952 *4))) (-5 *4 (-486)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3269 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-930 *6 *3)))) (-3044 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))) (-3043 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3096 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) +((-3046 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3096 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3047 (((-3 (-585 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3046 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3096 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3047 ((-3 (-585 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-952 (-486))) (-1157 |#1|)) (T -931)) +((-3047 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-350 *5))) (-5 *1 (-931 *4 *5)) (-5 *3 (-350 *5)))) (-3046 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3096 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-350 *6))))) +((-3048 (((-1 |#1|) (-585 (-2 (|:| -3405 |#1|) (|:| -1524 (-486))))) 34 T ELT)) (-3103 (((-1 |#1|) (-1011 |#1|)) 42 T ELT)) (-3049 (((-1 |#1|) (-1181 |#1|) (-1181 (-486)) (-486)) 31 T ELT))) +(((-932 |#1|) (-10 -7 (-15 -3103 ((-1 |#1|) (-1011 |#1|))) (-15 -3048 ((-1 |#1|) (-585 (-2 (|:| -3405 |#1|) (|:| -1524 (-486)))))) (-15 -3049 ((-1 |#1|) (-1181 |#1|) (-1181 (-486)) (-486)))) (-1015)) (T -932)) +((-3049 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-486))) (-5 *5 (-486)) (-4 *6 (-1015)) (-5 *2 (-1 *6)) (-5 *1 (-932 *6)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3405 *4) (|:| -1524 (-486))))) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1011 *4)) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4))))) +((-3775 (((-696) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3775 ((-696) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -933)) +((-3775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-696)) (-5 *1 (-933 *6 *7 *4 *8 *9))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3598 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-934) (-13 (-997) (-10 -8 (-15 -3598 ((-1051) $)) (-15 -3236 ((-1051) $))))) (T -934)) +((-3598 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934))))) +((-3975 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT))) +(((-935) (-113)) (T -935)) +NIL +(-13 (-555 (-179)) (-555 (-330))) +(((-555 (-179)) . T) ((-555 (-330)) . T)) +((-3137 (((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 32 T ELT) (((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 29 T ELT)) (-3052 (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 34 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486))) 30 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 33 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|) 28 T ELT)) (-3051 (((-585 (-350 (-486))) (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) 20 T ELT)) (-3050 (((-350 (-486)) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 17 T ELT))) +(((-936 |#1|) (-10 -7 (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|)) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486)))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3050 ((-350 (-486)) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3051 ((-585 (-350 (-486))) (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))))) (-1157 (-486))) (T -936)) +((-3051 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *2 (-585 (-350 (-486)))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486))))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *2 (-350 (-486))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486))))) (-3137 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) (-3137 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *4 (-350 (-486))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) (-3052 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) (-3052 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-350 (-486))))) (-3052 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486)))))) +((-3137 (((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 35 T ELT) (((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 32 T ELT)) (-3052 (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 30 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486))) 26 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 28 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|) 24 T ELT))) +(((-937 |#1|) (-10 -7 (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|)) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486)))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) (-1157 (-350 (-486)))) (T -937)) +((-3137 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))))) (-3137 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *4 (-350 (-486))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) (-3052 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) (-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *4) (|:| -3140 *4)))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))) (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486))))))) +((-3576 (((-585 (-330)) (-859 (-486)) (-330)) 28 T ELT) (((-585 (-330)) (-859 (-350 (-486))) (-330)) 27 T ELT)) (-3972 (((-585 (-585 (-330))) (-585 (-859 (-486))) (-585 (-1092)) (-330)) 37 T ELT))) +(((-938) (-10 -7 (-15 -3576 ((-585 (-330)) (-859 (-350 (-486))) (-330))) (-15 -3576 ((-585 (-330)) (-859 (-486)) (-330))) (-15 -3972 ((-585 (-585 (-330))) (-585 (-859 (-486))) (-585 (-1092)) (-330))))) (T -938)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-585 (-1092))) (-5 *2 (-585 (-585 (-330)))) (-5 *1 (-938)) (-5 *5 (-330)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) (-5 *4 (-330)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) (-5 *4 (-330))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 75 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) 70 T ELT)) (-3727 (($) NIL T CONST)) (-3186 (((-3 $ #1#) (-1087 $) (-832) (-774)) NIL T ELT) (((-3 $ #1#) (-1087 $) (-832)) 55 T ELT)) (-3160 (((-3 (-350 (-486)) #1#) $) NIL (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-486) #1#) $) NIL (OR (|has| (-350 (-486)) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT)) (-3159 (((-350 (-486)) $) 17 (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-350 (-486)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-486) $) NIL (OR (|has| (-350 (-486)) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT)) (-3036 (($ $ (-774)) 47 T ELT)) (-3035 (($ $ (-774)) 48 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3185 (((-350 (-486)) $ $) 21 T ELT)) (-3470 (((-3 $ #1#) $) 88 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) 66 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3190 (((-85) $) 69 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3037 (((-3 (-1087 $) #1#) $) 83 T ELT)) (-3039 (((-3 (-774) #1#) $) 82 T ELT)) (-3038 (((-3 (-1087 $) #1#) $) 80 T ELT)) (-3053 (((-3 (-976 $ (-1087 $)) #1#) $) 78 T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 89 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3949 (((-774) $) 87 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ $) 27 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3187 (((-585 $) (-1087 $)) 61 T ELT) (((-585 $) (-1087 (-350 (-486)))) NIL T ELT) (((-585 $) (-1087 (-486))) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-859 (-350 (-486)))) NIL T ELT) (((-585 $) (-859 (-486))) NIL T ELT)) (-3054 (($ (-976 $ (-1087 $)) (-774)) 46 T ELT)) (-3386 (($ $) 22 T ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 39 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 76 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 24 T ELT)) (-3952 (($ $ $) 37 T ELT)) (-3840 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3842 (($ $ $) 111 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-486) $) 71 T ELT) (($ $ (-486)) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-939 |#1|) (-13 (-927) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3054 ($ (-976 $ (-1087 $)) (-774))) (-15 -3053 ((-3 (-976 $ (-1087 $)) "failed") $)) (-15 -3185 ((-350 (-486)) $ $)))) (-13 (-757) (-312) (-935))) (T -939)) +((-3054 (*1 *1 *2 *3) (-12 (-5 *2 (-976 (-939 *4) (-1087 (-939 *4)))) (-5 *3 (-774)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-757) (-312) (-935))))) (-3053 (*1 *2 *1) (|partial| -12 (-5 *2 (-976 (-939 *3) (-1087 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-757) (-312) (-935))))) (-3185 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-757) (-312) (-935)))))) +((-3055 (((-2 (|:| -3269 |#2|) (|:| -2516 (-585 |#1|))) |#2| (-585 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-940 |#1| |#2|) (-10 -7 (-15 -3055 (|#2| |#2| |#1|)) (-15 -3055 ((-2 (|:| -3269 |#2|) (|:| -2516 (-585 |#1|))) |#2| (-585 |#1|)))) (-312) (-602 |#1|)) (T -940)) +((-3055 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3269 *3) (|:| -2516 (-585 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-602 *5)))) (-3055 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-940 *3 *2)) (-4 *2 (-602 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3056 ((|#1| $ |#1|) 12 T ELT)) (-3058 (($ |#1|) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3057 ((|#1| $) 11 T ELT)) (-3949 (((-774) $) 17 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) +(((-941 |#1|) (-13 (-1015) (-10 -8 (-15 -3058 ($ |#1|)) (-15 -3057 (|#1| $)) (-15 -3056 (|#1| $ |#1|)) (-15 -3059 ((-85) $ $)))) (-1131)) (T -941)) +((-3059 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-941 *3)) (-4 *3 (-1131)))) (-3058 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131)))) (-3057 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131)))) (-3056 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) 113 T ELT) (((-585 $) (-585 |#4|) (-85)) 114 T ELT) (((-585 $) (-585 |#4|) (-85) (-85)) 112 T ELT) (((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85)) 115 T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| $) 107 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) 65 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3201 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3441 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85)) 128 T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-585 |#4|) $) 18 T ELT)) (-3248 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| |#4| $) 105 T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3195 (((-585 $) |#4| $) 88 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) NIL T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |#4| $) 98 T ELT) (((-85) |#4| $) 60 T ELT)) (-3241 (((-585 $) |#4| $) 110 T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 111 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT)) (-3442 (((-585 $) (-585 |#4|) (-85) (-85) (-85)) 123 T ELT)) (-3443 (($ |#4| $) 77 T ELT) (($ (-585 |#4|) $) 78 T ELT) (((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 74 T ELT)) (-3700 (((-585 |#4|) $) NIL T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1356 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3772 (($ $ |#4|) NIL T ELT) (((-585 $) |#4| $) 90 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 84 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3951 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3949 (((-774) $) 34 T ELT) (((-585 |#4|) $) 45 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-3192 (((-585 $) |#4| $) 87 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3936 (((-85) |#3| $) 61 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-942 |#1| |#2| |#3| |#4|) (-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3443 ((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85))) (-15 -3442 ((-585 $) (-585 |#4|) (-85) (-85) (-85))) (-15 -3441 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85))))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -942)) +((-3443 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-979 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +((-3060 (((-585 (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) (|:| |radvect| (-585 (-632 (-265 (-486))))))) (-632 (-350 (-859 (-486))))) 67 T ELT)) (-3061 (((-585 (-632 (-265 (-486)))) (-265 (-486)) (-632 (-350 (-859 (-486))))) 52 T ELT)) (-3062 (((-585 (-265 (-486))) (-632 (-350 (-859 (-486))))) 45 T ELT)) (-3066 (((-585 (-632 (-265 (-486)))) (-632 (-350 (-859 (-486))))) 85 T ELT)) (-3064 (((-632 (-265 (-486))) (-632 (-265 (-486)))) 38 T ELT)) (-3065 (((-585 (-632 (-265 (-486)))) (-585 (-632 (-265 (-486))))) 74 T ELT)) (-3063 (((-3 (-632 (-265 (-486))) "failed") (-632 (-350 (-859 (-486))))) 82 T ELT))) +(((-943) (-10 -7 (-15 -3060 ((-585 (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) (|:| |radvect| (-585 (-632 (-265 (-486))))))) (-632 (-350 (-859 (-486)))))) (-15 -3061 ((-585 (-632 (-265 (-486)))) (-265 (-486)) (-632 (-350 (-859 (-486)))))) (-15 -3062 ((-585 (-265 (-486))) (-632 (-350 (-859 (-486)))))) (-15 -3063 ((-3 (-632 (-265 (-486))) "failed") (-632 (-350 (-859 (-486)))))) (-15 -3064 ((-632 (-265 (-486))) (-632 (-265 (-486))))) (-15 -3065 ((-585 (-632 (-265 (-486)))) (-585 (-632 (-265 (-486)))))) (-15 -3066 ((-585 (-632 (-265 (-486)))) (-632 (-350 (-859 (-486)))))))) (T -943)) +((-3066 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943)))) (-3063 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-265 (-486)))) (-5 *1 (-943)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943)) (-5 *3 (-265 (-486))))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) (|:| |radvect| (-585 (-632 (-265 (-486)))))))) (-5 *1 (-943))))) +((-3070 (((-585 (-632 |#1|)) (-585 (-632 |#1|))) 69 T ELT) (((-632 |#1|) (-632 |#1|)) 68 T ELT) (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-585 (-632 |#1|))) 67 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 64 T ELT)) (-3069 (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832)) 62 T ELT) (((-632 |#1|) (-632 |#1|) (-832)) 61 T ELT)) (-3071 (((-585 (-632 (-486))) (-585 (-585 (-486)))) 80 T ELT) (((-585 (-632 (-486))) (-585 (-815 (-486))) (-486)) 79 T ELT) (((-632 (-486)) (-585 (-486))) 76 T ELT) (((-632 (-486)) (-815 (-486)) (-486)) 74 T ELT)) (-3068 (((-632 (-859 |#1|)) (-696)) 94 T ELT)) (-3067 (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832)) 48 (|has| |#1| (-6 (-4000 #1="*"))) ELT) (((-632 |#1|) (-632 |#1|) (-832)) 46 (|has| |#1| (-6 (-4000 #1#))) ELT))) +(((-944 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4000 #1="*"))) (-15 -3067 ((-632 |#1|) (-632 |#1|) (-832))) |%noBranch|) (IF (|has| |#1| (-6 (-4000 #1#))) (-15 -3067 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832))) |%noBranch|) (-15 -3068 ((-632 (-859 |#1|)) (-696))) (-15 -3069 ((-632 |#1|) (-632 |#1|) (-832))) (-15 -3069 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832))) (-15 -3070 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3070 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3070 ((-632 |#1|) (-632 |#1|))) (-15 -3070 ((-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3071 ((-632 (-486)) (-815 (-486)) (-486))) (-15 -3071 ((-632 (-486)) (-585 (-486)))) (-15 -3071 ((-585 (-632 (-486))) (-585 (-815 (-486))) (-486))) (-15 -3071 ((-585 (-632 (-486))) (-585 (-585 (-486)))))) (-963)) (T -944)) +((-3071 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-486)))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-815 (-486)))) (-5 *4 (-486)) (-5 *2 (-585 (-632 *4))) (-5 *1 (-944 *5)) (-4 *5 (-963)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-815 (-486))) (-5 *4 (-486)) (-5 *2 (-632 *4)) (-5 *1 (-944 *5)) (-4 *5 (-963)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-632 (-859 *4))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (|has| *4 (-6 (-4000 "*"))) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (|has| *4 (-6 (-4000 "*"))) (-4 *4 (-963)) (-5 *1 (-944 *4))))) +((-3075 (((-632 |#1|) (-585 (-632 |#1|)) (-1181 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3421 (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 (-1181 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3079 (((-1181 |#1|) (-585 (-1181 |#1|)) (-486)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3078 (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-832)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85) (-486) (-486)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3077 (((-85) (-585 (-632 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-585 (-632 |#1|)) (-486)) 100 (|has| |#1| (-312)) ELT)) (-3074 (((-1181 (-1181 |#1|)) (-585 (-632 |#1|)) (-1181 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3073 (((-632 |#1|) (-585 (-632 |#1|)) (-632 |#1|)) 46 T ELT)) (-3072 (((-632 |#1|) (-1181 (-1181 |#1|))) 39 T ELT)) (-3076 (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-486)) 93 (|has| |#1| (-312)) ELT) (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-85) (-486)) 91 (|has| |#1| (-312)) ELT))) +(((-945 |#1|) (-10 -7 (-15 -3072 ((-632 |#1|) (-1181 (-1181 |#1|)))) (-15 -3073 ((-632 |#1|) (-585 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3074 ((-1181 (-1181 |#1|)) (-585 (-632 |#1|)) (-1181 |#1|))) (-15 -3075 ((-632 |#1|) (-585 (-632 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3076 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-85) (-486))) (-15 -3076 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3076 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-486))) (-15 -3077 ((-85) (-585 (-632 |#1|)) (-486))) (-15 -3077 ((-85) (-585 (-632 |#1|)))) (-15 -3421 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 |#1|))) (-15 -3421 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85) (-486) (-486))) (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)))) (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85))) (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-832))) (-15 -3079 ((-1181 |#1|) (-585 (-1181 |#1|)) (-486)))) |%noBranch|) |%noBranch|)) (-963)) (T -945)) +((-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1181 *5))) (-5 *4 (-486)) (-5 *2 (-1181 *5)) (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3078 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3078 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-963)) (-5 *2 (-585 (-585 (-632 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-585 (-632 *4))))) (-3078 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-486)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-963)) (-5 *2 (-585 (-585 (-632 *6)))) (-5 *1 (-945 *6)) (-5 *3 (-585 (-632 *6))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-945 *4)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-85)) (-5 *1 (-945 *5)))) (-3076 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-963)))) (-3076 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-945 *4)) (-4 *4 (-312)) (-4 *4 (-963)))) (-3076 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-632 *6))) (-5 *4 (-85)) (-5 *5 (-486)) (-5 *2 (-632 *6)) (-5 *1 (-945 *6)) (-4 *6 (-312)) (-4 *6 (-963)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-258)) (-4 *5 (-963)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-4 *5 (-258)) (-4 *5 (-963)) (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1181 *5)))) (-3073 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-945 *4)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-963)) (-5 *2 (-632 *4)) (-5 *1 (-945 *4))))) +((-3080 ((|#1| (-832) |#1|) 18 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3080 (|#1| (-832) |#1|))) (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $))))) (T -946)) +((-3080 (*1 *2 *3 *2) (-12 (-5 *3 (-832)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)))))))) +((-3081 ((|#1| |#1| (-832)) 18 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -3081 (|#1| |#1| (-832)))) (-13 (-1015) (-10 -8 (-15 * ($ $ $))))) (T -947)) +((-3081 (*1 *2 *2 *3) (-12 (-5 *3 (-832)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1015) (-10 -8 (-15 * ($ $ $)))))))) +((-3949 ((|#1| (-262)) 11 T ELT) (((-1187) |#1|) 9 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -3949 ((-1187) |#1|)) (-15 -3949 (|#1| (-262)))) (-1131)) (T -948)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-948 *2)) (-4 *2 (-1131)))) (-3949 (*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-948 *3)) (-4 *3 (-1131))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ |#4|) 24 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3082 ((|#4| $) 26 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 45 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3129 (((-696)) 42 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 22 T CONST)) (-3059 (((-85) $ $) 39 T ELT)) (-3840 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 28 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3845 ($ |#4|)) (-15 -3949 ($ |#4|)) (-15 -3082 (|#4| $)))) (-312) (-719) (-758) (-863 |#1| |#2| |#3|) (-585 |#4|)) (T -949)) +((-3845 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3949 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-863 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-14 *6 (-585 *2))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3949 (((-774) $) 17 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-950) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $))))) (T -950)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-950))))) +((-3159 ((|#2| $) 10 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3159 (|#2| |#1|))) (-952 |#2|) (-1131)) (T -951)) +NIL +((-3160 (((-3 |#1| "failed") $) 9 T ELT)) (-3159 ((|#1| $) 8 T ELT)) (-3949 (($ |#1|) 6 T ELT))) +(((-952 |#1|) (-113) (-1131)) (T -952)) +((-3160 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1131)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1131))))) +(-13 (-557 |t#1|) (-10 -8 (-15 -3160 ((-3 |t#1| "failed") $)) (-15 -3159 (|t#1| $)))) +(((-557 |#1|) . T)) +((-3083 (((-585 (-585 (-249 (-350 (-859 |#2|))))) (-585 (-859 |#2|)) (-585 (-1092))) 38 T ELT))) +(((-953 |#1| |#2|) (-10 -7 (-15 -3083 ((-585 (-585 (-249 (-350 (-859 |#2|))))) (-585 (-859 |#2|)) (-585 (-1092))))) (-497) (-13 (-497) (-952 |#1|))) (T -953)) +((-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-4 *6 (-13 (-497) (-952 *5))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *6)))))) (-5 *1 (-953 *5 *6))))) +((-3084 (((-585 (-1092)) (-350 (-859 |#1|))) 17 T ELT)) (-3086 (((-350 (-1087 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092)) 24 T ELT)) (-3087 (((-350 (-859 |#1|)) (-350 (-1087 (-350 (-859 |#1|)))) (-1092)) 26 T ELT)) (-3085 (((-3 (-1092) "failed") (-350 (-859 |#1|))) 20 T ELT)) (-3771 (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-249 (-350 (-859 |#1|))))) 32 T ELT) (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|)))) 33 T ELT) (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-1092)) (-585 (-350 (-859 |#1|)))) 28 T ELT) (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|))) 29 T ELT)) (-3949 (((-350 (-859 |#1|)) |#1|) 11 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -3084 ((-585 (-1092)) (-350 (-859 |#1|)))) (-15 -3085 ((-3 (-1092) "failed") (-350 (-859 |#1|)))) (-15 -3086 ((-350 (-1087 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092))) (-15 -3087 ((-350 (-859 |#1|)) (-350 (-1087 (-350 (-859 |#1|)))) (-1092))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|)))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-1092)) (-585 (-350 (-859 |#1|))))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-249 (-350 (-859 |#1|)))))) (-15 -3949 ((-350 (-859 |#1|)) |#1|))) (-497)) (T -954)) +((-3949 (*1 *2 *3) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-954 *3)) (-4 *3 (-497)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-5 *2 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *1 (-954 *4)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-5 *2 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *1 (-954 *4)))) (-3771 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-1092))) (-5 *4 (-585 (-350 (-859 *5)))) (-5 *2 (-350 (-859 *5))) (-4 *5 (-497)) (-5 *1 (-954 *5)))) (-3771 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-954 *4)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1087 (-350 (-859 *5))))) (-5 *4 (-1092)) (-5 *2 (-350 (-859 *5))) (-5 *1 (-954 *5)) (-4 *5 (-497)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-350 (-1087 (-350 (-859 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-350 (-859 *5))))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-1092)) (-5 *1 (-954 *4)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-1092))) (-5 *1 (-954 *4))))) +((-3088 (((-330)) 17 T ELT)) (-3103 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3096 (((-1 (-330)) (-696)) 48 T ELT)) (-3089 (((-330)) 37 T ELT)) (-3092 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3090 (((-330)) 29 T ELT)) (-3093 (((-1 (-330)) (-330)) 30 T ELT)) (-3091 (((-330) (-696)) 43 T ELT)) (-3094 (((-1 (-330)) (-696)) 44 T ELT)) (-3095 (((-1 (-330)) (-696) (-696)) 47 T ELT)) (-3387 (((-1 (-330)) (-696) (-696)) 45 T ELT))) +(((-955) (-10 -7 (-15 -3088 ((-330))) (-15 -3089 ((-330))) (-15 -3090 ((-330))) (-15 -3091 ((-330) (-696))) (-15 -3103 ((-1 (-330)) (-330) (-330))) (-15 -3092 ((-1 (-330)) (-330) (-330))) (-15 -3093 ((-1 (-330)) (-330))) (-15 -3094 ((-1 (-330)) (-696))) (-15 -3387 ((-1 (-330)) (-696) (-696))) (-15 -3095 ((-1 (-330)) (-696) (-696))) (-15 -3096 ((-1 (-330)) (-696))))) (T -955)) +((-3096 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3095 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3387 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) (-3092 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) (-3103 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-330)) (-5 *1 (-955)))) (-3090 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955)))) (-3089 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) +((-3735 (((-348 |#1|) |#1|) 33 T ELT))) +(((-956 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|))) (-1157 (-350 (-859 (-486))))) (T -956)) +((-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-956 *3)) (-4 *3 (-1157 (-350 (-859 (-486)))))))) +((-3097 (((-350 (-348 (-859 |#1|))) (-350 (-859 |#1|))) 14 T ELT))) +(((-957 |#1|) (-10 -7 (-15 -3097 ((-350 (-348 (-859 |#1|))) (-350 (-859 |#1|))))) (-258)) (T -957)) +((-3097 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-859 *4)))) (-5 *1 (-957 *4))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-3101 ((|#1| $) 29 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3100 ((|#1| $) 28 T ELT)) (-3098 ((|#1|) 26 T CONST)) (-3949 (((-774) $) 13 T ELT)) (-3099 ((|#1| $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) (((-958 |#1|) (-113) (-23)) (T -958)) -((-3101 (*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(-13 (-957 |t#1|) (-10 -8 (-15 -3101 ($) -3954))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-957 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3684 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85)) NIL T ELT)) (-3083 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3712 (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-318 (-704 |#1| (-774 |#2|)))) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2902 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3158 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3801 (((-3 $ #1#) $) NIL T ELT)) (-3687 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-72))) ELT)) (-3408 (($ (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-318 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-72))) ELT) (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-318 (-704 |#1| (-774 |#2|)))) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-85) (-704 |#1| (-774 |#2|)) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3685 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3844 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1703 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3199 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3200 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3697 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 (((-774 |#2|) $) NIL T ELT)) (-2610 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3247 (((-85) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT)) (-3328 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3960 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2916 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2915 (((-85) (-774 |#2|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3192 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3800 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3194 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3196 (((-3 (-85) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3240 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3442 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3699 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3693 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1355 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3771 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-249 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-704 |#1| (-774 |#2|))))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2912 (($ $ (-774 |#2|)) NIL T ELT)) (-2914 (($ $ (-774 |#2|)) NIL T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ (-774 |#2|)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3680 (((-695) $) NIL (|has| (-774 |#2|) (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3191 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3682 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3935 (((-85) (-774 |#2|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-959 |#1| |#2|) (-13 (-984 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-15 -3684 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85))))) (-392) (-584 (-1091))) (T -959)) -((-3684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))) -((-3102 (((-1 (-485)) (-1002 (-485))) 32 T ELT)) (-3106 (((-485) (-485) (-485) (-485) (-485)) 29 T ELT)) (-3104 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3105 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3103 (((-1 (-485)) (-485) |RationalNumber|) NIL T ELT))) -(((-960) (-10 -7 (-15 -3102 ((-1 (-485)) (-1002 (-485)))) (-15 -3103 ((-1 (-485)) (-485) |RationalNumber|)) (-15 -3104 ((-1 (-485)) |RationalNumber|)) (-15 -3105 ((-1 (-485)) |RationalNumber|)) (-15 -3106 ((-485) (-485) (-485) (-485) (-485))))) (T -960)) -((-3106 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960)))) (-3105 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3104 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) (-5 *3 (-485)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) -((-3948 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT))) -(((-961 |#1|) (-10 -7 (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-962)) (T -961)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-962) (-113)) (T -962)) -((-3128 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695))))) -(-13 (-971) (-1062) (-591 $) (-556 (-485)) (-10 -7 (-15 -3128 ((-695)) -3954) (-6 -3994))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3107 (((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3107 ((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1091) (-312)) (T -963)) -((-3107 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1091))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-964 |#1|) (-113) (-1026)) (T -964)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026))))) -(-13 (-1014) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-3122 (((-85) $) 38 T ELT)) (-3124 (((-85) $) 17 T ELT)) (-3116 (((-695) $) 13 T ELT)) (-3115 (((-695) $) 14 T ELT)) (-3123 (((-85) $) 30 T ELT)) (-3121 (((-85) $) 40 T ELT))) -(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3115 ((-695) |#1|)) (-15 -3116 ((-695) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -965)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3122 (((-85) $) 62 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3124 (((-85) $) 64 T ELT)) (-3726 (($) 23 T CONST)) (-3111 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3113 ((|#4| $ (-485)) 50 T ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 84 (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 81 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 80 T ELT)) (-3110 (((-695) $) 44 (|has| |#3| (-496)) ELT)) (-3114 ((|#3| $ (-485) (-485)) 52 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3109 (((-695) $) 43 (|has| |#3| (-496)) ELT)) (-3108 (((-584 |#5|) $) 42 (|has| |#3| (-496)) ELT)) (-3116 (((-695) $) 56 T ELT)) (-3115 (((-695) $) 55 T ELT)) (-3120 (((-485) $) 60 T ELT)) (-3118 (((-485) $) 58 T ELT)) (-2610 (((-584 |#3|) $) 79 T ELT)) (-3247 (((-85) |#3| $) 83 (|has| |#3| (-72)) ELT)) (-3119 (((-485) $) 59 T ELT)) (-3117 (((-485) $) 57 T ELT)) (-3125 (($ (-584 (-584 |#3|))) 65 T ELT)) (-3960 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3596 (((-584 (-584 |#3|)) $) 54 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) 77 T ELT)) (-3770 (($ $ (-584 |#3|) (-584 |#3|)) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) 72 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) 71 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) 66 T ELT)) (-3405 (((-85) $) 69 T ELT)) (-3567 (($) 68 T ELT)) (-3802 ((|#3| $ (-485) (-485)) 53 T ELT) ((|#3| $ (-485) (-485) |#3|) 51 T ELT)) (-3123 (((-85) $) 63 T ELT)) (-1731 (((-695) |#3| $) 82 (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) 78 T ELT)) (-3402 (($ $) 67 T ELT)) (-3112 ((|#5| $ (-485)) 49 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) 76 T ELT)) (-3121 (((-85) $) 61 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3959 (((-695) $) 75 T ELT))) -(((-966 |#1| |#2| |#3| |#4| |#5|) (-113) (-695) (-695) (-962) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -966)) -((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3802 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7))))) -(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -3125 ($ (-584 (-584 |t#3|)))) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-485) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-695) $)) (-15 -3115 ((-695) $)) (-15 -3596 ((-584 (-584 |t#3|)) $)) (-15 -3802 (|t#3| $ (-485) (-485))) (-15 -3114 (|t#3| $ (-485) (-485))) (-15 -3802 (|t#3| $ (-485) (-485) |t#3|)) (-15 -3113 (|t#4| $ (-485))) (-15 -3112 (|t#5| $ (-485))) (-15 -3960 ($ (-1 |t#3| |t#3|) $)) (-15 -3960 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-496)) (-15 -3468 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3951 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3111 ($ $)) |%noBranch|) (IF (|has| |t#3| (-496)) (PROGN (-15 -3110 ((-695) $)) (-15 -3109 ((-695) $)) (-15 -3108 ((-584 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-553 (-773)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-318 |#3|) . T) ((-429 |#3|) . T) ((-456 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-146)) ((-655 |#3|) |has| |#3| (-146)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3113 (((-197 |#2| |#3|) $ (-485)) 35 T ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3126 (($ (-631 |#3|)) 44 T ELT)) (-3110 (((-695) $) 48 (|has| |#3| (-496)) ELT)) (-3114 ((|#3| $ (-485) (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3109 (((-695) $) 50 (|has| |#3| (-496)) ELT)) (-3108 (((-584 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#3|) $) NIL T ELT)) (-3247 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#3|))) 30 T ELT)) (-3960 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3596 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3770 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#3| $ (-485) (-485)) NIL T ELT) ((|#3| $ (-485) (-485) |#3|) NIL T ELT)) (-3913 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3123 (((-85) $) NIL T ELT)) (-1731 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 65 (|has| |#3| (-554 (-474))) ELT)) (-3112 (((-197 |#1| |#3|) $ (-485)) 39 T ELT)) (-3948 (((-773) $) 18 T ELT) (((-631 |#3|) $) 41 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (-15 -3126 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967)) -((-3126 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))))) -((-3844 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3960 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3960 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3844 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-196 |#2| |#3|) (-196 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-196 |#2| |#7|) (-196 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968)) -((-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) -(((-969 |#1|) (-113) (-971)) (T -969)) -NIL -(-13 (-21) (-964 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-3127 (((-85) $ $) 10 T ELT))) -(((-970 |#1|) (-10 -7 (-15 -3127 ((-85) |#1| |#1|))) (-971)) (T -970)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-971) (-113)) (T -971)) -((-3127 (*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85))))) -(-13 (-21) (-1026) (-10 -8 (-15 -3127 ((-85) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3833 (((-1091) $) 11 T ELT)) (-3738 ((|#1| $) 12 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3228 (($ (-1091) |#1|) 10 T ELT)) (-3948 (((-773) $) 22 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3058 (((-85) $ $) 17 (|has| |#1| (-1014)) ELT))) -(((-972 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3228 ($ (-1091) |#1|)) (-15 -3833 ((-1091) $)) (-15 -3738 (|#1| $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1007 |#2|) (-1130)) (T -972)) -((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3833 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3738 (*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130))))) -((-3773 (($ $) 17 T ELT)) (-3129 (($ $) 25 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 54 T ELT)) (-3134 (($ $) 27 T ELT)) (-3130 (($ $) 12 T ELT)) (-3132 (($ $) 40 T ELT)) (-3974 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-801 (-330)) $) 36 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 31 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 31 T ELT)) (-3128 (((-695)) 9 T CONST)) (-3133 (($ $) 44 T ELT))) -(((-973 |#1|) (-10 -7 (-15 -3129 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| (-485))) (-15 -3974 ((-179) |#1|)) (-15 -3974 ((-330) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| |#1|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-974)) (T -973)) -((-3128 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3773 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3625 (((-485) $) 133 T ELT)) (-3726 (($) 23 T CONST)) (-3129 (($ $) 105 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3158 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3188 (((-85) $) 131 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 115 T ELT)) (-3134 (($ $) 111 T ELT)) (-3189 (((-85) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2533 (($ $ $) 125 T ELT)) (-2859 (($ $ $) 126 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3130 (($ $) 107 T ELT)) (-3132 (($ $) 109 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3974 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3128 (((-695)) 40 T CONST)) (-3133 (($ $) 110 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 134 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 127 T ELT)) (-2569 (((-85) $ $) 129 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 128 T ELT)) (-2687 (((-85) $ $) 130 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) -(((-974) (-113)) (T -974)) -((-3134 (*1 *1 *1) (-4 *1 (-974))) (-3133 (*1 *1 *1) (-4 *1 (-974))) (-3132 (*1 *1 *1) (-4 *1 (-974))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485)))) (-3130 (*1 *1 *1) (-4 *1 (-974))) (-3773 (*1 *1 *1) (-4 *1 (-974))) (-3129 (*1 *1 *1) (-4 *1 (-974)))) -(-13 (-312) (-756) (-934) (-951 (-485)) (-951 (-350 (-485))) (-916) (-554 (-801 (-330))) (-797 (-330)) (-120) (-10 -8 (-15 -3134 ($ $)) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3131 ((-485) $)) (-15 -3130 ($ $)) (-15 -3773 ($ $)) (-15 -3129 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) |#2| $) 26 T ELT)) (-3138 ((|#1| $) 10 T ELT)) (-3625 (((-485) |#2| $) 119 T ELT)) (-3185 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3139 ((|#1| $) 31 T ELT)) (-3184 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3136 (($ $) 28 T ELT)) (-3469 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3188 (((-85) |#2| $) NIL T ELT)) (-3189 (((-85) |#2| $) NIL T ELT)) (-3135 (((-85) |#2| $) 27 T ELT)) (-3137 ((|#1| $) 120 T ELT)) (-3140 ((|#1| $) 30 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3187 ((|#2| $) 104 T ELT)) (-3948 (((-773) $) 95 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3772 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3186 (((-584 $) |#2|) 78 T ELT)) (-3058 (((-85) $ $) 99 T ELT))) -(((-975 |#1| |#2|) (-13 (-981 |#1| |#2|) (-10 -8 (-15 -3140 (|#1| $)) (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 ($ $)) (-15 -3135 ((-85) |#2| $)) (-15 -3184 (|#1| |#2| $ |#1|)))) (-13 (-756) (-312)) (-1156 |#1|)) (T -975)) -((-3184 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3136 (*1 *1 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3135 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL T ELT)) (-2443 (($ $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3141 (($ (-1091)) 10 T ELT) (($ (-485)) 7 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-350 (-485)) $) NIL T ELT)) (-2996 (($) NIL T ELT) (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2675 (((-85) $) NIL T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3835 (($ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2047 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-485) $) 16 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1091)) 9 T ELT)) (-3948 (((-773) $) 23 T ELT) (($ (-485)) 6 T ELT) (($ $) NIL T ELT) (($ (-485)) 6 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3385 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT))) -(((-976) (-13 (-484) (-558 (-1091)) (-10 -8 (-6 -3984) (-6 -3989) (-6 -3985) (-15 -3141 ($ (-1091))) (-15 -3141 ($ (-485)))))) (T -976)) -((-3141 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-976)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976))))) -((-3799 (($ $) 46 T ELT)) (-3168 (((-85) $ $) 82 T ELT)) (-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) 247 T ELT) (((-3 $ #1#) (-858 (-485))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-350 (-485)))) 235 T ELT) (($ (-858 (-485))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3961 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3696 (((-85) $ $) 131 T ELT) (((-85) $ (-584 $)) 135 T ELT)) (-3174 (((-85) $) 60 T ELT)) (-3754 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 125 T ELT)) (-3145 (($ $) 160 T ELT)) (-3156 (($ $) 156 T ELT)) (-3157 (($ $) 155 T ELT)) (-3167 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3166 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3697 (((-85) $ $) 143 T ELT) (((-85) $ (-584 $)) 144 T ELT)) (-3182 ((|#4| $) 32 T ELT)) (-3161 (($ $ $) 128 T ELT)) (-3175 (((-85) $) 59 T ELT)) (-3181 (((-695) $) 35 T ELT)) (-3142 (($ $) 174 T ELT)) (-3143 (($ $) 171 T ELT)) (-3170 (((-584 $) $) 72 T ELT)) (-3173 (($ $) 62 T ELT)) (-3144 (($ $) 167 T ELT)) (-3171 (((-584 $) $) 69 T ELT)) (-3172 (($ $) 64 T ELT)) (-3176 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $) 130 T ELT)) (-3162 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 126 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |#4|) 127 T ELT)) (-3163 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $) 121 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |#4|) 123 T ELT)) (-3165 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3164 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3178 (((-584 $) $) 54 T ELT)) (-3693 (((-85) $ $) 140 T ELT) (((-85) $ (-584 $)) 141 T ELT)) (-3688 (($ $ $) 116 T ELT)) (-3448 (($ $) 37 T ELT)) (-3701 (((-85) $ $) 80 T ELT)) (-3694 (((-85) $ $) 136 T ELT) (((-85) $ (-584 $)) 138 T ELT)) (-3689 (($ $ $) 112 T ELT)) (-3180 (($ $) 41 T ELT)) (-3146 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3154 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3155 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3179 (($ $) 49 T ELT)) (-3177 (($ $) 55 T ELT)) (-3974 (((-801 (-330)) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-474) $) NIL T ELT) (($ (-858 (-350 (-485)))) 237 T ELT) (($ (-858 (-485))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1074) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3948 (((-773) $) 29 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3169 (((-3 (-85) #1#) $ $) 79 T ELT))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3948 (|#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 ((-858 |#2|) |#1|)) (-15 -3974 ((-858 |#2|) |#1|)) (-15 -3974 ((-1074) |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3146 (|#2| |#2| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3155 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3155 (|#1| |#1| |#2|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3974 (|#1| (-858 |#2|))) (-15 -3158 (|#1| (-858 |#2|))) (-15 -3159 ((-3 |#1| #1="failed") (-858 |#2|))) (-15 -3974 (|#1| (-858 (-485)))) (-15 -3158 (|#1| (-858 (-485)))) (-15 -3159 ((-3 |#1| #1#) (-858 (-485)))) (-15 -3974 (|#1| (-858 (-350 (-485))))) (-15 -3158 (|#1| (-858 (-350 (-485))))) (-15 -3159 ((-3 |#1| #1#) (-858 (-350 (-485))))) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3689 (|#1| |#1| |#1|)) (-15 -3160 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3483 (-695))) |#1| |#1|)) (-15 -3161 (|#1| |#1| |#1|)) (-15 -3754 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3162 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -3162 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3163 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -3163 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -3697 ((-85) |#1| (-584 |#1|))) (-15 -3697 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-584 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3694 ((-85) |#1| (-584 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3696 ((-85) |#1| (-584 |#1|))) (-15 -3696 ((-85) |#1| |#1|)) (-15 -3168 ((-85) |#1| |#1|)) (-15 -3701 ((-85) |#1| |#1|)) (-15 -3169 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3170 ((-584 |#1|) |#1|)) (-15 -3171 ((-584 |#1|) |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3174 ((-85) |#1|)) (-15 -3175 ((-85) |#1|)) (-15 -3961 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3177 (|#1| |#1|)) (-15 -3178 ((-584 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3181 ((-695) |#1|)) (-15 -3182 (|#4| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3948 (|#1| |#4|)) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3158 (|#4| |#1|)) (-15 -3176 (|#2| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-978 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -977)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-3799 (($ $) 293 T ELT)) (-3168 (((-85) $ $) 279 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3757 (($ $ $) 238 (|has| |#1| (-496)) ELT)) (-3150 (((-584 $) $ $) 233 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-858 (-350 (-485)))) 253 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (((-3 $ "failed") (-858 (-485))) 250 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (((-3 $ "failed") (-858 |#1|)) 247 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-484))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) (($ (-858 (-350 (-485)))) 252 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 249 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 246 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-484))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3758 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-496)) ELT)) (-3961 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3696 (((-85) $ $) 278 T ELT) (((-85) $ (-584 $)) 277 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3174 (((-85) $) 286 T ELT)) (-3754 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 258 T ELT)) (-3145 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-3156 (($ $) 243 (|has| |#1| (-496)) ELT)) (-3157 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3167 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3166 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3697 (((-85) $ $) 272 T ELT) (((-85) $ (-584 $)) 271 T ELT)) (-3147 (($ $ $ $ $) 229 (|has| |#1| (-496)) ELT)) (-3182 ((|#3| $) 297 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3161 (($ $ $) 257 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-3175 (((-85) $) 287 T ELT)) (-2822 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-3181 (((-695) $) 296 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3084 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3142 (($ $) 224 (|has| |#1| (-392)) ELT)) (-3143 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) 282 T ELT)) (-3173 (($ $) 285 T ELT)) (-3144 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3171 (((-584 $) $) 283 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-3172 (($ $) 284 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $) 256 T ELT)) (-3162 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 260 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 259 T ELT)) (-3163 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $) 262 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |#3|) 261 T ELT)) (-3165 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3164 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3192 (($ $ $) 232 (|has| |#1| (-496)) ELT)) (-3178 (((-584 $) $) 291 T ELT)) (-2825 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-3693 (((-85) $ $) 274 T ELT) (((-85) $ (-584 $)) 273 T ELT)) (-3688 (($ $ $) 254 T ELT)) (-3448 (($ $) 295 T ELT)) (-3701 (((-85) $ $) 280 T ELT)) (-3694 (((-85) $ $) 276 T ELT) (((-85) $ (-584 $)) 275 T ELT)) (-3689 (($ $ $) 255 T ELT)) (-3180 (($ $) 294 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-496)) ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 ((|#1| |#1| $) 228 (|has| |#1| (-392)) ELT) (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 241 (|has| |#1| (-496)) ELT) (($ $ $) 239 (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 242 (|has| |#1| (-496)) ELT) (($ $ $) 240 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3759 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3950 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3179 (($ $) 292 T ELT)) (-3177 (($ $) 290 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) 251 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 248 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 245 (|has| |#3| (-554 (-1091))) ELT) (((-1074) $) 223 (-12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ELT) (((-858 |#1|) $) 222 (|has| |#3| (-554 (-1091))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-858 |#1|) $) 221 (|has| |#3| (-554 (-1091))) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3169 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2668 (($) 45 T CONST)) (-3148 (($ $ $ $ (-695)) 230 (|has| |#1| (-496)) ELT)) (-3149 (($ $ $ (-695)) 231 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-978 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -978)) -((-3182 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3961 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3169 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3701 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3163 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3163 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3162 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3483 (-695)))) (-4 *1 (-978 *3 *4 *5)))) (-3689 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3688 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3159 (*1 *1 *2) (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3159 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3158 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3974 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3159 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3158 (*1 *1 *2) (OR (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3149 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3148 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3147 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3146 (*1 *2 *2 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) -(-13 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3182 (|t#3| $)) (-15 -3181 ((-695) $)) (-15 -3448 ($ $)) (-15 -3180 ($ $)) (-15 -3799 ($ $)) (-15 -3179 ($ $)) (-15 -3178 ((-584 $) $)) (-15 -3177 ($ $)) (-15 -3176 ($ $ |t#3|)) (-15 -3961 ($ $ |t#3|)) (-15 -3175 ((-85) $)) (-15 -3174 ((-85) $)) (-15 -3173 ($ $)) (-15 -3172 ($ $)) (-15 -3171 ((-584 $) $)) (-15 -3170 ((-584 $) $)) (-15 -3169 ((-3 (-85) "failed") $ $)) (-15 -3701 ((-85) $ $)) (-15 -3168 ((-85) $ $)) (-15 -3696 ((-85) $ $)) (-15 -3696 ((-85) $ (-584 $))) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-584 $))) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-584 $))) (-15 -3697 ((-85) $ $)) (-15 -3697 ((-85) $ (-584 $))) (-15 -3167 ($ $ $)) (-15 -3166 ($ $ $)) (-15 -3167 ($ $ $ |t#3|)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $)) (-15 -3163 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |t#3|)) (-15 -3162 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3162 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |t#3|)) (-15 -3754 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3161 ($ $ $)) (-15 -3160 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $)) (-15 -3689 ($ $ $)) (-15 -3688 ($ $ $)) (IF (|has| |t#3| (-554 (-1091))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3159 ((-3 $ "failed") (-858 (-350 (-485))))) (-15 -3158 ($ (-858 (-350 (-485))))) (-15 -3974 ($ (-858 (-350 (-485))))) (-15 -3159 ((-3 $ "failed") (-858 (-485)))) (-15 -3158 ($ (-858 (-485)))) (-15 -3974 ($ (-858 (-485)))) (IF (|has| |t#1| (-905 (-485))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 |t#1|))) (-15 -3158 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 (-485)))) (-15 -3158 ($ (-858 (-485)))) (-15 -3974 ($ (-858 (-485)))) (IF (|has| |t#1| (-484)) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 |t#1|))) (-15 -3158 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 |t#1|))) (-15 -3158 ($ (-858 |t#1|)))))) (-15 -3974 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-485))) (-6 (-554 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3157 ($ $)) (-15 -3156 ($ $)) (-15 -3155 ($ $ |t#1|)) (-15 -3154 ($ $ |t#1|)) (-15 -3155 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -3757 ($ $ $)) (-15 -3153 ((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3152 ((-2 (|:| -3146 $) (|:| |coef1| $)) $ $)) (-15 -3151 ((-2 (|:| -3146 $) (|:| |coef2| $)) $ $)) (-15 -3758 ($ $ $)) (-15 -3150 ((-584 $) $ $)) (-15 -3192 ($ $ $)) (-15 -3149 ($ $ $ (-695))) (-15 -3148 ($ $ $ $ (-695))) (-15 -3147 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -3146 (|t#1| |t#1| $)) (-15 -3145 ($ $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3142 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-554 (-1074)) -12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3183 (((-584 (-1050)) $) 18 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-979) (-13 (-996) (-10 -8 (-15 -3183 ((-584 (-1050)) $)) (-15 -3235 ((-1050) $))))) (T -979)) -((-3183 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-979)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-979))))) -((-3190 (((-85) |#3| $) 15 T ELT)) (-3185 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3469 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3188 (((-85) |#3| $) 19 T ELT)) (-3189 (((-85) |#3| $) 17 T ELT))) -(((-980 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-3 |#1| #1="failed") |#3| (-831))) (-15 -3469 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|)) (-15 -3190 ((-85) |#3| |#1|))) (-981 |#2| |#3|) (-13 (-756) (-312)) (-1156 |#2|)) (T -980)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) |#2| $) 25 T ELT)) (-3625 (((-485) |#2| $) 26 T ELT)) (-3185 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3184 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3469 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3188 (((-85) |#2| $) 23 T ELT)) (-3189 (((-85) |#2| $) 24 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3187 ((|#2| $) 21 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3772 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3186 (((-584 $) |#2|) 20 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-981 |#1| |#2|) (-113) (-13 (-756) (-312)) (-1156 |t#1|)) (T -981)) -((-3625 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-485)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3469 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1)) (-4 *1 (-981 *4 *3)))) (-3185 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312))) (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4)))) (-3772 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))) (-3184 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2))))) -(-13 (-1014) (-10 -8 (-15 -3625 ((-485) |t#2| $)) (-15 -3190 ((-85) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3469 ((-3 |t#2| "failed") |t#2| $)) (-15 -3187 (|t#2| $)) (-15 -3186 ((-584 $) |t#2|)) (-15 -3185 ((-3 $ "failed") |t#2| (-831))) (-15 -3772 (|t#1| |t#2| $ |t#1|)) (-15 -3184 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-3438 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 114 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3439 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 99 T ELT)) (-3433 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3436 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85)) 67 T ELT)) (-3437 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 87 T ELT)) (-3974 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 92 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3432 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT))) -(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3432 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3433 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3438 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-15 -3974 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3439 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -982)) -((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-982 *4 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-982 *7 *8 *9 *10 *11)))) (-3437 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))) -((-3199 (((-85) |#5| $) 26 T ELT)) (-3197 (((-85) |#5| $) 29 T ELT)) (-3200 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3240 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3771 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3191 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3198 (((-85) |#5| $) 32 T ELT))) -(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3771 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3771 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3771 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3771 ((-584 |#1|) |#5| |#1|)) (-15 -3191 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3191 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3191 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3191 ((-584 |#1|) |#5| |#1|)) (-15 -3240 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3240 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3240 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3240 ((-584 |#1|) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#5| |#1|)) (-15 -3771 (|#1| |#1| |#5|))) (-984 |#2| |#3| |#4| |#5|) (-392) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -983)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 87 T ELT)) (-3687 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 67 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3685 ((|#4| |#4| $) 92 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 116 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 112 T ELT)) (-3693 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-3701 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 64 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3771 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 111 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 69 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 63 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 81 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-984 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -984)) -((-3200 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3777 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3240 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3191 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3442 (*1 *1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) (-3771 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3771 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8))))) -(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3200 ((-85) |t#4| $)) (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3200 ((-85) $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-3 (-85) (-584 $)) |t#4| $)) (-15 -3195 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |t#4| $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-584 $) |t#4| $)) (-15 -3193 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-15 -3192 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| |t#4| $)) (-15 -3777 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| $)) (-15 -3240 ((-584 $) |t#4| $)) (-15 -3240 ((-584 $) (-584 |t#4|) $)) (-15 -3240 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3240 ((-584 $) |t#4| (-584 $))) (-15 -3191 ((-584 $) |t#4| $)) (-15 -3191 ((-584 $) |t#4| (-584 $))) (-15 -3191 ((-584 $) (-584 |t#4|) $)) (-15 -3191 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3442 ($ |t#4| $)) (-15 -3442 ($ (-584 |t#4|) $)) (-15 -3771 ((-584 $) |t#4| $)) (-15 -3771 ((-584 $) |t#4| (-584 $))) (-15 -3771 ((-584 $) (-584 |t#4|) $)) (-15 -3771 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3684 ((-584 $) (-584 |t#4|) (-85))))) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) -((-3207 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 86 T ELT)) (-3204 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3206 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3205 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3288 (((-1186)) 36 T ELT)) (-3286 (((-1186)) 25 T ELT)) (-3287 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3285 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)) (-3201 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3202 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3203 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3285 ((-1186) (-1074) (-1074) (-1074))) (-15 -3286 ((-1186))) (-15 -3287 ((-1186) (-1074) (-1074) (-1074))) (-15 -3288 ((-1186))) (-15 -3201 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3204 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-85) |#4| |#5|)) (-15 -3205 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3206 ((-584 |#5|) |#4| |#5|)) (-15 -3207 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -985)) -((-3207 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-985 *6 *7 *4 *8 *9)))) (-3202 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3288 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3286 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-986) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -986)) -((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-986)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-986))))) -((-3268 (((-85) $ $) 7 T ELT))) -(((-987) (-13 (-1130) (-10 -8 (-15 -3268 ((-85) $ $))))) (T -987)) -((-3268 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3211 (($ $ (-584 (-1091)) (-1 (-85) (-584 |#3|))) 34 T ELT)) (-3212 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1091))) 21 T ELT)) (-3530 ((|#3| $) 13 T ELT)) (-3159 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3158 (((-249 |#3|) $) NIL T ELT)) (-3209 (((-584 (-1091)) $) 16 T ELT)) (-3210 (((-801 |#1|) $) 11 T ELT)) (-3531 ((|#3| $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3948 (((-773) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 38 T ELT))) -(((-988 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-951 (-249 |#3|)) (-10 -8 (-15 -3212 ($ |#3| |#3|)) (-15 -3212 ($ |#3| |#3| (-584 (-1091)))) (-15 -3211 ($ $ (-584 (-1091)) (-1 (-85) (-584 |#3|)))) (-15 -3210 ((-801 |#1|) $)) (-15 -3531 (|#3| $)) (-15 -3530 (|#3| $)) (-15 -3802 (|#3| $ |#3| (-831))) (-15 -3209 ((-584 (-1091)) $)))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -988)) -((-3212 (*1 *1 *2 *2) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3212 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-85) (-584 *6))) (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2))))) (-3531 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3802 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-1091) $) 8 T ELT)) (-3244 (((-1074) $) 17 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT))) -(((-989 |#1|) (-13 (-1014) (-10 -8 (-15 -3544 ((-1091) $)))) (-1091)) (T -989)) -((-3544 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-14 *3 *2)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3214 (($ (-584 (-988 |#1| |#2| |#3|))) 15 T ELT)) (-3213 (((-584 (-988 |#1| |#2| |#3|)) $) 22 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 21 T ELT))) -(((-990 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-10 -8 (-15 -3214 ($ (-584 (-988 |#1| |#2| |#3|)))) (-15 -3213 ((-584 (-988 |#1| |#2| |#3|)) $)) (-15 -3802 (|#3| $ |#3| (-831))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -990)) -((-3214 (*1 *1 *2) (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3802 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))) -((-3215 (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 88 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 90 T ELT))) -(((-991 |#1| |#2|) (-10 -7 (-15 -3215 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3215 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3215 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-584 (-1091))) (T -991)) -((-3215 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))) (-3215 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 132 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1786 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3332 ((|#1| $) 121 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3138 (((-695)) 43 (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) 46 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3844 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3110 (((-831)) 80 T ELT)) (-2996 (($) 47 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-2835 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 140 (|has| |#1| (-320)) ELT)) (-3081 ((|#2| $) 59 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3448 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 131 (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) 123 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3187 ((|#2|) 77 T ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 92 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 72 T ELT) (((-631 |#1|) (-1180 $)) 88 T ELT)) (-3974 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-299)) ELT)) (-3948 (((-773) $) 58 T ELT) (($ (-485)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 85 T ELT)) (-3128 (((-695)) 79 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 84 T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 19 T CONST)) (-2671 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-3058 (((-85) $ $) 64 T ELT)) (-3951 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT))) -(((-992 |#1| |#2| |#3|) (-662 |#1| |#2|) (-146) (-1156 |#1|) |#2|) (T -992)) -NIL -((-3734 (((-348 |#3|) |#3|) 18 T ELT))) -(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-348 |#3|) |#3|))) (-1156 (-350 (-485))) (-13 (-312) (-120) (-662 (-350 (-485)) |#1|)) (-1156 |#2|)) (T -993)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5))))) -((-3734 (((-348 |#3|) |#3|) 19 T ELT))) -(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-348 |#3|) |#3|))) (-1156 (-350 (-858 (-485)))) (-13 (-312) (-120) (-662 (-350 (-858 (-485))) |#1|)) (-1156 |#2|)) (T -994)) -((-3734 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 (-858 (-485))))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) 16 T ELT)) (-2859 (($ $ $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3216 (($) 6 T ELT)) (-3974 (((-1091) $) 20 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 9 T ELT))) -(((-995) (-13 (-757) (-554 (-1091)) (-10 -8 (-15 -3216 ($))))) (T -995)) -((-3216 (*1 *1) (-5 *1 (-995)))) -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-996) (-113)) (T -996)) +((-3101 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3098 (*1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3101 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1|) -3955))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3102 (($) 31 T CONST)) (-3727 (($) 23 T CONST)) (-3101 ((|#1| $) 29 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3100 ((|#1| $) 28 T ELT)) (-3098 ((|#1|) 26 T CONST)) (-3949 (((-774) $) 13 T ELT)) (-3099 ((|#1| $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) +(((-959 |#1|) (-113) (-23)) (T -959)) +((-3102 (*1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-23))))) +(-13 (-958 |t#1|) (-10 -8 (-15 -3102 ($) -3955))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-958 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 (-705 |#1| (-775 |#2|)))))) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3685 (((-585 $) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85) (-85)) NIL T ELT)) (-3084 (((-585 (-775 |#2|)) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3778 (((-585 (-2 (|:| |val| (-705 |#1| (-775 |#2|))) (|:| -1602 $))) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ (-775 |#2|)) NIL T ELT)) (-3713 (($ (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-318 (-705 |#1| (-775 |#2|)))) ELT) (((-3 (-705 |#1| (-775 |#2|)) #1="failed") $ (-775 |#2|)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-2903 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3159 (($ (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3802 (((-3 $ #1#) $) NIL T ELT)) (-3688 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-72))) ELT)) (-3409 (($ (-705 |#1| (-775 |#2|)) $) NIL (-12 (|has| $ (-318 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-72))) ELT) (($ (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-318 (-705 |#1| (-775 |#2|)))) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-705 |#1| (-775 |#2|))) (|:| |den| |#1|)) (-705 |#1| (-775 |#2|)) $) NIL (|has| |#1| (-497)) ELT)) (-3697 (((-85) (-705 |#1| (-775 |#2|)) $ (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3686 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3845 (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $ (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) NIL (|has| (-705 |#1| (-775 |#2|)) (-72)) ELT) (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $ (-705 |#1| (-775 |#2|))) NIL T ELT) (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3699 (((-2 (|:| -3864 (-585 (-705 |#1| (-775 |#2|)))) (|:| -1704 (-585 (-705 |#1| (-775 |#2|))))) $) NIL T ELT)) (-3200 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3201 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3698 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 (((-775 |#2|) $) NIL T ELT)) (-2611 (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3248 (((-85) (-705 |#1| (-775 |#2|)) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-72)) ELT)) (-3329 (($ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3961 (($ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-2917 (((-585 (-775 |#2|)) $) NIL T ELT)) (-2916 (((-85) (-775 |#2|) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3194 (((-3 (-705 |#1| (-775 |#2|)) (-585 $)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3193 (((-585 (-2 (|:| |val| (-705 |#1| (-775 |#2|))) (|:| -1602 $))) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3801 (((-3 (-705 |#1| (-775 |#2|)) #1#) $) NIL T ELT)) (-3195 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3197 (((-3 (-85) (-585 $)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3241 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT)) (-3443 (($ (-705 |#1| (-775 |#2|)) $) NIL T ELT) (($ (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3700 (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3694 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| (-705 |#1| (-775 |#2|))) (|:| |den| |#1|)) (-705 |#1| (-775 |#2|)) $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 (-705 |#1| (-775 |#2|)) #1#) $) NIL T ELT)) (-1356 (((-3 (-705 |#1| (-775 |#2|)) #1#) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ (-705 |#1| (-775 |#2|))) NIL T ELT)) (-3772 (($ $ (-705 |#1| (-775 |#2|))) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|)))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-249 (-705 |#1| (-775 |#2|)))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-705 |#1| (-775 |#2|))))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3951 (((-696) $) NIL T ELT)) (-1732 (((-696) (-705 |#1| (-775 |#2|)) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-2913 (($ $ (-775 |#2|)) NIL T ELT)) (-2915 (($ $ (-775 |#2|)) NIL T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ (-775 |#2|)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3681 (((-696) $) NIL (|has| (-775 |#2|) (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 (-705 |#1| (-775 |#2|))))) #1#) (-585 (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 (-705 |#1| (-775 |#2|))))) #1#) (-585 (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) (-705 |#1| (-775 |#2|)) (-585 (-705 |#1| (-775 |#2|))))) NIL T ELT)) (-3192 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3683 (((-585 (-775 |#2|)) $) NIL T ELT)) (-3199 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3936 (((-85) (-775 |#2|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-960 |#1| |#2|) (-13 (-985 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) (-10 -8 (-15 -3685 ((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85) (-85))))) (-393) (-585 (-1092))) (T -960)) +((-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-960 *5 *6))))) +((-3103 (((-1 (-486)) (-1003 (-486))) 32 T ELT)) (-3107 (((-486) (-486) (-486) (-486) (-486)) 29 T ELT)) (-3105 (((-1 (-486)) |RationalNumber|) NIL T ELT)) (-3106 (((-1 (-486)) |RationalNumber|) NIL T ELT)) (-3104 (((-1 (-486)) (-486) |RationalNumber|) NIL T ELT))) +(((-961) (-10 -7 (-15 -3103 ((-1 (-486)) (-1003 (-486)))) (-15 -3104 ((-1 (-486)) (-486) |RationalNumber|)) (-15 -3105 ((-1 (-486)) |RationalNumber|)) (-15 -3106 ((-1 (-486)) |RationalNumber|)) (-15 -3107 ((-486) (-486) (-486) (-486) (-486))))) (T -961)) +((-3107 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-961)))) (-3106 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)))) (-3105 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)) (-5 *3 (-486)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1003 (-486))) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) +((-3949 (((-774) $) NIL T ELT) (($ (-486)) 10 T ELT))) +(((-962 |#1|) (-10 -7 (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-963)) (T -962)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-963) (-113)) (T -963)) +((-3129 (*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-696))))) +(-13 (-972) (-1063) (-592 $) (-557 (-486)) (-10 -7 (-15 -3129 ((-696)) -3955) (-6 -3995))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3108 (((-350 (-859 |#2|)) (-585 |#2|) (-585 |#2|) (-696) (-696)) 55 T ELT))) +(((-964 |#1| |#2|) (-10 -7 (-15 -3108 ((-350 (-859 |#2|)) (-585 |#2|) (-585 |#2|) (-696) (-696)))) (-1092) (-312)) (T -964)) +((-3108 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-696)) (-4 *6 (-312)) (-5 *2 (-350 (-859 *6))) (-5 *1 (-964 *5 *6)) (-14 *5 (-1092))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-965 |#1|) (-113) (-1027)) (T -965)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1027))))) +(-13 (-1015) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-3123 (((-85) $) 38 T ELT)) (-3125 (((-85) $) 17 T ELT)) (-3117 (((-696) $) 13 T ELT)) (-3116 (((-696) $) 14 T ELT)) (-3124 (((-85) $) 30 T ELT)) (-3122 (((-85) $) 40 T ELT))) +(((-966 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3116 ((-696) |#1|)) (-15 -3117 ((-696) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3125 ((-85) |#1|))) (-967 |#2| |#3| |#4| |#5| |#6|) (-696) (-696) (-963) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -966)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3123 (((-85) $) 63 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3125 (((-85) $) 65 T ELT)) (-3727 (($) 23 T CONST)) (-3112 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3114 ((|#4| $ (-486)) 51 T ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 85 (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 81 T ELT)) (-3111 (((-696) $) 45 (|has| |#3| (-497)) ELT)) (-3115 ((|#3| $ (-486) (-486)) 53 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3110 (((-696) $) 44 (|has| |#3| (-497)) ELT)) (-3109 (((-585 |#5|) $) 43 (|has| |#3| (-497)) ELT)) (-3117 (((-696) $) 57 T ELT)) (-3116 (((-696) $) 56 T ELT)) (-3121 (((-486) $) 61 T ELT)) (-3119 (((-486) $) 59 T ELT)) (-2611 (((-585 |#3|) $) 80 T ELT)) (-3248 (((-85) |#3| $) 84 (|has| |#3| (-72)) ELT)) (-3120 (((-486) $) 60 T ELT)) (-3118 (((-486) $) 58 T ELT)) (-3126 (($ (-585 (-585 |#3|))) 66 T ELT)) (-3961 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 49 T ELT)) (-3597 (((-585 (-585 |#3|)) $) 55 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ |#3|) 48 (|has| |#3| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3771 (($ $ (-585 |#3|) (-585 |#3|)) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 (-249 |#3|))) 72 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) 67 T ELT)) (-3406 (((-85) $) 70 T ELT)) (-3568 (($) 69 T ELT)) (-3803 ((|#3| $ (-486) (-486)) 54 T ELT) ((|#3| $ (-486) (-486) |#3|) 52 T ELT)) (-3124 (((-85) $) 64 T ELT)) (-1732 (((-696) |#3| $) 83 (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) 79 T ELT)) (-3403 (($ $) 68 T ELT)) (-3113 ((|#5| $ (-486)) 50 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) 77 T ELT)) (-3122 (((-85) $) 62 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#3|) 47 (|has| |#3| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3960 (((-696) $) 76 T ELT))) +(((-967 |#1| |#2| |#3| |#4| |#5|) (-113) (-696) (-696) (-963) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -967)) +((-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-963)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-696)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-696)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-585 (-585 *5))))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) (-3115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) (-3803 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-963)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-963)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-963)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3961 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-497)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3112 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-585 *7))))) +(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-656 |t#3|)) |%noBranch|) (-15 -3126 ($ (-585 (-585 |t#3|)))) (-15 -3125 ((-85) $)) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-486) $)) (-15 -3120 ((-486) $)) (-15 -3119 ((-486) $)) (-15 -3118 ((-486) $)) (-15 -3117 ((-696) $)) (-15 -3116 ((-696) $)) (-15 -3597 ((-585 (-585 |t#3|)) $)) (-15 -3803 (|t#3| $ (-486) (-486))) (-15 -3115 (|t#3| $ (-486) (-486))) (-15 -3803 (|t#3| $ (-486) (-486) |t#3|)) (-15 -3114 (|t#4| $ (-486))) (-15 -3113 (|t#5| $ (-486))) (-15 -3961 ($ (-1 |t#3| |t#3|) $)) (-15 -3961 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-497)) (-15 -3469 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3952 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3112 ($ $)) |%noBranch|) (IF (|has| |t#3| (-497)) (PROGN (-15 -3111 ((-696) $)) (-15 -3110 ((-696) $)) (-15 -3109 ((-585 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-554 (-774)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ((-318 |#3|) . T) ((-381 |#3|) . T) ((-430 |#3|) . T) ((-457 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ((-13) . T) ((-590 (-486)) . T) ((-590 |#3|) . T) ((-592 |#3|) . T) ((-584 |#3|) |has| |#3| (-146)) ((-656 |#3|) |has| |#3| (-146)) ((-965 |#3|) . T) ((-970 |#3|) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3114 (((-197 |#2| |#3|) $ (-486)) 35 T ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3127 (($ (-632 |#3|)) 44 T ELT)) (-3111 (((-696) $) 48 (|has| |#3| (-497)) ELT)) (-3115 ((|#3| $ (-486) (-486)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3110 (((-696) $) 50 (|has| |#3| (-497)) ELT)) (-3109 (((-585 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#3|) $) NIL T ELT)) (-3248 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#3|))) 30 T ELT)) (-3961 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3597 (((-585 (-585 |#3|)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3771 (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-486) (-486)) NIL T ELT) ((|#3| $ (-486) (-486) |#3|) NIL T ELT)) (-3914 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3124 (((-85) $) NIL T ELT)) (-1732 (((-696) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 65 (|has| |#3| (-555 (-475))) ELT)) (-3113 (((-197 |#1| |#3|) $ (-486)) 39 T ELT)) (-3949 (((-774) $) 18 T ELT) (((-632 |#3|) $) 41 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-968 |#1| |#2| |#3|) (-13 (-967 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-554 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1189 |#3|)) |%noBranch|) (IF (|has| |#3| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (-15 -3127 ($ (-632 |#3|))))) (-696) (-696) (-963)) (T -968)) +((-3127 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-963)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696))))) +((-3845 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3961 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-969 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3961 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3845 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-696) (-696) (-963) (-196 |#2| |#3|) (-196 |#1| |#3|) (-967 |#1| |#2| |#3| |#4| |#5|) (-963) (-196 |#2| |#7|) (-196 |#1| |#7|) (-967 |#1| |#2| |#7| |#8| |#9|)) (T -969)) +((-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-696)) (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-696)) (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) +(((-970 |#1|) (-113) (-972)) (T -970)) +NIL +(-13 (-21) (-965 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-965 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-3128 (((-85) $ $) 10 T ELT))) +(((-971 |#1|) (-10 -7 (-15 -3128 ((-85) |#1| |#1|))) (-972)) (T -971)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-972) (-113)) (T -972)) +((-3128 (*1 *2 *1 *1) (-12 (-4 *1 (-972)) (-5 *2 (-85))))) +(-13 (-21) (-1027) (-10 -8 (-15 -3128 ((-85) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3834 (((-1092) $) 11 T ELT)) (-3739 ((|#1| $) 12 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3229 (($ (-1092) |#1|) 10 T ELT)) (-3949 (((-774) $) 22 (|has| |#1| (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-1015)) ELT))) +(((-973 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -3229 ($ (-1092) |#1|)) (-15 -3834 ((-1092) $)) (-15 -3739 (|#1| $)) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|))) (-1008 |#2|) (-1131)) (T -973)) +((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-4 *4 (-1131)) (-5 *1 (-973 *3 *4)) (-4 *3 (-1008 *4)))) (-3834 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-1092)) (-5 *1 (-973 *3 *4)) (-4 *3 (-1008 *4)))) (-3739 (*1 *2 *1) (-12 (-4 *2 (-1008 *3)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1131))))) +((-3774 (($ $) 17 T ELT)) (-3130 (($ $) 25 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 54 T ELT)) (-3135 (($ $) 27 T ELT)) (-3131 (($ $) 12 T ELT)) (-3133 (($ $) 40 T ELT)) (-3975 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-802 (-330)) $) 36 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 31 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) 31 T ELT)) (-3129 (((-696)) 9 T CONST)) (-3134 (($ $) 44 T ELT))) +(((-974 |#1|) (-10 -7 (-15 -3130 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3949 (|#1| (-486))) (-15 -3975 ((-179) |#1|)) (-15 -3975 ((-330) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3949 (|#1| |#1|)) (-15 -3129 ((-696)) -3955) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-975)) (T -974)) +((-3129 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-974 *3)) (-4 *3 (-975))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 (((-486) $) 108 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3774 (($ $) 106 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 116 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3626 (((-486) $) 133 T ELT)) (-3727 (($) 23 T CONST)) (-3130 (($ $) 105 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 121 T ELT) (((-3 (-350 (-486)) #1#) $) 118 T ELT)) (-3159 (((-486) $) 122 T ELT) (((-350 (-486)) $) 119 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3189 (((-85) $) 131 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 112 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 115 T ELT)) (-3135 (($ $) 111 T ELT)) (-3190 (((-85) $) 132 T ELT)) (-1607 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-2534 (($ $ $) 125 T ELT)) (-2860 (($ $ $) 126 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3131 (($ $) 107 T ELT)) (-3133 (($ $) 109 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3975 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-802 (-330)) $) 113 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ (-486)) 120 T ELT) (($ (-350 (-486))) 117 T ELT)) (-3129 (((-696)) 40 T CONST)) (-3134 (($ $) 110 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 134 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 127 T ELT)) (-2570 (((-85) $ $) 129 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 128 T ELT)) (-2688 (((-85) $ $) 130 T ELT)) (-3952 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 114 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) +(((-975) (-113)) (T -975)) +((-3135 (*1 *1 *1) (-4 *1 (-975))) (-3134 (*1 *1 *1) (-4 *1 (-975))) (-3133 (*1 *1 *1) (-4 *1 (-975))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-486)))) (-3131 (*1 *1 *1) (-4 *1 (-975))) (-3774 (*1 *1 *1) (-4 *1 (-975))) (-3130 (*1 *1 *1) (-4 *1 (-975)))) +(-13 (-312) (-757) (-935) (-952 (-486)) (-952 (-350 (-486))) (-917) (-555 (-802 (-330))) (-798 (-330)) (-120) (-10 -8 (-15 -3135 ($ $)) (-15 -3134 ($ $)) (-15 -3133 ($ $)) (-15 -3132 ((-486) $)) (-15 -3131 ($ $)) (-15 -3774 ($ $)) (-15 -3130 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-330)) . T) ((-555 (-802 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-330)) . T) ((-834) . T) ((-917) . T) ((-935) . T) ((-952 (-350 (-486))) . T) ((-952 (-486)) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) |#2| $) 26 T ELT)) (-3139 ((|#1| $) 10 T ELT)) (-3626 (((-486) |#2| $) 119 T ELT)) (-3186 (((-3 $ #1="failed") |#2| (-832)) 76 T ELT)) (-3140 ((|#1| $) 31 T ELT)) (-3185 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3137 (($ $) 28 T ELT)) (-3470 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3189 (((-85) |#2| $) NIL T ELT)) (-3190 (((-85) |#2| $) NIL T ELT)) (-3136 (((-85) |#2| $) 27 T ELT)) (-3138 ((|#1| $) 120 T ELT)) (-3141 ((|#1| $) 30 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3188 ((|#2| $) 104 T ELT)) (-3949 (((-774) $) 95 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3773 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3187 (((-585 $) |#2|) 78 T ELT)) (-3059 (((-85) $ $) 99 T ELT))) +(((-976 |#1| |#2|) (-13 (-982 |#1| |#2|) (-10 -8 (-15 -3141 (|#1| $)) (-15 -3140 (|#1| $)) (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 ($ $)) (-15 -3136 ((-85) |#2| $)) (-15 -3185 (|#1| |#2| $ |#1|)))) (-13 (-757) (-312)) (-1157 |#1|)) (T -976)) +((-3185 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3141 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3137 (*1 *1 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3136 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-757) (-312))) (-5 *2 (-85)) (-5 *1 (-976 *4 *3)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL T ELT)) (-2444 (($ $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3142 (($ (-1092)) 10 T ELT) (($ (-486)) 7 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3026 (((-85) $) NIL T ELT)) (-3025 (((-350 (-486)) $) NIL T ELT)) (-2997 (($) NIL T ELT) (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1371 (($ $ $) NIL T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2676 (((-85) $) NIL T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2048 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1369 (($ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) NIL T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-486) $) 16 T ELT) (((-475) $) NIL T ELT) (((-802 (-486)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1092)) 9 T ELT)) (-3949 (((-774) $) 23 T ELT) (($ (-486)) 6 T ELT) (($ $) NIL T ELT) (($ (-486)) 6 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (($) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-3386 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-486) $) NIL T ELT))) +(((-977) (-13 (-485) (-559 (-1092)) (-10 -8 (-6 -3985) (-6 -3990) (-6 -3986) (-15 -3142 ($ (-1092))) (-15 -3142 ($ (-486)))))) (T -977)) +((-3142 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-977)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-977))))) +((-3800 (($ $) 46 T ELT)) (-3169 (((-85) $ $) 82 T ELT)) (-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-859 (-350 (-486)))) 247 T ELT) (((-3 $ #1#) (-859 (-486))) 246 T ELT) (((-3 $ #1#) (-859 |#2|)) 249 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-859 (-350 (-486)))) 235 T ELT) (($ (-859 (-486))) 231 T ELT) (($ (-859 |#2|)) 255 T ELT)) (-3962 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3697 (((-85) $ $) 131 T ELT) (((-85) $ (-585 $)) 135 T ELT)) (-3175 (((-85) $) 60 T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 125 T ELT)) (-3146 (($ $) 160 T ELT)) (-3157 (($ $) 156 T ELT)) (-3158 (($ $) 155 T ELT)) (-3168 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3167 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3698 (((-85) $ $) 143 T ELT) (((-85) $ (-585 $)) 144 T ELT)) (-3183 ((|#4| $) 32 T ELT)) (-3162 (($ $ $) 128 T ELT)) (-3176 (((-85) $) 59 T ELT)) (-3182 (((-696) $) 35 T ELT)) (-3143 (($ $) 174 T ELT)) (-3144 (($ $) 171 T ELT)) (-3171 (((-585 $) $) 72 T ELT)) (-3174 (($ $) 62 T ELT)) (-3145 (($ $) 167 T ELT)) (-3172 (((-585 $) $) 69 T ELT)) (-3173 (($ $) 64 T ELT)) (-3177 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $) 130 T ELT)) (-3163 (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 126 T ELT) (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |#4|) 127 T ELT)) (-3164 (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $) 121 T ELT) (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |#4|) 123 T ELT)) (-3166 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3165 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3179 (((-585 $) $) 54 T ELT)) (-3694 (((-85) $ $) 140 T ELT) (((-85) $ (-585 $)) 141 T ELT)) (-3689 (($ $ $) 116 T ELT)) (-3449 (($ $) 37 T ELT)) (-3702 (((-85) $ $) 80 T ELT)) (-3695 (((-85) $ $) 136 T ELT) (((-85) $ (-585 $)) 138 T ELT)) (-3690 (($ $ $) 112 T ELT)) (-3181 (($ $) 41 T ELT)) (-3147 ((|#2| |#2| $) 164 T ELT) (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3155 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3156 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3180 (($ $) 49 T ELT)) (-3178 (($ $) 55 T ELT)) (-3975 (((-802 (-330)) $) NIL T ELT) (((-802 (-486)) $) NIL T ELT) (((-475) $) NIL T ELT) (($ (-859 (-350 (-486)))) 237 T ELT) (($ (-859 (-486))) 233 T ELT) (($ (-859 |#2|)) 248 T ELT) (((-1075) $) 278 T ELT) (((-859 |#2|) $) 184 T ELT)) (-3949 (((-774) $) 29 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-859 |#2|) $) 185 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT)) (-3170 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3949 (|#1| |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3949 ((-859 |#2|) |#1|)) (-15 -3975 ((-859 |#2|) |#1|)) (-15 -3975 ((-1075) |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3147 (|#2| |#2| |#1|)) (-15 -3155 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3155 (|#1| |#1| |#2|)) (-15 -3156 (|#1| |#1| |#2|)) (-15 -3157 (|#1| |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3975 (|#1| (-859 |#2|))) (-15 -3159 (|#1| (-859 |#2|))) (-15 -3160 ((-3 |#1| #1="failed") (-859 |#2|))) (-15 -3975 (|#1| (-859 (-486)))) (-15 -3159 (|#1| (-859 (-486)))) (-15 -3160 ((-3 |#1| #1#) (-859 (-486)))) (-15 -3975 (|#1| (-859 (-350 (-486))))) (-15 -3159 (|#1| (-859 (-350 (-486))))) (-15 -3160 ((-3 |#1| #1#) (-859 (-350 (-486))))) (-15 -3689 (|#1| |#1| |#1|)) (-15 -3690 (|#1| |#1| |#1|)) (-15 -3161 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3484 (-696))) |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3755 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3163 ((-2 (|:| -3957 |#1|) (|:| |gap| (-696)) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-15 -3163 ((-2 (|:| -3957 |#1|) (|:| |gap| (-696)) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3164 ((-2 (|:| -3957 |#1|) (|:| |gap| (-696)) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-15 -3164 ((-2 (|:| -3957 |#1|) (|:| |gap| (-696)) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -3168 (|#1| |#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -3168 (|#1| |#1| |#1|)) (-15 -3698 ((-85) |#1| (-585 |#1|))) (-15 -3698 ((-85) |#1| |#1|)) (-15 -3694 ((-85) |#1| (-585 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3695 ((-85) |#1| (-585 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3697 ((-85) |#1| (-585 |#1|))) (-15 -3697 ((-85) |#1| |#1|)) (-15 -3169 ((-85) |#1| |#1|)) (-15 -3702 ((-85) |#1| |#1|)) (-15 -3170 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3171 ((-585 |#1|) |#1|)) (-15 -3172 ((-585 |#1|) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3175 ((-85) |#1|)) (-15 -3176 ((-85) |#1|)) (-15 -3962 (|#1| |#1| |#4|)) (-15 -3177 (|#1| |#1| |#4|)) (-15 -3178 (|#1| |#1|)) (-15 -3179 ((-585 |#1|) |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3182 ((-696) |#1|)) (-15 -3183 (|#4| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3949 (|#1| |#4|)) (-15 -3160 ((-3 |#4| #1#) |#1|)) (-15 -3159 (|#4| |#1|)) (-15 -3177 (|#2| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-979 |#2| |#3| |#4|) (-963) (-719) (-758)) (T -978)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#3|) $) 123 T ELT)) (-3086 (((-1087 $) $ |#3|) 138 T ELT) (((-1087 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 100 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 125 T ELT) (((-696) $ (-585 |#3|)) 124 T ELT)) (-3800 (($ $) 293 T ELT)) (-3169 (((-85) $ $) 279 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3758 (($ $ $) 238 (|has| |#1| (-497)) ELT)) (-3151 (((-585 $) $ $) 233 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 113 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 111 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 110 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-486)) #2#) $) 178 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 176 (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-859 (-350 (-486)))) 253 (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092)))) ELT) (((-3 $ "failed") (-859 (-486))) 250 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT) (((-3 $ "failed") (-859 |#1|)) 247 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486)))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-485))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-906 (-486)))) (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT)) (-3159 ((|#1| $) 180 T ELT) (((-350 (-486)) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 177 (|has| |#1| (-952 (-486))) ELT) ((|#3| $) 154 T ELT) (($ (-859 (-350 (-486)))) 252 (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092)))) ELT) (($ (-859 (-486))) 249 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT) (($ (-859 |#1|)) 246 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486)))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-485))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-906 (-486)))) (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT)) (-3759 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-497)) ELT)) (-3962 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 148 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3697 (((-85) $ $) 278 T ELT) (((-85) $ (-585 $)) 277 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3175 (((-85) $) 286 T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 258 T ELT)) (-3146 (($ $) 227 (|has| |#1| (-393)) ELT)) (-3506 (($ $) 193 (|has| |#1| (-393)) ELT) (($ $ |#3|) 118 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 122 T ELT)) (-3726 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-3157 (($ $) 243 (|has| |#1| (-497)) ELT)) (-3158 (($ $) 244 (|has| |#1| (-497)) ELT)) (-3168 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3167 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1626 (($ $ |#1| |#2| $) 189 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 97 (-12 (|has| |#3| (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 96 (-12 (|has| |#3| (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3698 (((-85) $ $) 272 T ELT) (((-85) $ (-585 $)) 271 T ELT)) (-3148 (($ $ $ $ $) 229 (|has| |#1| (-497)) ELT)) (-3183 ((|#3| $) 297 T ELT)) (-3087 (($ (-1087 |#1|) |#3|) 130 T ELT) (($ (-1087 $) |#3|) 129 T ELT)) (-2824 (((-585 $) $) 139 T ELT)) (-3940 (((-85) $) 169 T ELT)) (-2896 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-696)) 132 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 131 T ELT)) (-3162 (($ $ $) 257 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 133 T ELT)) (-3176 (((-85) $) 287 T ELT)) (-2823 ((|#2| $) 187 T ELT) (((-696) $ |#3|) 135 T ELT) (((-585 (-696)) $ (-585 |#3|)) 134 T ELT)) (-3182 (((-696) $) 296 T ELT)) (-1627 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3085 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3143 (($ $) 224 (|has| |#1| (-393)) ELT)) (-3144 (($ $) 225 (|has| |#1| (-393)) ELT)) (-3171 (((-585 $) $) 282 T ELT)) (-3174 (($ $) 285 T ELT)) (-3145 (($ $) 226 (|has| |#1| (-393)) ELT)) (-3172 (((-585 $) $) 283 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 145 T ELT) (((-632 |#1|) (-1181 $)) 144 T ELT)) (-3173 (($ $) 284 T ELT)) (-2897 (($ $) 166 T ELT)) (-3177 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1896 (($ (-585 $)) 107 (|has| |#1| (-393)) ELT) (($ $ $) 106 (|has| |#1| (-393)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $) 256 T ELT)) (-3163 (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 260 T ELT) (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 259 T ELT)) (-3164 (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $) 262 T ELT) (((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |#3|) 261 T ELT)) (-3166 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3165 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3193 (($ $ $) 232 (|has| |#1| (-497)) ELT)) (-3179 (((-585 $) $) 291 T ELT)) (-2826 (((-3 (-585 $) #3#) $) 127 T ELT)) (-2825 (((-3 (-585 $) #3#) $) 128 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #3#) $) 126 T ELT)) (-3694 (((-85) $ $) 274 T ELT) (((-85) $ (-585 $)) 273 T ELT)) (-3689 (($ $ $) 254 T ELT)) (-3449 (($ $) 295 T ELT)) (-3702 (((-85) $ $) 280 T ELT)) (-3695 (((-85) $ $) 276 T ELT) (((-85) $ (-585 $)) 275 T ELT)) (-3690 (($ $ $) 255 T ELT)) (-3181 (($ $) 294 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-497)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-497)) ELT)) (-1802 (((-85) $) 183 T ELT)) (-1801 ((|#1| $) 184 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 108 (|has| |#1| (-393)) ELT)) (-3147 ((|#1| |#1| $) 228 (|has| |#1| (-393)) ELT) (($ (-585 $)) 105 (|has| |#1| (-393)) ELT) (($ $ $) 104 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 112 (|has| |#1| (-823)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-497)) ELT)) (-3155 (($ $ |#1|) 241 (|has| |#1| (-497)) ELT) (($ $ $) 239 (|has| |#1| (-497)) ELT)) (-3156 (($ $ |#1|) 242 (|has| |#1| (-497)) ELT) (($ $ $) 240 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-585 |#3|) (-585 $)) 155 T ELT)) (-3760 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3951 ((|#2| $) 167 T ELT) (((-696) $ |#3|) 143 T ELT) (((-585 (-696)) $ (-585 |#3|)) 142 T ELT)) (-3180 (($ $) 292 T ELT)) (-3178 (($ $) 290 T ELT)) (-3975 (((-802 (-330)) $) 95 (-12 (|has| |#3| (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 94 (-12 (|has| |#3| (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 93 (-12 (|has| |#3| (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT) (($ (-859 (-350 (-486)))) 251 (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092)))) ELT) (($ (-859 (-486))) 248 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT) (($ (-859 |#1|)) 245 (|has| |#3| (-555 (-1092))) ELT) (((-1075) $) 223 (-12 (|has| |#1| (-952 (-486))) (|has| |#3| (-555 (-1092)))) ELT) (((-859 |#1|) $) 222 (|has| |#3| (-555 (-1092))) ELT)) (-2820 ((|#1| $) 192 (|has| |#1| (-393)) ELT) (($ $ |#3|) 119 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 117 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-859 |#1|) $) 221 (|has| |#3| (-555 (-1092))) ELT) (($ (-350 (-486))) 91 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT) (($ $) 98 (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) 185 T ELT)) (-3680 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-696)) 141 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 140 T ELT)) (-2705 (((-634 $) $) 92 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1625 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3170 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2669 (($) 45 T CONST)) (-3149 (($ $ $ $ (-696)) 230 (|has| |#1| (-497)) ELT)) (-3150 (($ $ $ (-696)) 231 (|has| |#1| (-497)) ELT)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 174 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-979 |#1| |#2| |#3|) (-113) (-963) (-719) (-758)) (T -979)) +((-3183 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-696)))) (-3449 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3179 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3177 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3174 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3172 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3170 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3702 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3169 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3168 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3168 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3164 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3164 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -2905 *1))) (-4 *1 (-979 *4 *5 *3)))) (-3163 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3163 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *4 *5 *3)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3484 (-696)))) (-4 *1 (-979 *3 *4 *5)))) (-3690 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3689 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3160 (*1 *1 *2) (|partial| -12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3160 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3159 (*1 *1 *2) (OR (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3975 (*1 *1 *2) (OR (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3160 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3159 (*1 *1 *2) (OR (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *5 (-555 (-1092))) (-4 *4 (-719)) (-4 *5 (-758)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3156 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3155 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3154 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3193 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3150 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *3 (-497)))) (-3149 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *3 (-497)))) (-3148 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3147 (*1 *2 *2 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3146 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393))))) +(-13 (-863 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3183 (|t#3| $)) (-15 -3182 ((-696) $)) (-15 -3449 ($ $)) (-15 -3181 ($ $)) (-15 -3800 ($ $)) (-15 -3180 ($ $)) (-15 -3179 ((-585 $) $)) (-15 -3178 ($ $)) (-15 -3177 ($ $ |t#3|)) (-15 -3962 ($ $ |t#3|)) (-15 -3176 ((-85) $)) (-15 -3175 ((-85) $)) (-15 -3174 ($ $)) (-15 -3173 ($ $)) (-15 -3172 ((-585 $) $)) (-15 -3171 ((-585 $) $)) (-15 -3170 ((-3 (-85) "failed") $ $)) (-15 -3702 ((-85) $ $)) (-15 -3169 ((-85) $ $)) (-15 -3697 ((-85) $ $)) (-15 -3697 ((-85) $ (-585 $))) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-585 $))) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-585 $))) (-15 -3698 ((-85) $ $)) (-15 -3698 ((-85) $ (-585 $))) (-15 -3168 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -3168 ($ $ $ |t#3|)) (-15 -3167 ($ $ $ |t#3|)) (-15 -3166 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $)) (-15 -3164 ((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |t#3|)) (-15 -3163 ((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3163 ((-2 (|:| -3957 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |t#3|)) (-15 -3755 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3162 ($ $ $)) (-15 -3161 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $)) (-15 -3690 ($ $ $)) (-15 -3689 ($ $ $)) (IF (|has| |t#3| (-555 (-1092))) (PROGN (-6 (-554 (-859 |t#1|))) (-6 (-555 (-859 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3160 ((-3 $ "failed") (-859 (-350 (-486))))) (-15 -3159 ($ (-859 (-350 (-486))))) (-15 -3975 ($ (-859 (-350 (-486))))) (-15 -3160 ((-3 $ "failed") (-859 (-486)))) (-15 -3159 ($ (-859 (-486)))) (-15 -3975 ($ (-859 (-486)))) (IF (|has| |t#1| (-906 (-486))) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 |t#1|))) (-15 -3159 ($ (-859 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-486))) (IF (|has| |t#1| (-38 (-350 (-486)))) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 (-486)))) (-15 -3159 ($ (-859 (-486)))) (-15 -3975 ($ (-859 (-486)))) (IF (|has| |t#1| (-485)) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 |t#1|))) (-15 -3159 ($ (-859 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-486))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-486)))) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 |t#1|))) (-15 -3159 ($ (-859 |t#1|)))))) (-15 -3975 ($ (-859 |t#1|))) (IF (|has| |t#1| (-952 (-486))) (-6 (-555 (-1075))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-15 -3158 ($ $)) (-15 -3157 ($ $)) (-15 -3156 ($ $ |t#1|)) (-15 -3155 ($ $ |t#1|)) (-15 -3156 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3758 ($ $ $)) (-15 -3154 ((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3153 ((-2 (|:| -3147 $) (|:| |coef1| $)) $ $)) (-15 -3152 ((-2 (|:| -3147 $) (|:| |coef2| $)) $ $)) (-15 -3759 ($ $ $)) (-15 -3151 ((-585 $) $ $)) (-15 -3193 ($ $ $)) (-15 -3150 ($ $ $ (-696))) (-15 -3149 ($ $ $ $ (-696))) (-15 -3148 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-15 -3147 (|t#1| |t#1| $)) (-15 -3146 ($ $)) (-15 -3145 ($ $)) (-15 -3144 ($ $)) (-15 -3143 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-554 (-774)) . T) ((-554 (-859 |#1|)) |has| |#3| (-555 (-1092))) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ((-555 (-859 |#1|)) |has| |#3| (-555 (-1092))) ((-555 (-1075)) -12 (|has| |#1| (-952 (-486))) (|has| |#3| (-555 (-1092)))) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393))) ((-457 |#3| |#1|) . T) ((-457 |#3| $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-665) . T) ((-808 $ |#3|) . T) ((-811 |#3|) . T) ((-813 |#3|) . T) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ((-863 |#1| |#2| |#3|) . T) ((-823) |has| |#1| (-823)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-823))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3184 (((-585 (-1051)) $) 18 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 27 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 20 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-980) (-13 (-997) (-10 -8 (-15 -3184 ((-585 (-1051)) $)) (-15 -3236 ((-1051) $))))) (T -980)) +((-3184 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-980)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-980))))) +((-3191 (((-85) |#3| $) 15 T ELT)) (-3186 (((-3 $ #1="failed") |#3| (-832)) 29 T ELT)) (-3470 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3189 (((-85) |#3| $) 19 T ELT)) (-3190 (((-85) |#3| $) 17 T ELT))) +(((-981 |#1| |#2| |#3|) (-10 -7 (-15 -3186 ((-3 |#1| #1="failed") |#3| (-832))) (-15 -3470 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|)) (-15 -3190 ((-85) |#3| |#1|)) (-15 -3191 ((-85) |#3| |#1|))) (-982 |#2| |#3|) (-13 (-757) (-312)) (-1157 |#2|)) (T -981)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) |#2| $) 25 T ELT)) (-3626 (((-486) |#2| $) 26 T ELT)) (-3186 (((-3 $ "failed") |#2| (-832)) 19 T ELT)) (-3185 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3470 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3189 (((-85) |#2| $) 23 T ELT)) (-3190 (((-85) |#2| $) 24 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3188 ((|#2| $) 21 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3773 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3187 (((-585 $) |#2|) 20 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-982 |#1| |#2|) (-113) (-13 (-757) (-312)) (-1157 |t#1|)) (T -982)) +((-3626 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-486)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85)))) (-3470 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1157 *3)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1157 *3)))) (-3187 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-585 *1)) (-4 *1 (-982 *4 *3)))) (-3186 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-832)) (-4 *4 (-13 (-757) (-312))) (-4 *1 (-982 *4 *2)) (-4 *2 (-1157 *4)))) (-3773 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2)))) (-3185 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2))))) +(-13 (-1015) (-10 -8 (-15 -3626 ((-486) |t#2| $)) (-15 -3191 ((-85) |t#2| $)) (-15 -3190 ((-85) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3470 ((-3 |t#2| "failed") |t#2| $)) (-15 -3188 (|t#2| $)) (-15 -3187 ((-585 $) |t#2|)) (-15 -3186 ((-3 $ "failed") |t#2| (-832))) (-15 -3773 (|t#1| |t#2| $ |t#1|)) (-15 -3185 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-3439 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) (-696)) 114 T ELT)) (-3436 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696)) 63 T ELT)) (-3440 (((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-696)) 99 T ELT)) (-3434 (((-696) (-585 |#4|) (-585 |#5|)) 30 T ELT)) (-3437 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696)) 65 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696) (-85)) 67 T ELT)) (-3438 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85)) 87 T ELT)) (-3975 (((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) 92 T ELT)) (-3435 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3433 (((-696) (-585 |#4|) (-585 |#5|)) 21 T ELT))) +(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3433 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3434 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-85))) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696))) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696) (-85))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|)) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3439 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) (-696))) (-15 -3975 ((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)))) (-15 -3440 ((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-696)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -983)) +((-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *4 (-696)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) (-5 *1 (-983 *4 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1602 *11)))))) (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1602 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) (-4 *11 (-985 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-5 *1 (-983 *7 *8 *9 *10 *11)))) (-3438 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3438 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-983 *7 *8 *9 *3 *4)) (-4 *4 (-985 *7 *8 *9 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9))))) +((-3200 (((-85) |#5| $) 26 T ELT)) (-3198 (((-85) |#5| $) 29 T ELT)) (-3201 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3241 (((-585 $) |#5| $) NIL T ELT) (((-585 $) (-585 |#5|) $) 94 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 92 T ELT) (((-585 $) |#5| (-585 $)) 95 T ELT)) (-3772 (($ $ |#5|) NIL T ELT) (((-585 $) |#5| $) NIL T ELT) (((-585 $) |#5| (-585 $)) 73 T ELT) (((-585 $) (-585 |#5|) $) 75 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 77 T ELT)) (-3192 (((-585 $) |#5| $) NIL T ELT) (((-585 $) |#5| (-585 $)) 64 T ELT) (((-585 $) (-585 |#5|) $) 69 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 71 T ELT)) (-3199 (((-85) |#5| $) 32 T ELT))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3772 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3772 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3772 ((-585 |#1|) |#5| |#1|)) (-15 -3192 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3192 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3192 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3192 ((-585 |#1|) |#5| |#1|)) (-15 -3241 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3241 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3241 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3241 ((-585 |#1|) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3201 ((-85) |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#5| |#1|)) (-15 -3201 ((-85) |#5| |#1|)) (-15 -3772 (|#1| |#1| |#5|))) (-985 |#2| |#3| |#4| |#5|) (-393) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -984)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 58 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 53 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 52 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1356 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 54 T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 56 T ELT)) (-3951 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 51 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 55 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 64 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3949 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3936 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-985 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -985)) +((-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3200 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-3 (-85) (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3241 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3241 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3241 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3241 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3192 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3443 (*1 *1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3443 (*1 *1 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)))) (-3772 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3772 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3772 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3772 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *5 *6 *7 *8))))) +(-13 (-1126 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3201 ((-85) |t#4| $)) (-15 -3200 ((-85) |t#4| $)) (-15 -3199 ((-85) |t#4| $)) (-15 -3201 ((-85) $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-3 (-85) (-585 $)) |t#4| $)) (-15 -3196 ((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |t#4| $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-585 $) |t#4| $)) (-15 -3194 ((-3 |t#4| (-585 $)) |t#4| |t#4| $)) (-15 -3193 ((-585 (-2 (|:| |val| |t#4|) (|:| -1602 $))) |t#4| |t#4| $)) (-15 -3778 ((-585 (-2 (|:| |val| |t#4|) (|:| -1602 $))) |t#4| $)) (-15 -3241 ((-585 $) |t#4| $)) (-15 -3241 ((-585 $) (-585 |t#4|) $)) (-15 -3241 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3241 ((-585 $) |t#4| (-585 $))) (-15 -3192 ((-585 $) |t#4| $)) (-15 -3192 ((-585 $) |t#4| (-585 $))) (-15 -3192 ((-585 $) (-585 |t#4|) $)) (-15 -3192 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3443 ($ |t#4| $)) (-15 -3443 ($ (-585 |t#4|) $)) (-15 -3772 ((-585 $) |t#4| $)) (-15 -3772 ((-585 $) |t#4| (-585 $))) (-15 -3772 ((-585 $) (-585 |t#4|) $)) (-15 -3772 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3685 ((-585 $) (-585 |t#4|) (-85))))) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) +((-3208 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#5|) 86 T ELT)) (-3205 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3207 (((-585 |#5|) |#4| |#5|) 74 T ELT)) (-3206 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3289 (((-1187)) 36 T ELT)) (-3287 (((-1187)) 25 T ELT)) (-3288 (((-1187) (-1075) (-1075) (-1075)) 32 T ELT)) (-3286 (((-1187) (-1075) (-1075) (-1075)) 21 T ELT)) (-3202 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3203 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#3| (-85)) 117 T ELT) (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3204 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3286 ((-1187) (-1075) (-1075) (-1075))) (-15 -3287 ((-1187))) (-15 -3288 ((-1187) (-1075) (-1075) (-1075))) (-15 -3289 ((-1187))) (-15 -3202 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3203 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#3| (-85))) (-15 -3204 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|)) (-15 -3206 ((-85) |#4| |#5|)) (-15 -3206 ((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|)) (-15 -3207 ((-585 |#5|) |#4| |#5|)) (-15 -3208 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#5|))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -986)) +((-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3207 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *5 (-85)) (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *4 (-758)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1602 *9)))) (-5 *1 (-986 *6 *7 *4 *8 *9)))) (-3203 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3289 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3287 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3949 (((-774) $) 21 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-987) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3321 ((-1132) $))))) (T -987)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-987)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-987))))) +((-3269 (((-85) $ $) 7 T ELT))) +(((-988) (-13 (-1131) (-10 -8 (-15 -3269 ((-85) $ $))))) (T -988)) +((-3269 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-988))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3212 (($ $ (-585 (-1092)) (-1 (-85) (-585 |#3|))) 34 T ELT)) (-3213 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-585 (-1092))) 21 T ELT)) (-3531 ((|#3| $) 13 T ELT)) (-3160 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3159 (((-249 |#3|) $) NIL T ELT)) (-3210 (((-585 (-1092)) $) 16 T ELT)) (-3211 (((-802 |#1|) $) 11 T ELT)) (-3532 ((|#3| $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-832)) 41 T ELT)) (-3949 (((-774) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 38 T ELT))) +(((-989 |#1| |#2| |#3|) (-13 (-1015) (-241 |#3| |#3|) (-952 (-249 |#3|)) (-10 -8 (-15 -3213 ($ |#3| |#3|)) (-15 -3213 ($ |#3| |#3| (-585 (-1092)))) (-15 -3212 ($ $ (-585 (-1092)) (-1 (-85) (-585 |#3|)))) (-15 -3211 ((-802 |#1|) $)) (-15 -3532 (|#3| $)) (-15 -3531 (|#3| $)) (-15 -3803 (|#3| $ |#3| (-832))) (-15 -3210 ((-585 (-1092)) $)))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-364 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -989)) +((-3213 (*1 *1 *2 *2) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))))) (-3213 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) (-3212 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1 (-85) (-585 *6))) (-4 *6 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *6)))) (-3211 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 *2))) (-5 *2 (-802 *3)) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 *2))))) (-3532 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) (-3531 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) (-3803 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *2 (-585 (-1092))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-1092) $) 8 T ELT)) (-3245 (((-1075) $) 17 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 14 T ELT))) +(((-990 |#1|) (-13 (-1015) (-10 -8 (-15 -3545 ((-1092) $)))) (-1092)) (T -990)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-990 *3)) (-14 *3 *2)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3215 (($ (-585 (-989 |#1| |#2| |#3|))) 15 T ELT)) (-3214 (((-585 (-989 |#1| |#2| |#3|)) $) 22 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-832)) 28 T ELT)) (-3949 (((-774) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 21 T ELT))) +(((-991 |#1| |#2| |#3|) (-13 (-1015) (-241 |#3| |#3|) (-10 -8 (-15 -3215 ($ (-585 (-989 |#1| |#2| |#3|)))) (-15 -3214 ((-585 (-989 |#1| |#2| |#3|)) $)) (-15 -3803 (|#3| $ |#3| (-832))))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-364 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -991)) +((-3215 (*1 *1 *2) (-12 (-5 *2 (-585 (-989 *3 *4 *5))) (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-991 *3 *4 *5)))) (-3214 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *2 (-585 (-989 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))))) (-3803 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4))))))) +((-3216 (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)) 88 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|))) 92 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85)) 90 T ELT))) +(((-992 |#1| |#2|) (-10 -7 (-15 -3216 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85))) (-15 -3216 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3216 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-585 (-1092))) (T -992)) +((-3216 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))))) (-3216 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 132 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1787 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) 117 T ELT)) (-3333 ((|#1| $) 121 T ELT)) (-1677 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3139 (((-696)) 43 (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) NIL T ELT) (($ (-1181 |#1|)) 46 T ELT)) (-1675 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 109 T ELT) (((-632 |#1|) (-632 $)) 104 T ELT)) (-3845 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3111 (((-832)) 80 T ELT)) (-2997 (($) 47 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-2836 (($) NIL (|has| |#1| (-299)) ELT)) (-1682 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-299)) ELT) (((-745 (-832)) $) NIL (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-299)) ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2016 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2012 (((-832) $) 140 (|has| |#1| (-320)) ELT)) (-3082 ((|#2| $) 59 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3449 (($) NIL (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 131 (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) 123 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1678 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-299)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL (|has| |#1| (-312)) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3188 ((|#2|) 77 T ELT)) (-1676 (($) NIL (|has| |#1| (-299)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 92 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#1|) $) 72 T ELT) (((-632 |#1|) (-1181 $)) 88 T ELT)) (-3975 (((-1181 |#1|) $) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-299)) ELT)) (-3949 (((-774) $) 58 T ELT) (($ (-486)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (($ $) NIL (|has| |#1| (-299)) ELT) (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 85 T ELT)) (-3129 (((-696)) 79 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 84 T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 19 T CONST)) (-2672 (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL (|has| |#1| (-312)) ELT)) (-3059 (((-85) $ $) 64 T ELT)) (-3952 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 66 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-312)) ELT))) +(((-993 |#1| |#2| |#3|) (-663 |#1| |#2|) (-146) (-1157 |#1|) |#2|) (T -993)) +NIL +((-3735 (((-348 |#3|) |#3|) 18 T ELT))) +(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-348 |#3|) |#3|))) (-1157 (-350 (-486))) (-13 (-312) (-120) (-663 (-350 (-486)) |#1|)) (-1157 |#2|)) (T -994)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-13 (-312) (-120) (-663 (-350 (-486)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1157 *5))))) +((-3735 (((-348 |#3|) |#3|) 19 T ELT))) +(((-995 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-348 |#3|) |#3|))) (-1157 (-350 (-859 (-486)))) (-13 (-312) (-120) (-663 (-350 (-859 (-486))) |#1|)) (-1157 |#2|)) (T -995)) +((-3735 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 (-859 (-486))))) (-4 *5 (-13 (-312) (-120) (-663 (-350 (-859 (-486))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1157 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) 16 T ELT)) (-2860 (($ $ $) 17 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3217 (($) 6 T ELT)) (-3975 (((-1092) $) 20 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 15 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 9 T ELT))) +(((-996) (-13 (-758) (-555 (-1092)) (-10 -8 (-15 -3217 ($))))) (T -996)) +((-3217 (*1 *1) (-5 *1 (-996)))) +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-1097)) 20 T ELT) (((-1097) $) 19 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-997) (-113)) (T -997)) NIL (-13 (-64)) -(((-64) . T) ((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-3219 ((|#1| |#1| (-1 (-485) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3217 (((-1186)) 21 T ELT)) (-3218 (((-584 |#1|)) 13 T ELT))) -(((-997 |#1|) (-10 -7 (-15 -3217 ((-1186))) (-15 -3218 ((-584 |#1|))) (-15 -3219 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3219 (|#1| |#1| (-1 (-485) |#1| |#1|)))) (-105)) (T -997)) -((-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3218 (*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105)))) (-3217 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-105))))) -((-3222 (($ (-78) $) 20 T ELT)) (-3223 (((-633 (-78)) (-447) $) 19 T ELT)) (-3567 (($) 7 T ELT)) (-3221 (($) 21 T ELT)) (-3220 (($) 22 T ELT)) (-3224 (((-584 (-149)) $) 10 T ELT)) (-3948 (((-773) $) 25 T ELT))) -(((-998) (-13 (-553 (-773)) (-10 -8 (-15 -3567 ($)) (-15 -3224 ((-584 (-149)) $)) (-15 -3223 ((-633 (-78)) (-447) $)) (-15 -3222 ($ (-78) $)) (-15 -3221 ($)) (-15 -3220 ($))))) (T -998)) -((-3567 (*1 *1) (-5 *1 (-998))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998)))) (-3222 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998)))) (-3221 (*1 *1) (-5 *1 (-998))) (-3220 (*1 *1) (-5 *1 (-998)))) -((-3225 (((-1180 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|))) 75 T ELT) (((-1180 (-631 (-350 (-858 |#1|)))) (-584 (-1091)) (-631 (-350 (-858 |#1|)))) 92 T ELT)) (-3226 (((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT))) -(((-999 |#1|) (-10 -7 (-15 -3225 ((-1180 (-631 (-350 (-858 |#1|)))) (-584 (-1091)) (-631 (-350 (-858 |#1|))))) (-15 -3225 ((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|)))) (-15 -3225 ((-1180 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3226 ((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-312)) (T -999)) -((-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-1180 *5)) (-5 *1 (-999 *5)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-999 *4)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-858 *5)))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-350 (-858 *5))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3083 (((-584 (-1001 (-1091))) $) NIL T ELT)) (-3085 (((-1086 $) $ (-1001 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1001 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1001 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3758 (($ $ $ (-1001 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1001 (-1091))) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1001 (-1091)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1001 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-1001 (-1091))) NIL T ELT) (($ (-1086 $) (-1001 (-1091))) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-1001 (-1091))) NIL T ELT)) (-2822 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1001 (-1091))) (-470 (-1001 (-1091)))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 (-1001 (-1091)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 (((-1001 (-1091)) $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-1001 (-1091))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1001 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-1001 (-1091)) $) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3759 (($ $ (-1001 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3950 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1001 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1000 |#1|) (-13 (-213 |#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -1000)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3833 ((|#1| $) 10 T ELT)) (-3159 (((-3 |#1| "failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3774 (((-695) $) 11 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 16 T ELT))) -(((-1001 |#1|) (-228 |#1|) (-757)) (T -1001)) -NIL -((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (($ |#1| |#1|) 16 T ELT)) (-3960 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3233 ((|#1| $) 11 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3229 (((-485) $) 15 T ELT)) (-3230 ((|#1| $) 14 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3965 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3974 (($ |#1|) 29 T ELT)) (-3948 (((-773) $) 28 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3739 (($ |#1| |#1|) 10 T ELT)) (-3234 (($ $ (-485)) 17 T ELT)) (-3058 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT))) -(((-1002 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-584 |#1|))) |%noBranch|))) (-1130)) (T -1002)) -NIL -((-3960 (((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 14 T ELT))) -(((-1003 |#1| |#2|) (-10 -7 (-15 -3960 ((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) (IF (|has| |#1| (-756)) (-15 -3960 ((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1003)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3227 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1004) (-13 (-996) (-10 -8 (-15 -3227 ((-584 (-1050)) $))))) (T -1004)) -((-3227 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1004))))) -((-2570 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3833 (((-1091) $) NIL T ELT)) (-3738 (((-1002 |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3228 (($ (-1091) (-1002 |#1|)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3058 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT))) -(((-1005 |#1|) (-13 (-1130) (-10 -8 (-15 -3228 ($ (-1091) (-1002 |#1|))) (-15 -3833 ((-1091) $)) (-15 -3738 ((-1002 |#1|) $)) (IF (|has| (-1002 |#1|) (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1005)) -((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130))))) -((-3960 (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 19 T ELT))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -3960 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)))) (-1130) (-1130)) (T -1006)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6))))) -((-3738 (($ |#1| |#1|) 8 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3229 (((-485) $) 9 T ELT)) (-3230 ((|#1| $) 10 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3974 (($ |#1|) 6 T ELT)) (-3739 (($ |#1| |#1|) 15 T ELT)) (-3234 (($ $ (-485)) 14 T ELT))) -(((-1007 |#1|) (-113) (-1130)) (T -1007)) -((-3739 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3234 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3738 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) -(-13 (-558 |t#1|) (-10 -8 (-15 -3739 ($ |t#1| |t#1|)) (-15 -3234 ($ $ (-485))) (-15 -3233 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 ((-485) $)) (-15 -3738 ($ |t#1| |t#1|)))) -(((-558 |#1|) . T)) -((-3738 (($ |#1| |#1|) 8 T ELT)) (-3960 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3229 (((-485) $) 9 T ELT)) (-3230 ((|#1| $) 10 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3965 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3974 (($ |#1|) 6 T ELT)) (-3739 (($ |#1| |#1|) 15 T ELT)) (-3234 (($ $ (-485)) 14 T ELT))) -(((-1008 |#1| |#2|) (-113) (-756) (-1065 |t#1|)) (T -1008)) -((-3965 (*1 *2 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3)))) (-3960 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4))))) -(-13 (-1007 |t#1|) (-10 -8 (-15 -3965 (|t#2| (-584 $))) (-15 -3965 (|t#2| $)) (-15 -3960 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-558 |#1|) . T) ((-1007 |#1|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3800 (((-1050) $) 14 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1009) (-13 (-996) (-10 -8 (-15 -3235 ((-584 (-1050)) $)) (-15 -3800 ((-1050) $))))) (T -1009)) -((-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1009)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1009))))) -((-2570 (((-85) $ $) NIL T ELT)) (-1806 (($) NIL (|has| |#1| (-320)) ELT)) (-3236 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3238 (($ $ $) 81 T ELT)) (-3237 (((-85) $ $) 83 T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3241 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) 75 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-85) $ $) NIL T ELT)) (-2533 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 20 T ELT)) (-3247 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 79 T ELT)) (-1275 ((|#1| $) 26 T ELT)) (-3611 (($ |#1| $) 70 T ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1276 ((|#1| $) 28 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 22 T ELT)) (-3567 (($) 12 T ELT)) (-3239 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 17 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 63 T ELT)) (-1807 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT)) (-1808 (((-695) $) NIL T ELT)) (-3242 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 53 T ELT)) (-3959 (((-695) $) 11 T ELT))) -(((-1010 |#1|) (-369 |#1|) (-1014)) (T -1010)) -NIL -((-3236 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3238 (($ $ $) 10 T ELT)) (-3239 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -3236 (|#1| |#2| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#2|)) (-15 -3239 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3236 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3238 (($ $ $) 24 T ELT)) (-3237 (((-85) $ $) 23 T ELT)) (-3241 (($) 29 T ELT) (($ (-584 |#1|)) 28 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) 46 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 37 T CONST)) (-1354 (($ $) 48 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 47 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 45 (|has| $ (-318 |#1|)) ELT)) (-3243 (((-85) $ $) 32 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3240 (($ $ $) 27 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 44 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 42 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 41 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 40 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) 39 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 33 T ELT)) (-3405 (((-85) $) 36 T ELT)) (-3567 (($) 35 T ELT)) (-3239 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-3402 (($ $) 34 T ELT)) (-3974 (((-474) $) 49 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 43 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-3242 (($) 31 T ELT) (($ (-584 |#1|)) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-1012 |#1|) (-113) (-1014)) (T -1012)) -((-3243 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3242 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3241 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3239 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3237 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3236 (*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(-13 (-1014) (-124 |t#1|) (-10 -8 (-6 -3987) (-15 -3243 ((-85) $ $)) (-15 -3242 ($)) (-15 -3242 ($ (-584 |t#1|))) (-15 -3241 ($)) (-15 -3241 ($ (-584 |t#1|))) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ |t#1|)) (-15 -3238 ($ $ $)) (-15 -3237 ((-85) $ $)) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |t#1|)) (-15 -3236 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-3244 (((-1074) $) 10 T ELT)) (-3245 (((-1034) $) 8 T ELT))) -(((-1013 |#1|) (-10 -7 (-15 -3244 ((-1074) |#1|)) (-15 -3245 ((-1034) |#1|))) (-1014)) (T -1013)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-1014) (-113)) (T -1014)) -((-3245 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1074))))) -(-13 (-72) (-553 (-773)) (-10 -8 (-15 -3245 ((-1034) $)) (-15 -3244 ((-1074) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 36 T ELT)) (-3249 (($ (-584 (-831))) 70 T ELT)) (-3251 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2996 (($) 40 T ELT)) (-3247 (((-85) (-831) $) 42 T ELT)) (-2011 (((-831) $) 64 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 39 T ELT)) (-3252 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3248 (((-1180 $)) 47 T ELT)) (-3250 (((-584 (-831)) $) 27 T ELT)) (-3246 (((-695) $ (-831) (-831)) 78 T ELT)) (-3948 (((-773) $) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 24 T ELT))) -(((-1015 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3252 ((-3 $ #1="failed") $ (-831))) (-15 -3251 ((-3 $ #1#) $ (-831) (-831))) (-15 -3250 ((-584 (-831)) $)) (-15 -3249 ($ (-584 (-831)))) (-15 -3248 ((-1180 $))) (-15 -3247 ((-85) (-831) $)) (-15 -3246 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1015)) -((-3252 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3251 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3248 (*1 *2) (-12 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-1091) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3537 (((-1074) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-179) $) NIL T ELT)) (-3255 (((-773) $) NIL T ELT)) (-3268 (((-85) $ $) NIL T ELT)) (-3802 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3259 (((-584 $) $) NIL T ELT)) (-3974 (($ (-1074)) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3253 (($ $) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-485) $) NIL T ELT))) -(((-1016) (-1017 (-1074) (-1091) (-485) (-179) (-773))) (T -1016)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3262 (((-85) $) 36 T ELT)) (-3258 ((|#2| $) 31 T ELT)) (-3263 (((-85) $) 37 T ELT)) (-3537 ((|#1| $) 32 T ELT)) (-3265 (((-85) $) 39 T ELT)) (-3267 (((-85) $) 41 T ELT)) (-3264 (((-85) $) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3261 (((-85) $) 35 T ELT)) (-3257 ((|#3| $) 30 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3260 (((-85) $) 34 T ELT)) (-3256 ((|#4| $) 29 T ELT)) (-3255 ((|#5| $) 28 T ELT)) (-3268 (((-85) $ $) 42 T ELT)) (-3802 (($ $ (-485)) 44 T ELT) (($ $ (-584 (-485))) 43 T ELT)) (-3259 (((-584 $) $) 33 T ELT)) (-3974 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-3253 (($ $) 26 T ELT)) (-3254 (($ $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3266 (((-85) $) 40 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-485) $) 25 T ELT))) -(((-1017 |#1| |#2| |#3| |#4| |#5|) (-113) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017)) -((-3268 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485))))) -(-13 (-1014) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-241 (-485) $) (-241 (-584 (-485)) $) (-10 -8 (-15 -3268 ((-85) $ $)) (-15 -3267 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-584 $) $)) (-15 -3537 (|t#1| $)) (-15 -3258 (|t#2| $)) (-15 -3257 (|t#3| $)) (-15 -3256 (|t#4| $)) (-15 -3255 (|t#5| $)) (-15 -3254 ($ $)) (-15 -3253 ($ $)) (-15 -3959 ((-485) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-241 (-485) $) . T) ((-241 (-584 (-485)) $) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) 45 T ELT)) (-3258 ((|#2| $) 48 T ELT)) (-3263 (((-85) $) 20 T ELT)) (-3537 ((|#1| $) 21 T ELT)) (-3265 (((-85) $) 42 T ELT)) (-3267 (((-85) $) 14 T ELT)) (-3264 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3261 (((-85) $) 46 T ELT)) (-3257 ((|#3| $) 50 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3260 (((-85) $) 47 T ELT)) (-3256 ((|#4| $) 49 T ELT)) (-3255 ((|#5| $) 51 T ELT)) (-3268 (((-85) $ $) 41 T ELT)) (-3802 (($ $ (-485)) 62 T ELT) (($ $ (-584 (-485))) 64 T ELT)) (-3259 (((-584 $) $) 27 T ELT)) (-3974 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3948 (((-773) $) 28 T ELT)) (-3253 (($ $) 26 T ELT)) (-3254 (($ $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 23 T ELT)) (-3058 (((-85) $ $) 40 T ELT)) (-3959 (((-485) $) 60 T ELT))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1018)) -NIL -((-3271 (((-85) |#5| |#5|) 44 T ELT)) (-3274 (((-85) |#5| |#5|) 59 T ELT)) (-3279 (((-85) |#5| (-584 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3281 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3270 (((-1186)) 32 T ELT)) (-3269 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3280 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3282 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 93 T ELT)) (-3283 (((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 123 T ELT)) (-3273 (((-85) |#5| |#5|) 53 T ELT)) (-3278 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3277 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3701 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3284 (((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3272 (((-584 |#5|) (-584 |#5|)) 49 T ELT))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3269 ((-1186) (-1074) (-1074) (-1074))) (-15 -3270 ((-1186))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-584 |#5|) (-584 |#5|))) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3701 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3278 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3279 ((-85) |#5| |#5|)) (-15 -3279 ((-85) |#5| (-584 |#5|))) (-15 -3280 ((-584 |#5|) (-584 |#5|))) (-15 -3281 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3282 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-15 -3283 ((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3284 ((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1019)) -((-3284 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3270 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) -((-3299 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 106 T ELT)) (-3289 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3292 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3294 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3296 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3298 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3293 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 107 T ELT)) (-3295 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 128 T ELT)) (-3297 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3290 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3291 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3288 (((-1186)) 36 T ELT)) (-3286 (((-1186)) 25 T ELT)) (-3287 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3285 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT))) -(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3285 ((-1186) (-1074) (-1074) (-1074))) (-15 -3286 ((-1186))) (-15 -3287 ((-1186) (-1074) (-1074) (-1074))) (-15 -3288 ((-1186))) (-15 -3289 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3290 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3291 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3292 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3297 ((-85) |#4| |#5|)) (-15 -3293 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3294 ((-584 |#5|) |#4| |#5|)) (-15 -3295 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3296 ((-584 |#5|) |#4| |#5|)) (-15 -3297 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3298 ((-584 |#5|) |#4| |#5|)) (-15 -3299 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1020)) -((-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-1020 *6 *7 *4 *8 *9)))) (-3290 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3288 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3286 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 87 T ELT)) (-3687 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 67 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3685 ((|#4| |#4| $) 92 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 116 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 112 T ELT)) (-3693 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-3701 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 64 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3771 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 111 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 69 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 63 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 81 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-1021 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1021)) -NIL -(-13 (-984 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) -((-3310 (((-584 (-485)) (-485) (-485) (-485)) 40 T ELT)) (-3309 (((-584 (-485)) (-485) (-485) (-485)) 30 T ELT)) (-3308 (((-584 (-485)) (-485) (-485) (-485)) 35 T ELT)) (-3307 (((-485) (-485) (-485)) 22 T ELT)) (-3306 (((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485)) 78 T ELT) (((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485)) 73 T ELT)) (-3305 (((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85)) 56 T ELT)) (-3304 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 77 T ELT)) (-3303 (((-631 (-485)) (-584 (-831)) (-584 (-485))) 61 T ELT)) (-3302 (((-584 (-631 (-485))) (-584 (-831))) 66 T ELT)) (-3301 (((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 81 T ELT)) (-3300 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485))) 91 T ELT))) -(((-1022) (-10 -7 (-15 -3300 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485)))) (-15 -3301 ((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3302 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -3303 ((-631 (-485)) (-584 (-831)) (-584 (-485)))) (-15 -3304 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3305 ((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85))) (-15 -3306 ((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485))) (-15 -3306 ((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485))) (-15 -3307 ((-485) (-485) (-485))) (-15 -3308 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3309 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3310 ((-584 (-485)) (-485) (-485) (-485))))) (T -1022)) -((-3310 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3307 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022)))) (-3306 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) (-5 *1 (-1022)))) (-3306 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) (-3305 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) (-5 *1 (-1022)))) (-3304 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))) (-3301 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))) (-3300 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3311 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1023 |#1|) (-13 (-1024 |#1|) (-1014) (-10 -8 (-15 -3311 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1023)) -((-3311 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3))))) -((-3802 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-1024 |#1|) (-113) (-72)) (T -1024)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) -((** (($ $ (-831)) 10 T ELT))) -(((-1025 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831)))) (-1026)) (T -1025)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1026) (-113)) (T -1026)) -((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831))))) -(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-831))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3709 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#3|)) ELT)) (-2485 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3790 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) ((|#3| $) NIL (|has| |#3| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2996 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3114 ((|#3| $ (-485)) 12 T ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2610 (((-584 |#3|) $) NIL T ELT)) (-3247 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3960 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#3| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#3| (-1014)) ELT)) (-3803 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) NIL T ELT)) (-3838 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1731 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#3|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2662 (($) NIL (|has| |#3| (-23)) CONST)) (-2668 (($) NIL (|has| |#3| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2687 (((-85) $ $) 24 (|has| |#3| (-757)) ELT)) (-3951 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-485) $) NIL (|has| |#3| (-21)) ELT) (($ (-695) $) NIL (|has| |#3| (-23)) ELT) (($ (-831) $) NIL (|has| |#3| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1027 |#1| |#2| |#3|) (-196 |#1| |#3|) (-695) (-695) (-718)) (T -1027)) -NIL -((-3312 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 50 T ELT)) (-3318 (((-485) (-1149 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3316 (((-485) (-1149 |#2| |#1|)) 79 T ELT)) (-3313 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 58 T ELT)) (-3317 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3314 (((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 61 T ELT)) (-3315 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 78 T ELT))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -3312 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3313 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3314 ((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3315 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3316 ((-485) (-1149 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-15 -3317 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3318 ((-485) (-1149 |#2| |#1|)))) |%noBranch|)) (-741) (-1091)) (T -1028)) -((-3318 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 *4)) (-5 *1 (-1028 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1096) $) 12 T ELT)) (-3319 (((-584 (-1096)) $) 14 T ELT)) (-3321 (($ (-584 (-1096)) (-1096)) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT))) -(((-1029) (-13 (-1014) (-10 -8 (-15 -3321 ($ (-584 (-1096)) (-1096))) (-15 -3320 ((-1096) $)) (-15 -3319 ((-584 (-1096)) $))))) (T -1029)) -((-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1029))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3322 (($ (-447) (-1029)) 14 T ELT)) (-3321 (((-1029) $) 20 T ELT)) (-3544 (((-447) $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1030) (-13 (-996) (-10 -8 (-15 -3322 ($ (-447) (-1029))) (-15 -3544 ((-447) $)) (-15 -3321 ((-1029) $))))) (T -1030)) -((-3322 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030))))) -((-3625 (((-3 (-485) #1="failed") |#2| (-1091) |#2| (-1074)) 19 T ELT) (((-3 (-485) #1#) |#2| (-1091) (-751 |#2|)) 17 T ELT) (((-3 (-485) #1#) |#2|) 60 T ELT))) -(((-1031 |#1| |#2|) (-10 -7 (-15 -3625 ((-3 (-485) #1="failed") |#2|)) (-15 -3625 ((-3 (-485) #1#) |#2| (-1091) (-751 |#2|))) (-15 -3625 ((-3 (-485) #1#) |#2| (-1091) |#2| (-1074)))) (-13 (-496) (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|))) (T -1031)) -((-3625 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))))) (-3625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)))) (-3625 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))) -((-3625 (((-3 (-485) #1="failed") (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)) (-1074)) 38 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-751 (-350 (-858 |#1|)))) 33 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|))) 14 T ELT))) -(((-1032 |#1|) (-10 -7 (-15 -3625 ((-3 (-485) #1="failed") (-350 (-858 |#1|)))) (-15 -3625 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-751 (-350 (-858 |#1|))))) (-15 -3625 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)) (-1074)))) (-392)) (T -1032)) -((-3625 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *4))))) -((-3651 (((-265 (-485)) (-48)) 12 T ELT))) -(((-1033) (-10 -7 (-15 -3651 ((-265 (-485)) (-48))))) (T -1033)) -((-3651 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033))))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 22 T ELT)) (-3190 (((-85) $) 49 T ELT)) (-3323 (($ $ $) 28 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 75 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 59 T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 61 T ELT)) (-3625 (((-485) $) NIL T ELT)) (-2443 (($ $ $) 56 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) 42 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 70 T ELT) (((-631 (-485)) (-631 $)) 8 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-350 (-485)) $) NIL T ELT)) (-2996 (($) 73 T ELT) (($ $) 72 T ELT)) (-2565 (($ $ $) 41 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 71 T ELT)) (-3188 (((-85) $) 76 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-2563 (($ $ $) 27 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 50 T ELT)) (-2675 (((-85) $) 47 T ELT)) (-2562 (($ $) 23 T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-3189 (((-85) $) 60 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 57 T ELT)) (-2533 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2859 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2045 (($ $) NIL T ELT)) (-2011 (((-831) $) 66 T ELT)) (-3835 (($ $) 55 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2401 (($ (-831)) 65 T ELT)) (-2047 (($ $) 33 T ELT)) (-3245 (((-1034) $) 54 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) 48 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 44 T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 34 T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-485) $) 12 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT) (($ (-485)) 13 T ELT) (($ $) NIL T ELT) (($ (-485)) 13 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) 17 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 26 T ELT)) (-2044 (($ $ $ $) 58 T ELT)) (-3385 (($ $) 46 T ELT)) (-2312 (($ $ $) 25 T ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) 32 T ELT)) (-2569 (((-85) $ $) 30 T ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 31 T ELT)) (-2687 (((-85) $ $) 29 T ELT)) (-2313 (($ $ $) 24 T ELT)) (-3839 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3841 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-485) $) 14 T ELT))) -(((-1034) (-13 (-484) (-753) (-84) (-10 -8 (-6 -3984) (-6 -3989) (-6 -3985) (-15 -3323 ($ $ $))))) (T -1034)) -((-3323 (*1 *1 *1 *1) (-5 *1 (-1034)))) -((-485) (|%ismall?| |#1|)) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 40 T ELT)) (-3726 (($) 6 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-3327 ((|#1| |#1| $) 42 T ELT)) (-3326 ((|#1| $) 41 T ELT)) (-2610 (((-584 |#1|) $) 47 T ELT)) (-3247 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3324 (((-695) $) 39 T ELT)) (-1731 (((-695) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 46 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-1035 |#1|) (-113) (-1130)) (T -1035)) -((-3327 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3327 (|t#1| |t#1| $)) (-15 -3326 (|t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 ((-695) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3328 (($ (-1 |#1| |#1|) $) 33 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-1036 |#1|) (-113) (-1130)) (T -1036)) -((-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130))))) -(-13 (-429 |t#1|) (-10 -8 (-15 -3328 ($ (-1 |t#1| |t#1|) $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-3332 ((|#3| $) 87 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3760 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3331 ((|#3| $) 89 T ELT)) (-3333 ((|#4| $) 43 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-485)) 95 T ELT))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3331 (|#3| |#1|)) (-15 -3332 (|#3| |#1|)) (-15 -3333 (|#4| |#1|)) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3948 (|#1| |#3|)) (-15 -3159 ((-3 |#3| #1="failed") |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3948 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3948 ((-773) |#1|))) (-1038 |#2| |#3| |#4| |#5|) (-695) (-962) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1037)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3332 ((|#2| $) 90 T ELT)) (-3122 (((-85) $) 132 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3124 (((-85) $) 130 T ELT)) (-3335 (($ |#2|) 93 T ELT)) (-3726 (($) 23 T CONST)) (-3111 (($ $) 149 (|has| |#2| (-258)) ELT)) (-3113 ((|#3| $ (-485)) 144 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3158 (((-485) $) 108 (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) 104 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 99 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 98 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 97 T ELT) (((-631 |#2|) (-631 $)) 96 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) 114 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 113 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 110 (|has| |#2| (-72)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-695) $) 150 (|has| |#2| (-496)) ELT)) (-3114 ((|#2| $ (-485) (-485)) 142 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3109 (((-695) $) 151 (|has| |#2| (-496)) ELT)) (-3108 (((-584 |#4|) $) 152 (|has| |#2| (-496)) ELT)) (-3116 (((-695) $) 138 T ELT)) (-3115 (((-695) $) 139 T ELT)) (-3329 ((|#2| $) 85 (|has| |#2| (-6 (-3999 #2="*"))) ELT)) (-3120 (((-485) $) 134 T ELT)) (-3118 (((-485) $) 136 T ELT)) (-2610 (((-584 |#2|) $) 115 T ELT)) (-3247 (((-85) |#2| $) 111 (|has| |#2| (-72)) ELT)) (-3119 (((-485) $) 135 T ELT)) (-3117 (((-485) $) 137 T ELT)) (-3125 (($ (-584 (-584 |#2|))) 129 T ELT)) (-3960 (($ (-1 |#2| |#2| |#2|) $ $) 146 T ELT) (($ (-1 |#2| |#2|) $) 124 T ELT)) (-3596 (((-584 (-584 |#2|)) $) 140 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 101 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 100 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 95 T ELT) (((-631 |#2|) (-1180 $)) 94 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3592 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ |#2|) 147 (|has| |#2| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 117 T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) 123 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 122 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 121 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 128 T ELT)) (-3405 (((-85) $) 125 T ELT)) (-3567 (($) 126 T ELT)) (-3802 ((|#2| $ (-485) (-485) |#2|) 143 T ELT) ((|#2| $ (-485) (-485)) 141 T ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-695)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 63 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#2| (-812 (-1091))) ELT)) (-3331 ((|#2| $) 89 T ELT)) (-3334 (($ (-584 |#2|)) 92 T ELT)) (-3123 (((-85) $) 131 T ELT)) (-3333 ((|#3| $) 91 T ELT)) (-3330 ((|#2| $) 86 (|has| |#2| (-6 (-3999 #2#))) ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) 116 T ELT) (((-695) |#2| $) 112 (|has| |#2| (-72)) ELT)) (-3402 (($ $) 127 T ELT)) (-3112 ((|#4| $ (-485)) 145 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 107 (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) 102 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 118 T ELT)) (-3121 (((-85) $) 133 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-695)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 62 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#2|) 148 (|has| |#2| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 154 T ELT) (($ |#2| $) 153 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3959 (((-695) $) 119 T ELT))) -(((-1038 |#1| |#2| |#3| |#4|) (-113) (-695) (-962) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1038)) -((-3335 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3999 #1="*"))) (-4 *2 (-962)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3999 #1#))) (-4 *2 (-962)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) -(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3335 ($ |t#2|)) (-15 -3334 ($ (-584 |t#2|))) (-15 -3333 (|t#3| $)) (-15 -3332 (|t#2| $)) (-15 -3331 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3999 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3330 (|t#2| $)) (-15 -3329 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3592 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3999 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-485)) |has| |#2| (-581 (-485))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3999 #1#)))) ((-581 (-485)) |has| |#2| (-581 (-485))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3999 #1#)))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-810 (-1091)) |has| |#2| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#2| (-951 (-485))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3338 ((|#4| |#4|) 81 T ELT)) (-3336 ((|#4| |#4|) 76 T ELT)) (-3340 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3339 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3337 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1039 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3336 (|#4| |#4|)) (-15 -3337 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3338 (|#4| |#4|)) (-15 -3339 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3340 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1039)) -((-3340 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 18 T ELT)) (-3083 (((-584 |#2|) $) 174 T ELT)) (-3085 (((-1086 $) $ |#2|) 60 T ELT) (((-1086 |#1|) $) 49 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 116 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 118 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 120 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#1| $) 165 T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT)) (-3758 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) 218 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 90 T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 20 T ELT)) (-2421 (((-695) $) 30 T ELT)) (-3086 (($ (-1086 |#1|) |#2|) 54 T ELT) (($ (-1086 $) |#2|) 71 T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) 38 T ELT)) (-2895 (($ |#1| (-470 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-2822 (((-470 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3084 (((-3 |#2| #1#) $) 177 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) 217 T ELT)) (-3176 ((|#1| $) 43 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 39 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 148 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3759 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3950 (((-470 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 159 T ELT) (($ (-485)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) 162 T ELT)) (-3679 ((|#1| $ (-470 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 87 T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 123 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) 106 T ELT)) (-3951 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3841 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1040 |#1| |#2|) (-862 |#1| (-470 |#2|) |#2|) (-962) (-757)) (T -1040)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3494 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 125 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 121 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3496 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 129 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3816 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ $ (-584 |#2|) (-584 (-470 |#2|))) NIL T ELT) (($ $ |#2| (-470 |#2|)) NIL T ELT) (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3678 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 (($ $ (-695)) 17 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3950 (((-470 |#2|) $) NIL T ELT)) (-3341 (((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|))) 87 T ELT)) (-3497 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 127 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 123 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 19 T ELT)) (-3948 (((-773) $) 194 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3679 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 139 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 52 T CONST)) (-2668 (($) 62 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-485))) 114 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1041 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -3679 (|#3| $ (-695))) (-15 -3948 ($ |#2|)) (-15 -3948 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3341 ((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $ |#2| |#1|)) (-15 -3678 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-470 |#2|) |#2|)) (T -1041)) -((-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1041 *5 *6 *7)))) (-3814 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3678 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 87 T ELT)) (-3687 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 67 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3685 ((|#4| |#4| $) 92 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 116 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 112 T ELT)) (-3693 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-3701 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 64 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3771 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 111 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 69 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 63 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 81 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-1042 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1042)) -NIL -(-13 (-1021 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1021 |#1| |#2| |#3| |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) -((-3575 (((-584 |#2|) |#1|) 15 T ELT)) (-3347 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3345 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3342 ((|#2| |#1|) 54 T ELT)) (-3343 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3344 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3346 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3351 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3349 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3348 ((|#2| |#2| |#2|) 50 T ELT)) (-3350 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1043 |#1| |#2|) (-10 -7 (-15 -3575 ((-584 |#2|) |#1|)) (-15 -3342 (|#2| |#1|)) (-15 -3343 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3344 ((-584 |#2|) |#1|)) (-15 -3345 ((-584 |#2|) |#1|)) (-15 -3346 ((-584 |#2|) |#1|)) (-15 -3347 ((-584 |#2|) |#1|)) (-15 -3344 ((-584 |#2|) |#2| |#2|)) (-15 -3345 ((-584 |#2|) |#2| |#2| |#2|)) (-15 -3346 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3347 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3351 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1156 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (T -1043)) -((-3351 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3350 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3349 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3348 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3347 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3346 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3345 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3344 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))) (-3342 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))) -((-3352 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091))) 118 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 113 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|)))) 97 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1091)) 98 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|))) 92 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1091)) 82 T ELT)) (-3353 (((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 111 T ELT) (((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1091)) 54 T ELT)) (-3354 (((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1091)) 123 T ELT) (((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091)) 122 T ELT))) -(((-1044 |#1|) (-10 -7 (-15 -3352 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -3352 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)))) (-15 -3352 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3352 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091)))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3353 ((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1091))) (-15 -3353 ((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3354 ((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3354 ((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -1044)) -((-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-265 *5))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5))))) -((-3356 (((-350 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-350 (-1086 (-265 |#1|))) (-485)) 36 T ELT)) (-3355 (((-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|)))) 48 T ELT))) -(((-1045 |#1|) (-10 -7 (-15 -3355 ((-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))))) (-15 -3356 ((-350 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-350 (-1086 (-265 |#1|))) (-485)))) (-496)) (T -1045)) -((-3356 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))) (-3355 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3))))) -((-3575 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1091))) 244 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1091)) 23 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091)) 29 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) -(((-1046 |#1|) (-10 -7 (-15 -3575 ((-584 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3575 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3575 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091))) (-15 -3575 ((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1091))) (-15 -3575 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1091))))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (T -1046)) -((-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) (-5 *3 (-584 (-249 (-265 *5)))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-249 (-265 *5))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-249 (-265 *4))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4))))) -((-3358 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3357 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) -(((-1047 |#1| |#2|) (-10 -7 (-15 -3357 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3358 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-15 -3357 (|#2| |#2|)) (-15 -3358 (|#2| |#2|))) |%noBranch|)) (-1130) (-13 (-539 (-485) |#1|) (-318 |#1|) (-1036 |#1|))) (T -1047)) -((-3358 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3))))) (-3358 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4))))) (-3357 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3890 (((-1080 3 |#1|) $) 141 T ELT)) (-3368 (((-85) $) 101 T ELT)) (-3369 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3374 (((-85) $) 72 T ELT)) (-3708 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3360 (((-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3378 (((-695) $) 53 T ELT)) (-3379 (((-695) $) 52 T ELT)) (-3889 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3366 (((-85) $) 111 T ELT)) (-3367 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3520 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3361 (((-584 (-145)) $) 133 T ELT)) (-3365 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3362 (((-584 (-584 (-145))) $) 132 T ELT)) (-3363 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3364 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3375 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3372 (((-85) $) 84 T ELT)) (-3373 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3380 (($) 48 T ELT) (($ (-1080 3 |#1|)) 49 T ELT)) (-3402 (($ $) 63 T ELT)) (-3376 (((-584 $) $) 62 T ELT)) (-3756 (($ (-584 $)) 59 T ELT)) (-3377 (((-584 $) $) 61 T ELT)) (-3948 (((-773) $) 146 T ELT)) (-3370 (((-85) $) 94 T ELT)) (-3371 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3359 (($ $) 140 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1048 |#1|) (-1049 |#1|) (-962)) (T -1048)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3890 (((-1080 3 |#1|) $) 17 T ELT)) (-3368 (((-85) $) 33 T ELT)) (-3369 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3374 (((-85) $) 48 T ELT)) (-3708 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3360 (((-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3378 (((-695) $) 62 T ELT)) (-3379 (((-695) $) 63 T ELT)) (-3889 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3366 (((-85) $) 25 T ELT)) (-3367 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3520 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3361 (((-584 (-145)) $) 20 T ELT)) (-3365 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3362 (((-584 (-584 (-145))) $) 21 T ELT)) (-3363 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3364 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3375 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3372 (((-85) $) 43 T ELT)) (-3373 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3380 (($) 65 T ELT) (($ (-1080 3 |#1|)) 64 T ELT)) (-3402 (($ $) 56 T ELT)) (-3376 (((-584 $) $) 57 T ELT)) (-3756 (($ (-584 $)) 59 T ELT)) (-3377 (((-584 $) $) 58 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-3370 (((-85) $) 38 T ELT)) (-3371 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3359 (($ $) 18 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-1049 |#1|) (-113) (-962)) (T -1049)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3380 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3377 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3402 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3375 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3367 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3367 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3367 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3367 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3367 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) (-4 *1 (-1049 *4)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3359 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3))))) -(-13 (-1014) (-10 -8 (-15 -3380 ($)) (-15 -3380 ($ (-1080 3 |t#1|))) (-15 -3379 ((-695) $)) (-15 -3378 ((-695) $)) (-15 -3520 ($ (-584 $))) (-15 -3520 ($ $ $)) (-15 -3756 ($ (-584 $))) (-15 -3377 ((-584 $) $)) (-15 -3376 ((-584 $) $)) (-15 -3402 ($ $)) (-15 -3375 ((-695) $ (-584 (-855 |t#1|)))) (-15 -3889 ($ $ (-695) (-855 |t#1|))) (-15 -3708 ($ $ (-855 |t#1|))) (-15 -3708 ($ $ (-584 |t#1|))) (-15 -3708 ($ $ (-695))) (-15 -3708 ($ (-855 |t#1|))) (-15 -3708 ((-855 |t#1|) $)) (-15 -3374 ((-85) $)) (-15 -3373 ($ $ (-584 (-855 |t#1|)))) (-15 -3373 ($ $ (-584 (-584 |t#1|)))) (-15 -3373 ($ (-584 (-855 |t#1|)))) (-15 -3373 ((-584 (-855 |t#1|)) $)) (-15 -3372 ((-85) $)) (-15 -3371 ($ $ (-584 (-855 |t#1|)))) (-15 -3371 ($ $ (-584 (-584 |t#1|)))) (-15 -3371 ($ (-584 (-855 |t#1|)))) (-15 -3371 ((-584 (-855 |t#1|)) $)) (-15 -3370 ((-85) $)) (-15 -3369 ($ $ (-584 (-855 |t#1|)))) (-15 -3369 ($ $ (-584 (-584 |t#1|)))) (-15 -3369 ($ (-584 (-855 |t#1|)))) (-15 -3369 ((-584 (-855 |t#1|)) $)) (-15 -3368 ((-85) $)) (-15 -3367 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-145)) (-145))) (-15 -3367 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-145)) (-145))) (-15 -3367 ($ $ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3367 ($ $ (-584 (-584 (-584 |t#1|))) (-85) (-85))) (-15 -3367 ($ (-584 (-584 (-855 |t#1|))))) (-15 -3367 ($ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3367 ((-584 (-584 (-855 |t#1|))) $)) (-15 -3366 ((-85) $)) (-15 -3365 ((-584 (-855 |t#1|)) $)) (-15 -3364 ((-584 (-584 (-584 (-695)))) $)) (-15 -3363 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-15 -3362 ((-584 (-584 (-145))) $)) (-15 -3361 ((-584 (-145)) $)) (-15 -3360 ((-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-15 -3359 ($ $)) (-15 -3890 ((-1080 3 |t#1|) $)) (-15 -3948 ((-773) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 185 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) 7 T ELT)) (-3568 (((-85) $ (|[\|\|]| (-463))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-618))) 27 T ELT) (((-85) $ (|[\|\|]| (-1191))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-540))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1030))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-623))) 55 T ELT) (((-85) $ (|[\|\|]| (-459))) 59 T ELT) (((-85) $ (|[\|\|]| (-979))) 63 T ELT) (((-85) $ (|[\|\|]| (-1192))) 67 T ELT) (((-85) $ (|[\|\|]| (-464))) 71 T ELT) (((-85) $ (|[\|\|]| (-1068))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-614))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-949))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-884))) 99 T ELT) (((-85) $ (|[\|\|]| (-986))) 103 T ELT) (((-85) $ (|[\|\|]| (-1004))) 107 T ELT) (((-85) $ (|[\|\|]| (-1009))) 111 T ELT) (((-85) $ (|[\|\|]| (-566))) 116 T ELT) (((-85) $ (|[\|\|]| (-1082))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-418))) 132 T ELT) (((-85) $ (|[\|\|]| (-529))) 136 T ELT) (((-85) $ (|[\|\|]| (-447))) 140 T ELT) (((-85) $ (|[\|\|]| (-1074))) 144 T ELT) (((-85) $ (|[\|\|]| (-485))) 148 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3574 (((-463) $) 20 T ELT) (((-172) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1191) $) 32 T ELT) (((-111) $) 36 T ELT) (((-540) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1030) $) 48 T ELT) (((-67) $) 52 T ELT) (((-623) $) 56 T ELT) (((-459) $) 60 T ELT) (((-979) $) 64 T ELT) (((-1192) $) 68 T ELT) (((-464) $) 72 T ELT) (((-1068) $) 76 T ELT) (((-127) $) 80 T ELT) (((-614) $) 84 T ELT) (((-263) $) 88 T ELT) (((-949) $) 92 T ELT) (((-154) $) 96 T ELT) (((-884) $) 100 T ELT) (((-986) $) 104 T ELT) (((-1004) $) 108 T ELT) (((-1009) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1082) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-418) $) 133 T ELT) (((-529) $) 137 T ELT) (((-447) $) 141 T ELT) (((-1074) $) 145 T ELT) (((-485) $) 149 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1050) (-1052)) (T -1050)) -NIL -((-3381 (((-584 (-1096)) (-1074)) 9 T ELT))) -(((-1051) (-10 -7 (-15 -3381 ((-584 (-1096)) (-1074))))) (T -1051)) -((-3381 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-3568 (((-85) $ (|[\|\|]| (-463))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-618))) 84 T ELT) (((-85) $ (|[\|\|]| (-1191))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-540))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1030))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-623))) 70 T ELT) (((-85) $ (|[\|\|]| (-459))) 68 T ELT) (((-85) $ (|[\|\|]| (-979))) 66 T ELT) (((-85) $ (|[\|\|]| (-1192))) 64 T ELT) (((-85) $ (|[\|\|]| (-464))) 62 T ELT) (((-85) $ (|[\|\|]| (-1068))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-614))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-949))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-884))) 48 T ELT) (((-85) $ (|[\|\|]| (-986))) 46 T ELT) (((-85) $ (|[\|\|]| (-1004))) 44 T ELT) (((-85) $ (|[\|\|]| (-1009))) 42 T ELT) (((-85) $ (|[\|\|]| (-566))) 40 T ELT) (((-85) $ (|[\|\|]| (-1082))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-418))) 32 T ELT) (((-85) $ (|[\|\|]| (-529))) 30 T ELT) (((-85) $ (|[\|\|]| (-447))) 28 T ELT) (((-85) $ (|[\|\|]| (-1074))) 26 T ELT) (((-85) $ (|[\|\|]| (-485))) 24 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3574 (((-463) $) 87 T ELT) (((-172) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1191) $) 81 T ELT) (((-111) $) 79 T ELT) (((-540) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1030) $) 73 T ELT) (((-67) $) 71 T ELT) (((-623) $) 69 T ELT) (((-459) $) 67 T ELT) (((-979) $) 65 T ELT) (((-1192) $) 63 T ELT) (((-464) $) 61 T ELT) (((-1068) $) 59 T ELT) (((-127) $) 57 T ELT) (((-614) $) 55 T ELT) (((-263) $) 53 T ELT) (((-949) $) 51 T ELT) (((-154) $) 49 T ELT) (((-884) $) 47 T ELT) (((-986) $) 45 T ELT) (((-1004) $) 43 T ELT) (((-1009) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1082) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-418) $) 31 T ELT) (((-529) $) 29 T ELT) (((-447) $) 27 T ELT) (((-1074) $) 25 T ELT) (((-485) $) 23 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-1052) (-113)) (T -1052)) -((-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-618)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-540)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1030)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-623)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-459)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-979)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-614)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-949)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-884)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-986)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1004)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1009)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-566)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-418)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-447)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485))))) -(-13 (-996) (-1176) (-10 -8 (-15 -3568 ((-85) $ (|[\|\|]| (-463)))) (-15 -3574 ((-463) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-172)))) (-15 -3574 ((-172) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-618)))) (-15 -3574 ((-618) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3574 ((-1191) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-111)))) (-15 -3574 ((-111) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-540)))) (-15 -3574 ((-540) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-106)))) (-15 -3574 ((-106) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1030)))) (-15 -3574 ((-1030) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-67)))) (-15 -3574 ((-67) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-623)))) (-15 -3574 ((-623) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-459)))) (-15 -3574 ((-459) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-979)))) (-15 -3574 ((-979) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1192)))) (-15 -3574 ((-1192) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-464)))) (-15 -3574 ((-464) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1068)))) (-15 -3574 ((-1068) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-127)))) (-15 -3574 ((-127) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-614)))) (-15 -3574 ((-614) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-263)))) (-15 -3574 ((-263) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-949)))) (-15 -3574 ((-949) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-154)))) (-15 -3574 ((-154) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-884)))) (-15 -3574 ((-884) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-986)))) (-15 -3574 ((-986) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1004)))) (-15 -3574 ((-1004) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1009)))) (-15 -3574 ((-1009) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-566)))) (-15 -3574 ((-566) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1082)))) (-15 -3574 ((-1082) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-129)))) (-15 -3574 ((-129) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-110)))) (-15 -3574 ((-110) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-418)))) (-15 -3574 ((-418) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-529)))) (-15 -3574 ((-529) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-447)))) (-15 -3574 ((-447) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3574 ((-1074) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-485)))) (-15 -3574 ((-485) $)))) -(((-64) . T) ((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-996) . T) ((-1130) . T) ((-1176) . T)) -((-3384 (((-1186) (-584 (-773))) 22 T ELT) (((-1186) (-773)) 21 T ELT)) (-3383 (((-1186) (-584 (-773))) 20 T ELT) (((-1186) (-773)) 19 T ELT)) (-3382 (((-1186) (-584 (-773))) 18 T ELT) (((-1186) (-773)) 10 T ELT) (((-1186) (-1074) (-773)) 16 T ELT))) -(((-1053) (-10 -7 (-15 -3382 ((-1186) (-1074) (-773))) (-15 -3382 ((-1186) (-773))) (-15 -3383 ((-1186) (-773))) (-15 -3384 ((-1186) (-773))) (-15 -3382 ((-1186) (-584 (-773)))) (-15 -3383 ((-1186) (-584 (-773)))) (-15 -3384 ((-1186) (-584 (-773)))))) (T -1053)) -((-3384 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))) -((-3388 (($ $ $) 10 T ELT)) (-3387 (($ $) 9 T ELT)) (-3391 (($ $ $) 13 T ELT)) (-3393 (($ $ $) 15 T ELT)) (-3390 (($ $ $) 12 T ELT)) (-3392 (($ $ $) 14 T ELT)) (-3395 (($ $) 17 T ELT)) (-3394 (($ $) 16 T ELT)) (-3385 (($ $) 6 T ELT)) (-3389 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3386 (($ $ $) 8 T ELT))) -(((-1054) (-113)) (T -1054)) -((-3395 (*1 *1 *1) (-4 *1 (-1054))) (-3394 (*1 *1 *1) (-4 *1 (-1054))) (-3393 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3387 (*1 *1 *1) (-4 *1 (-1054))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1) (-4 *1 (-1054))) (-3385 (*1 *1 *1) (-4 *1 (-1054)))) -(-13 (-10 -8 (-15 -3385 ($ $)) (-15 -3389 ($ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $ $)) (-15 -3394 ($ $)) (-15 -3395 ($ $)))) -((-2570 (((-85) $ $) 44 T ELT)) (-3404 ((|#1| $) 17 T ELT)) (-3396 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3401 (($ $ |#1|) 30 T ELT)) (-3399 (($ $ (-85)) 32 T ELT)) (-3398 (($ $) 33 T ELT)) (-3400 (($ $ |#2|) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3397 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3405 (((-85) $) 16 T ELT)) (-3567 (($) 13 T ELT)) (-3402 (($ $) 29 T ELT)) (-3532 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3924 ((|#2| $) 18 T ELT)) (-3948 (((-773) $) 53 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 42 T ELT))) -(((-1055 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3567 ($)) (-15 -3405 ((-85) $)) (-15 -3404 (|#1| $)) (-15 -3924 (|#2| $)) (-15 -3403 ((-85) $)) (-15 -3532 ($ |#1| |#2| (-85))) (-15 -3532 ($ |#1| |#2|)) (-15 -3532 ($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) (-15 -3532 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))))) (-15 -3532 ((-584 $) |#1| (-584 |#2|))) (-15 -3402 ($ $)) (-15 -3401 ($ $ |#1|)) (-15 -3400 ($ $ |#2|)) (-15 -3399 ($ $ (-85))) (-15 -3398 ($ $)) (-15 -3397 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3396 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1055)) -((-3567 (*1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3404 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-13 (-1014) (-34))))) (-3924 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5)))) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-13 (-1014) (-34))))) (-3402 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3401 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))) (-4 *2 (-13 (-1014) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3397 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3396 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34)))))) -((-2570 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3404 (((-1055 |#1| |#2|) $) 27 T ELT)) (-3413 (($ $) 91 T ELT)) (-3409 (((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3406 (($ $ $ (-584 (-1055 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3027 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 46 (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3790 (((-1055 |#1| |#2|) $ #1="value" (-1055 |#1| |#2|)) NIL (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3028 (($ $ (-584 $)) 44 (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3726 (($) NIL T CONST)) (-3411 (((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $) 95 T ELT)) (-3407 (($ (-1055 |#1| |#2|) $) 42 T ELT)) (-3408 (($ (-1055 |#1| |#2|) $) 34 T ELT)) (-3844 (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT) (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $ (-1055 |#1| |#2|)) NIL T ELT) (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3033 (((-584 $) $) 54 T ELT)) (-3410 (((-85) (-1055 |#1| |#2|) $) 97 T ELT)) (-3029 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-2610 (((-584 (-1055 |#1| |#2|)) $) 58 T ELT)) (-3247 (((-85) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3328 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 50 T ELT)) (-3960 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 49 T ELT)) (-3032 (((-584 (-1055 |#1| |#2|)) $) 56 T ELT)) (-3529 (((-85) $) 45 T ELT)) (-3244 (((-1074) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3414 (((-3 $ "failed") $) 89 T ELT)) (-1732 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-1055 |#1| |#2|)))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-249 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-584 (-1055 |#1| |#2|)) (-584 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 24 T ELT)) (-3567 (($) 26 T ELT)) (-3802 (((-1055 |#1| |#2|) $ #1#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) 47 T ELT)) (-1731 (((-695) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT) (((-695) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3402 (($ $) 52 T ELT)) (-3532 (($ (-1055 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1055 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3412 (((-584 |#2|) $) 96 T ELT)) (-3948 (((-773) $) 87 (|has| (-1055 |#1| |#2|) (-553 (-773))) ELT)) (-3524 (((-584 $) $) 31 T ELT)) (-3030 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3058 (((-85) $ $) 70 (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3959 (((-695) $) 64 T ELT))) -(((-1056 |#1| |#2|) (-13 (-924 (-1055 |#1| |#2|)) (-318 (-1055 |#1| |#2|)) (-1036 (-1055 |#1| |#2|)) (-10 -8 (-15 -3414 ((-3 $ "failed") $)) (-15 -3413 ($ $)) (-15 -3532 ($ (-1055 |#1| |#2|))) (-15 -3532 ($ |#1| |#2| (-584 $))) (-15 -3532 ($ |#1| |#2| (-584 (-1055 |#1| |#2|)))) (-15 -3532 ($ |#1| |#2| |#1| (-584 |#2|))) (-15 -3412 ((-584 |#2|) $)) (-15 -3411 ((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $)) (-15 -3410 ((-85) (-1055 |#1| |#2|) $)) (-15 -3409 ((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3408 ($ (-1055 |#1| |#2|) $)) (-15 -3407 ($ (-1055 |#1| |#2|) $)) (-15 -3406 ($ $ $ (-584 (-1055 |#1| |#2|)))) (-15 -3406 ($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1056)) -((-3414 (*1 *1 *1) (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)))) (-3532 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3410 (*1 *2 *3 *1) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)))) (-3409 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *5 *6)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3406 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3406 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *1 (-1056 *4 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3416 (($ $) NIL T ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3415 (($ (-631 |#2|)) 53 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3335 (($ |#2|) 14 T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3113 (((-197 |#1| |#2|) $ (-485)) 40 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3469 (((-3 $ #1#) $) 80 T ELT)) (-3110 (((-695) $) 68 (|has| |#2| (-496)) ELT)) (-3114 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3109 (((-695) $) 70 (|has| |#2| (-496)) ELT)) (-3108 (((-584 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-3616 (($ |#2|) 23 T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3329 ((|#2| $) 64 (|has| |#2| (-6 (-3999 #2="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#2|))) 35 T ELT)) (-3960 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3596 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3592 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) NIL T ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3334 (($ (-584 |#2|)) 48 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3333 (((-197 |#1| |#2|) $) NIL T ELT)) (-3330 ((|#2| $) 62 (|has| |#2| (-6 (-3999 #2#))) ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 87 (|has| |#2| (-554 (-474))) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) 42 T ELT)) (-3948 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 50 T ELT)) (-3128 (((-695)) 21 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 19 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1057 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-15 -3616 ($ |#2|)) (-15 -3416 ($ $)) (-15 -3415 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3999 #1="*"))) (-6 -3986) |%noBranch|) (IF (|has| |#2| (-6 (-3999 #1#))) (IF (|has| |#2| (-6 -3994)) (-6 -3994) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-695) (-962)) (T -1057)) -((-3616 (*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) (-3416 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-695))))) -((-3429 (($ $) 19 T ELT)) (-3419 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3427 (((-85) $ $) 24 T ELT)) (-3431 (($ $) 17 T ELT)) (-3802 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (($ $ $) 31 T ELT)) (-3948 (($ (-117)) 29 T ELT) (((-773) $) NIL T ELT))) -(((-1058 |#1|) (-10 -7 (-15 -3948 ((-773) |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| (-114))) (-15 -3419 (|#1| |#1| (-117))) (-15 -3948 (|#1| (-117))) (-15 -3427 ((-85) |#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3802 ((-117) |#1| (-485))) (-15 -3802 ((-117) |#1| (-485) (-117)))) (-1059)) (T -1058)) -NIL -((-2570 (((-85) $ $) 17 (|has| (-117) (-72)) ELT)) (-3428 (($ $) 130 T ELT)) (-3429 (($ $) 131 T ELT)) (-3419 (($ $ (-117)) 118 T ELT) (($ $ (-114)) 117 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 (-117))) ELT)) (-3426 (((-85) $ $) 128 T ELT)) (-3425 (((-85) $ $ (-485)) 127 T ELT)) (-3420 (((-584 $) $ (-117)) 120 T ELT) (((-584 $) $ (-114)) 119 T ELT)) (-1736 (((-85) (-1 (-85) (-117) (-117)) $) 96 T ELT) (((-85) $) 90 (|has| (-117) (-757)) ELT)) (-1734 (($ (-1 (-85) (-117) (-117)) $) 87 (|has| $ (-1036 (-117))) ELT) (($ $) 86 (-12 (|has| (-117) (-757)) (|has| $ (-1036 (-117)))) ELT)) (-2911 (($ (-1 (-85) (-117) (-117)) $) 97 T ELT) (($ $) 91 (|has| (-117) (-757)) ELT)) (-3790 (((-117) $ (-485) (-117)) 46 (|has| $ (-1036 (-117))) ELT) (((-117) $ (-1147 (-485)) (-117)) 54 (|has| $ (-1036 (-117))) ELT)) (-3712 (($ (-1 (-85) (-117)) $) 69 (|has| $ (-318 (-117))) ELT)) (-3726 (($) 6 T CONST)) (-3417 (($ $ (-117)) 114 T ELT) (($ $ (-114)) 113 T ELT)) (-2298 (($ $) 88 (|has| $ (-1036 (-117))) ELT)) (-2299 (($ $) 98 T ELT)) (-3422 (($ $ (-1147 (-485)) $) 124 T ELT)) (-1354 (($ $) 71 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT)) (-3408 (($ (-117) $) 70 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT) (($ (-1 (-85) (-117)) $) 68 (|has| $ (-318 (-117))) ELT)) (-3844 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 109 (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 106 T ELT) (((-117) (-1 (-117) (-117) (-117)) $) 105 T ELT)) (-1577 (((-117) $ (-485) (-117)) 47 (|has| $ (-1036 (-117))) ELT)) (-3114 (((-117) $ (-485)) 45 T ELT)) (-3427 (((-85) $ $) 129 T ELT)) (-3421 (((-485) (-1 (-85) (-117)) $) 95 T ELT) (((-485) (-117) $) 94 (|has| (-117) (-72)) ELT) (((-485) (-117) $ (-485)) 93 (|has| (-117) (-72)) ELT) (((-485) $ $ (-485)) 123 T ELT) (((-485) (-114) $ (-485)) 122 T ELT)) (-3616 (($ (-695) (-117)) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 80 (|has| (-117) (-757)) ELT)) (-3520 (($ (-1 (-85) (-117) (-117)) $ $) 99 T ELT) (($ $ $) 92 (|has| (-117) (-757)) ELT)) (-2610 (((-584 (-117)) $) 104 T ELT)) (-3247 (((-85) (-117) $) 108 (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 81 (|has| (-117) (-757)) ELT)) (-3423 (((-85) $ $ (-117)) 125 T ELT)) (-3424 (((-695) $ $ (-117)) 126 T ELT)) (-3328 (($ (-1 (-117) (-117)) $) 111 T ELT)) (-3960 (($ (-1 (-117) (-117)) $) 25 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 59 T ELT)) (-3430 (($ $) 132 T ELT)) (-3431 (($ $) 133 T ELT)) (-3418 (($ $ (-117)) 116 T ELT) (($ $ (-114)) 115 T ELT)) (-3244 (((-1074) $) 20 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| (-117) (-1014)) ELT)) (-3803 (((-117) $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 67 T ELT)) (-2200 (($ $ (-117)) 35 (|has| $ (-1036 (-117))) ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) 102 T ELT)) (-3770 (($ $ (-584 (-249 (-117)))) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) 22 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) 21 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) (-117) $) 39 (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2206 (((-584 (-117)) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 (((-117) $ (-485) (-117)) 44 T ELT) (((-117) $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT) (($ $ $) 112 T ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-1731 (((-695) (-117) $) 107 (|has| (-117) (-72)) ELT) (((-695) (-1 (-85) (-117)) $) 103 T ELT)) (-1735 (($ $ $ (-485)) 89 (|has| $ (-1036 (-117))) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| (-117) (-554 (-474))) ELT)) (-3532 (($ (-584 (-117))) 66 T ELT)) (-3804 (($ $ (-117)) 63 T ELT) (($ (-117) $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (($ (-117)) 121 T ELT) (((-773) $) 15 (|has| (-117) (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) 101 T ELT)) (-2568 (((-85) $ $) 82 (|has| (-117) (-757)) ELT)) (-2569 (((-85) $ $) 84 (|has| (-117) (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| (-117) (-72)) ELT)) (-2686 (((-85) $ $) 83 (|has| (-117) (-757)) ELT)) (-2687 (((-85) $ $) 85 (|has| (-117) (-757)) ELT)) (-3959 (((-695) $) 100 T ELT))) -(((-1059) (-113)) (T -1059)) -((-3431 (*1 *1 *1) (-4 *1 (-1059))) (-3430 (*1 *1 *1) (-4 *1 (-1059))) (-3429 (*1 *1 *1) (-4 *1 (-1059))) (-3428 (*1 *1 *1) (-4 *1 (-1059))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3426 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-695)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3422 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))) (-3421 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)))) (-3421 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3802 (*1 *1 *1 *1) (-4 *1 (-1059)))) -(-13 (-19 (-117)) (-10 -8 (-15 -3431 ($ $)) (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ((-85) $ $)) (-15 -3426 ((-85) $ $)) (-15 -3425 ((-85) $ $ (-485))) (-15 -3424 ((-695) $ $ (-117))) (-15 -3423 ((-85) $ $ (-117))) (-15 -3422 ($ $ (-1147 (-485)) $)) (-15 -3421 ((-485) $ $ (-485))) (-15 -3421 ((-485) (-114) $ (-485))) (-15 -3948 ($ (-117))) (-15 -3420 ((-584 $) $ (-117))) (-15 -3420 ((-584 $) $ (-114))) (-15 -3419 ($ $ (-117))) (-15 -3419 ($ $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3802 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-72))) ((-553 (-773)) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-553 (-773)))) ((-124 (-117)) . T) ((-554 (-474)) |has| (-117) (-554 (-474))) ((-241 (-485) (-117)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-429 (-117)) . T) ((-539 (-485) (-117)) . T) ((-456 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-13) . T) ((-594 (-117)) . T) ((-19 (-117)) . T) ((-757) |has| (-117) (-757)) ((-760) |has| (-117) (-757)) ((-1014) OR (|has| (-117) (-1014)) (|has| (-117) (-757))) ((-1036 (-117)) . T) ((-1130) . T)) -((-3438 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 112 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3439 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 97 T ELT)) (-3433 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3436 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85)) 65 T ELT)) (-3437 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 85 T ELT)) (-3974 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 90 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 60 T ELT)) (-3432 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT))) -(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3432 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3433 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3438 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-15 -3974 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3439 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -1060)) -((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3437 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) 117 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 116 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 90 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 44 T ELT)) (-3687 ((|#4| |#4| $) 72 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3440 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 132 T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 37 T ELT)) (-2610 (((-584 |#4|) $) 18 T ELT)) (-3247 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 110 T ELT)) (-3800 (((-3 |#4| #1#) $) 41 T ELT)) (-3194 (((-584 $) |#4| $) 95 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 105 T ELT) (((-85) |#4| $) 61 T ELT)) (-3240 (((-584 $) |#4| $) 114 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 115 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3441 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3442 (($ |#4| $) 81 T ELT) (($ (-584 |#4|) $) 82 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 80 T ELT)) (-3699 (((-584 |#4|) $) NIL T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 39 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3771 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 97 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 92 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 14 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 21 T ELT)) (-2912 (($ $ |#3|) 48 T ELT)) (-2914 (($ $ |#3|) 50 T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3191 (((-584 $) |#4| $) 62 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3935 (((-85) |#3| $) 68 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1061 |#1| |#2| |#3| |#4|) (-13 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3442 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3441 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3440 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1061)) -((-3442 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 32 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 29 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 31 T ELT) (($ $ (-831)) 28 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ $ $) 27 T ELT))) -(((-1062) (-113)) (T -1062)) -NIL -(-13 (-23) (-664)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 38 T ELT)) (-3443 (($ (-584 |#1|)) 46 T ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3327 ((|#1| |#1| $) 41 T ELT)) (-3326 ((|#1| $) 36 T ELT)) (-2610 (((-584 |#1|) $) 19 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 39 T ELT)) (-3611 (($ |#1| $) 42 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 33 T ELT)) (-3567 (($) 44 T ELT)) (-3324 (((-695) $) 31 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 28 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 32 T ELT))) -(((-1063 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -3443 ($ (-584 |#1|))))) (-1130)) (T -1063)) -((-3443 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3))))) -((-3790 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 51 T ELT) ((|#2| $ (-485) |#2|) 48 T ELT)) (-3445 (((-85) $) 12 T ELT)) (-3803 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2200 (($ $ |#2|) 47 T ELT)) (-3446 (((-85) $) 11 T ELT)) (-3802 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) 36 T ELT) ((|#2| $ (-485)) 25 T ELT) ((|#2| $ (-485) |#2|) NIL T ELT)) (-3793 (($ $ $) 54 T ELT) (($ $ |#2|) NIL T ELT)) (-3804 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1064 |#1| |#2|) (-10 -7 (-15 -3445 ((-85) |#1|)) (-15 -3446 ((-85) |#1|)) (-15 -3790 (|#2| |#1| (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -2200 (|#1| |#1| |#2|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3790 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -3790 (|#2| |#1| #1="last" |#2|)) (-15 -3790 (|#1| |#1| #2="rest" |#1|)) (-15 -3790 (|#2| |#1| #3="first" |#2|)) (-15 -3793 (|#1| |#1| |#2|)) (-15 -3793 (|#1| |#1| |#1|)) (-15 -3802 (|#2| |#1| #1#)) (-15 -3802 (|#1| |#1| #2#)) (-15 -3803 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| #3#)) (-15 -3803 (|#2| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3790 (|#2| |#1| #4="value" |#2|)) (-15 -3802 (|#2| |#1| #4#))) (-1065 |#2|) (-1130)) (T -1064)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3797 ((|#1| $) 61 T ELT)) (-3799 (($ $) 63 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 98 (|has| $ (-1036 |#1|)) ELT)) (-3787 (($ $ (-485)) 48 (|has| $ (-1036 |#1|)) ELT)) (-3444 (((-85) $ (-695)) 81 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 52 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 53 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 51 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 49 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 115 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 87 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 102 (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3726 (($) 6 T CONST)) (-3801 (($ $) 69 T ELT) (($ $ (-695)) 67 T ELT)) (-1354 (($ $) 100 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 86 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 88 T ELT)) (-3445 (((-85) $) 84 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 107 T ELT)) (-3721 (((-85) $ (-695)) 82 T ELT)) (-2201 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) 95 (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3718 (((-85) $ (-695)) 83 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 66 T ELT) (($ $ (-695)) 64 T ELT)) (-2305 (($ $ $ (-485)) 114 T ELT) (($ |#1| $ (-485)) 113 T ELT)) (-2204 (((-584 (-485)) $) 93 T ELT)) (-2205 (((-85) (-485) $) 92 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 72 T ELT) (($ $ (-695)) 70 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 104 T ELT)) (-2200 (($ $ |#1|) 97 (|has| $ (-1036 |#1|)) ELT)) (-3446 (((-85) $) 85 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 94 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 91 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT) ((|#1| $ #2#) 71 T ELT) (($ $ #3#) 68 T ELT) ((|#1| $ #4#) 65 T ELT) (($ $ (-1147 (-485))) 106 T ELT) ((|#1| $ (-485)) 90 T ELT) ((|#1| $ (-485) |#1|) 89 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-2306 (($ $ (-1147 (-485))) 112 T ELT) (($ $ (-485)) 111 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3794 (($ $) 58 T ELT)) (-3792 (($ $) 55 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 59 T ELT)) (-3796 (($ $) 60 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 99 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 105 T ELT)) (-3793 (($ $ $) 57 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 56 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 74 T ELT) (($ |#1| $) 73 T ELT) (($ (-584 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-1065 |#1|) (-113) (-1130)) (T -1065)) -((-3446 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3444 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) -(-13 (-1169 |t#1|) (-594 |t#1|) (-10 -8 (-15 -3446 ((-85) $)) (-15 -3445 ((-85) $)) (-15 -3718 ((-85) $ (-695))) (-15 -3721 ((-85) $ (-695))) (-15 -3444 ((-85) $ (-695))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T) ((-1169 |#1|) . T)) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1066 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) |#2|) (T -1066)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3447 (((-633 $) $) 17 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3448 (($) 18 T CONST)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) -(((-1067) (-113)) (T -1067)) -((-3448 (*1 *1) (-4 *1 (-1067))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1067))))) -(-13 (-1014) (-10 -8 (-15 -3448 ($) -3954) (-15 -3447 ((-633 $) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3450 (((-633 (-1050)) $) 28 T ELT)) (-3449 (((-1050) $) 16 T ELT)) (-3451 (((-1050) $) 18 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3452 (((-447) $) 14 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 38 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1068) (-13 (-996) (-10 -8 (-15 -3452 ((-447) $)) (-15 -3451 ((-1050) $)) (-15 -3450 ((-633 (-1050)) $)) (-15 -3449 ((-1050) $))))) (T -1068)) -((-3452 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1068)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-633 (-1050))) (-5 *1 (-1068)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) -((-3455 (((-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (-3453 (((-1070 |#1|) (-1070 |#1|)) 13 T ELT)) (-3456 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 20 T ELT)) (-3454 (((-1070 |#1|) (-1070 |#1|)) 15 T ELT))) -(((-1069 |#1|) (-10 -7 (-15 -3453 ((-1070 |#1|) (-1070 |#1|))) (-15 -3454 ((-1070 |#1|) (-1070 |#1|))) (-15 -3455 ((-1070 |#1|) (-1070 |#1|))) (-15 -3456 ((-1070 |#1|) (-1070 |#1|) (-485) (-485)))) (-13 (-496) (-120))) (T -1069)) -((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1069 *4)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3799 (($ $) 60 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 93 (|has| $ (-1036 |#1|)) ELT)) (-3787 (($ $ (-485)) 122 (|has| $ (-1036 |#1|)) ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3461 (((-773) $) 46 (|has| |#1| (-1014)) ELT)) (-3460 (((-85)) 49 (|has| |#1| (-1014)) ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 109 (|has| $ (-1036 |#1|)) ELT) (($ $ (-485) $) 135 T ELT)) (-3788 ((|#1| $ |#1|) 119 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 114 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 106 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 72 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2324 (($ $) 11 T ELT)) (-3801 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3466 (((-85) (-584 |#1|) $) 128 (|has| |#1| (-1014)) ELT)) (-3467 (($ (-584 |#1|)) 124 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3462 (((-1186) (-485) $) 133 (|has| |#1| (-1014)) ELT)) (-2323 (((-695) $) 131 T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-2326 (($ $) 107 T ELT)) (-2327 (((-85) $) 10 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) 90 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3459 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2325 ((|#1| $) 7 T ELT)) (-3803 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3465 (((-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2200 (($ $ |#1|) 85 (|has| $ (-1036 |#1|)) ELT)) (-3771 (($ $ (-485)) 40 T ELT)) (-3446 (((-85) $) 88 T ELT)) (-2328 (((-85) $) 9 T ELT)) (-2329 (((-85) $) 130 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 25 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) 14 T ELT)) (-3567 (($) 53 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 70 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3031 (((-485) $ $) 57 T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3464 (($ (-1 $)) 56 T ELT)) (-3635 (((-85) $) 86 T ELT)) (-3794 (($ $) 87 T ELT)) (-3792 (($ $) 110 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-3402 (($ $) 52 T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 68 T ELT)) (-3463 (($ |#1| $) 108 T ELT)) (-3793 (($ $ $) 112 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2893 (($ $) 59 T ELT)) (-3948 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 126 (|has| |#1| (-72)) ELT))) -(((-1070 |#1|) (-13 (-617 |#1|) (-556 (-584 |#1|)) (-1036 |#1|) (-10 -8 (-15 -3467 ($ (-584 |#1|))) (IF (|has| |#1| (-1014)) (-15 -3466 ((-85) (-584 |#1|) $)) |%noBranch|) (-15 -3465 ((-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695))) (-695) $)) (-15 -3464 ($ (-1 $))) (-15 -3463 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -3462 ((-1186) (-485) $)) (-15 -3461 ((-773) $)) (-15 -3460 ((-85)))) |%noBranch|) (-15 -3789 ($ $ (-485) $)) (-15 -3459 ($ (-1 |#1|))) (-15 -3459 ($ (-1 |#1| |#1|) |#1|)) (-15 -3458 ($ (-1 (-85) |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)))) (-1130)) (T -1070)) -((-3467 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)) (-5 *1 (-1070 *4)))) (-3465 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695)))) (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))) (-3462 (*1 *2 *3 *1) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3460 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3459 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) -((-3804 (((-1070 |#1|) (-1070 (-1070 |#1|))) 15 T ELT))) -(((-1071 |#1|) (-10 -7 (-15 -3804 ((-1070 |#1|) (-1070 (-1070 |#1|))))) (-1130)) (T -1071)) -((-3804 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) (-4 *4 (-1130))))) -((-3843 (((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 25 T ELT)) (-3844 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 26 T ELT)) (-3960 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 16 T ELT))) -(((-1072 |#1| |#2|) (-10 -7 (-15 -3960 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-15 -3843 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-15 -3844 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) (-1130) (-1130)) (T -1072)) -((-3844 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1072 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6))))) -((-3960 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)) 21 T ELT))) -(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -1073)) -((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-1073 *6 *7 *8))))) -((-2570 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3428 (($ $) 42 T ELT)) (-3429 (($ $) NIL T ELT)) (-3419 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-117))) ELT)) (-3426 (((-85) $ $) 67 T ELT)) (-3425 (((-85) $ $ (-485)) 62 T ELT)) (-3537 (($ (-485)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-447)) 11 T ELT)) (-3420 (((-584 $) $ (-117)) 76 T ELT) (((-584 $) $ (-114)) 77 T ELT)) (-1736 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-757)) ELT)) (-1734 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-1036 (-117))) ELT) (($ $) NIL (-12 (|has| $ (-1036 (-117))) (|has| (-117) (-757))) ELT)) (-2911 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-757)) ELT)) (-3790 (((-117) $ (-485) (-117)) 59 (|has| $ (-1036 (-117))) ELT) (((-117) $ (-1147 (-485)) (-117)) NIL (|has| $ (-1036 (-117))) ELT)) (-3712 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3726 (($) NIL T CONST)) (-3417 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2298 (($ $) NIL (|has| $ (-1036 (-117))) ELT)) (-2299 (($ $) NIL T ELT)) (-3422 (($ $ (-1147 (-485)) $) 57 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3408 (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3844 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT)) (-1577 (((-117) $ (-485) (-117)) NIL (|has| $ (-1036 (-117))) ELT)) (-3114 (((-117) $ (-485)) NIL T ELT)) (-3427 (((-85) $ $) 91 T ELT)) (-3421 (((-485) (-1 (-85) (-117)) $) NIL T ELT) (((-485) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-485) (-117) $ (-485)) 64 (|has| (-117) (-72)) ELT) (((-485) $ $ (-485)) 63 T ELT) (((-485) (-114) $ (-485)) 66 T ELT)) (-3616 (($ (-695) (-117)) 14 T ELT)) (-2201 (((-485) $) 36 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3520 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-2610 (((-584 (-117)) $) NIL T ELT)) (-3247 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 50 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3423 (((-85) $ $ (-117)) 92 T ELT)) (-3424 (((-695) $ $ (-117)) 88 T ELT)) (-3328 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3960 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3430 (($ $) 45 T ELT)) (-3431 (($ $) NIL T ELT)) (-3418 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3244 (((-1074) $) 46 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) NIL T ELT) (($ $ $ (-485)) 31 T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) 87 (|has| (-117) (-1014)) ELT)) (-3803 (((-117) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2200 (($ $ (-117)) NIL (|has| $ (-1036 (-117))) ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2206 (((-584 (-117)) $) NIL T ELT)) (-3405 (((-85) $) 19 T ELT)) (-3567 (($) 16 T ELT)) (-3802 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) 69 T ELT) (($ $ (-1147 (-485))) 29 T ELT) (($ $ $) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-695) (-1 (-85) (-117)) $) NIL T ELT)) (-1735 (($ $ $ (-485)) 83 (|has| $ (-1036 (-117))) ELT)) (-3402 (($ $) 24 T ELT)) (-3974 (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT)) (-3532 (($ (-584 (-117))) NIL T ELT)) (-3804 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3948 (($ (-117)) NIL T ELT) (((-773) $) 35 (|has| (-117) (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-3058 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2687 (((-85) $ $) 22 (|has| (-117) (-757)) ELT)) (-3959 (((-695) $) 20 T ELT))) -(((-1074) (-13 (-1059) (-10 -8 (-15 -3537 ($ (-485))) (-15 -3537 ($ (-179))) (-15 -3537 ($ (-447)))))) (T -1074)) -((-3537 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1074))))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-2232 (((-3 |#1| #1="failed") (-1074) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1074) $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3844 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-1074)) NIL T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-2233 (((-584 (-1074)) $) NIL T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-3803 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1276 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-1074)) NIL T ELT) ((|#1| $ (-1074) |#1|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1075 |#1|) (-1108 (-1074) |#1|) (-1014)) (T -1075)) -NIL -((-3807 (((-1070 |#1|) (-1070 |#1|)) 83 T ELT)) (-3469 (((-3 (-1070 |#1|) #1="failed") (-1070 |#1|)) 39 T ELT)) (-3480 (((-1070 |#1|) (-350 (-485)) (-1070 |#1|)) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3483 (((-1070 |#1|) |#1| (-1070 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3810 (((-1070 |#1|) (-1070 |#1|)) 97 T ELT)) (-3471 (((-1070 (-485)) (-485)) 63 T ELT)) (-3479 (((-1070 |#1|) (-1070 (-1070 |#1|))) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3806 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 103 T ELT)) (-3940 (((-1070 |#1|) |#1| (-485)) 51 T ELT)) (-3473 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3481 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3478 (((-1070 |#1|) |#1| (-1 (-1070 |#1|))) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3482 (((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3811 (((-1070 |#1|) (-1070 |#1|)) 96 T ELT)) (-3812 (((-1070 |#1|) (-1070 |#1|)) 82 T ELT)) (-3805 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 104 T ELT)) (-3814 (((-1070 |#1|) |#1| (-1070 |#1|)) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3470 (((-1070 (-485)) (-485)) 62 T ELT)) (-3472 (((-1070 |#1|) |#1|) 65 T ELT)) (-3808 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 100 T ELT)) (-3475 (((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|)) 72 T ELT)) (-3468 (((-3 (-1070 |#1|) #1#) (-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3809 (((-1070 |#1|) (-1070 |#1|)) 98 T ELT)) (-3770 (((-1070 |#1|) (-1070 |#1|) |#1|) 77 T ELT)) (-3474 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3476 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 78 T ELT)) (-3948 (((-1070 |#1|) |#1|) 73 T ELT)) (-3477 (((-1070 |#1|) (-1070 (-1070 |#1|))) 88 T ELT)) (-3951 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3839 (((-1070 |#1|) (-1070 |#1|)) 21 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 23 T ELT)) (-3841 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (* (((-1070 |#1|) (-1070 |#1|) |#1|) 29 T ELT) (((-1070 |#1|) |#1| (-1070 |#1|)) 26 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 27 T ELT))) -(((-1076 |#1|) (-10 -7 (-15 -3841 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3839 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3839 ((-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3468 ((-3 (-1070 |#1|) #1="failed") (-1070 |#1|) (-1070 |#1|))) (-15 -3951 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3469 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -3940 ((-1070 |#1|) |#1| (-485))) (-15 -3470 ((-1070 (-485)) (-485))) (-15 -3471 ((-1070 (-485)) (-485))) (-15 -3472 ((-1070 |#1|) |#1|)) (-15 -3473 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3474 ((-1070 |#1|) (-1070 |#1|))) (-15 -3475 ((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|))) (-15 -3948 ((-1070 |#1|) |#1|)) (-15 -3770 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3476 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3812 ((-1070 |#1|) (-1070 |#1|))) (-15 -3807 ((-1070 |#1|) (-1070 |#1|))) (-15 -3477 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3811 ((-1070 |#1|) (-1070 |#1|))) (-15 -3810 ((-1070 |#1|) (-1070 |#1|))) (-15 -3809 ((-1070 |#1|) (-1070 |#1|))) (-15 -3808 ((-1070 |#1|) (-1070 |#1|) (-485) (-485))) (-15 -3806 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (-15 -3805 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 -3478 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-15 -3479 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3480 ((-1070 |#1|) (-350 (-485)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3481 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3482 ((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|)))) (-15 -3483 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) (-962)) (T -1076)) -((-3483 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))) (-3481 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3480 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485))) (-5 *1 (-1076 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3814 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3805 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3806 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3808 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-962)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3476 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3475 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3469 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3951 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3468 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3841 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) -((-3494 (((-1070 |#1|) (-1070 |#1|)) 102 T ELT)) (-3641 (((-1070 |#1|) (-1070 |#1|)) 59 T ELT)) (-3485 (((-2 (|:| -3492 (-1070 |#1|)) (|:| -3493 (-1070 |#1|))) (-1070 |#1|)) 98 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 99 T ELT)) (-3484 (((-2 (|:| -3640 (-1070 |#1|)) (|:| -3636 (-1070 |#1|))) (-1070 |#1|)) 54 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 55 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 104 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3945 (((-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 105 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 67 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 103 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 62 T ELT)) (-3493 (((-1070 |#1|) (-1070 |#1|)) 100 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 113 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 88 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 107 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 84 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 117 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 92 T ELT)) (-3503 (((-1070 |#1|) (-1070 |#1|)) 119 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 94 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 115 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 90 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 109 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 86 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 41 T ELT))) -(((-1077 |#1|) (-10 -7 (-15 -3945 ((-1070 |#1|) (-1070 |#1|))) (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3484 ((-2 (|:| -3640 (-1070 |#1|)) (|:| -3636 (-1070 |#1|))) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3641 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3485 ((-2 (|:| -3492 (-1070 |#1|)) (|:| -3493 (-1070 |#1|))) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|))) (-15 -3503 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-350 (-485)))) (T -1077)) -((-3503 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3492 (-1070 *4)) (|:| -3493 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3640 (-1070 *4)) (|:| -3636 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))) -((-3494 (((-1070 |#1|) (-1070 |#1|)) 60 T ELT)) (-3641 (((-1070 |#1|) (-1070 |#1|)) 42 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 63 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 45 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 34 T ELT)) (-3945 (((-1070 |#1|) (-1070 |#1|)) 29 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 64 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 46 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 61 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 43 T ELT)) (-3493 (((-1070 |#1|) (-1070 |#1|)) 58 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 50 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 48 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 71 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 53 T ELT)) (-3503 (((-1070 |#1|) (-1070 |#1|)) 72 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 54 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 70 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 52 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 69 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 51 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 36 T ELT))) -(((-1078 |#1|) (-10 -7 (-15 -3945 ((-1070 |#1|) (-1070 |#1|))) (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3641 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|))) (-15 -3503 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-350 (-485)))) (T -1078)) -((-3503 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) -((-3504 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3505 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) -(((-1079 |#1| |#2|) (-10 -7 (-15 -3504 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3505 (|#2| |#2| |#1|)) |%noBranch|)) (-496) (-1156 |#1|)) (T -1079)) -((-3505 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))) (-3504 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1156 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3513 (($ $ (-584 (-695))) 79 T ELT)) (-3890 (($) 33 T ELT)) (-3522 (($ $) 51 T ELT)) (-3753 (((-584 $) $) 60 T ELT)) (-3528 (((-85) $) 19 T ELT)) (-3506 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3507 (($ $) 80 T ELT)) (-3523 (((-695) $) 47 T ELT)) (-3616 (($) 32 T ELT)) (-3516 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3520 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3508 (((-695) $) 87 T ELT)) (-3529 (((-85) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3527 (((-85) $) 22 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3509 (((-145) $) 85 T ELT)) (-3512 (((-855 |#2|) $) 81 T ELT)) (-3511 (((-695) $) 82 T ELT)) (-3510 (((-85) $) 84 T ELT)) (-3514 (($ $ (-584 (-695)) (-145)) 78 T ELT)) (-3521 (($ $) 52 T ELT)) (-3948 (((-773) $) 99 T ELT)) (-3515 (($ $ (-584 (-695)) (-85)) 77 T ELT)) (-3524 (((-584 $) $) 11 T ELT)) (-3525 (($ $ (-695)) 46 T ELT)) (-3526 (($ $) 43 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3517 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3518 (($ $ (-855 |#2|)) 67 T ELT)) (-3519 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3058 (((-85) $ $) 92 T ELT))) -(((-1080 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3529 ((-85) $)) (-15 -3528 ((-85) $)) (-15 -3527 ((-85) $)) (-15 -3616 ($)) (-15 -3890 ($)) (-15 -3526 ($ $)) (-15 -3525 ($ $ (-695))) (-15 -3524 ((-584 $) $)) (-15 -3523 ((-695) $)) (-15 -3522 ($ $)) (-15 -3521 ($ $)) (-15 -3520 ($ $ $)) (-15 -3520 ($ (-584 $))) (-15 -3753 ((-584 $) $)) (-15 -3519 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3518 ($ $ (-855 |#2|))) (-15 -3517 ($ $ $ (-855 |#2|) (-695))) (-15 -3516 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3519 ($ $ (-584 (-695)) (-695))) (-15 -3516 ($ $ (-584 (-695)) (-695))) (-15 -3519 ((-695) $ (-855 |#2|))) (-15 -3516 ($ $ (-695) (-855 |#2|))) (-15 -3515 ($ $ (-584 (-695)) (-85))) (-15 -3514 ($ $ (-584 (-695)) (-145))) (-15 -3513 ($ $ (-584 (-695)))) (-15 -3512 ((-855 |#2|) $)) (-15 -3511 ((-695) $)) (-15 -3510 ((-85) $)) (-15 -3509 ((-145) $)) (-15 -3508 ((-695) $)) (-15 -3507 ($ $)) (-15 -3506 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1080)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3616 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3890 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3518 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)))) (-3517 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3507 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3530 ((|#2| $) 11 T ELT)) (-3531 ((|#1| $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3532 (($ |#1| |#2|) 9 T ELT)) (-3948 (((-773) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1081 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3532 ($ |#1| |#2|)) (-15 -3531 (|#1| $)) (-15 -3530 (|#2| $)))) (-1014) (-1014)) (T -1081)) -((-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3531 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014)))) (-3530 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3533 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1082) (-13 (-996) (-10 -8 (-15 -3533 ((-1050) $))))) (T -1082)) -((-3533 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3773 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) 75 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3733 (((-1090 |#1| |#2| |#3|) $) 42 T ELT)) (-3730 (((-3 (-1090 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3731 (((-1090 |#1| |#2| |#3|) $) 33 T ELT)) (-3494 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3158 (((-1090 |#1| |#2| |#3|) $) 140 T ELT) (((-1091) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3732 (($ $) 37 T ELT) (($ (-485) $) 38 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-1090 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3469 (((-3 $ #1#) $) 54 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 74 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 76 (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) 28 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3774 (((-485) $) NIL T ELT) (((-485) $ (-485)) 26 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1090 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3779 (($ $ (-831)) NIL T ELT)) (-3817 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 19 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 81 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1090 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) (-1090 |#1| |#2| |#3|)) 36 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 79 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 80 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3132 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 158 T ELT)) (-3468 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 82 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1090 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090 |#1| |#2| |#3|)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) NIL T ELT) (($ $ $) 61 (|has| (-485) (-1026)) ELT) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1090 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) 43 T ELT)) (-3497 (($ $) 122 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-474) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 162 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1090 |#1| |#2| |#3|)) 30 T ELT) (($ (-1177 |#2|)) 25 T ELT) (($ (-1091)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3679 ((|#1| $ (-485)) 77 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 12 T ELT)) (-3133 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3498 (($ $) 124 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 132 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 130 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 126 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1090 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1083 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1090 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1083)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3534 ((|#2| |#2| (-1005 |#2|)) 26 T ELT) ((|#2| |#2| (-1091)) 28 T ELT))) -(((-1084 |#1| |#2|) (-10 -7 (-15 -3534 (|#2| |#2| (-1091))) (-15 -3534 (|#2| |#2| (-1005 |#2|)))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-364 |#1|) (-133) (-27) (-1116))) (T -1084)) -((-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116)))))) -((-3534 (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))) 31 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|))) 44 T ELT) (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1091)) 33 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1091)) 36 T ELT))) -(((-1085 |#1|) (-10 -7 (-15 -3534 ((-350 (-858 |#1|)) (-858 |#1|) (-1091))) (-15 -3534 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1091))) (-15 -3534 ((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|)))) (-15 -3534 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))))) (-13 (-496) (-951 (-485)))) (T -1085)) -((-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1085 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1085 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-350 (-858 *5))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5))))) -((-2570 (((-85) $ $) 172 T ELT)) (-3190 (((-85) $) 44 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) 83 T ELT) (((-1086 |#1|) $) 72 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) 166 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) 160 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 97 (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3763 (($ $ (-695)) 62 T ELT)) (-3762 (($ $ (-695)) 64 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) 133 T ELT)) (-3755 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3505 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 70 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3535 (((-773) $ (-773)) 150 T ELT)) (-3774 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 49 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) 74 T ELT) (($ (-1086 $) (-995)) 91 T ELT)) (-3779 (($ $ (-695)) 52 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 89 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 155 T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3768 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) 77 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) 61 T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 51 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 105 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3740 (($ $ (-695) |#1| $) 125 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 110 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) 79 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) 151 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-995)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) 42 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 20 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 122 T ELT)) (-3951 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1086 |#1|) (-13 (-1156 |#1|) (-10 -8 (-15 -3535 ((-773) $ (-773))) (-15 -3740 ($ $ (-695) |#1| $)))) (-962)) (T -1086)) -((-3535 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))) (-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962))))) -((-3960 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13 T ELT))) -(((-1087 |#1| |#2|) (-10 -7 (-15 -3960 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-962) (-962)) (T -1087)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6))))) -((-3973 (((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))) 51 T ELT)) (-3734 (((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))) 52 T ELT))) -(((-1088 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|)))) (-15 -3973 ((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))))) (-718) (-757) (-392) (-862 |#3| |#1| |#2|)) (T -1088)) -((-3973 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-350 *7))))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-350 *7)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3158 (((-1083 |#1| |#2| |#3|) $) NIL T ELT) (((-1090 |#1| |#2| |#3|) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3783 (((-350 (-485)) $) 59 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) (-1083 |#1| |#2| |#3|)) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) 20 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (((-1083 |#1| |#2| |#3|) $) 41 T ELT)) (-3780 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3781 (((-1083 |#1| |#2| |#3|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 62 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1083 |#1| |#2| |#3|)) 30 T ELT) (($ (-1090 |#1| |#2| |#3|)) 31 T ELT) (($ (-1177 |#2|)) 26 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 22 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1089 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1083 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1090 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1089)) -((-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 129 T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 119 T ELT)) (-3813 (((-1149 |#2| |#1|) $ (-695)) 69 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3494 (($ $) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1070 |#1|)) 113 T ELT)) (-3496 (($ $) 177 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 25 T ELT)) (-3818 (($ $) 28 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2894 (((-85) $) 124 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT)) (-3817 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 13 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3771 (($ $ (-695)) 15 T ELT)) (-3468 (((-3 $ #1#) $ $) 26 (|has| |#1| (-496)) ELT)) (-3945 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3802 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1026)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 31 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-3497 (($ $) 179 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 206 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 55 T ELT) (($ (-1177 |#2|)) 36 T ELT)) (-3819 (((-1070 |#1|) $) 101 T ELT)) (-3679 ((|#1| $ (-695)) 121 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 185 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 181 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-695)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 191 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 187 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 183 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 20 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3841 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1090 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1149 |#2| |#1|))) (-15 -3813 ((-1149 |#2| |#1|) $ (-695))) (-15 -3948 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1090)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3539 (($ $ (-584 (-773))) 48 T ELT)) (-3540 (($ $ (-584 (-773))) 46 T ELT)) (-3537 (((-1074) $) 88 T ELT)) (-3542 (((-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3543 (((-85) $) 86 T ELT)) (-3541 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3726 (($) 151 T CONST)) (-3159 (((-3 (-447) "failed") $) 155 T ELT)) (-3158 (((-447) $) NIL T ELT)) (-3545 (((-1186)) 123 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 55 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 62 T ELT)) (-3616 (($) 109 T ELT) (($ $) 118 T ELT)) (-3544 (($ $) 87 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3536 (((-584 $) $) 124 T ELT)) (-3244 (((-1074) $) 101 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 (($ $ (-584 (-773))) 47 T ELT)) (-3974 (((-474) $) 33 T ELT) (((-1091) $) 34 T ELT) (((-801 (-485)) $) 66 T ELT) (((-801 (-330)) $) 64 T ELT)) (-3948 (((-773) $) 41 T ELT) (($ (-1074)) 35 T ELT) (($ (-447)) 153 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3538 (($ $ (-584 (-773))) 49 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 38 T ELT))) -(((-1091) (-13 (-757) (-554 (-474)) (-554 (-1091)) (-556 (-1074)) (-951 (-447)) (-554 (-801 (-485))) (-554 (-801 (-330))) (-797 (-485)) (-797 (-330)) (-10 -8 (-15 -3616 ($)) (-15 -3616 ($ $)) (-15 -3545 ((-1186))) (-15 -3544 ($ $)) (-15 -3543 ((-85) $)) (-15 -3542 ((-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-15 -3541 ($ $ (-584 (-584 (-773))))) (-15 -3541 ($ $ (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-15 -3540 ($ $ (-584 (-773)))) (-15 -3539 ($ $ (-584 (-773)))) (-15 -3538 ($ $ (-584 (-773)))) (-15 -3802 ($ $ (-584 (-773)))) (-15 -3537 ((-1074) $)) (-15 -3536 ((-584 $) $)) (-15 -3726 ($) -3954)))) (T -1091)) -((-3616 (*1 *1) (-5 *1 (-1091))) (-3616 (*1 *1 *1) (-5 *1 (-1091))) (-3545 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091)))) (-3544 (*1 *1 *1) (-5 *1 (-1091))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1091)))) (-3726 (*1 *1) (-5 *1 (-1091)))) -((-3546 (((-1180 |#1|) |#1| (-831)) 18 T ELT) (((-1180 |#1|) (-584 |#1|)) 25 T ELT))) -(((-1092 |#1|) (-10 -7 (-15 -3546 ((-1180 |#1|) (-584 |#1|))) (-15 -3546 ((-1180 |#1|) |#1| (-831)))) (-962)) (T -1092)) -((-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| (-885) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 18 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-885)) NIL T ELT)) (-2822 (((-885) $) NIL T ELT)) (-1626 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-3740 (($ $ (-885) |#1| $) NIL (-12 (|has| (-885) (-104)) (|has| |#1| (-496))) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-885) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-885)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 13 T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1093 |#1|) (-13 (-277 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| (-885) (-104)) (-15 -3740 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962)) (T -1093)) -((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) (-4 *3 (-962))))) -((-3547 (((-1095) (-1091) $) 26 T ELT)) (-3557 (($) 30 T ELT)) (-3549 (((-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) (-1091) $) 23 T ELT)) (-3551 (((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) $) 42 T ELT) (((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) 43 T ELT) (((-1186) (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) 44 T ELT)) (-3559 (((-1186) (-1091)) 59 T ELT)) (-3550 (((-1186) (-1091) $) 56 T ELT) (((-1186) (-1091)) 57 T ELT) (((-1186)) 58 T ELT)) (-3555 (((-1186) (-1091)) 38 T ELT)) (-3553 (((-1091)) 37 T ELT)) (-3567 (($) 35 T ELT)) (-3566 (((-379) (-1091) (-379) (-1091) $) 46 T ELT) (((-379) (-584 (-1091)) (-379) (-1091) $) 50 T ELT) (((-379) (-1091) (-379)) 47 T ELT) (((-379) (-1091) (-379) (-1091)) 51 T ELT)) (-3554 (((-1091)) 36 T ELT)) (-3948 (((-773) $) 29 T ELT)) (-3556 (((-1186)) 31 T ELT) (((-1186) (-1091)) 34 T ELT)) (-3548 (((-584 (-1091)) (-1091) $) 25 T ELT)) (-3552 (((-1186) (-1091) (-584 (-1091)) $) 39 T ELT) (((-1186) (-1091) (-584 (-1091))) 40 T ELT) (((-1186) (-584 (-1091))) 41 T ELT))) -(((-1094) (-13 (-553 (-773)) (-10 -8 (-15 -3557 ($)) (-15 -3556 ((-1186))) (-15 -3556 ((-1186) (-1091))) (-15 -3566 ((-379) (-1091) (-379) (-1091) $)) (-15 -3566 ((-379) (-584 (-1091)) (-379) (-1091) $)) (-15 -3566 ((-379) (-1091) (-379))) (-15 -3566 ((-379) (-1091) (-379) (-1091))) (-15 -3555 ((-1186) (-1091))) (-15 -3554 ((-1091))) (-15 -3553 ((-1091))) (-15 -3552 ((-1186) (-1091) (-584 (-1091)) $)) (-15 -3552 ((-1186) (-1091) (-584 (-1091)))) (-15 -3552 ((-1186) (-584 (-1091)))) (-15 -3551 ((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) $)) (-15 -3551 ((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1#)))) (-15 -3551 ((-1186) (-3 (|:| |fst| (-377)) (|:| -3912 #1#)))) (-15 -3550 ((-1186) (-1091) $)) (-15 -3550 ((-1186) (-1091))) (-15 -3550 ((-1186))) (-15 -3559 ((-1186) (-1091))) (-15 -3567 ($)) (-15 -3549 ((-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-1091) $)) (-15 -3548 ((-584 (-1091)) (-1091) $)) (-15 -3547 ((-1095) (-1091) $))))) (T -1094)) -((-3557 (*1 *1) (-5 *1 (-1094))) (-3556 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3554 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3553 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3567 (*1 *1) (-5 *1 (-1094))) (-3549 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *1 (-1094)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094))))) -((-3561 (((-584 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $) 66 T ELT)) (-3563 (((-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-377) $) 47 T ELT)) (-3558 (($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))) 17 T ELT)) (-3559 (((-1186) $) 73 T ELT)) (-3564 (((-584 (-1091)) $) 22 T ELT)) (-3560 (((-1016) $) 60 T ELT)) (-3565 (((-379) (-1091) $) 27 T ELT)) (-3562 (((-584 (-1091)) $) 30 T ELT)) (-3567 (($) 19 T ELT)) (-3566 (((-379) (-584 (-1091)) (-379) $) 25 T ELT) (((-379) (-1091) (-379) $) 24 T ELT)) (-3948 (((-773) $) 12 T ELT) (((-1103 (-1091) (-379)) $) 13 T ELT))) -(((-1095) (-13 (-553 (-773)) (-10 -8 (-15 -3948 ((-1103 (-1091) (-379)) $)) (-15 -3567 ($)) (-15 -3566 ((-379) (-584 (-1091)) (-379) $)) (-15 -3566 ((-379) (-1091) (-379) $)) (-15 -3565 ((-379) (-1091) $)) (-15 -3564 ((-584 (-1091)) $)) (-15 -3563 ((-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-377) $)) (-15 -3562 ((-584 (-1091)) $)) (-15 -3561 ((-584 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $)) (-15 -3560 ((-1016) $)) (-15 -3559 ((-1186) $)) (-15 -3558 ($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))))))) (T -1095)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-379))) (-5 *1 (-1095)))) (-3567 (*1 *1) (-5 *1 (-1095))) (-3566 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095)))) (-3566 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1095)))) (-3565 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-379)) (-5 *1 (-1095)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3563 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) (-5 *1 (-1095)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))) (-5 *1 (-1095)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095)))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))) (-5 *1 (-1095))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3159 (((-3 (-485) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-447) #1#) $) 43 T ELT) (((-3 (-1074) #1#) $) 47 T ELT)) (-3158 (((-485) $) 30 T ELT) (((-179) $) 36 T ELT) (((-447) $) 40 T ELT) (((-1074) $) 48 T ELT)) (-3572 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3571 (((-3 (-485) (-179) (-447) (-1074) $) $) 56 T ELT)) (-3570 (((-584 $) $) 58 T ELT)) (-3974 (((-1016) $) 24 T ELT) (($ (-1016)) 25 T ELT)) (-3569 (((-85) $) 57 T ELT)) (-3948 (((-773) $) 23 T ELT) (($ (-485)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-447)) 38 T ELT) (($ (-1074)) 44 T ELT) (((-474) $) 60 T ELT) (((-485) $) 31 T ELT) (((-179) $) 37 T ELT) (((-447) $) 41 T ELT) (((-1074) $) 49 T ELT)) (-3568 (((-85) $ (|[\|\|]| (-485))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-447))) 19 T ELT) (((-85) $ (|[\|\|]| (-1074))) 16 T ELT)) (-3573 (($ (-447) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3574 (((-485) $) 27 T ELT) (((-179) $) 33 T ELT) (((-447) $) 39 T ELT) (((-1074) $) 45 T ELT)) (-3058 (((-85) $ $) 7 T ELT))) -(((-1096) (-13 (-1176) (-1014) (-951 (-485)) (-951 (-179)) (-951 (-447)) (-951 (-1074)) (-553 (-474)) (-10 -8 (-15 -3974 ((-1016) $)) (-15 -3974 ($ (-1016))) (-15 -3948 ((-485) $)) (-15 -3574 ((-485) $)) (-15 -3948 ((-179) $)) (-15 -3574 ((-179) $)) (-15 -3948 ((-447) $)) (-15 -3574 ((-447) $)) (-15 -3948 ((-1074) $)) (-15 -3574 ((-1074) $)) (-15 -3573 ($ (-447) (-584 $))) (-15 -3573 ($ $ (-584 $))) (-15 -3572 ((-85) $)) (-15 -3571 ((-3 (-485) (-179) (-447) (-1074) $) $)) (-15 -3570 ((-584 $) $)) (-15 -3569 ((-85) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-485)))) (-15 -3568 ((-85) $ (|[\|\|]| (-179)))) (-15 -3568 ((-85) $ (|[\|\|]| (-447)))) (-15 -3568 ((-85) $ (|[\|\|]| (-1074))))))) (T -1096)) -((-3974 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1074) (-1096))) (-5 *1 (-1096)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 21 T ELT)) (-3726 (($) 10 T CONST)) (-2996 (($) 25 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2011 (((-831) $) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 22 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) -(((-1097 |#1|) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954))) (-831)) (T -1097)) -((-3726 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831))))) -((-485) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 24 T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) 18 T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) 20 T ELT)) (-3728 (($ $ $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 22 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 21 T ELT))) -(((-1098 |#1|) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954))) (-831)) (T -1098)) -((-3728 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) (-3727 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) (-3726 (*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831))))) -((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 7 T ELT))) -(((-1099) (-1014)) (T -1099)) -NIL -((-3576 (((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 69 T ELT)) (-3575 (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|)))) 81 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|))) 77 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091)) 82 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091)) 76 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091))) 109 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 106 T ELT))) -(((-1100 |#1|) (-10 -7 (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))))) (-15 -3576 ((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))))) (-496)) (T -1100)) -((-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-249 (-350 (-858 *4)))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-350 (-858 *4))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-249 (-350 (-858 *5)))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-350 (-858 *5))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4))))))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)) (-5 *3 (-584 (-249 (-350 (-858 *5))))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5))))) -((-3581 (((-1074)) 7 T ELT)) (-3578 (((-1074)) 11 T CONST)) (-3577 (((-1186) (-1074)) 13 T ELT)) (-3580 (((-1074)) 8 T CONST)) (-3579 (((-103)) 10 T CONST))) -(((-1101) (-13 (-1130) (-10 -7 (-15 -3581 ((-1074))) (-15 -3580 ((-1074)) -3954) (-15 -3579 ((-103)) -3954) (-15 -3578 ((-1074)) -3954) (-15 -3577 ((-1186) (-1074)))))) (T -1101)) -((-3581 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3580 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3579 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101)))) (-3578 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101))))) -((-3585 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3588 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3589 (((-1104 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3591 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3594 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3593 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3590 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3592 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3584 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3583 (((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3582 (((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3586 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3587 (((-584 (-584 |#1|)) (-1104 (-584 |#1|))) 60 T ELT))) -(((-1102 |#1|) (-10 -7 (-15 -3582 ((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-15 -3583 ((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3584 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3585 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3586 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3587 ((-584 (-584 |#1|)) (-1104 (-584 |#1|)))) (-15 -3588 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-15 -3589 ((-1104 (-584 |#1|)) (-584 |#1|))) (-15 -3590 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-15 -3591 ((-584 (-584 |#1|)) (-584 |#1|))) (-15 -3592 ((-584 |#1|) (-584 |#1|))) (-15 -3593 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-15 -3594 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1102)) -((-3594 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3593 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1102 *6)) (-5 *4 (-584 *5)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 *4))))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-4 *4 (-757)))) (-3585 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3584 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3583 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5)))) (-3582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1102 *6)) (-5 *5 (-584 *4))))) -((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1103 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -1103)) -NIL -((-3595 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3596 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3948 (((-773) $) 33 T ELT))) -(((-1104 |#1|) (-10 -8 (-15 -3595 ($ (-584 (-584 |#1|)))) (-15 -3596 ((-584 (-584 |#1|)) $)) (-15 -3948 ((-773) $))) (-1014)) (T -1104)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3597 (($ |#1| (-55)) 11 T ELT)) (-3544 ((|#1| $) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ |#1|) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 15 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1105 |#1|) (-13 (-748 |#1|) (-10 -8 (-15 -3597 ($ |#1| (-55))))) (-1014)) (T -1105)) -((-3597 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1014))))) -((-3598 ((|#1| (-584 |#1|)) 46 T ELT)) (-3600 ((|#1| |#1| (-485)) 24 T ELT)) (-3599 (((-1086 |#1|) |#1| (-831)) 20 T ELT))) -(((-1106 |#1|) (-10 -7 (-15 -3598 (|#1| (-584 |#1|))) (-15 -3599 ((-1086 |#1|) |#1| (-831))) (-15 -3600 (|#1| |#1| (-485)))) (-312)) (T -1106)) -((-3600 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) -((-3601 (($) 10 T ELT) (($ (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3407 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2610 (((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 34 T ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 52 T ELT) (($ (-1 |#3| |#3|) $) 28 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 48 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 48 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 33 T ELT)) (-1275 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 55 T ELT)) (-2204 (((-584 |#2|) $) 17 T ELT)) (-2205 (((-85) |#2| $) 60 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 59 T ELT)) (-1276 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 64 T ELT)) (-2206 (((-584 |#3|) $) 36 T ELT)) (-3948 (((-773) $) 25 T ELT)) (-3058 (((-85) $ $) 46 T ELT))) -(((-1107 |#1| |#2| |#3|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3601 (|#1| (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))))) (-15 -3601 (|#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2610 ((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3407 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -2205 ((-85) |#2| |#1|)) (-15 -2204 ((-584 |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3407 (|#1| (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1355 ((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1275 ((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1276 ((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3328 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|))) (-1108 |#2| |#3|) (-1014) (-1014)) (T -1107)) -NIL -((-2570 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3601 (($) 92 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 91 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 80 (|has| $ (-1036 |#2|)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 68 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 57 T ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 58 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 107 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 104 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 67 (|has| $ (-1036 |#2|)) ELT)) (-3114 ((|#2| $ |#1|) 69 T ELT)) (-2201 ((|#1| $) 77 (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 106 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 76 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 33 T ELT) (($ (-1 |#2| |#2|) $) 61 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 62 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 93 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 90 T ELT)) (-3244 (((-1074) $) 20 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 59 T ELT)) (-2234 (((-85) |#1| $) 60 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-2204 (((-584 |#1|) $) 74 T ELT)) (-2205 (((-85) |#1| $) 73 T ELT)) (-3245 (((-1034) $) 19 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 78 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 46 T ELT)) (-2200 (($ $ |#2|) 79 (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 100 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 97 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 96 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 95 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 94 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 75 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 72 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1|) 71 T ELT) ((|#2| $ |#1| |#2|) 70 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 105 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 101 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3948 (((-773) $) 15 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 99 T ELT)) (-3058 (((-85) $ $) 16 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3959 (((-695) $) 98 T ELT))) -(((-1108 |#1| |#2|) (-113) (-1014) (-1014)) (T -1108)) -((-3601 (*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3862 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -(-13 (-550 |t#1| |t#2|) (-318 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3601 ($)) (-15 -3601 ($ (-584 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))))) (-15 -3960 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-1014) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1036 |#2|) . T) ((-1130) . T)) -((-3607 (((-85)) 29 T ELT)) (-3604 (((-1186) (-1074)) 31 T ELT)) (-3608 (((-85)) 41 T ELT)) (-3605 (((-1186)) 39 T ELT)) (-3603 (((-1186) (-1074) (-1074)) 30 T ELT)) (-3609 (((-85)) 42 T ELT)) (-3611 (((-1186) |#1| |#2|) 53 T ELT)) (-3602 (((-1186)) 26 T ELT)) (-3610 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3606 (((-1186)) 40 T ELT))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -3602 ((-1186))) (-15 -3603 ((-1186) (-1074) (-1074))) (-15 -3604 ((-1186) (-1074))) (-15 -3605 ((-1186))) (-15 -3606 ((-1186))) (-15 -3607 ((-85))) (-15 -3608 ((-85))) (-15 -3609 ((-85))) (-15 -3610 ((-3 |#2| "failed") |#1|)) (-15 -3611 ((-1186) |#1| |#2|))) (-1014) (-1014)) (T -1109)) -((-3611 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3610 (*1 *2 *3) (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014)))) (-3609 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3606 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3605 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3603 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3602 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3617 (((-584 (-1074)) $) 37 T ELT)) (-3613 (((-584 (-1074)) $ (-584 (-1074))) 40 T ELT)) (-3612 (((-584 (-1074)) $ (-584 (-1074))) 39 T ELT)) (-3614 (((-584 (-1074)) $ (-584 (-1074))) 41 T ELT)) (-3615 (((-584 (-1074)) $) 36 T ELT)) (-3616 (($) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3618 (((-584 (-1074)) $) 38 T ELT)) (-3619 (((-1186) $ (-485)) 33 T ELT) (((-1186) $) 34 T ELT)) (-3974 (($ (-773) (-485)) 31 T ELT) (($ (-773) (-485) (-773)) NIL T ELT)) (-3948 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1110) (-13 (-1014) (-556 (-773)) (-10 -8 (-15 -3974 ($ (-773) (-485))) (-15 -3974 ($ (-773) (-485) (-773))) (-15 -3619 ((-1186) $ (-485))) (-15 -3619 ((-1186) $)) (-15 -3618 ((-584 (-1074)) $)) (-15 -3617 ((-584 (-1074)) $)) (-15 -3616 ($)) (-15 -3615 ((-584 (-1074)) $)) (-15 -3614 ((-584 (-1074)) $ (-584 (-1074)))) (-15 -3613 ((-584 (-1074)) $ (-584 (-1074)))) (-15 -3612 ((-584 (-1074)) $ (-584 (-1074))))))) (T -1110)) -((-3974 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3974 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3616 (*1 *1) (-5 *1 (-1110))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) -((-3948 (((-1110) |#1|) 11 T ELT))) -(((-1111 |#1|) (-10 -7 (-15 -3948 ((-1110) |#1|))) (-1014)) (T -1111)) -((-3948 (*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3624 (((-1074) $ (-1074)) 21 T ELT) (((-1074) $) 20 T ELT)) (-1698 (((-1074) $ (-1074)) 19 T ELT)) (-1702 (($ $ (-1074)) NIL T ELT)) (-3622 (((-3 (-1074) #1="failed") $) 11 T ELT)) (-3623 (((-1074) $) 8 T ELT)) (-3621 (((-3 (-1074) #1#) $) 12 T ELT)) (-1699 (((-1074) $) 9 T ELT)) (-1703 (($ (-338)) NIL T ELT) (($ (-338) (-1074)) NIL T ELT)) (-3544 (((-338) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3620 (((-85) $) 25 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1112) (-13 (-314 (-338) (-1074)) (-10 -8 (-15 -3624 ((-1074) $ (-1074))) (-15 -3624 ((-1074) $)) (-15 -3623 ((-1074) $)) (-15 -3622 ((-3 (-1074) #1="failed") $)) (-15 -3621 ((-3 (-1074) #1#) $)) (-15 -3620 ((-85) $))))) (T -1112)) -((-3624 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3622 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3621 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112))))) -((-3625 (((-3 (-485) #1="failed") |#1|) 19 T ELT)) (-3626 (((-3 (-485) #1#) |#1|) 14 T ELT)) (-3627 (((-485) (-1074)) 33 T ELT))) -(((-1113 |#1|) (-10 -7 (-15 -3625 ((-3 (-485) #1="failed") |#1|)) (-15 -3626 ((-3 (-485) #1#) |#1|)) (-15 -3627 ((-485) (-1074)))) (-962)) (T -1113)) -((-3627 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962)))) (-3626 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962))))) -((-3628 (((-1048 (-179))) 9 T ELT))) -(((-1114) (-10 -7 (-15 -3628 ((-1048 (-179)))))) (T -1114)) -((-3628 (*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114))))) -((-3629 (($) 12 T ELT)) (-3500 (($ $) 36 T ELT)) (-3498 (($ $) 34 T ELT)) (-3486 (($ $) 26 T ELT)) (-3502 (($ $) 18 T ELT)) (-3503 (($ $) 16 T ELT)) (-3501 (($ $) 20 T ELT)) (-3489 (($ $) 31 T ELT)) (-3499 (($ $) 35 T ELT)) (-3487 (($ $) 30 T ELT))) -(((-1115 |#1|) (-10 -7 (-15 -3629 (|#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3487 (|#1| |#1|))) (-1116)) (T -1115)) -NIL -((-3494 (($ $) 26 T ELT)) (-3641 (($ $) 11 T ELT)) (-3492 (($ $) 27 T ELT)) (-3640 (($ $) 10 T ELT)) (-3496 (($ $) 28 T ELT)) (-3639 (($ $) 9 T ELT)) (-3629 (($) 16 T ELT)) (-3944 (($ $) 19 T ELT)) (-3945 (($ $) 18 T ELT)) (-3497 (($ $) 29 T ELT)) (-3638 (($ $) 8 T ELT)) (-3495 (($ $) 30 T ELT)) (-3637 (($ $) 7 T ELT)) (-3493 (($ $) 31 T ELT)) (-3636 (($ $) 6 T ELT)) (-3500 (($ $) 20 T ELT)) (-3488 (($ $) 32 T ELT)) (-3498 (($ $) 21 T ELT)) (-3486 (($ $) 33 T ELT)) (-3502 (($ $) 22 T ELT)) (-3490 (($ $) 34 T ELT)) (-3503 (($ $) 23 T ELT)) (-3491 (($ $) 35 T ELT)) (-3501 (($ $) 24 T ELT)) (-3489 (($ $) 36 T ELT)) (-3499 (($ $) 25 T ELT)) (-3487 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1116) (-113)) (T -1116)) -((-3629 (*1 *1) (-4 *1 (-1116)))) -(-13 (-1119) (-66) (-433) (-35) (-239) (-10 -8 (-15 -3629 ($)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-1119) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 19 T ELT)) (-3634 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3027 ((|#1| $ |#1|) 14 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 13 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) 59 T ELT)) (-3029 (((-85) $ $) 50 (|has| |#1| (-72)) ELT)) (-2610 (((-584 |#1|) $) 70 T ELT)) (-3247 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3032 (((-584 |#1|) $) 55 T ELT)) (-3529 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 101 T ELT)) (-3405 (((-85) $) 9 T ELT)) (-3567 (($) 10 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3630 (((-584 $) $) 83 T ELT)) (-3631 (((-85) $ $) 104 T ELT)) (-3632 (((-584 $) $) 99 T ELT)) (-3633 (($ $) 100 T ELT)) (-3635 (((-85) $) 76 T ELT)) (-1731 (((-695) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 25 T ELT)) (-3402 (($ $) 82 T ELT)) (-3948 (((-773) $) 85 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 12 T ELT)) (-3030 (((-85) $ $) 39 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3058 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 80 T ELT))) -(((-1117 |#1|) (-13 (-924 |#1|) (-318 |#1|) (-1036 |#1|) (-10 -8 (-15 -3634 ($ |#1| (-584 $))) (-15 -3634 ($ (-584 |#1|))) (-15 -3634 ($ |#1|)) (-15 -3635 ((-85) $)) (-15 -3633 ($ $)) (-15 -3632 ((-584 $) $)) (-15 -3631 ((-85) $ $)) (-15 -3630 ((-584 $) $)))) (-1014)) (T -1117)) -((-3635 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3634 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3634 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3)))) (-3634 (*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3631 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) -((-3641 (($ $) 15 T ELT)) (-3639 (($ $) 12 T ELT)) (-3638 (($ $) 10 T ELT)) (-3637 (($ $) 17 T ELT))) -(((-1118 |#1|) (-10 -7 (-15 -3637 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3641 (|#1| |#1|))) (-1119)) (T -1118)) -NIL -((-3641 (($ $) 11 T ELT)) (-3640 (($ $) 10 T ELT)) (-3639 (($ $) 9 T ELT)) (-3638 (($ $) 8 T ELT)) (-3637 (($ $) 7 T ELT)) (-3636 (($ $) 6 T ELT))) -(((-1119) (-113)) (T -1119)) -((-3641 (*1 *1 *1) (-4 *1 (-1119))) (-3640 (*1 *1 *1) (-4 *1 (-1119))) (-3639 (*1 *1 *1) (-4 *1 (-1119))) (-3638 (*1 *1 *1) (-4 *1 (-1119))) (-3637 (*1 *1 *1) (-4 *1 (-1119))) (-3636 (*1 *1 *1) (-4 *1 (-1119)))) -(-13 (-10 -8 (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $)) (-15 -3641 ($ $)))) -((-3644 ((|#2| |#2|) 95 T ELT)) (-3647 (((-85) |#2|) 29 T ELT)) (-3645 ((|#2| |#2|) 33 T ELT)) (-3646 ((|#2| |#2|) 35 T ELT)) (-3642 ((|#2| |#2| (-1091)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3648 (((-142 |#2|) |#2|) 31 T ELT)) (-3643 ((|#2| |#2| (-1091)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1120 |#1| |#2|) (-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1091))) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 ((-85) |#2|)) (-15 -3648 ((-142 |#2|) |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -1120)) -((-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) -((-3649 ((|#4| |#4| |#1|) 31 T ELT)) (-3650 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3649 (|#4| |#4| |#1|)) (-15 -3650 (|#4| |#4| |#1|))) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1121)) -((-3650 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3649 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -((-3668 ((|#2| |#2|) 148 T ELT)) (-3670 ((|#2| |#2|) 145 T ELT)) (-3667 ((|#2| |#2|) 136 T ELT)) (-3669 ((|#2| |#2|) 133 T ELT)) (-3666 ((|#2| |#2|) 141 T ELT)) (-3665 ((|#2| |#2|) 129 T ELT)) (-3654 ((|#2| |#2|) 44 T ELT)) (-3653 ((|#2| |#2|) 105 T ELT)) (-3651 ((|#2| |#2|) 88 T ELT)) (-3664 ((|#2| |#2|) 143 T ELT)) (-3663 ((|#2| |#2|) 131 T ELT)) (-3676 ((|#2| |#2|) 153 T ELT)) (-3674 ((|#2| |#2|) 151 T ELT)) (-3675 ((|#2| |#2|) 152 T ELT)) (-3673 ((|#2| |#2|) 150 T ELT)) (-3652 ((|#2| |#2|) 163 T ELT)) (-3677 ((|#2| |#2|) 30 (-12 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3655 ((|#2| |#2|) 89 T ELT)) (-3656 ((|#2| |#2|) 154 T ELT)) (-3965 ((|#2| |#2|) 155 T ELT)) (-3662 ((|#2| |#2|) 142 T ELT)) (-3661 ((|#2| |#2|) 130 T ELT)) (-3660 ((|#2| |#2|) 149 T ELT)) (-3672 ((|#2| |#2|) 147 T ELT)) (-3659 ((|#2| |#2|) 137 T ELT)) (-3671 ((|#2| |#2|) 135 T ELT)) (-3658 ((|#2| |#2|) 139 T ELT)) (-3657 ((|#2| |#2|) 127 T ELT))) -(((-1122 |#1| |#2|) (-10 -7 (-15 -3965 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-15 -3677 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-13 (-364 |#1|) (-1116))) (T -1122)) -((-3677 (*1 *2 *2) (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-1091)) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3816 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $ (-1091)) NIL T ELT) (((-695) $ (-1091) (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ $ (-584 (-1091)) (-584 (-470 (-1091)))) NIL T ELT) (($ $ (-1091) (-470 (-1091))) NIL T ELT) (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $ (-1091)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3678 (($ (-1 $) (-1091) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 (($ $ (-695)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3760 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3950 (((-470 (-1091)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-1091)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3679 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1123 |#1|) (-13 (-680 |#1| (-1091)) (-10 -8 (-15 -3679 ((-858 |#1|) $ (-695))) (-15 -3948 ($ (-1091))) (-15 -3948 ($ (-858 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $ (-1091) |#1|)) (-15 -3678 ($ (-1 $) (-1091) |#1|))) |%noBranch|))) (-962)) (T -1123)) -((-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3)))) (-3814 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3678 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))))) -((-3695 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3690 ((|#5| |#5| $) 83 T ELT)) (-3712 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3691 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3159 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3801 (((-3 $ #1#) $) 119 T ELT)) (-3687 ((|#5| |#5| $) 101 T ELT)) (-3696 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3685 ((|#5| |#5| $) 105 T ELT)) (-3844 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#5|)) (|:| -1703 (-584 |#5|))) $) 63 T ELT)) (-3697 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3182 ((|#4| $) 115 T ELT)) (-3800 (((-3 |#5| #1#) $) 117 T ELT)) (-3699 (((-584 |#5|) $) 55 T ELT)) (-3693 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3688 ((|#5| |#5| $) 89 T ELT)) (-3701 (((-85) $ $) 29 T ELT)) (-3694 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3689 ((|#5| |#5| $) 86 T ELT)) (-3803 (((-3 |#5| #1#) $) 116 T ELT)) (-3771 (($ $ |#5|) 135 T ELT)) (-3950 (((-695) $) 60 T ELT)) (-3532 (($ (-584 |#5|)) 132 T ELT)) (-2912 (($ $ |#4|) 130 T ELT)) (-2914 (($ $ |#4|) 128 T ELT)) (-3686 (($ $) 127 T ELT)) (-3948 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3680 (((-695) $) 139 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3692 (((-85) $ (-1 (-85) |#5| (-584 |#5|))) 107 T ELT)) (-3682 (((-584 |#4|) $) 122 T ELT)) (-3935 (((-85) |#4| $) 125 T ELT)) (-3058 (((-85) $ $) 20 T ELT))) -(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3680 ((-695) |#1|)) (-15 -3771 (|#1| |#1| |#5|)) (-15 -3712 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3935 ((-85) |#4| |#1|)) (-15 -3682 ((-584 |#4|) |#1|)) (-15 -3801 ((-3 |#1| #1#) |#1|)) (-15 -3800 ((-3 |#5| #1#) |#1|)) (-15 -3803 ((-3 |#5| #1#) |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 (|#5| |#5| |#1|)) (-15 -3691 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3844 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3693 ((-85) |#1|)) (-15 -3694 ((-85) |#1|)) (-15 -3695 ((-85) |#1|)) (-15 -3692 ((-85) |#1| (-1 (-85) |#5| (-584 |#5|)))) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1|)) (-15 -3696 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3697 ((-85) |#1|)) (-15 -3697 ((-85) |#5| |#1|)) (-15 -3698 ((-2 (|:| -3863 (-584 |#5|)) (|:| -1703 (-584 |#5|))) |#1|)) (-15 -3950 ((-695) |#1|)) (-15 -3699 ((-584 |#5|) |#1|)) (-15 -3700 ((-3 (-2 (|:| |bas| |#1|) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3700 ((-3 (-2 (|:| |bas| |#1|) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3701 ((-85) |#1| |#1|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -3182 (|#4| |#1|)) (-15 -3159 ((-3 |#1| #1#) (-584 |#5|))) (-15 -3948 ((-584 |#5|) |#1|)) (-15 -3844 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3844 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3844 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3532 (|#1| (-584 |#5|))) (-15 -3712 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-496) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -1124)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 91 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ "failed") $) 87 T ELT)) (-3687 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 67 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3685 ((|#4| |#4| $) 92 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 110 T ELT)) (-3697 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 116 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3800 (((-3 |#4| "failed") $) 88 T ELT)) (-3699 (((-584 |#4|) $) 112 T ELT)) (-3693 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-3701 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| "failed") $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 64 T ELT)) (-3681 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3771 (($ $ |#4|) 82 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 111 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 69 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 63 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 81 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 86 T ELT)) (-3935 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT))) -(((-1125 |#1| |#2| |#3| |#4|) (-113) (-496) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1125)) -((-3701 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3700 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))) (-3700 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1125 *6 *7 *8 *9)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -3863 (-584 *6)) (|:| -1703 (-584 *6)))))) (-3697 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3696 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3844 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-978 *5 *6 *7)))) (-3691 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)))) (-3690 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3683 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3863 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3803 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3800 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3801 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3935 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-3712 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) (-3681 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695))))) -(-13 (-890 |t#1| |t#2| |t#3| |t#4|) (-1036 |t#4|) (-10 -8 (-15 -3701 ((-85) $ $)) (-15 -3700 ((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3700 ((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3699 ((-584 |t#4|) $)) (-15 -3950 ((-695) $)) (-15 -3698 ((-2 (|:| -3863 (-584 |t#4|)) (|:| -1703 (-584 |t#4|))) $)) (-15 -3697 ((-85) |t#4| $)) (-15 -3697 ((-85) $)) (-15 -3696 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3695 ((-85) |t#4| $)) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) $ (-1 (-85) |t#4| (-584 |t#4|)))) (-15 -3695 ((-85) $)) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) $)) (-15 -3844 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3691 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3690 (|t#4| |t#4| $)) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 ($ $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 ((-584 $) (-584 |t#4|))) (-15 -3683 ((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |t#4|)))) (-584 |t#4|))) (-15 -3803 ((-3 |t#4| "failed") $)) (-15 -3800 ((-3 |t#4| "failed") $)) (-15 -3801 ((-3 $ "failed") $)) (-15 -3682 ((-584 |t#3|) $)) (-15 -3935 ((-85) |t#3| $)) (-15 -3712 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3681 ((-3 $ "failed") $ |t#4|)) (-15 -3771 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3680 ((-695) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1130) . T)) -((-3707 (($ |#1| (-584 (-584 (-855 (-179)))) (-85)) 19 T ELT)) (-3706 (((-85) $ (-85)) 18 T ELT)) (-3705 (((-85) $) 17 T ELT)) (-3703 (((-584 (-584 (-855 (-179)))) $) 13 T ELT)) (-3702 ((|#1| $) 8 T ELT)) (-3704 (((-85) $) 15 T ELT))) -(((-1126 |#1|) (-10 -8 (-15 -3702 (|#1| $)) (-15 -3703 ((-584 (-584 (-855 (-179)))) $)) (-15 -3704 ((-85) $)) (-15 -3705 ((-85) $)) (-15 -3706 ((-85) $ (-85))) (-15 -3707 ($ |#1| (-584 (-584 (-855 (-179)))) (-85)))) (-888)) (T -1126)) -((-3707 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) (-4 *2 (-888)))) (-3706 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3702 (*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-888))))) -((-3709 (((-855 (-179)) (-855 (-179))) 31 T ELT)) (-3708 (((-855 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3711 (((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179)))) 57 T ELT)) (-3838 (((-179) (-855 (-179)) (-855 (-179))) 27 T ELT)) (-3836 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 28 T ELT)) (-3710 (((-584 (-584 (-179))) (-485)) 45 T ELT)) (-3839 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 26 T ELT)) (-3841 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 24 T ELT)) (* (((-855 (-179)) (-179) (-855 (-179))) 22 T ELT))) -(((-1127) (-10 -7 (-15 -3708 ((-855 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-855 (-179)) (-179) (-855 (-179)))) (-15 -3841 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3839 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3838 ((-179) (-855 (-179)) (-855 (-179)))) (-15 -3836 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3709 ((-855 (-179)) (-855 (-179)))) (-15 -3710 ((-584 (-584 (-179))) (-485))) (-15 -3711 ((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179))))))) (T -1127)) -((-3711 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1127)) (-5 *3 (-855 *4)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1127)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3838 (*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3841 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) (-3708 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)) (-5 *3 (-179))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3712 ((|#1| $ (-695)) 18 T ELT)) (-3835 (((-695) $) 13 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3948 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3058 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT))) -(((-1128 |#1|) (-13 (-430 (-870 |#1|)) (-10 -8 (-15 -3712 (|#1| $ (-695))) (-15 -3835 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1128)) -((-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130))))) -((-3715 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)) 92 T ELT)) (-3713 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 84 T ELT)) (-3714 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 68 T ELT))) -(((-1129 |#1|) (-10 -7 (-15 -3713 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3714 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3715 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)))) (-299)) (T -1129)) -((-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1086 (-1086 *5)))) (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4)))))) -NIL -(((-1130) (-113)) (T -1130)) +(((-64) . T) ((-72) . T) ((-557 (-1097)) . T) ((-554 (-774)) . T) ((-554 (-1097)) . T) ((-431 (-1097)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-3220 ((|#1| |#1| (-1 (-486) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3218 (((-1187)) 21 T ELT)) (-3219 (((-585 |#1|)) 13 T ELT))) +(((-998 |#1|) (-10 -7 (-15 -3218 ((-1187))) (-15 -3219 ((-585 |#1|))) (-15 -3220 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3220 (|#1| |#1| (-1 (-486) |#1| |#1|)))) (-105)) (T -998)) +((-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-486) *2 *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) (-3219 (*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-998 *3)) (-4 *3 (-105)))) (-3218 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) +((-3223 (($ (-78) $) 20 T ELT)) (-3224 (((-634 (-78)) (-448) $) 19 T ELT)) (-3568 (($) 7 T ELT)) (-3222 (($) 21 T ELT)) (-3221 (($) 22 T ELT)) (-3225 (((-585 (-149)) $) 10 T ELT)) (-3949 (((-774) $) 25 T ELT))) +(((-999) (-13 (-554 (-774)) (-10 -8 (-15 -3568 ($)) (-15 -3225 ((-585 (-149)) $)) (-15 -3224 ((-634 (-78)) (-448) $)) (-15 -3223 ($ (-78) $)) (-15 -3222 ($)) (-15 -3221 ($))))) (T -999)) +((-3568 (*1 *1) (-5 *1 (-999))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-585 (-149))) (-5 *1 (-999)))) (-3224 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-999)))) (-3223 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-999)))) (-3222 (*1 *1) (-5 *1 (-999))) (-3221 (*1 *1) (-5 *1 (-999)))) +((-3226 (((-1181 (-632 |#1|)) (-585 (-632 |#1|))) 45 T ELT) (((-1181 (-632 (-859 |#1|))) (-585 (-1092)) (-632 (-859 |#1|))) 75 T ELT) (((-1181 (-632 (-350 (-859 |#1|)))) (-585 (-1092)) (-632 (-350 (-859 |#1|)))) 92 T ELT)) (-3227 (((-1181 |#1|) (-632 |#1|) (-585 (-632 |#1|))) 39 T ELT))) +(((-1000 |#1|) (-10 -7 (-15 -3226 ((-1181 (-632 (-350 (-859 |#1|)))) (-585 (-1092)) (-632 (-350 (-859 |#1|))))) (-15 -3226 ((-1181 (-632 (-859 |#1|))) (-585 (-1092)) (-632 (-859 |#1|)))) (-15 -3226 ((-1181 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3227 ((-1181 |#1|) (-632 |#1|) (-585 (-632 |#1|))))) (-312)) (T -1000)) +((-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-1181 *5)) (-5 *1 (-1000 *5)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-1000 *4)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) (-5 *2 (-1181 (-632 (-859 *5)))) (-5 *1 (-1000 *5)) (-5 *4 (-632 (-859 *5))))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) (-5 *2 (-1181 (-632 (-350 (-859 *5))))) (-5 *1 (-1000 *5)) (-5 *4 (-632 (-350 (-859 *5))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1490 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ (-1092)) NIL T ELT)) (-1524 (((-696) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3084 (((-585 (-1002 (-1092))) $) NIL T ELT)) (-3086 (((-1087 $) $ (-1002 (-1092))) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-1002 (-1092)))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1486 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-1002 (-1092)) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 (-1041 |#1| (-1092)) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-1002 (-1092)) $) NIL T ELT) (((-1092) $) NIL T ELT) (((-1041 |#1| (-1092)) $) NIL T ELT)) (-3759 (($ $ $ (-1002 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1002 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-471 (-1002 (-1092))) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1002 (-1092)) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1002 (-1092)) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ (-1092)) NIL T ELT) (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) (-1002 (-1092))) NIL T ELT) (($ (-1087 $) (-1002 (-1092))) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-1002 (-1092))) NIL T ELT)) (-2823 (((-471 (-1002 (-1092))) $) NIL T ELT) (((-696) $ (-1002 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-1002 (-1092)))) NIL T ELT)) (-1627 (($ (-1 (-471 (-1002 (-1092))) (-471 (-1002 (-1092)))) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1525 (((-1 $ (-696)) (-1092)) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3085 (((-3 (-1002 (-1092)) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1488 (((-1002 (-1092)) $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1489 (((-85) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-1002 (-1092))) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-1002 (-1092)) |#1|) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 |#1|)) NIL T ELT) (($ $ (-1002 (-1092)) $) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 $)) NIL T ELT) (($ $ (-1092) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3760 (($ $ (-1002 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1491 (((-585 (-1092)) $) NIL T ELT)) (-3951 (((-471 (-1002 (-1092))) $) NIL T ELT) (((-696) $ (-1002 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-1002 (-1092)))) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-1002 (-1092)) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1002 (-1092)) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-1002 (-1092)) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1002 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1002 (-1092))) NIL T ELT) (($ (-1092)) NIL T ELT) (($ (-1041 |#1| (-1092))) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1001 |#1|) (-13 (-213 |#1| (-1092) (-1002 (-1092)) (-471 (-1002 (-1092)))) (-952 (-1041 |#1| (-1092)))) (-963)) (T -1001)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-1524 (((-696) $) NIL T ELT)) (-3834 ((|#1| $) 10 T ELT)) (-3160 (((-3 |#1| "failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3775 (((-696) $) 11 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-1525 (($ |#1| (-696)) 9 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2672 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 16 T ELT))) +(((-1002 |#1|) (-228 |#1|) (-758)) (T -1002)) +NIL +((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3739 (($ |#1| |#1|) 16 T ELT)) (-3961 (((-585 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-757)) ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3234 ((|#1| $) 11 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3230 (((-486) $) 15 T ELT)) (-3231 ((|#1| $) 14 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3966 (((-585 |#1|) $) 42 (|has| |#1| (-757)) ELT) (((-585 |#1|) (-585 $)) 41 (|has| |#1| (-757)) ELT)) (-3975 (($ |#1|) 29 T ELT)) (-3949 (((-774) $) 28 (|has| |#1| (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3740 (($ |#1| |#1|) 10 T ELT)) (-3235 (($ $ (-486)) 17 T ELT)) (-3059 (((-85) $ $) 22 (|has| |#1| (-1015)) ELT))) +(((-1003 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-1009 |#1| (-585 |#1|))) |%noBranch|))) (-1131)) (T -1003)) +NIL +((-3961 (((-585 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 27 (|has| |#1| (-757)) ELT) (((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 14 T ELT))) +(((-1004 |#1| |#2|) (-10 -7 (-15 -3961 ((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|))) (IF (|has| |#1| (-757)) (-15 -3961 ((-585 |#2|) (-1 |#2| |#1|) (-1003 |#1|))) |%noBranch|)) (-1131) (-1131)) (T -1004)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-585 *6)) (-5 *1 (-1004 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3228 (((-585 (-1051)) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1005) (-13 (-997) (-10 -8 (-15 -3228 ((-585 (-1051)) $))))) (T -1005)) +((-3228 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1005))))) +((-2571 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3834 (((-1092) $) NIL T ELT)) (-3739 (((-1003 |#1|) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3229 (($ (-1092) (-1003 |#1|)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3059 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT))) +(((-1006 |#1|) (-13 (-1131) (-10 -8 (-15 -3229 ($ (-1092) (-1003 |#1|))) (-15 -3834 ((-1092) $)) (-15 -3739 ((-1003 |#1|) $)) (IF (|has| (-1003 |#1|) (-1015)) (-6 (-1015)) |%noBranch|))) (-1131)) (T -1006)) +((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1003 *4)) (-4 *4 (-1131)) (-5 *1 (-1006 *4)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1006 *3)) (-4 *3 (-1131)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1131))))) +((-3961 (((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 19 T ELT))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -3961 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)))) (-1131) (-1131)) (T -1007)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1006 *6)) (-5 *1 (-1007 *5 *6))))) +((-3739 (($ |#1| |#1|) 8 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3234 ((|#1| $) 13 T ELT)) (-3230 (((-486) $) 9 T ELT)) (-3231 ((|#1| $) 10 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3975 (($ |#1|) 6 T ELT)) (-3740 (($ |#1| |#1|) 15 T ELT)) (-3235 (($ $ (-486)) 14 T ELT))) +(((-1008 |#1|) (-113) (-1131)) (T -1008)) +((-3740 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1008 *3)) (-4 *3 (-1131)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1131)) (-5 *2 (-486)))) (-3739 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) +(-13 (-559 |t#1|) (-10 -8 (-15 -3740 ($ |t#1| |t#1|)) (-15 -3235 ($ $ (-486))) (-15 -3234 (|t#1| $)) (-15 -3233 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 ((-486) $)) (-15 -3739 ($ |t#1| |t#1|)))) +(((-559 |#1|) . T)) +((-3739 (($ |#1| |#1|) 8 T ELT)) (-3961 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3234 ((|#1| $) 13 T ELT)) (-3230 (((-486) $) 9 T ELT)) (-3231 ((|#1| $) 10 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3966 ((|#2| (-585 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3975 (($ |#1|) 6 T ELT)) (-3740 (($ |#1| |#1|) 15 T ELT)) (-3235 (($ $ (-486)) 14 T ELT))) +(((-1009 |#1| |#2|) (-113) (-757) (-1066 |t#1|)) (T -1009)) +((-3966 (*1 *2 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) (-4 *2 (-1066 *4)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-757)) (-4 *2 (-1066 *3)))) (-3961 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) (-4 *2 (-1066 *4))))) +(-13 (-1008 |t#1|) (-10 -8 (-15 -3966 (|t#2| (-585 $))) (-15 -3966 (|t#2| $)) (-15 -3961 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-559 |#1|) . T) ((-1008 |#1|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3801 (((-1051) $) 14 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1010) (-13 (-997) (-10 -8 (-15 -3236 ((-585 (-1051)) $)) (-15 -3801 ((-1051) $))))) (T -1010)) +((-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1010)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1010))))) +((-2571 (((-85) $ $) NIL T ELT)) (-1807 (($) NIL (|has| |#1| (-320)) ELT)) (-3237 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3239 (($ $ $) 81 T ELT)) (-3238 (((-85) $ $) 83 T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3242 (($ (-585 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1572 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) 75 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-85) $ $) NIL T ELT)) (-2534 ((|#1| $) 56 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 20 T ELT)) (-3248 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 54 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 79 T ELT)) (-1276 ((|#1| $) 26 T ELT)) (-3612 (($ |#1| $) 70 T ELT)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1277 ((|#1| $) 28 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 22 T ELT)) (-3568 (($) 12 T ELT)) (-3240 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1468 (($) NIL T ELT) (($ (-585 |#1|)) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 17 T ELT)) (-3975 (((-475) $) 51 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 63 T ELT)) (-1808 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-774) $) NIL T ELT)) (-1809 (((-696) $) NIL T ELT)) (-3243 (($ (-585 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 53 T ELT)) (-3960 (((-696) $) 11 T ELT))) +(((-1011 |#1|) (-369 |#1|) (-1015)) (T -1011)) +NIL +((-3237 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3239 (($ $ $) 10 T ELT)) (-3240 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -3237 (|#1| |#2| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#2|)) (-15 -3240 (|#1| |#1| |#1|))) (-1013 |#2|) (-1015)) (T -1012)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3237 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT) (($ |#1| $) 21 T ELT)) (-3239 (($ $ $) 25 T ELT)) (-3238 (((-85) $ $) 24 T ELT)) (-3242 (($) 30 T ELT) (($ (-585 |#1|)) 29 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 38 T CONST)) (-1355 (($ $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 48 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 46 (|has| $ (-318 |#1|)) ELT)) (-3244 (((-85) $ $) 33 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3241 (($ $ $) 28 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 45 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 43 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 42 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 41 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-249 |#1|))) 40 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 34 T ELT)) (-3406 (((-85) $) 37 T ELT)) (-3568 (($) 36 T ELT)) (-3240 (($ $ $) 27 T ELT) (($ $ |#1|) 26 T ELT)) (-3403 (($ $) 35 T ELT)) (-3975 (((-475) $) 50 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 44 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-3243 (($) 32 T ELT) (($ (-585 |#1|)) 31 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-1013 |#1|) (-113) (-1015)) (T -1013)) +((-3244 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3243 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) (-3242 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3240 (*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3238 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3237 (*1 *1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(-13 (-1015) (-124 |t#1|) (-10 -8 (-6 -3988) (-15 -3244 ((-85) $ $)) (-15 -3243 ($)) (-15 -3243 ($ (-585 |t#1|))) (-15 -3242 ($)) (-15 -3242 ($ (-585 |t#1|))) (-15 -3241 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3240 ($ $ |t#1|)) (-15 -3239 ($ $ $)) (-15 -3238 ((-85) $ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ $ |t#1|)) (-15 -3237 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-3245 (((-1075) $) 10 T ELT)) (-3246 (((-1035) $) 8 T ELT))) +(((-1014 |#1|) (-10 -7 (-15 -3245 ((-1075) |#1|)) (-15 -3246 ((-1035) |#1|))) (-1015)) (T -1014)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-1015) (-113)) (T -1015)) +((-3246 (*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1035)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1075))))) +(-13 (-72) (-554 (-774)) (-10 -8 (-15 -3246 ((-1035) $)) (-15 -3245 ((-1075) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 36 T ELT)) (-3250 (($ (-585 (-832))) 70 T ELT)) (-3252 (((-3 $ #1="failed") $ (-832) (-832)) 81 T ELT)) (-2997 (($) 40 T ELT)) (-3248 (((-85) (-832) $) 42 T ELT)) (-2012 (((-832) $) 64 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 39 T ELT)) (-3253 (((-3 $ #1#) $ (-832)) 77 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3249 (((-1181 $)) 47 T ELT)) (-3251 (((-585 (-832)) $) 27 T ELT)) (-3247 (((-696) $ (-832) (-832)) 78 T ELT)) (-3949 (((-774) $) 32 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 24 T ELT))) +(((-1016 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3253 ((-3 $ #1="failed") $ (-832))) (-15 -3252 ((-3 $ #1#) $ (-832) (-832))) (-15 -3251 ((-585 (-832)) $)) (-15 -3250 ($ (-585 (-832)))) (-15 -3249 ((-1181 $))) (-15 -3248 ((-85) (-832) $)) (-15 -3247 ((-696) $ (-832) (-832))))) (-832) (-832)) (T -1016)) +((-3253 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3252 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3250 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3249 (*1 *2) (-12 (-5 *2 (-1181 (-1016 *3 *4))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3248 (*1 *2 *3 *1) (-12 (-5 *3 (-832)) (-5 *2 (-85)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3247 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-696)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3259 (((-1092) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3538 (((-1075) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3268 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-179) $) NIL T ELT)) (-3256 (((-774) $) NIL T ELT)) (-3269 (((-85) $ $) NIL T ELT)) (-3803 (($ $ (-486)) NIL T ELT) (($ $ (-585 (-486))) NIL T ELT)) (-3260 (((-585 $) $) NIL T ELT)) (-3975 (($ (-1075)) NIL T ELT) (($ (-1092)) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-774)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3255 (($ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3960 (((-486) $) NIL T ELT))) +(((-1017) (-1018 (-1075) (-1092) (-486) (-179) (-774))) (T -1017)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3263 (((-85) $) 36 T ELT)) (-3259 ((|#2| $) 31 T ELT)) (-3264 (((-85) $) 37 T ELT)) (-3538 ((|#1| $) 32 T ELT)) (-3266 (((-85) $) 39 T ELT)) (-3268 (((-85) $) 41 T ELT)) (-3265 (((-85) $) 38 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3262 (((-85) $) 35 T ELT)) (-3258 ((|#3| $) 30 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3261 (((-85) $) 34 T ELT)) (-3257 ((|#4| $) 29 T ELT)) (-3256 ((|#5| $) 28 T ELT)) (-3269 (((-85) $ $) 42 T ELT)) (-3803 (($ $ (-486)) 44 T ELT) (($ $ (-585 (-486))) 43 T ELT)) (-3260 (((-585 $) $) 33 T ELT)) (-3975 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-585 $)) 45 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-3254 (($ $) 26 T ELT)) (-3255 (($ $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3267 (((-85) $) 40 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-486) $) 25 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-113) (-1015) (-1015) (-1015) (-1015) (-1015)) (T -1018)) +((-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-1018 *3 *4 *5 *6 *7)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *2 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *2 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *2 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *2)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3255 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-486))))) +(-13 (-1015) (-559 |t#1|) (-559 |t#2|) (-559 |t#3|) (-559 |t#4|) (-559 |t#4|) (-559 |t#5|) (-559 (-585 $)) (-241 (-486) $) (-241 (-585 (-486)) $) (-10 -8 (-15 -3269 ((-85) $ $)) (-15 -3268 ((-85) $)) (-15 -3267 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-585 $) $)) (-15 -3538 (|t#1| $)) (-15 -3259 (|t#2| $)) (-15 -3258 (|t#3| $)) (-15 -3257 (|t#4| $)) (-15 -3256 (|t#5| $)) (-15 -3255 ($ $)) (-15 -3254 ($ $)) (-15 -3960 ((-486) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-559 (-585 $)) . T) ((-559 |#1|) . T) ((-559 |#2|) . T) ((-559 |#3|) . T) ((-559 |#4|) . T) ((-559 |#5|) . T) ((-241 (-486) $) . T) ((-241 (-585 (-486)) $) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) 45 T ELT)) (-3259 ((|#2| $) 48 T ELT)) (-3264 (((-85) $) 20 T ELT)) (-3538 ((|#1| $) 21 T ELT)) (-3266 (((-85) $) 42 T ELT)) (-3268 (((-85) $) 14 T ELT)) (-3265 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3262 (((-85) $) 46 T ELT)) (-3258 ((|#3| $) 50 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3261 (((-85) $) 47 T ELT)) (-3257 ((|#4| $) 49 T ELT)) (-3256 ((|#5| $) 51 T ELT)) (-3269 (((-85) $ $) 41 T ELT)) (-3803 (($ $ (-486)) 62 T ELT) (($ $ (-585 (-486))) 64 T ELT)) (-3260 (((-585 $) $) 27 T ELT)) (-3975 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-585 $)) 52 T ELT)) (-3949 (((-774) $) 28 T ELT)) (-3254 (($ $) 26 T ELT)) (-3255 (($ $) 58 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3267 (((-85) $) 23 T ELT)) (-3059 (((-85) $ $) 40 T ELT)) (-3960 (((-486) $) 60 T ELT))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-1018 |#1| |#2| |#3| |#4| |#5|) (-1015) (-1015) (-1015) (-1015) (-1015)) (T -1019)) +NIL +((-3272 (((-85) |#5| |#5|) 44 T ELT)) (-3275 (((-85) |#5| |#5|) 59 T ELT)) (-3280 (((-85) |#5| (-585 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3276 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-3282 (((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) 70 T ELT)) (-3271 (((-1187)) 32 T ELT)) (-3270 (((-1187) (-1075) (-1075) (-1075)) 28 T ELT)) (-3281 (((-585 |#5|) (-585 |#5|)) 101 T ELT)) (-3283 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)))) 93 T ELT)) (-3284 (((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85)) 123 T ELT)) (-3274 (((-85) |#5| |#5|) 53 T ELT)) (-3279 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3277 (((-85) (-585 |#4|) (-585 |#4|)) 64 T ELT)) (-3278 (((-85) (-585 |#4|) (-585 |#4|)) 66 T ELT)) (-3702 (((-85) (-585 |#4|) (-585 |#4|)) 67 T ELT)) (-3285 (((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3273 (((-585 |#5|) (-585 |#5|)) 49 T ELT))) +(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3270 ((-1187) (-1075) (-1075) (-1075))) (-15 -3271 ((-1187))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-585 |#5|) (-585 |#5|))) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3276 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3277 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3278 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3702 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3279 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3280 ((-85) |#5| |#5|)) (-15 -3280 ((-85) |#5| (-585 |#5|))) (-15 -3281 ((-585 |#5|) (-585 |#5|))) (-15 -3282 ((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)))) (-15 -3283 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) (-15 -3284 ((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3285 ((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1602 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -1020)) +((-3285 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) (-3284 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1602 *7)))) (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *8 *3)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3271 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-3300 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#5|) 106 T ELT)) (-3290 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3293 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3295 (((-585 |#5|) |#4| |#5|) 122 T ELT)) (-3297 (((-585 |#5|) |#4| |#5|) 129 T ELT)) (-3299 (((-585 |#5|) |#4| |#5|) 130 T ELT)) (-3294 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|) 107 T ELT)) (-3296 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|) 128 T ELT)) (-3298 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3291 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#3| (-85)) 91 T ELT) (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3292 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3289 (((-1187)) 36 T ELT)) (-3287 (((-1187)) 25 T ELT)) (-3288 (((-1187) (-1075) (-1075) (-1075)) 32 T ELT)) (-3286 (((-1187) (-1075) (-1075) (-1075)) 21 T ELT))) +(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3286 ((-1187) (-1075) (-1075) (-1075))) (-15 -3287 ((-1187))) (-15 -3288 ((-1187) (-1075) (-1075) (-1075))) (-15 -3289 ((-1187))) (-15 -3290 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#4| |#4| |#5|)) (-15 -3291 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3291 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) |#3| (-85))) (-15 -3292 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|)) (-15 -3293 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#4| |#5|)) (-15 -3298 ((-85) |#4| |#5|)) (-15 -3294 ((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|)) (-15 -3295 ((-585 |#5|) |#4| |#5|)) (-15 -3296 ((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|)) (-15 -3297 ((-585 |#5|) |#4| |#5|)) (-15 -3298 ((-585 (-2 (|:| |val| (-85)) (|:| -1602 |#5|))) |#4| |#5|)) (-15 -3299 ((-585 |#5|) |#4| |#5|)) (-15 -3300 ((-585 (-2 (|:| |val| |#4|) (|:| -1602 |#5|))) |#4| |#5|))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -1021)) +((-3300 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *5 (-85)) (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *4 (-758)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1602 *9)))) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) (-3291 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3289 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3287 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 58 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 53 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 52 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1356 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 54 T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 56 T ELT)) (-3951 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 51 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 55 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 64 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3949 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3936 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-1022 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1022)) +NIL +(-13 (-985 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) +((-3311 (((-585 (-486)) (-486) (-486) (-486)) 40 T ELT)) (-3310 (((-585 (-486)) (-486) (-486) (-486)) 30 T ELT)) (-3309 (((-585 (-486)) (-486) (-486) (-486)) 35 T ELT)) (-3308 (((-486) (-486) (-486)) 22 T ELT)) (-3307 (((-1181 (-486)) (-585 (-486)) (-1181 (-486)) (-486)) 78 T ELT) (((-1181 (-486)) (-1181 (-486)) (-1181 (-486)) (-486)) 73 T ELT)) (-3306 (((-585 (-486)) (-585 (-832)) (-585 (-486)) (-85)) 56 T ELT)) (-3305 (((-632 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486))) 77 T ELT)) (-3304 (((-632 (-486)) (-585 (-832)) (-585 (-486))) 61 T ELT)) (-3303 (((-585 (-632 (-486))) (-585 (-832))) 66 T ELT)) (-3302 (((-585 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486))) 81 T ELT)) (-3301 (((-632 (-486)) (-585 (-486)) (-585 (-486)) (-585 (-486))) 91 T ELT))) +(((-1023) (-10 -7 (-15 -3301 ((-632 (-486)) (-585 (-486)) (-585 (-486)) (-585 (-486)))) (-15 -3302 ((-585 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486)))) (-15 -3303 ((-585 (-632 (-486))) (-585 (-832)))) (-15 -3304 ((-632 (-486)) (-585 (-832)) (-585 (-486)))) (-15 -3305 ((-632 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486)))) (-15 -3306 ((-585 (-486)) (-585 (-832)) (-585 (-486)) (-85))) (-15 -3307 ((-1181 (-486)) (-1181 (-486)) (-1181 (-486)) (-486))) (-15 -3307 ((-1181 (-486)) (-585 (-486)) (-1181 (-486)) (-486))) (-15 -3308 ((-486) (-486) (-486))) (-15 -3309 ((-585 (-486)) (-486) (-486) (-486))) (-15 -3310 ((-585 (-486)) (-486) (-486) (-486))) (-15 -3311 ((-585 (-486)) (-486) (-486) (-486))))) (T -1023)) +((-3311 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486)))) (-3310 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486)))) (-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486)))) (-3308 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1023)))) (-3307 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-585 (-486))) (-5 *4 (-486)) (-5 *1 (-1023)))) (-3307 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-486)) (-5 *1 (-1023)))) (-3306 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-585 (-486))) (-5 *3 (-585 (-832))) (-5 *4 (-85)) (-5 *1 (-1023)))) (-3305 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-486))) (-5 *3 (-585 (-486))) (-5 *1 (-1023)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-1023)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-1023)))) (-3302 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *3 (-632 (-486))) (-5 *1 (-1023)))) (-3301 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-1023))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3312 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1024 |#1|) (-13 (-1025 |#1|) (-1015) (-10 -8 (-15 -3312 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1024)) +((-3312 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1024 *3))))) +((-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-1025 |#1|) (-113) (-72)) (T -1025)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1131) . T)) +((** (($ $ (-832)) 10 T ELT))) +(((-1026 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-832)))) (-1027)) (T -1026)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1027) (-113)) (T -1027)) +((* (*1 *1 *1 *1) (-4 *1 (-1027))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-832))))) +(-13 (-1015) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-832))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3710 (($ (-832)) NIL (|has| |#3| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#3|)) ELT)) (-2486 (($ $ $) NIL (|has| |#3| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#3| (-320)) ELT)) (-3791 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT) ((|#3| $) NIL (|has| |#3| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-963)) ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#3| (-963)) ELT)) (-2997 (($) NIL (|has| |#3| (-320)) ELT)) (-1578 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3115 ((|#3| $ (-486)) 12 T ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#3| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-2611 (((-585 |#3|) $) NIL T ELT)) (-3248 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-3961 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#3| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-1181 $) $) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-1181 $)) NIL (|has| |#3| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#3| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#3| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#3| (-1015)) ELT)) (-3804 ((|#3| $) NIL (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2207 (((-585 |#3|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-486) |#3|) NIL T ELT) ((|#3| $ (-486)) NIL T ELT)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-963)) ELT)) (-1470 (($ (-1181 |#3|)) NIL T ELT)) (-3914 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT)) (-1732 (((-696) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3949 (((-1181 |#3|) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT) (($ |#3|) NIL (|has| |#3| (-1015)) ELT) (((-774) $) NIL (|has| |#3| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#3| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#3| (-963)) ELT)) (-2663 (($) NIL (|has| |#3| (-23)) CONST)) (-2669 (($) NIL (|has| |#3| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2688 (((-85) $ $) 24 (|has| |#3| (-758)) ELT)) (-3952 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-832)) NIL (|has| |#3| (-963)) ELT)) (* (($ $ $) NIL (|has| |#3| (-963)) ELT) (($ $ |#3|) NIL (|has| |#3| (-665)) ELT) (($ |#3| $) NIL (|has| |#3| (-665)) ELT) (($ (-486) $) NIL (|has| |#3| (-21)) ELT) (($ (-696) $) NIL (|has| |#3| (-23)) ELT) (($ (-832) $) NIL (|has| |#3| (-25)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1028 |#1| |#2| |#3|) (-196 |#1| |#3|) (-696) (-696) (-719)) (T -1028)) +NIL +((-3313 (((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 50 T ELT)) (-3319 (((-486) (-1150 |#2| |#1|)) 95 (|has| |#1| (-393)) ELT)) (-3317 (((-486) (-1150 |#2| |#1|)) 79 T ELT)) (-3314 (((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 58 T ELT)) (-3318 (((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 81 (|has| |#1| (-393)) ELT)) (-3315 (((-585 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 61 T ELT)) (-3316 (((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 78 T ELT))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -3313 ((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3314 ((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3315 ((-585 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3316 ((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3317 ((-486) (-1150 |#2| |#1|))) (IF (|has| |#1| (-393)) (PROGN (-15 -3318 ((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3319 ((-486) (-1150 |#2| |#1|)))) |%noBranch|)) (-742) (-1092)) (T -1029)) +((-3319 (*1 *2 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3318 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3316 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 *4)) (-5 *1 (-1029 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4)))) (-3313 (*1 *2 *3 *3) (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1097) $) 12 T ELT)) (-3320 (((-585 (-1097)) $) 14 T ELT)) (-3322 (($ (-585 (-1097)) (-1097)) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 29 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT))) +(((-1030) (-13 (-1015) (-10 -8 (-15 -3322 ($ (-585 (-1097)) (-1097))) (-15 -3321 ((-1097) $)) (-15 -3320 ((-585 (-1097)) $))))) (T -1030)) +((-3322 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1097))) (-5 *3 (-1097)) (-5 *1 (-1030)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1030)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1030))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3323 (($ (-448) (-1030)) 14 T ELT)) (-3322 (((-1030) $) 20 T ELT)) (-3545 (((-448) $) 17 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 27 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1031) (-13 (-997) (-10 -8 (-15 -3323 ($ (-448) (-1030))) (-15 -3545 ((-448) $)) (-15 -3322 ((-1030) $))))) (T -1031)) +((-3323 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-1031)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1031)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-1031))))) +((-3626 (((-3 (-486) #1="failed") |#2| (-1092) |#2| (-1075)) 19 T ELT) (((-3 (-486) #1#) |#2| (-1092) (-752 |#2|)) 17 T ELT) (((-3 (-486) #1#) |#2|) 60 T ELT))) +(((-1032 |#1| |#2|) (-10 -7 (-15 -3626 ((-3 (-486) #1="failed") |#2|)) (-15 -3626 ((-3 (-486) #1#) |#2| (-1092) (-752 |#2|))) (-15 -3626 ((-3 (-486) #1#) |#2| (-1092) |#2| (-1075)))) (-13 (-497) (-952 (-486)) (-582 (-486)) (-393)) (-13 (-27) (-1117) (-364 |#1|))) (T -1032)) +((-3626 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) (-5 *1 (-1032 *6 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))))) (-3626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) (-5 *1 (-1032 *6 *3)))) (-3626 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) (-5 *1 (-1032 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4)))))) +((-3626 (((-3 (-486) #1="failed") (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|)) (-1075)) 38 T ELT) (((-3 (-486) #1#) (-350 (-859 |#1|)) (-1092) (-752 (-350 (-859 |#1|)))) 33 T ELT) (((-3 (-486) #1#) (-350 (-859 |#1|))) 14 T ELT))) +(((-1033 |#1|) (-10 -7 (-15 -3626 ((-3 (-486) #1="failed") (-350 (-859 |#1|)))) (-15 -3626 ((-3 (-486) #1#) (-350 (-859 |#1|)) (-1092) (-752 (-350 (-859 |#1|))))) (-15 -3626 ((-3 (-486) #1#) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|)) (-1075)))) (-393)) (T -1033)) +((-3626 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) (-3626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 (-350 (-859 *6)))) (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) (-3626 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *4))))) +((-3652 (((-265 (-486)) (-48)) 12 T ELT))) +(((-1034) (-10 -7 (-15 -3652 ((-265 (-486)) (-48))))) (T -1034)) +((-3652 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-486))) (-5 *1 (-1034))))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 22 T ELT)) (-3191 (((-85) $) 49 T ELT)) (-3324 (($ $ $) 28 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 75 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 59 T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1610 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 61 T ELT)) (-3626 (((-486) $) NIL T ELT)) (-2444 (($ $ $) 56 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT)) (-2567 (($ $ $) 42 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 70 T ELT) (((-632 (-486)) (-632 $)) 8 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3026 (((-85) $) NIL T ELT)) (-3025 (((-350 (-486)) $) NIL T ELT)) (-2997 (($) 73 T ELT) (($ $) 72 T ELT)) (-2566 (($ $ $) 41 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 71 T ELT)) (-3189 (((-85) $) 76 T ELT)) (-1371 (($ $ $) NIL T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL T ELT)) (-2564 (($ $ $) 27 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 50 T ELT)) (-2676 (((-85) $) 47 T ELT)) (-2563 (($ $) 23 T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-3190 (((-85) $) 60 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) 57 T ELT)) (-2534 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2860 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2046 (($ $) NIL T ELT)) (-2012 (((-832) $) 66 T ELT)) (-3836 (($ $) 55 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-832)) 65 T ELT)) (-2048 (($ $) 33 T ELT)) (-3246 (((-1035) $) 54 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) 45 T ELT) (($ (-585 $)) NIL T ELT)) (-1369 (($ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) 48 T ELT)) (-1609 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 44 T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) 34 T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-486) $) 12 T ELT) (((-475) $) NIL T ELT) (((-802 (-486)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3949 (((-774) $) 11 T ELT) (($ (-486)) 13 T ELT) (($ $) NIL T ELT) (($ (-486)) 13 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (($) 17 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) 26 T ELT)) (-2045 (($ $ $ $) 58 T ELT)) (-3386 (($ $) 46 T ELT)) (-2313 (($ $ $) 25 T ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) 32 T ELT)) (-2570 (((-85) $ $) 30 T ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-2687 (((-85) $ $) 31 T ELT)) (-2688 (((-85) $ $) 29 T ELT)) (-2314 (($ $ $) 24 T ELT)) (-3840 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3842 (($ $ $) 36 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 40 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-486) $) 14 T ELT))) +(((-1035) (-13 (-485) (-754) (-84) (-10 -8 (-6 -3985) (-6 -3990) (-6 -3986) (-15 -3324 ($ $ $))))) (T -1035)) +((-3324 (*1 *1 *1 *1) (-5 *1 (-1035)))) +((-486) (|%ismall?| |#1|)) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3326 ((|#1| $) 41 T ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 49 T ELT)) (-3328 ((|#1| |#1| $) 43 T ELT)) (-3327 ((|#1| $) 42 T ELT)) (-2611 (((-585 |#1|) $) 48 T ELT)) (-3248 (((-85) |#1| $) 52 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3325 (((-696) $) 40 T ELT)) (-1732 (((-696) |#1| $) 51 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 47 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-1036 |#1|) (-113) (-1131)) (T -1036)) +((-3328 (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) +(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3328 (|t#1| |t#1| $)) (-15 -3327 (|t#1| $)) (-15 -3326 (|t#1| $)) (-15 -3325 ((-696) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-1037 |#1|) (-113) (-1131)) (T -1037)) +((-3329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-1131))))) +(-13 (-430 |t#1|) (-10 -8 (-15 -3329 ($ (-1 |t#1| |t#1|) $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-3333 ((|#3| $) 87 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) 84 T ELT) (((-632 |#3|) (-632 $)) 76 T ELT)) (-3761 (($ $ (-1 |#3| |#3|) (-696)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3332 ((|#3| $) 89 T ELT)) (-3334 ((|#4| $) 43 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 24 T ELT) (($ $ (-486)) 95 T ELT))) +(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3332 (|#3| |#1|)) (-15 -3333 (|#3| |#1|)) (-15 -3334 (|#4| |#1|)) (-15 -2281 ((-632 |#3|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3949 (|#1| |#3|)) (-15 -3160 ((-3 |#3| #1="failed") |#1|)) (-15 -3159 (|#3| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|) (-696))) (-15 -3949 (|#1| (-486))) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832))) (-15 -3949 ((-774) |#1|))) (-1039 |#2| |#3| |#4| |#5|) (-696) (-963) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1038)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3333 ((|#2| $) 91 T ELT)) (-3123 (((-85) $) 133 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3125 (((-85) $) 131 T ELT)) (-3336 (($ |#2|) 94 T ELT)) (-3727 (($) 23 T CONST)) (-3112 (($ $) 150 (|has| |#2| (-258)) ELT)) (-3114 ((|#3| $ (-486)) 145 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 110 (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 107 (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) 104 T ELT)) (-3159 (((-486) $) 109 (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) 106 (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) 105 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 100 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 99 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 98 T ELT) (((-632 |#2|) (-632 $)) 97 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) 115 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 114 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 111 (|has| |#2| (-72)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-696) $) 151 (|has| |#2| (-497)) ELT)) (-3115 ((|#2| $ (-486) (-486)) 143 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3110 (((-696) $) 152 (|has| |#2| (-497)) ELT)) (-3109 (((-585 |#4|) $) 153 (|has| |#2| (-497)) ELT)) (-3117 (((-696) $) 139 T ELT)) (-3116 (((-696) $) 140 T ELT)) (-3330 ((|#2| $) 86 (|has| |#2| (-6 (-4000 #2="*"))) ELT)) (-3121 (((-486) $) 135 T ELT)) (-3119 (((-486) $) 137 T ELT)) (-2611 (((-585 |#2|) $) 116 T ELT)) (-3248 (((-85) |#2| $) 112 (|has| |#2| (-72)) ELT)) (-3120 (((-486) $) 136 T ELT)) (-3118 (((-486) $) 138 T ELT)) (-3126 (($ (-585 (-585 |#2|))) 130 T ELT)) (-3961 (($ (-1 |#2| |#2| |#2|) $ $) 147 T ELT) (($ (-1 |#2| |#2|) $) 125 T ELT)) (-3597 (((-585 (-585 |#2|)) $) 141 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 102 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 101 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) 96 T ELT) (((-632 |#2|) (-1181 $)) 95 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3593 (((-3 $ "failed") $) 85 (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ |#2|) 148 (|has| |#2| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 118 T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) 124 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 123 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 122 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 121 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 129 T ELT)) (-3406 (((-85) $) 126 T ELT)) (-3568 (($) 127 T ELT)) (-3803 ((|#2| $ (-486) (-486) |#2|) 144 T ELT) ((|#2| $ (-486) (-486)) 142 T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-696)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1092)) 63 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 61 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 60 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 59 (|has| |#2| (-813 (-1092))) ELT)) (-3332 ((|#2| $) 90 T ELT)) (-3335 (($ (-585 |#2|)) 93 T ELT)) (-3124 (((-85) $) 132 T ELT)) (-3334 ((|#3| $) 92 T ELT)) (-3331 ((|#2| $) 87 (|has| |#2| (-6 (-4000 #2#))) ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) 117 T ELT) (((-696) |#2| $) 113 (|has| |#2| (-72)) ELT)) (-3403 (($ $) 128 T ELT)) (-3113 ((|#4| $ (-486)) 146 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 108 (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) 103 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 119 T ELT)) (-3122 (((-85) $) 134 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-696)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1092)) 62 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 58 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 57 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 56 (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#2|) 149 (|has| |#2| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 84 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 155 T ELT) (($ |#2| $) 154 T ELT) ((|#4| $ |#4|) 89 T ELT) ((|#3| |#3| $) 88 T ELT)) (-3960 (((-696) $) 120 T ELT))) +(((-1039 |#1| |#2| |#3| |#4|) (-113) (-696) (-963) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1039)) +((-3336 (*1 *1 *2) (-12 (-4 *2 (-963)) (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-963)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-963)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-963)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-4000 #1="*"))) (-4 *2 (-963)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-4000 #1#))) (-4 *2 (-963)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-1039 *2 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) +(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-967 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-656 |t#2|)) |%noBranch|) (-15 -3336 ($ |t#2|)) (-15 -3335 ($ (-585 |t#2|))) (-15 -3334 (|t#3| $)) (-15 -3333 (|t#2| $)) (-15 -3332 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4000 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3331 (|t#2| $)) (-15 -3330 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3593 ((-3 $ "failed") $)) (-15 ** ($ $ (-486)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4000 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-350 (-486))) |has| |#2| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-381 |#2|) . T) ((-430 |#2|) . T) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 (-486)) |has| |#2| (-582 (-486))) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-4000 #1#)))) ((-582 (-486)) |has| |#2| (-582 (-486))) ((-582 |#2|) . T) ((-656 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-4000 #1#)))) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#2| (-813 (-1092))) (|has| |#2| (-811 (-1092)))) ((-811 (-1092)) |has| |#2| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#2| (-813 (-1092))) (|has| |#2| (-811 (-1092)))) ((-967 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-350 (-486))) |has| |#2| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#2| (-952 (-486))) ((-952 |#2|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3339 ((|#4| |#4|) 81 T ELT)) (-3337 ((|#4| |#4|) 76 T ELT)) (-3341 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|) 91 T ELT)) (-3340 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3338 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1040 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3337 (|#4| |#4|)) (-15 -3338 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3339 (|#4| |#4|)) (-15 -3340 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3341 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -1040)) +((-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-1040 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3337 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 18 T ELT)) (-3084 (((-585 |#2|) $) 174 T ELT)) (-3086 (((-1087 $) $ |#2|) 60 T ELT) (((-1087 |#1|) $) 49 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 116 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 118 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 120 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 |#2|)) 214 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#1| $) 165 T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) ((|#2| $) NIL T ELT)) (-3759 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) 218 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 90 T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ |#2|) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-471 |#2|) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 20 T ELT)) (-2422 (((-696) $) 30 T ELT)) (-3087 (($ (-1087 |#1|) |#2|) 54 T ELT) (($ (-1087 $) |#2|) 71 T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) 38 T ELT)) (-2896 (($ |#1| (-471 |#2|)) 78 T ELT) (($ $ |#2| (-696)) 58 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-2823 (((-471 |#2|) $) 205 T ELT) (((-696) $ |#2|) 206 T ELT) (((-585 (-696)) $ (-585 |#2|)) 207 T ELT)) (-1627 (($ (-1 (-471 |#2|) (-471 |#2|)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3085 (((-3 |#2| #1#) $) 177 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) 217 T ELT)) (-3177 ((|#1| $) 43 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 39 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 148 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 153 (|has| |#1| (-393)) ELT) (($ $ $) 138 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-585 |#2|) (-585 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-585 |#2|) (-585 $)) 194 T ELT)) (-3760 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3951 (((-471 |#2|) $) 201 T ELT) (((-696) $ |#2|) 196 T ELT) (((-585 (-696)) $ (-585 |#2|)) 199 T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 134 (|has| |#1| (-393)) ELT) (($ $ |#2|) 137 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3949 (((-774) $) 159 T ELT) (($ (-486)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) 162 T ELT)) (-3680 ((|#1| $ (-471 |#2|)) 80 T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 87 T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) 123 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-85) $ $) 106 T ELT)) (-3952 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3842 (($ $ $) 55 T ELT)) (** (($ $ (-832)) 110 T ELT) (($ $ (-696)) 109 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1041 |#1| |#2|) (-863 |#1| (-471 |#2|) |#2|) (-963) (-758)) (T -1041)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3495 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 125 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 121 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3497 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 129 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3817 (((-859 |#1|) $ (-696)) NIL T ELT) (((-859 |#1|) $ (-696) (-696)) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $ |#2|) NIL T ELT) (((-696) $ |#2| (-696)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ $ (-585 |#2|) (-585 (-471 |#2|))) NIL T ELT) (($ $ |#2| (-471 |#2|)) NIL T ELT) (($ |#1| (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 63 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3945 (($ $) 119 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3679 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3772 (($ $ (-696)) 17 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3946 (($ $) 117 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (($ $ |#2| $) 104 T ELT) (($ $ (-585 |#2|) (-585 $)) 99 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3951 (((-471 |#2|) $) NIL T ELT)) (-3342 (((-1 (-1071 |#3|) |#3|) (-585 |#2|) (-585 (-1071 |#3|))) 87 T ELT)) (-3498 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 131 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 127 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 123 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 19 T ELT)) (-3949 (((-774) $) 194 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3680 ((|#1| $ (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) ((|#3| $ (-696)) 43 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 137 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 133 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 141 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 139 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 135 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 52 T CONST)) (-2669 (($) 62 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 66 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 109 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-486))) 114 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 112 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1042 |#1| |#2| |#3|) (-13 (-681 |#1| |#2|) (-10 -8 (-15 -3680 (|#3| $ (-696))) (-15 -3949 ($ |#2|)) (-15 -3949 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3342 ((-1 (-1071 |#3|) |#3|) (-585 |#2|) (-585 (-1071 |#3|)))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $ |#2| |#1|)) (-15 -3679 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-963) (-758) (-863 |#1| (-471 |#2|) |#2|)) (T -1042)) +((-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *2 (-863 *4 (-471 *5) *5)) (-5 *1 (-1042 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3949 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-863 *3 (-471 *2) *2)))) (-3949 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-863 *3 (-471 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-863 *3 (-471 *4) *4)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1071 *7))) (-4 *6 (-758)) (-4 *7 (-863 *5 (-471 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1071 *7) *7)) (-5 *1 (-1042 *5 *6 *7)))) (-3815 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-863 *3 (-471 *2) *2)))) (-3679 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1042 *4 *3 *5))) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *1 (-1042 *4 *3 *5)) (-4 *5 (-863 *4 (-471 *3) *3))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 58 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 53 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 52 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1356 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 54 T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 56 T ELT)) (-3951 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 51 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 55 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 64 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3949 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3936 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-1043 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1043)) +NIL +(-13 (-1022 |t#1| |t#2| |t#3| |t#4|) (-709 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-709 |#1| |#2| |#3| |#4|) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1022 |#1| |#2| |#3| |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) +((-3576 (((-585 |#2|) |#1|) 15 T ELT)) (-3348 (((-585 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-585 |#2|) |#1|) 61 T ELT)) (-3346 (((-585 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-585 |#2|) |#1|) 59 T ELT)) (-3343 ((|#2| |#1|) 54 T ELT)) (-3344 (((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3345 (((-585 |#2|) |#2| |#2|) 42 T ELT) (((-585 |#2|) |#1|) 58 T ELT)) (-3347 (((-585 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-585 |#2|) |#1|) 60 T ELT)) (-3352 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3350 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3349 ((|#2| |#2| |#2|) 50 T ELT)) (-3351 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1044 |#1| |#2|) (-10 -7 (-15 -3576 ((-585 |#2|) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3344 ((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3345 ((-585 |#2|) |#1|)) (-15 -3346 ((-585 |#2|) |#1|)) (-15 -3347 ((-585 |#2|) |#1|)) (-15 -3348 ((-585 |#2|) |#1|)) (-15 -3345 ((-585 |#2|) |#2| |#2|)) (-15 -3346 ((-585 |#2|) |#2| |#2| |#2|)) (-15 -3347 ((-585 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3348 ((-585 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2|)) (-15 -3351 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3352 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1157 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (T -1044)) +((-3352 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3351 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3350 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3349 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3348 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3347 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3346 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3345 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-2 (|:| |solns| (-585 *5)) (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1044 *3 *5)) (-4 *3 (-1157 *5)))) (-3343 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4))))) +((-3353 (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|))))) 119 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092))) 118 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|)))) 116 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 113 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|)))) 97 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|))) (-1092)) 98 T ELT) (((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|))) 92 T ELT) (((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|)) (-1092)) 82 T ELT)) (-3354 (((-585 (-585 (-265 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 111 T ELT) (((-585 (-265 |#1|)) (-350 (-859 |#1|)) (-1092)) 54 T ELT)) (-3355 (((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-350 (-859 |#1|)) (-1092)) 123 T ELT) (((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092)) 122 T ELT))) +(((-1045 |#1|) (-10 -7 (-15 -3353 ((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|)) (-1092))) (-15 -3353 ((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|)))) (-15 -3353 ((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|))) (-1092))) (-15 -3353 ((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|))))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|))))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092)))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|)))))) (-15 -3354 ((-585 (-265 |#1|)) (-350 (-859 |#1|)) (-1092))) (-15 -3354 ((-585 (-585 (-265 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -3355 ((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092))) (-15 -3355 ((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-350 (-859 |#1|)) (-1092)))) (-13 (-258) (-120))) (T -1045)) +((-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-265 *5)))) (-5 *1 (-1045 *5)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-265 *5))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-350 (-859 *5))))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1045 *5))))) +((-3357 (((-350 (-1087 (-265 |#1|))) (-1181 (-265 |#1|)) (-350 (-1087 (-265 |#1|))) (-486)) 36 T ELT)) (-3356 (((-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|)))) 48 T ELT))) +(((-1046 |#1|) (-10 -7 (-15 -3356 ((-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))))) (-15 -3357 ((-350 (-1087 (-265 |#1|))) (-1181 (-265 |#1|)) (-350 (-1087 (-265 |#1|))) (-486)))) (-497)) (T -1046)) +((-3357 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1087 (-265 *5)))) (-5 *3 (-1181 (-265 *5))) (-5 *4 (-486)) (-4 *5 (-497)) (-5 *1 (-1046 *5)))) (-3356 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1087 (-265 *3)))) (-4 *3 (-497)) (-5 *1 (-1046 *3))))) +((-3576 (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-265 |#1|))) (-585 (-1092))) 244 T ELT) (((-585 (-249 (-265 |#1|))) (-265 |#1|) (-1092)) 23 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1092)) 29 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-585 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) +(((-1047 |#1|) (-10 -7 (-15 -3576 ((-585 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3576 ((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3576 ((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1092))) (-15 -3576 ((-585 (-249 (-265 |#1|))) (-265 |#1|) (-1092))) (-15 -3576 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-265 |#1|))) (-585 (-1092))))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (T -1047)) +((-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1047 *5)) (-5 *3 (-585 (-249 (-265 *5)))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-265 *5)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-249 (-265 *5))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-249 (-265 *4))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-265 *4))))) +((-3359 ((|#2| |#2|) 28 (|has| |#1| (-758)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3358 ((|#2| |#2|) 27 (|has| |#1| (-758)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1048 |#1| |#2|) (-10 -7 (-15 -3358 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3359 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-758)) (PROGN (-15 -3358 (|#2| |#2|)) (-15 -3359 (|#2| |#2|))) |%noBranch|)) (-1131) (-13 (-540 (-486) |#1|) (-318 |#1|) (-1037 |#1|))) (T -1048)) +((-3359 (*1 *2 *2) (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3))))) (-3358 (*1 *2 *2) (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3))))) (-3359 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4))))) (-3358 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3891 (((-1081 3 |#1|) $) 141 T ELT)) (-3369 (((-85) $) 101 T ELT)) (-3370 (($ $ (-585 (-856 |#1|))) 44 T ELT) (($ $ (-585 (-585 |#1|))) 104 T ELT) (($ (-585 (-856 |#1|))) 103 T ELT) (((-585 (-856 |#1|)) $) 102 T ELT)) (-3375 (((-85) $) 72 T ELT)) (-3709 (($ $ (-856 |#1|)) 76 T ELT) (($ $ (-585 |#1|)) 81 T ELT) (($ $ (-696)) 83 T ELT) (($ (-856 |#1|)) 77 T ELT) (((-856 |#1|) $) 75 T ELT)) (-3361 (((-2 (|:| -3853 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $) 139 T ELT)) (-3379 (((-696) $) 53 T ELT)) (-3380 (((-696) $) 52 T ELT)) (-3890 (($ $ (-696) (-856 |#1|)) 67 T ELT)) (-3367 (((-85) $) 111 T ELT)) (-3368 (($ $ (-585 (-585 (-856 |#1|))) (-585 (-145)) (-145)) 118 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-145)) (-145)) 120 T ELT) (($ $ (-585 (-585 (-856 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-85) (-85)) 127 T ELT) (($ (-585 (-585 (-856 |#1|)))) 116 T ELT) (($ (-585 (-585 (-856 |#1|))) (-85) (-85)) 117 T ELT) (((-585 (-585 (-856 |#1|))) $) 114 T ELT)) (-3521 (($ (-585 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3362 (((-585 (-145)) $) 133 T ELT)) (-3366 (((-585 (-856 |#1|)) $) 130 T ELT)) (-3363 (((-585 (-585 (-145))) $) 132 T ELT)) (-3364 (((-585 (-585 (-585 (-856 |#1|)))) $) NIL T ELT)) (-3365 (((-585 (-585 (-585 (-696)))) $) 131 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3376 (((-696) $ (-585 (-856 |#1|))) 65 T ELT)) (-3373 (((-85) $) 84 T ELT)) (-3374 (($ $ (-585 (-856 |#1|))) 86 T ELT) (($ $ (-585 (-585 |#1|))) 92 T ELT) (($ (-585 (-856 |#1|))) 87 T ELT) (((-585 (-856 |#1|)) $) 85 T ELT)) (-3381 (($) 48 T ELT) (($ (-1081 3 |#1|)) 49 T ELT)) (-3403 (($ $) 63 T ELT)) (-3377 (((-585 $) $) 62 T ELT)) (-3757 (($ (-585 $)) 59 T ELT)) (-3378 (((-585 $) $) 61 T ELT)) (-3949 (((-774) $) 146 T ELT)) (-3371 (((-85) $) 94 T ELT)) (-3372 (($ $ (-585 (-856 |#1|))) 96 T ELT) (($ $ (-585 (-585 |#1|))) 99 T ELT) (($ (-585 (-856 |#1|))) 97 T ELT) (((-585 (-856 |#1|)) $) 95 T ELT)) (-3360 (($ $) 140 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1049 |#1|) (-1050 |#1|) (-963)) (T -1049)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3891 (((-1081 3 |#1|) $) 17 T ELT)) (-3369 (((-85) $) 33 T ELT)) (-3370 (($ $ (-585 (-856 |#1|))) 37 T ELT) (($ $ (-585 (-585 |#1|))) 36 T ELT) (($ (-585 (-856 |#1|))) 35 T ELT) (((-585 (-856 |#1|)) $) 34 T ELT)) (-3375 (((-85) $) 48 T ELT)) (-3709 (($ $ (-856 |#1|)) 53 T ELT) (($ $ (-585 |#1|)) 52 T ELT) (($ $ (-696)) 51 T ELT) (($ (-856 |#1|)) 50 T ELT) (((-856 |#1|) $) 49 T ELT)) (-3361 (((-2 (|:| -3853 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $) 19 T ELT)) (-3379 (((-696) $) 62 T ELT)) (-3380 (((-696) $) 63 T ELT)) (-3890 (($ $ (-696) (-856 |#1|)) 54 T ELT)) (-3367 (((-85) $) 25 T ELT)) (-3368 (($ $ (-585 (-585 (-856 |#1|))) (-585 (-145)) (-145)) 32 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-145)) (-145)) 31 T ELT) (($ $ (-585 (-585 (-856 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-85) (-85)) 29 T ELT) (($ (-585 (-585 (-856 |#1|)))) 28 T ELT) (($ (-585 (-585 (-856 |#1|))) (-85) (-85)) 27 T ELT) (((-585 (-585 (-856 |#1|))) $) 26 T ELT)) (-3521 (($ (-585 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3362 (((-585 (-145)) $) 20 T ELT)) (-3366 (((-585 (-856 |#1|)) $) 24 T ELT)) (-3363 (((-585 (-585 (-145))) $) 21 T ELT)) (-3364 (((-585 (-585 (-585 (-856 |#1|)))) $) 22 T ELT)) (-3365 (((-585 (-585 (-585 (-696)))) $) 23 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3376 (((-696) $ (-585 (-856 |#1|))) 55 T ELT)) (-3373 (((-85) $) 43 T ELT)) (-3374 (($ $ (-585 (-856 |#1|))) 47 T ELT) (($ $ (-585 (-585 |#1|))) 46 T ELT) (($ (-585 (-856 |#1|))) 45 T ELT) (((-585 (-856 |#1|)) $) 44 T ELT)) (-3381 (($) 65 T ELT) (($ (-1081 3 |#1|)) 64 T ELT)) (-3403 (($ $) 56 T ELT)) (-3377 (((-585 $) $) 57 T ELT)) (-3757 (($ (-585 $)) 59 T ELT)) (-3378 (((-585 $) $) 58 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-3371 (((-85) $) 38 T ELT)) (-3372 (($ $ (-585 (-856 |#1|))) 42 T ELT) (($ $ (-585 (-585 |#1|))) 41 T ELT) (($ (-585 (-856 |#1|))) 40 T ELT) (((-585 (-856 |#1|)) $) 39 T ELT)) (-3360 (($ $) 18 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-1050 |#1|) (-113) (-963)) (T -1050)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-774)))) (-3381 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3757 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3378 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)))) (-3377 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)))) (-3403 (*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3376 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-856 *4))) (-4 *1 (-1050 *4)) (-4 *4 (-963)) (-5 *2 (-696)))) (-3890 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-856 *4)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-856 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-856 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) (-4 *1 (-1050 *5)) (-4 *5 (-963)))) (-3368 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) (-4 *1 (-1050 *5)) (-4 *5 (-963)))) (-3368 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) (-3368 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 *3)))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3368 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *4 (-963)) (-4 *1 (-1050 *4)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-856 *3)))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-696))))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-856 *3))))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-145)))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-145))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3853 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696)))))) (-3360 (*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-1081 3 *3))))) +(-13 (-1015) (-10 -8 (-15 -3381 ($)) (-15 -3381 ($ (-1081 3 |t#1|))) (-15 -3380 ((-696) $)) (-15 -3379 ((-696) $)) (-15 -3521 ($ (-585 $))) (-15 -3521 ($ $ $)) (-15 -3757 ($ (-585 $))) (-15 -3378 ((-585 $) $)) (-15 -3377 ((-585 $) $)) (-15 -3403 ($ $)) (-15 -3376 ((-696) $ (-585 (-856 |t#1|)))) (-15 -3890 ($ $ (-696) (-856 |t#1|))) (-15 -3709 ($ $ (-856 |t#1|))) (-15 -3709 ($ $ (-585 |t#1|))) (-15 -3709 ($ $ (-696))) (-15 -3709 ($ (-856 |t#1|))) (-15 -3709 ((-856 |t#1|) $)) (-15 -3375 ((-85) $)) (-15 -3374 ($ $ (-585 (-856 |t#1|)))) (-15 -3374 ($ $ (-585 (-585 |t#1|)))) (-15 -3374 ($ (-585 (-856 |t#1|)))) (-15 -3374 ((-585 (-856 |t#1|)) $)) (-15 -3373 ((-85) $)) (-15 -3372 ($ $ (-585 (-856 |t#1|)))) (-15 -3372 ($ $ (-585 (-585 |t#1|)))) (-15 -3372 ($ (-585 (-856 |t#1|)))) (-15 -3372 ((-585 (-856 |t#1|)) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-585 (-856 |t#1|)))) (-15 -3370 ($ $ (-585 (-585 |t#1|)))) (-15 -3370 ($ (-585 (-856 |t#1|)))) (-15 -3370 ((-585 (-856 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-585 (-585 (-856 |t#1|))) (-585 (-145)) (-145))) (-15 -3368 ($ $ (-585 (-585 (-585 |t#1|))) (-585 (-145)) (-145))) (-15 -3368 ($ $ (-585 (-585 (-856 |t#1|))) (-85) (-85))) (-15 -3368 ($ $ (-585 (-585 (-585 |t#1|))) (-85) (-85))) (-15 -3368 ($ (-585 (-585 (-856 |t#1|))))) (-15 -3368 ($ (-585 (-585 (-856 |t#1|))) (-85) (-85))) (-15 -3368 ((-585 (-585 (-856 |t#1|))) $)) (-15 -3367 ((-85) $)) (-15 -3366 ((-585 (-856 |t#1|)) $)) (-15 -3365 ((-585 (-585 (-585 (-696)))) $)) (-15 -3364 ((-585 (-585 (-585 (-856 |t#1|)))) $)) (-15 -3363 ((-585 (-585 (-145))) $)) (-15 -3362 ((-585 (-145)) $)) (-15 -3361 ((-2 (|:| -3853 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $)) (-15 -3360 ($ $)) (-15 -3891 ((-1081 3 |t#1|) $)) (-15 -3949 ((-774) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 185 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) 7 T ELT)) (-3569 (((-85) $ (|[\|\|]| (-464))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-619))) 27 T ELT) (((-85) $ (|[\|\|]| (-1192))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-541))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1031))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-624))) 55 T ELT) (((-85) $ (|[\|\|]| (-460))) 59 T ELT) (((-85) $ (|[\|\|]| (-980))) 63 T ELT) (((-85) $ (|[\|\|]| (-1193))) 67 T ELT) (((-85) $ (|[\|\|]| (-465))) 71 T ELT) (((-85) $ (|[\|\|]| (-1069))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-615))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-950))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-885))) 99 T ELT) (((-85) $ (|[\|\|]| (-987))) 103 T ELT) (((-85) $ (|[\|\|]| (-1005))) 107 T ELT) (((-85) $ (|[\|\|]| (-1010))) 111 T ELT) (((-85) $ (|[\|\|]| (-567))) 116 T ELT) (((-85) $ (|[\|\|]| (-1083))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-419))) 132 T ELT) (((-85) $ (|[\|\|]| (-530))) 136 T ELT) (((-85) $ (|[\|\|]| (-448))) 140 T ELT) (((-85) $ (|[\|\|]| (-1075))) 144 T ELT) (((-85) $ (|[\|\|]| (-486))) 148 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3575 (((-464) $) 20 T ELT) (((-172) $) 24 T ELT) (((-619) $) 28 T ELT) (((-1192) $) 32 T ELT) (((-111) $) 36 T ELT) (((-541) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1031) $) 48 T ELT) (((-67) $) 52 T ELT) (((-624) $) 56 T ELT) (((-460) $) 60 T ELT) (((-980) $) 64 T ELT) (((-1193) $) 68 T ELT) (((-465) $) 72 T ELT) (((-1069) $) 76 T ELT) (((-127) $) 80 T ELT) (((-615) $) 84 T ELT) (((-263) $) 88 T ELT) (((-950) $) 92 T ELT) (((-154) $) 96 T ELT) (((-885) $) 100 T ELT) (((-987) $) 104 T ELT) (((-1005) $) 108 T ELT) (((-1010) $) 112 T ELT) (((-567) $) 117 T ELT) (((-1083) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-419) $) 133 T ELT) (((-530) $) 137 T ELT) (((-448) $) 141 T ELT) (((-1075) $) 145 T ELT) (((-486) $) 149 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1051) (-1053)) (T -1051)) +NIL +((-3382 (((-585 (-1097)) (-1075)) 9 T ELT))) +(((-1052) (-10 -7 (-15 -3382 ((-585 (-1097)) (-1075))))) (T -1052)) +((-3382 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-1052))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-1097)) 20 T ELT) (((-1097) $) 19 T ELT)) (-3569 (((-85) $ (|[\|\|]| (-464))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-619))) 84 T ELT) (((-85) $ (|[\|\|]| (-1192))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-541))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1031))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-624))) 70 T ELT) (((-85) $ (|[\|\|]| (-460))) 68 T ELT) (((-85) $ (|[\|\|]| (-980))) 66 T ELT) (((-85) $ (|[\|\|]| (-1193))) 64 T ELT) (((-85) $ (|[\|\|]| (-465))) 62 T ELT) (((-85) $ (|[\|\|]| (-1069))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-615))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-950))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-885))) 48 T ELT) (((-85) $ (|[\|\|]| (-987))) 46 T ELT) (((-85) $ (|[\|\|]| (-1005))) 44 T ELT) (((-85) $ (|[\|\|]| (-1010))) 42 T ELT) (((-85) $ (|[\|\|]| (-567))) 40 T ELT) (((-85) $ (|[\|\|]| (-1083))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-419))) 32 T ELT) (((-85) $ (|[\|\|]| (-530))) 30 T ELT) (((-85) $ (|[\|\|]| (-448))) 28 T ELT) (((-85) $ (|[\|\|]| (-1075))) 26 T ELT) (((-85) $ (|[\|\|]| (-486))) 24 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3575 (((-464) $) 87 T ELT) (((-172) $) 85 T ELT) (((-619) $) 83 T ELT) (((-1192) $) 81 T ELT) (((-111) $) 79 T ELT) (((-541) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1031) $) 73 T ELT) (((-67) $) 71 T ELT) (((-624) $) 69 T ELT) (((-460) $) 67 T ELT) (((-980) $) 65 T ELT) (((-1193) $) 63 T ELT) (((-465) $) 61 T ELT) (((-1069) $) 59 T ELT) (((-127) $) 57 T ELT) (((-615) $) 55 T ELT) (((-263) $) 53 T ELT) (((-950) $) 51 T ELT) (((-154) $) 49 T ELT) (((-885) $) 47 T ELT) (((-987) $) 45 T ELT) (((-1005) $) 43 T ELT) (((-1010) $) 41 T ELT) (((-567) $) 39 T ELT) (((-1083) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-419) $) 31 T ELT) (((-530) $) 29 T ELT) (((-448) $) 27 T ELT) (((-1075) $) 25 T ELT) (((-486) $) 23 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-1053) (-113)) (T -1053)) +((-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-464)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-172)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-619)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1192)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-111)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-541))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-541)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-106)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1031)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-67)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-624)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-460)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-980))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-980)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1193))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1193)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-465))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-465)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1069)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-127)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-615)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-263)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-950))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-950)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-154)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-885))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-885)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-987)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1005))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1005)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1010)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-567)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1083)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-110)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-419))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-419)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-530)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-448)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1075)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-486))))) +(-13 (-997) (-1177) (-10 -8 (-15 -3569 ((-85) $ (|[\|\|]| (-464)))) (-15 -3575 ((-464) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-172)))) (-15 -3575 ((-172) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-619)))) (-15 -3575 ((-619) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1192)))) (-15 -3575 ((-1192) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-111)))) (-15 -3575 ((-111) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-541)))) (-15 -3575 ((-541) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-106)))) (-15 -3575 ((-106) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1031)))) (-15 -3575 ((-1031) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-67)))) (-15 -3575 ((-67) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-624)))) (-15 -3575 ((-624) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-460)))) (-15 -3575 ((-460) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-980)))) (-15 -3575 ((-980) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1193)))) (-15 -3575 ((-1193) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-465)))) (-15 -3575 ((-465) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1069)))) (-15 -3575 ((-1069) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-127)))) (-15 -3575 ((-127) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-615)))) (-15 -3575 ((-615) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-263)))) (-15 -3575 ((-263) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-950)))) (-15 -3575 ((-950) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-154)))) (-15 -3575 ((-154) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-885)))) (-15 -3575 ((-885) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-987)))) (-15 -3575 ((-987) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1005)))) (-15 -3575 ((-1005) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1010)))) (-15 -3575 ((-1010) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-567)))) (-15 -3575 ((-567) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1083)))) (-15 -3575 ((-1083) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-129)))) (-15 -3575 ((-129) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-110)))) (-15 -3575 ((-110) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-419)))) (-15 -3575 ((-419) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-530)))) (-15 -3575 ((-530) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-448)))) (-15 -3575 ((-448) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1075)))) (-15 -3575 ((-1075) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-486)))) (-15 -3575 ((-486) $)))) +(((-64) . T) ((-72) . T) ((-557 (-1097)) . T) ((-554 (-774)) . T) ((-554 (-1097)) . T) ((-431 (-1097)) . T) ((-13) . T) ((-1015) . T) ((-997) . T) ((-1131) . T) ((-1177) . T)) +((-3385 (((-1187) (-585 (-774))) 22 T ELT) (((-1187) (-774)) 21 T ELT)) (-3384 (((-1187) (-585 (-774))) 20 T ELT) (((-1187) (-774)) 19 T ELT)) (-3383 (((-1187) (-585 (-774))) 18 T ELT) (((-1187) (-774)) 10 T ELT) (((-1187) (-1075) (-774)) 16 T ELT))) +(((-1054) (-10 -7 (-15 -3383 ((-1187) (-1075) (-774))) (-15 -3383 ((-1187) (-774))) (-15 -3384 ((-1187) (-774))) (-15 -3385 ((-1187) (-774))) (-15 -3383 ((-1187) (-585 (-774)))) (-15 -3384 ((-1187) (-585 (-774)))) (-15 -3385 ((-1187) (-585 (-774)))))) (T -1054)) +((-3385 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054))))) +((-3389 (($ $ $) 10 T ELT)) (-3388 (($ $) 9 T ELT)) (-3392 (($ $ $) 13 T ELT)) (-3394 (($ $ $) 15 T ELT)) (-3391 (($ $ $) 12 T ELT)) (-3393 (($ $ $) 14 T ELT)) (-3396 (($ $) 17 T ELT)) (-3395 (($ $) 16 T ELT)) (-3386 (($ $) 6 T ELT)) (-3390 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3387 (($ $ $) 8 T ELT))) +(((-1055) (-113)) (T -1055)) +((-3396 (*1 *1 *1) (-4 *1 (-1055))) (-3395 (*1 *1 *1) (-4 *1 (-1055))) (-3394 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3393 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3388 (*1 *1 *1) (-4 *1 (-1055))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3390 (*1 *1 *1) (-4 *1 (-1055))) (-3386 (*1 *1 *1) (-4 *1 (-1055)))) +(-13 (-10 -8 (-15 -3386 ($ $)) (-15 -3390 ($ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3395 ($ $)) (-15 -3396 ($ $)))) +((-2571 (((-85) $ $) 44 T ELT)) (-3405 ((|#1| $) 17 T ELT)) (-3397 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3402 (($ $ |#1|) 30 T ELT)) (-3400 (($ $ (-85)) 32 T ELT)) (-3399 (($ $) 33 T ELT)) (-3401 (($ $ |#2|) 31 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3398 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3406 (((-85) $) 16 T ELT)) (-3568 (($) 13 T ELT)) (-3403 (($ $) 29 T ELT)) (-3533 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1602 |#2|))) 23 T ELT) (((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1602 |#2|)))) 26 T ELT) (((-585 $) |#1| (-585 |#2|)) 28 T ELT)) (-3925 ((|#2| $) 18 T ELT)) (-3949 (((-774) $) 53 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 42 T ELT))) +(((-1056 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3568 ($)) (-15 -3406 ((-85) $)) (-15 -3405 (|#1| $)) (-15 -3925 (|#2| $)) (-15 -3404 ((-85) $)) (-15 -3533 ($ |#1| |#2| (-85))) (-15 -3533 ($ |#1| |#2|)) (-15 -3533 ($ (-2 (|:| |val| |#1|) (|:| -1602 |#2|)))) (-15 -3533 ((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1602 |#2|))))) (-15 -3533 ((-585 $) |#1| (-585 |#2|))) (-15 -3403 ($ $)) (-15 -3402 ($ $ |#1|)) (-15 -3401 ($ $ |#2|)) (-15 -3400 ($ $ (-85))) (-15 -3399 ($ $)) (-15 -3398 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3397 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1015) (-34)) (-13 (-1015) (-34))) (T -1056)) +((-3568 (*1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3405 (*1 *2 *1) (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-13 (-1015) (-34))))) (-3925 (*1 *2 *1) (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1015) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1602 *4))) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1602 *5)))) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-585 (-1056 *4 *5))) (-5 *1 (-1056 *4 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-585 (-1056 *3 *5))) (-5 *1 (-1056 *3 *5)) (-4 *3 (-13 (-1015) (-34))))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3402 (*1 *1 *1 *2) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3401 (*1 *1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1015) (-34))) (-4 *2 (-13 (-1015) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3398 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *5 *6)))) (-3397 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34)))))) +((-2571 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-3405 (((-1056 |#1| |#2|) $) 27 T ELT)) (-3414 (($ $) 91 T ELT)) (-3410 (((-85) (-1056 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3407 (($ $ $ (-585 (-1056 |#1| |#2|))) 108 T ELT) (($ $ $ (-585 (-1056 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3028 (((-1056 |#1| |#2|) $ (-1056 |#1| |#2|)) 46 (|has| $ (-1037 (-1056 |#1| |#2|))) ELT)) (-3791 (((-1056 |#1| |#2|) $ #1="value" (-1056 |#1| |#2|)) NIL (|has| $ (-1037 (-1056 |#1| |#2|))) ELT)) (-3029 (($ $ (-585 $)) 44 (|has| $ (-1037 (-1056 |#1| |#2|))) ELT)) (-3727 (($) NIL T CONST)) (-3412 (((-585 (-2 (|:| |val| |#1|) (|:| -1602 |#2|))) $) 95 T ELT)) (-3408 (($ (-1056 |#1| |#2|) $) 42 T ELT)) (-3409 (($ (-1056 |#1| |#2|) $) 34 T ELT)) (-3845 (((-1056 |#1| |#2|) (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $ (-1056 |#1| |#2|) (-1056 |#1| |#2|)) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT) (((-1056 |#1| |#2|) (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $ (-1056 |#1| |#2|)) NIL T ELT) (((-1056 |#1| |#2|) (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3034 (((-585 $) $) 54 T ELT)) (-3411 (((-85) (-1056 |#1| |#2|) $) 97 T ELT)) (-3030 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-2611 (((-585 (-1056 |#1| |#2|)) $) 58 T ELT)) (-3248 (((-85) (-1056 |#1| |#2|) $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-3329 (($ (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) 50 T ELT)) (-3961 (($ (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) 49 T ELT)) (-3033 (((-585 (-1056 |#1| |#2|)) $) 56 T ELT)) (-3530 (((-85) $) 45 T ELT)) (-3245 (((-1075) $) NIL (|has| (-1056 |#1| |#2|) (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| (-1056 |#1| |#2|) (-1015)) ELT)) (-3415 (((-3 $ "failed") $) 89 T ELT)) (-1733 (((-85) (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-1056 |#1| |#2|)))) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT) (($ $ (-249 (-1056 |#1| |#2|))) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT) (($ $ (-1056 |#1| |#2|) (-1056 |#1| |#2|)) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT) (($ $ (-585 (-1056 |#1| |#2|)) (-585 (-1056 |#1| |#2|))) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT)) (-1224 (((-85) $ $) 53 T ELT)) (-3406 (((-85) $) 24 T ELT)) (-3568 (($) 26 T ELT)) (-3803 (((-1056 |#1| |#2|) $ #1#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) 47 T ELT)) (-1732 (((-696) (-1056 |#1| |#2|) $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT) (((-696) (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3403 (($ $) 52 T ELT)) (-3533 (($ (-1056 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-585 $)) 13 T ELT) (($ |#1| |#2| (-585 (-1056 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-585 |#2|)) 18 T ELT)) (-3413 (((-585 |#2|) $) 96 T ELT)) (-3949 (((-774) $) 87 (|has| (-1056 |#1| |#2|) (-554 (-774))) ELT)) (-3525 (((-585 $) $) 31 T ELT)) (-3031 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3059 (((-85) $ $) 70 (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-3960 (((-696) $) 64 T ELT))) +(((-1057 |#1| |#2|) (-13 (-925 (-1056 |#1| |#2|)) (-318 (-1056 |#1| |#2|)) (-1037 (-1056 |#1| |#2|)) (-10 -8 (-15 -3415 ((-3 $ "failed") $)) (-15 -3414 ($ $)) (-15 -3533 ($ (-1056 |#1| |#2|))) (-15 -3533 ($ |#1| |#2| (-585 $))) (-15 -3533 ($ |#1| |#2| (-585 (-1056 |#1| |#2|)))) (-15 -3533 ($ |#1| |#2| |#1| (-585 |#2|))) (-15 -3413 ((-585 |#2|) $)) (-15 -3412 ((-585 (-2 (|:| |val| |#1|) (|:| -1602 |#2|))) $)) (-15 -3411 ((-85) (-1056 |#1| |#2|) $)) (-15 -3410 ((-85) (-1056 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3409 ($ (-1056 |#1| |#2|) $)) (-15 -3408 ($ (-1056 |#1| |#2|) $)) (-15 -3407 ($ $ $ (-585 (-1056 |#1| |#2|)))) (-15 -3407 ($ $ $ (-585 (-1056 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1015) (-34)) (-13 (-1015) (-34))) (T -1057)) +((-3415 (*1 *1 *1) (|partial| -12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1057 *2 *3))) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1056 *2 *3))) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)))) (-3533 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-585 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3411 (*1 *2 *3 *1) (-12 (-5 *3 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1057 *4 *5)))) (-3410 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1056 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1057 *5 *6)))) (-3409 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3407 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-585 (-1056 *3 *4))) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3407 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1056 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *1 (-1057 *4 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3417 (($ $) NIL T ELT)) (-3333 ((|#2| $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3416 (($ (-632 |#2|)) 53 T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3336 (($ |#2|) 14 T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3114 (((-197 |#1| |#2|) $ (-486)) 40 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3470 (((-3 $ #1#) $) 80 T ELT)) (-3111 (((-696) $) 68 (|has| |#2| (-497)) ELT)) (-3115 ((|#2| $ (-486) (-486)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3110 (((-696) $) 70 (|has| |#2| (-497)) ELT)) (-3109 (((-585 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-3617 (($ |#2|) 23 T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3330 ((|#2| $) 64 (|has| |#2| (-6 (-4000 #2="*"))) ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#2|))) 35 T ELT)) (-3961 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3597 (((-585 (-585 |#2|)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3593 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) (-486) |#2|) NIL T ELT) ((|#2| $ (-486) (-486)) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3335 (($ (-585 |#2|)) 48 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3334 (((-197 |#1| |#2|) $) NIL T ELT)) (-3331 ((|#2| $) 62 (|has| |#2| (-6 (-4000 #2#))) ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) NIL T ELT) (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 87 (|has| |#2| (-555 (-475))) ELT)) (-3113 (((-197 |#1| |#2|) $ (-486)) 42 T ELT)) (-3949 (((-774) $) 45 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) NIL T ELT) (((-632 |#2|) $) 50 T ELT)) (-3129 (((-696)) 21 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 19 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 60 T ELT) (($ $ (-486)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1058 |#1| |#2|) (-13 (-1039 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-554 (-632 |#2|)) (-10 -8 (-15 -3617 ($ |#2|)) (-15 -3417 ($ $)) (-15 -3416 ($ (-632 |#2|))) (IF (|has| |#2| (-6 (-4000 #1="*"))) (-6 -3987) |%noBranch|) (IF (|has| |#2| (-6 (-4000 #1#))) (IF (|has| |#2| (-6 -3995)) (-6 -3995) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|))) (-696) (-963)) (T -1058)) +((-3617 (*1 *1 *2) (-12 (-5 *1 (-1058 *3 *2)) (-14 *3 (-696)) (-4 *2 (-963)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-14 *2 (-696)) (-4 *3 (-963)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-696))))) +((-3430 (($ $) 19 T ELT)) (-3420 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3428 (((-85) $ $) 24 T ELT)) (-3432 (($ $) 17 T ELT)) (-3803 (((-117) $ (-486) (-117)) NIL T ELT) (((-117) $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) (($ $ $) 31 T ELT)) (-3949 (($ (-117)) 29 T ELT) (((-774) $) NIL T ELT))) +(((-1059 |#1|) (-10 -7 (-15 -3949 ((-774) |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3420 (|#1| |#1| (-114))) (-15 -3420 (|#1| |#1| (-117))) (-15 -3949 (|#1| (-117))) (-15 -3428 ((-85) |#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3432 (|#1| |#1|)) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -3803 ((-117) |#1| (-486))) (-15 -3803 ((-117) |#1| (-486) (-117)))) (-1060)) (T -1059)) +NIL +((-2571 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-3429 (($ $) 131 T ELT)) (-3430 (($ $) 132 T ELT)) (-3420 (($ $ (-117)) 119 T ELT) (($ $ (-114)) 118 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 (-117))) ELT)) (-3427 (((-85) $ $) 129 T ELT)) (-3426 (((-85) $ $ (-486)) 128 T ELT)) (-3421 (((-585 $) $ (-117)) 121 T ELT) (((-585 $) $ (-114)) 120 T ELT)) (-1737 (((-85) (-1 (-85) (-117) (-117)) $) 97 T ELT) (((-85) $) 91 (|has| (-117) (-758)) ELT)) (-1735 (($ (-1 (-85) (-117) (-117)) $) 88 (|has| $ (-1037 (-117))) ELT) (($ $) 87 (-12 (|has| (-117) (-758)) (|has| $ (-1037 (-117)))) ELT)) (-2912 (($ (-1 (-85) (-117) (-117)) $) 98 T ELT) (($ $) 92 (|has| (-117) (-758)) ELT)) (-3791 (((-117) $ (-486) (-117)) 47 (|has| $ (-1037 (-117))) ELT) (((-117) $ (-1148 (-486)) (-117)) 55 (|has| $ (-1037 (-117))) ELT)) (-3713 (($ (-1 (-85) (-117)) $) 70 (|has| $ (-318 (-117))) ELT)) (-3727 (($) 6 T CONST)) (-3418 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-2299 (($ $) 89 (|has| $ (-1037 (-117))) ELT)) (-2300 (($ $) 99 T ELT)) (-3423 (($ $ (-1148 (-486)) $) 125 T ELT)) (-1355 (($ $) 72 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT)) (-3409 (($ (-117) $) 71 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT) (($ (-1 (-85) (-117)) $) 69 (|has| $ (-318 (-117))) ELT)) (-3845 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 110 (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 107 T ELT) (((-117) (-1 (-117) (-117) (-117)) $) 106 T ELT)) (-1578 (((-117) $ (-486) (-117)) 48 (|has| $ (-1037 (-117))) ELT)) (-3115 (((-117) $ (-486)) 46 T ELT)) (-3428 (((-85) $ $) 130 T ELT)) (-3422 (((-486) (-1 (-85) (-117)) $) 96 T ELT) (((-486) (-117) $) 95 (|has| (-117) (-72)) ELT) (((-486) (-117) $ (-486)) 94 (|has| (-117) (-72)) ELT) (((-486) $ $ (-486)) 124 T ELT) (((-486) (-114) $ (-486)) 123 T ELT)) (-3617 (($ (-696) (-117)) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 81 (|has| (-117) (-758)) ELT)) (-3521 (($ (-1 (-85) (-117) (-117)) $ $) 100 T ELT) (($ $ $) 93 (|has| (-117) (-758)) ELT)) (-2611 (((-585 (-117)) $) 105 T ELT)) (-3248 (((-85) (-117) $) 109 (|has| (-117) (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 82 (|has| (-117) (-758)) ELT)) (-3424 (((-85) $ $ (-117)) 126 T ELT)) (-3425 (((-696) $ $ (-117)) 127 T ELT)) (-3329 (($ (-1 (-117) (-117)) $) 112 T ELT)) (-3961 (($ (-1 (-117) (-117)) $) 26 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 60 T ELT)) (-3431 (($ $) 133 T ELT)) (-3432 (($ $) 134 T ELT)) (-3419 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-3245 (((-1075) $) 21 (|has| (-117) (-1015)) ELT)) (-2306 (($ (-117) $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| (-117) (-1015)) ELT)) (-3804 (((-117) $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 68 T ELT)) (-2201 (($ $ (-117)) 36 (|has| $ (-1037 (-117))) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 (-117)))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-117)) (-585 (-117))) 22 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) (-117) $) 40 (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2207 (((-585 (-117)) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 (((-117) $ (-486) (-117)) 45 T ELT) (((-117) $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT) (($ $ $) 113 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-1732 (((-696) (-117) $) 108 (|has| (-117) (-72)) ELT) (((-696) (-1 (-85) (-117)) $) 104 T ELT)) (-1736 (($ $ $ (-486)) 90 (|has| $ (-1037 (-117))) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| (-117) (-555 (-475))) ELT)) (-3533 (($ (-585 (-117))) 67 T ELT)) (-3805 (($ $ (-117)) 64 T ELT) (($ (-117) $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (($ (-117)) 122 T ELT) (((-774) $) 16 (|has| (-117) (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-117)) $) 102 T ELT)) (-2569 (((-85) $ $) 83 (|has| (-117) (-758)) ELT)) (-2570 (((-85) $ $) 85 (|has| (-117) (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| (-117) (-72)) ELT)) (-2687 (((-85) $ $) 84 (|has| (-117) (-758)) ELT)) (-2688 (((-85) $ $) 86 (|has| (-117) (-758)) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-1060) (-113)) (T -1060)) +((-3432 (*1 *1 *1) (-4 *1 (-1060))) (-3431 (*1 *1 *1) (-4 *1 (-1060))) (-3430 (*1 *1 *1) (-4 *1 (-1060))) (-3429 (*1 *1 *1) (-4 *1 (-1060))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85)))) (-3426 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-486)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-696)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3423 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-1148 (-486))))) (-3422 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486)))) (-3422 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486)) (-5 *3 (-114)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1060)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-585 *1)) (-4 *1 (-1060)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-585 *1)) (-4 *1 (-1060)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) (-3803 (*1 *1 *1 *1) (-4 *1 (-1060)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3432 ($ $)) (-15 -3431 ($ $)) (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ((-85) $ $)) (-15 -3427 ((-85) $ $)) (-15 -3426 ((-85) $ $ (-486))) (-15 -3425 ((-696) $ $ (-117))) (-15 -3424 ((-85) $ $ (-117))) (-15 -3423 ($ $ (-1148 (-486)) $)) (-15 -3422 ((-486) $ $ (-486))) (-15 -3422 ((-486) (-114) $ (-486))) (-15 -3949 ($ (-117))) (-15 -3421 ((-585 $) $ (-117))) (-15 -3421 ((-585 $) $ (-114))) (-15 -3420 ($ $ (-117))) (-15 -3420 ($ $ (-114))) (-15 -3419 ($ $ (-117))) (-15 -3419 ($ $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3803 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-117) (-1015)) (|has| (-117) (-758)) (|has| (-117) (-72))) ((-554 (-774)) OR (|has| (-117) (-1015)) (|has| (-117) (-758)) (|has| (-117) (-554 (-774)))) ((-124 (-117)) . T) ((-555 (-475)) |has| (-117) (-555 (-475))) ((-241 (-486) (-117)) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-381 (-117)) . T) ((-430 (-117)) . T) ((-540 (-486) (-117)) . T) ((-457 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ((-13) . T) ((-595 (-117)) . T) ((-19 (-117)) . T) ((-758) |has| (-117) (-758)) ((-761) |has| (-117) (-758)) ((-1015) OR (|has| (-117) (-1015)) (|has| (-117) (-758))) ((-1037 (-117)) . T) ((-1131) . T)) +((-3439 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) (-696)) 112 T ELT)) (-3436 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696)) 61 T ELT)) (-3440 (((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-696)) 97 T ELT)) (-3434 (((-696) (-585 |#4|) (-585 |#5|)) 30 T ELT)) (-3437 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696)) 63 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696) (-85)) 65 T ELT)) (-3438 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85)) 85 T ELT)) (-3975 (((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) 90 T ELT)) (-3435 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|) 60 T ELT)) (-3433 (((-696) (-585 |#4|) (-585 |#5|)) 21 T ELT))) +(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3433 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3434 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|)) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696))) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696) (-85))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5| (-696))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) |#4| |#5|)) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3439 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))))) (-696))) (-15 -3975 ((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|)))) (-15 -3440 ((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1602 |#5|))) (-696)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -1061)) +((-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *4 (-696)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) (-5 *1 (-1061 *4 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1602 *11)))))) (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1602 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-5 *1 (-1061 *7 *8 *9 *10 *11)))) (-3438 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3438 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-1061 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) 117 T ELT) (((-585 $) (-585 |#4|) (-85)) 118 T ELT) (((-585 $) (-585 |#4|) (-85) (-85)) 116 T ELT) (((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| $) 90 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) 72 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3201 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3441 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85)) 132 T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-585 |#4|) $) 18 T ELT)) (-3248 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1602 $))) |#4| |#4| $) 110 T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3195 (((-585 $) |#4| $) 95 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) NIL T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1602 $))) |#4| $) 105 T ELT) (((-85) |#4| $) 61 T ELT)) (-3241 (((-585 $) |#4| $) 114 T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 115 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT)) (-3442 (((-585 $) (-585 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3443 (($ |#4| $) 81 T ELT) (($ (-585 |#4|) $) 82 T ELT) (((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 80 T ELT)) (-3700 (((-585 |#4|) $) NIL T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1356 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3772 (($ $ |#4|) NIL T ELT) (((-585 $) |#4| $) 97 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 92 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3951 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3949 (((-774) $) 34 T ELT) (((-585 |#4|) $) 45 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-3192 (((-585 $) |#4| $) 62 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3936 (((-85) |#3| $) 68 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1062 |#1| |#2| |#3| |#4|) (-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3443 ((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85))) (-15 -3442 ((-585 $) (-585 |#4|) (-85) (-85) (-85))) (-15 -3441 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85))))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -1062)) +((-3443 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *3))) (-5 *1 (-1062 *5 *6 *7 *3)) (-4 *3 (-979 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1062 *5 *6 *7 *8))))) (-5 *1 (-1062 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 32 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 30 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 29 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-696)) 31 T ELT) (($ $ (-832)) 28 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ $ $) 27 T ELT))) +(((-1063) (-113)) (T -1063)) +NIL +(-13 (-23) (-665)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3326 ((|#1| $) 38 T ELT)) (-3444 (($ (-585 |#1|)) 46 T ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) 41 T ELT)) (-3327 ((|#1| $) 36 T ELT)) (-2611 (((-585 |#1|) $) 19 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 39 T ELT)) (-3612 (($ |#1| $) 42 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 33 T ELT)) (-3568 (($) 44 T ELT)) (-3325 (((-696) $) 31 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 28 T ELT)) (-3949 (((-774) $) 15 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 32 T ELT))) +(((-1064 |#1|) (-13 (-1036 |#1|) (-10 -8 (-15 -3444 ($ (-585 |#1|))))) (-1131)) (T -1064)) +((-3444 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1064 *3))))) +((-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1148 (-486)) |#2|) 51 T ELT) ((|#2| $ (-486) |#2|) 48 T ELT)) (-3446 (((-85) $) 12 T ELT)) (-3804 ((|#2| $) NIL T ELT) (($ $ (-696)) 17 T ELT)) (-2201 (($ $ |#2|) 47 T ELT)) (-3447 (((-85) $) 11 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) 36 T ELT) ((|#2| $ (-486)) 25 T ELT) ((|#2| $ (-486) |#2|) NIL T ELT)) (-3794 (($ $ $) 54 T ELT) (($ $ |#2|) NIL T ELT)) (-3805 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-585 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1065 |#1| |#2|) (-10 -7 (-15 -3446 ((-85) |#1|)) (-15 -3447 ((-85) |#1|)) (-15 -3791 (|#2| |#1| (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486))) (-15 -2201 (|#1| |#1| |#2|)) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -3805 (|#1| |#1| |#2|)) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3791 (|#2| |#1| (-1148 (-486)) |#2|)) (-15 -3791 (|#2| |#1| #1="last" |#2|)) (-15 -3791 (|#1| |#1| #2="rest" |#1|)) (-15 -3791 (|#2| |#1| #3="first" |#2|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3803 (|#2| |#1| #1#)) (-15 -3803 (|#1| |#1| #2#)) (-15 -3804 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| #3#)) (-15 -3804 (|#2| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3791 (|#2| |#1| #4="value" |#2|)) (-15 -3803 (|#2| |#1| #4#))) (-1066 |#2|) (-1131)) (T -1065)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 99 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-3445 (((-85) $ (-696)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 116 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 88 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-1355 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-1578 ((|#1| $ (-486) |#1|) 87 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 89 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 108 T ELT)) (-3722 (((-85) $ (-696)) 83 T ELT)) (-2202 (((-486) $) 97 (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) 96 (|has| (-486) (-758)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3719 (((-85) $ (-696)) 84 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-2306 (($ $ $ (-486)) 115 T ELT) (($ |#1| $ (-486)) 114 T ELT)) (-2205 (((-585 (-486)) $) 94 T ELT)) (-2206 (((-85) (-486) $) 93 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) 86 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 92 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1148 (-486))) 107 T ELT) ((|#1| $ (-486)) 91 T ELT) ((|#1| $ (-486) |#1|) 90 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-2307 (($ $ (-1148 (-486))) 113 T ELT) (($ $ (-486)) 112 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 100 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 106 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-585 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-1066 |#1|) (-113) (-1131)) (T -1066)) +((-3447 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-3445 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) +(-13 (-1170 |t#1|) (-595 |t#1|) (-10 -8 (-15 -3447 ((-85) $)) (-15 -3446 ((-85) $)) (-15 -3719 ((-85) $ (-696))) (-15 -3722 ((-85) $ (-696))) (-15 -3445 ((-85) $ (-696))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T) ((-1170 |#1|) . T)) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1067 |#1| |#2| |#3|) (-1109 |#1| |#2|) (-1015) (-1015) |#2|) (T -1067)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3448 (((-634 $) $) 17 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3449 (($) 18 T CONST)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(((-1068) (-113)) (T -1068)) +((-3449 (*1 *1) (-4 *1 (-1068))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1068))))) +(-13 (-1015) (-10 -8 (-15 -3449 ($) -3955) (-15 -3448 ((-634 $) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3451 (((-634 (-1051)) $) 28 T ELT)) (-3450 (((-1051) $) 16 T ELT)) (-3452 (((-1051) $) 18 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3453 (((-448) $) 14 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 38 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1069) (-13 (-997) (-10 -8 (-15 -3453 ((-448) $)) (-15 -3452 ((-1051) $)) (-15 -3451 ((-634 (-1051)) $)) (-15 -3450 ((-1051) $))))) (T -1069)) +((-3453 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1069)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-634 (-1051))) (-5 *1 (-1069)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069))))) +((-3456 (((-1071 |#1|) (-1071 |#1|)) 17 T ELT)) (-3454 (((-1071 |#1|) (-1071 |#1|)) 13 T ELT)) (-3457 (((-1071 |#1|) (-1071 |#1|) (-486) (-486)) 20 T ELT)) (-3455 (((-1071 |#1|) (-1071 |#1|)) 15 T ELT))) +(((-1070 |#1|) (-10 -7 (-15 -3454 ((-1071 |#1|) (-1071 |#1|))) (-15 -3455 ((-1071 |#1|) (-1071 |#1|))) (-15 -3456 ((-1071 |#1|) (-1071 |#1|))) (-15 -3457 ((-1071 |#1|) (-1071 |#1|) (-486) (-486)))) (-13 (-497) (-120))) (T -1070)) +((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-1070 *4)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) 60 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 93 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 122 (|has| $ (-1037 |#1|)) ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3462 (((-774) $) 46 (|has| |#1| (-1015)) ELT)) (-3461 (((-85)) 49 (|has| |#1| (-1015)) ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 109 (|has| $ (-1037 |#1|)) ELT) (($ $ (-486) $) 135 T ELT)) (-3789 ((|#1| $ |#1|) 119 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 114 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 106 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 72 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2325 (($ $) 11 T ELT)) (-3802 (($ $) 35 T ELT) (($ $ (-696)) 105 T ELT)) (-3467 (((-85) (-585 |#1|) $) 128 (|has| |#1| (-1015)) ELT)) (-3468 (($ (-585 |#1|)) 124 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3463 (((-1187) (-486) $) 133 (|has| |#1| (-1015)) ELT)) (-2324 (((-696) $) 131 T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-2327 (($ $) 107 T ELT)) (-2328 (((-85) $) 10 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) 90 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3460 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2326 ((|#1| $) 7 T ELT)) (-3804 ((|#1| $) 34 T ELT) (($ $ (-696)) 58 T ELT)) (-3466 (((-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696))) (-696) $) 29 T ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3459 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2201 (($ $ |#1|) 85 (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-486)) 40 T ELT)) (-3447 (((-85) $) 88 T ELT)) (-2329 (((-85) $) 9 T ELT)) (-2330 (((-85) $) 130 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 25 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) 14 T ELT)) (-3568 (($) 53 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) ((|#1| $ (-486)) 70 T ELT) ((|#1| $ (-486) |#1|) NIL T ELT)) (-3032 (((-486) $ $) 57 T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-3465 (($ (-1 $)) 56 T ELT)) (-3636 (((-85) $) 86 T ELT)) (-3795 (($ $) 87 T ELT)) (-3793 (($ $) 110 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-3403 (($ $) 52 T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 68 T ELT)) (-3464 (($ |#1| $) 108 T ELT)) (-3794 (($ $ $) 112 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-585 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2894 (($ $) 59 T ELT)) (-3949 (($ (-585 |#1|)) 123 T ELT) (((-774) $) 50 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 126 (|has| |#1| (-72)) ELT))) +(((-1071 |#1|) (-13 (-618 |#1|) (-557 (-585 |#1|)) (-1037 |#1|) (-10 -8 (-15 -3468 ($ (-585 |#1|))) (IF (|has| |#1| (-1015)) (-15 -3467 ((-85) (-585 |#1|) $)) |%noBranch|) (-15 -3466 ((-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696))) (-696) $)) (-15 -3465 ($ (-1 $))) (-15 -3464 ($ |#1| $)) (IF (|has| |#1| (-1015)) (PROGN (-15 -3463 ((-1187) (-486) $)) (-15 -3462 ((-774) $)) (-15 -3461 ((-85)))) |%noBranch|) (-15 -3790 ($ $ (-486) $)) (-15 -3460 ($ (-1 |#1|))) (-15 -3460 ($ (-1 |#1| |#1|) |#1|)) (-15 -3459 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 (-85) |#1|) $)))) (-1131)) (T -1071)) +((-3468 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3467 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-4 *4 (-1131)) (-5 *2 (-85)) (-5 *1 (-1071 *4)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696)))) (-5 *1 (-1071 *4)) (-4 *4 (-1131)) (-5 *3 (-696)))) (-3465 (*1 *1 *2) (-12 (-5 *2 (-1 (-1071 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-1131)))) (-3464 (*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1131)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1071 *4)) (-4 *4 (-1015)) (-4 *4 (-1131)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131)))) (-3461 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1071 *3)) (-4 *3 (-1131)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) +((-3805 (((-1071 |#1|) (-1071 (-1071 |#1|))) 15 T ELT))) +(((-1072 |#1|) (-10 -7 (-15 -3805 ((-1071 |#1|) (-1071 (-1071 |#1|))))) (-1131)) (T -1072)) +((-3805 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-1131))))) +((-3844 (((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 25 T ELT)) (-3845 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 26 T ELT)) (-3961 (((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)) 16 T ELT))) +(((-1073 |#1| |#2|) (-10 -7 (-15 -3961 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))) (-15 -3844 ((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))) (-15 -3845 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)))) (-1131) (-1131)) (T -1073)) +((-3845 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-1073 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1131)) (-4 *3 (-1131)) (-5 *2 (-1071 *3)) (-5 *1 (-1073 *6 *3)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1071 *6)) (-5 *1 (-1073 *5 *6))))) +((-3961 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)) 21 T ELT))) +(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)))) (-1131) (-1131) (-1131)) (T -1074)) +((-3961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) (-5 *1 (-1074 *6 *7 *8))))) +((-2571 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3429 (($ $) 42 T ELT)) (-3430 (($ $) NIL T ELT)) (-3420 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-117))) ELT)) (-3427 (((-85) $ $) 67 T ELT)) (-3426 (((-85) $ $ (-486)) 62 T ELT)) (-3538 (($ (-486)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-448)) 11 T ELT)) (-3421 (((-585 $) $ (-117)) 76 T ELT) (((-585 $) $ (-114)) 77 T ELT)) (-1737 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-758)) ELT)) (-1735 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-1037 (-117))) ELT) (($ $) NIL (-12 (|has| $ (-1037 (-117))) (|has| (-117) (-758))) ELT)) (-2912 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-758)) ELT)) (-3791 (((-117) $ (-486) (-117)) 59 (|has| $ (-1037 (-117))) ELT) (((-117) $ (-1148 (-486)) (-117)) NIL (|has| $ (-1037 (-117))) ELT)) (-3713 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3727 (($) NIL T CONST)) (-3418 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2299 (($ $) NIL (|has| $ (-1037 (-117))) ELT)) (-2300 (($ $) NIL T ELT)) (-3423 (($ $ (-1148 (-486)) $) 57 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3409 (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3845 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT)) (-1578 (((-117) $ (-486) (-117)) NIL (|has| $ (-1037 (-117))) ELT)) (-3115 (((-117) $ (-486)) NIL T ELT)) (-3428 (((-85) $ $) 91 T ELT)) (-3422 (((-486) (-1 (-85) (-117)) $) NIL T ELT) (((-486) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-486) (-117) $ (-486)) 64 (|has| (-117) (-72)) ELT) (((-486) $ $ (-486)) 63 T ELT) (((-486) (-114) $ (-486)) 66 T ELT)) (-3617 (($ (-696) (-117)) 14 T ELT)) (-2202 (((-486) $) 36 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-3521 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-2611 (((-585 (-117)) $) NIL T ELT)) (-3248 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2203 (((-486) $) 50 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-3424 (((-85) $ $ (-117)) 92 T ELT)) (-3425 (((-696) $ $ (-117)) 88 T ELT)) (-3329 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3961 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3431 (($ $) 45 T ELT)) (-3432 (($ $) NIL T ELT)) (-3419 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3245 (((-1075) $) 46 (|has| (-117) (-1015)) ELT)) (-2306 (($ (-117) $ (-486)) NIL T ELT) (($ $ $ (-486)) 31 T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) 87 (|has| (-117) (-1015)) ELT)) (-3804 (((-117) $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2201 (($ $ (-117)) NIL (|has| $ (-1037 (-117))) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-117)) (-585 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2207 (((-585 (-117)) $) NIL T ELT)) (-3406 (((-85) $) 19 T ELT)) (-3568 (($) 16 T ELT)) (-3803 (((-117) $ (-486) (-117)) NIL T ELT) (((-117) $ (-486)) 69 T ELT) (($ $ (-1148 (-486))) 29 T ELT) (($ $ $) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-696) (-1 (-85) (-117)) $) NIL T ELT)) (-1736 (($ $ $ (-486)) 83 (|has| $ (-1037 (-117))) ELT)) (-3403 (($ $) 24 T ELT)) (-3975 (((-475) $) NIL (|has| (-117) (-555 (-475))) ELT)) (-3533 (($ (-585 (-117))) NIL T ELT)) (-3805 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-585 $)) 84 T ELT)) (-3949 (($ (-117)) NIL T ELT) (((-774) $) 35 (|has| (-117) (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-3059 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-2688 (((-85) $ $) 22 (|has| (-117) (-758)) ELT)) (-3960 (((-696) $) 20 T ELT))) +(((-1075) (-13 (-1060) (-10 -8 (-15 -3538 ($ (-486))) (-15 -3538 ($ (-179))) (-15 -3538 ($ (-448)))))) (T -1075)) +((-3538 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1075)))) (-3538 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1075)))) (-3538 (*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-1075))))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-2200 (((-1187) $ (-1075) (-1075)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT)) (-2233 (((-3 |#1| #1="failed") (-1075) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1075) $) NIL T ELT)) (-3409 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3845 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) ELT) (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1578 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-1075)) NIL T ELT)) (-2202 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-2203 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015)) (|has| |#1| (-1015))) ELT)) (-2234 (((-585 (-1075)) $) NIL T ELT)) (-2235 (((-85) (-1075) $) NIL T ELT)) (-1276 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-585 (-1075)) $) NIL T ELT)) (-2206 (((-85) (-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015)) (|has| |#1| (-1015))) ELT)) (-3804 ((|#1| $) NIL (|has| (-1075) (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1277 (((-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-1075)) NIL T ELT) ((|#1| $ (-1075) |#1|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-554 (-774))) (|has| |#1| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 (-1075)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1076 |#1|) (-1109 (-1075) |#1|) (-1015)) (T -1076)) +NIL +((-3808 (((-1071 |#1|) (-1071 |#1|)) 83 T ELT)) (-3470 (((-3 (-1071 |#1|) #1="failed") (-1071 |#1|)) 39 T ELT)) (-3481 (((-1071 |#1|) (-350 (-486)) (-1071 |#1|)) 131 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3484 (((-1071 |#1|) |#1| (-1071 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3811 (((-1071 |#1|) (-1071 |#1|)) 97 T ELT)) (-3472 (((-1071 (-486)) (-486)) 63 T ELT)) (-3480 (((-1071 |#1|) (-1071 (-1071 |#1|))) 116 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3807 (((-1071 |#1|) (-486) (-486) (-1071 |#1|)) 103 T ELT)) (-3941 (((-1071 |#1|) |#1| (-486)) 51 T ELT)) (-3474 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 66 T ELT)) (-3482 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3479 (((-1071 |#1|) |#1| (-1 (-1071 |#1|))) 115 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3483 (((-1071 |#1|) (-1 |#1| (-486)) |#1| (-1 (-1071 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3812 (((-1071 |#1|) (-1071 |#1|)) 96 T ELT)) (-3813 (((-1071 |#1|) (-1071 |#1|)) 82 T ELT)) (-3806 (((-1071 |#1|) (-486) (-486) (-1071 |#1|)) 104 T ELT)) (-3815 (((-1071 |#1|) |#1| (-1071 |#1|)) 113 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3471 (((-1071 (-486)) (-486)) 62 T ELT)) (-3473 (((-1071 |#1|) |#1|) 65 T ELT)) (-3809 (((-1071 |#1|) (-1071 |#1|) (-486) (-486)) 100 T ELT)) (-3476 (((-1071 |#1|) (-1 |#1| (-486)) (-1071 |#1|)) 72 T ELT)) (-3469 (((-3 (-1071 |#1|) #1#) (-1071 |#1|) (-1071 |#1|)) 37 T ELT)) (-3810 (((-1071 |#1|) (-1071 |#1|)) 98 T ELT)) (-3771 (((-1071 |#1|) (-1071 |#1|) |#1|) 77 T ELT)) (-3475 (((-1071 |#1|) (-1071 |#1|)) 68 T ELT)) (-3477 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 78 T ELT)) (-3949 (((-1071 |#1|) |#1|) 73 T ELT)) (-3478 (((-1071 |#1|) (-1071 (-1071 |#1|))) 88 T ELT)) (-3952 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 38 T ELT)) (-3840 (((-1071 |#1|) (-1071 |#1|)) 21 T ELT) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 23 T ELT)) (-3842 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 17 T ELT)) (* (((-1071 |#1|) (-1071 |#1|) |#1|) 29 T ELT) (((-1071 |#1|) |#1| (-1071 |#1|)) 26 T ELT) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 27 T ELT))) +(((-1077 |#1|) (-10 -7 (-15 -3842 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3840 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3840 ((-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -3469 ((-3 (-1071 |#1|) #1="failed") (-1071 |#1|) (-1071 |#1|))) (-15 -3952 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3470 ((-3 (-1071 |#1|) #1#) (-1071 |#1|))) (-15 -3941 ((-1071 |#1|) |#1| (-486))) (-15 -3471 ((-1071 (-486)) (-486))) (-15 -3472 ((-1071 (-486)) (-486))) (-15 -3473 ((-1071 |#1|) |#1|)) (-15 -3474 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3475 ((-1071 |#1|) (-1071 |#1|))) (-15 -3476 ((-1071 |#1|) (-1 |#1| (-486)) (-1071 |#1|))) (-15 -3949 ((-1071 |#1|) |#1|)) (-15 -3771 ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -3477 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3813 ((-1071 |#1|) (-1071 |#1|))) (-15 -3808 ((-1071 |#1|) (-1071 |#1|))) (-15 -3478 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -3812 ((-1071 |#1|) (-1071 |#1|))) (-15 -3811 ((-1071 |#1|) (-1071 |#1|))) (-15 -3810 ((-1071 |#1|) (-1071 |#1|))) (-15 -3809 ((-1071 |#1|) (-1071 |#1|) (-486) (-486))) (-15 -3807 ((-1071 |#1|) (-486) (-486) (-1071 |#1|))) (-15 -3806 ((-1071 |#1|) (-486) (-486) (-1071 |#1|))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 -3479 ((-1071 |#1|) |#1| (-1 (-1071 |#1|)))) (-15 -3480 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -3481 ((-1071 |#1|) (-350 (-486)) (-1071 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3482 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3483 ((-1071 |#1|) (-1 |#1| (-486)) |#1| (-1 (-1071 |#1|)))) (-15 -3484 ((-1071 |#1|) |#1| (-1071 |#1|)))) |%noBranch|)) (-963)) (T -1077)) +((-3484 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-486))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)))) (-3482 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-4 *4 (-38 *3)) (-4 *4 (-963)) (-5 *3 (-350 (-486))) (-5 *1 (-1077 *4)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1071 *3))) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)))) (-3815 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3806 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3807 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3809 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-963)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3477 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3949 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-3476 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-486))) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3473 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) (-5 *3 (-486)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) (-5 *3 (-486)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-3470 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3952 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3469 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3842 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) +((-3495 (((-1071 |#1|) (-1071 |#1|)) 102 T ELT)) (-3642 (((-1071 |#1|) (-1071 |#1|)) 59 T ELT)) (-3486 (((-2 (|:| -3493 (-1071 |#1|)) (|:| -3494 (-1071 |#1|))) (-1071 |#1|)) 98 T ELT)) (-3493 (((-1071 |#1|) (-1071 |#1|)) 99 T ELT)) (-3485 (((-2 (|:| -3641 (-1071 |#1|)) (|:| -3637 (-1071 |#1|))) (-1071 |#1|)) 54 T ELT)) (-3641 (((-1071 |#1|) (-1071 |#1|)) 55 T ELT)) (-3497 (((-1071 |#1|) (-1071 |#1|)) 104 T ELT)) (-3640 (((-1071 |#1|) (-1071 |#1|)) 66 T ELT)) (-3945 (((-1071 |#1|) (-1071 |#1|)) 40 T ELT)) (-3946 (((-1071 |#1|) (-1071 |#1|)) 37 T ELT)) (-3498 (((-1071 |#1|) (-1071 |#1|)) 105 T ELT)) (-3639 (((-1071 |#1|) (-1071 |#1|)) 67 T ELT)) (-3496 (((-1071 |#1|) (-1071 |#1|)) 103 T ELT)) (-3638 (((-1071 |#1|) (-1071 |#1|)) 62 T ELT)) (-3494 (((-1071 |#1|) (-1071 |#1|)) 100 T ELT)) (-3637 (((-1071 |#1|) (-1071 |#1|)) 56 T ELT)) (-3501 (((-1071 |#1|) (-1071 |#1|)) 113 T ELT)) (-3489 (((-1071 |#1|) (-1071 |#1|)) 88 T ELT)) (-3499 (((-1071 |#1|) (-1071 |#1|)) 107 T ELT)) (-3487 (((-1071 |#1|) (-1071 |#1|)) 84 T ELT)) (-3503 (((-1071 |#1|) (-1071 |#1|)) 117 T ELT)) (-3491 (((-1071 |#1|) (-1071 |#1|)) 92 T ELT)) (-3504 (((-1071 |#1|) (-1071 |#1|)) 119 T ELT)) (-3492 (((-1071 |#1|) (-1071 |#1|)) 94 T ELT)) (-3502 (((-1071 |#1|) (-1071 |#1|)) 115 T ELT)) (-3490 (((-1071 |#1|) (-1071 |#1|)) 90 T ELT)) (-3500 (((-1071 |#1|) (-1071 |#1|)) 109 T ELT)) (-3488 (((-1071 |#1|) (-1071 |#1|)) 86 T ELT)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 41 T ELT))) +(((-1078 |#1|) (-10 -7 (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 -3945 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3485 ((-2 (|:| -3641 (-1071 |#1|)) (|:| -3637 (-1071 |#1|))) (-1071 |#1|))) (-15 -3641 ((-1071 |#1|) (-1071 |#1|))) (-15 -3637 ((-1071 |#1|) (-1071 |#1|))) (-15 -3642 ((-1071 |#1|) (-1071 |#1|))) (-15 -3638 ((-1071 |#1|) (-1071 |#1|))) (-15 -3640 ((-1071 |#1|) (-1071 |#1|))) (-15 -3639 ((-1071 |#1|) (-1071 |#1|))) (-15 -3487 ((-1071 |#1|) (-1071 |#1|))) (-15 -3488 ((-1071 |#1|) (-1071 |#1|))) (-15 -3489 ((-1071 |#1|) (-1071 |#1|))) (-15 -3490 ((-1071 |#1|) (-1071 |#1|))) (-15 -3491 ((-1071 |#1|) (-1071 |#1|))) (-15 -3492 ((-1071 |#1|) (-1071 |#1|))) (-15 -3486 ((-2 (|:| -3493 (-1071 |#1|)) (|:| -3494 (-1071 |#1|))) (-1071 |#1|))) (-15 -3493 ((-1071 |#1|) (-1071 |#1|))) (-15 -3494 ((-1071 |#1|) (-1071 |#1|))) (-15 -3495 ((-1071 |#1|) (-1071 |#1|))) (-15 -3496 ((-1071 |#1|) (-1071 |#1|))) (-15 -3497 ((-1071 |#1|) (-1071 |#1|))) (-15 -3498 ((-1071 |#1|) (-1071 |#1|))) (-15 -3499 ((-1071 |#1|) (-1071 |#1|))) (-15 -3500 ((-1071 |#1|) (-1071 |#1|))) (-15 -3501 ((-1071 |#1|) (-1071 |#1|))) (-15 -3502 ((-1071 |#1|) (-1071 |#1|))) (-15 -3503 ((-1071 |#1|) (-1071 |#1|))) (-15 -3504 ((-1071 |#1|) (-1071 |#1|)))) (-38 (-350 (-486)))) (T -1078)) +((-3504 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-2 (|:| -3493 (-1071 *4)) (|:| -3494 (-1071 *4)))) (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-2 (|:| -3641 (-1071 *4)) (|:| -3637 (-1071 *4)))) (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3))))) +((-3495 (((-1071 |#1|) (-1071 |#1|)) 60 T ELT)) (-3642 (((-1071 |#1|) (-1071 |#1|)) 42 T ELT)) (-3493 (((-1071 |#1|) (-1071 |#1|)) 56 T ELT)) (-3641 (((-1071 |#1|) (-1071 |#1|)) 38 T ELT)) (-3497 (((-1071 |#1|) (-1071 |#1|)) 63 T ELT)) (-3640 (((-1071 |#1|) (-1071 |#1|)) 45 T ELT)) (-3945 (((-1071 |#1|) (-1071 |#1|)) 34 T ELT)) (-3946 (((-1071 |#1|) (-1071 |#1|)) 29 T ELT)) (-3498 (((-1071 |#1|) (-1071 |#1|)) 64 T ELT)) (-3639 (((-1071 |#1|) (-1071 |#1|)) 46 T ELT)) (-3496 (((-1071 |#1|) (-1071 |#1|)) 61 T ELT)) (-3638 (((-1071 |#1|) (-1071 |#1|)) 43 T ELT)) (-3494 (((-1071 |#1|) (-1071 |#1|)) 58 T ELT)) (-3637 (((-1071 |#1|) (-1071 |#1|)) 40 T ELT)) (-3501 (((-1071 |#1|) (-1071 |#1|)) 68 T ELT)) (-3489 (((-1071 |#1|) (-1071 |#1|)) 50 T ELT)) (-3499 (((-1071 |#1|) (-1071 |#1|)) 66 T ELT)) (-3487 (((-1071 |#1|) (-1071 |#1|)) 48 T ELT)) (-3503 (((-1071 |#1|) (-1071 |#1|)) 71 T ELT)) (-3491 (((-1071 |#1|) (-1071 |#1|)) 53 T ELT)) (-3504 (((-1071 |#1|) (-1071 |#1|)) 72 T ELT)) (-3492 (((-1071 |#1|) (-1071 |#1|)) 54 T ELT)) (-3502 (((-1071 |#1|) (-1071 |#1|)) 70 T ELT)) (-3490 (((-1071 |#1|) (-1071 |#1|)) 52 T ELT)) (-3500 (((-1071 |#1|) (-1071 |#1|)) 69 T ELT)) (-3488 (((-1071 |#1|) (-1071 |#1|)) 51 T ELT)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 36 T ELT))) +(((-1079 |#1|) (-10 -7 (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 -3945 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3641 ((-1071 |#1|) (-1071 |#1|))) (-15 -3637 ((-1071 |#1|) (-1071 |#1|))) (-15 -3642 ((-1071 |#1|) (-1071 |#1|))) (-15 -3638 ((-1071 |#1|) (-1071 |#1|))) (-15 -3640 ((-1071 |#1|) (-1071 |#1|))) (-15 -3639 ((-1071 |#1|) (-1071 |#1|))) (-15 -3487 ((-1071 |#1|) (-1071 |#1|))) (-15 -3488 ((-1071 |#1|) (-1071 |#1|))) (-15 -3489 ((-1071 |#1|) (-1071 |#1|))) (-15 -3490 ((-1071 |#1|) (-1071 |#1|))) (-15 -3491 ((-1071 |#1|) (-1071 |#1|))) (-15 -3492 ((-1071 |#1|) (-1071 |#1|))) (-15 -3493 ((-1071 |#1|) (-1071 |#1|))) (-15 -3494 ((-1071 |#1|) (-1071 |#1|))) (-15 -3495 ((-1071 |#1|) (-1071 |#1|))) (-15 -3496 ((-1071 |#1|) (-1071 |#1|))) (-15 -3497 ((-1071 |#1|) (-1071 |#1|))) (-15 -3498 ((-1071 |#1|) (-1071 |#1|))) (-15 -3499 ((-1071 |#1|) (-1071 |#1|))) (-15 -3500 ((-1071 |#1|) (-1071 |#1|))) (-15 -3501 ((-1071 |#1|) (-1071 |#1|))) (-15 -3502 ((-1071 |#1|) (-1071 |#1|))) (-15 -3503 ((-1071 |#1|) (-1071 |#1|))) (-15 -3504 ((-1071 |#1|) (-1071 |#1|)))) (-38 (-350 (-486)))) (T -1079)) +((-3504 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) +((-3505 (((-871 |#2|) |#2| |#2|) 51 T ELT)) (-3506 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) +(((-1080 |#1| |#2|) (-10 -7 (-15 -3505 ((-871 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3506 (|#2| |#2| |#1|)) |%noBranch|)) (-497) (-1157 |#1|)) (T -1080)) +((-3506 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-1080 *3 *2)) (-4 *2 (-1157 *3)))) (-3505 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-871 *3)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1157 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3514 (($ $ (-585 (-696))) 79 T ELT)) (-3891 (($) 33 T ELT)) (-3523 (($ $) 51 T ELT)) (-3754 (((-585 $) $) 60 T ELT)) (-3529 (((-85) $) 19 T ELT)) (-3507 (((-585 (-856 |#2|)) $) 86 T ELT)) (-3508 (($ $) 80 T ELT)) (-3524 (((-696) $) 47 T ELT)) (-3617 (($) 32 T ELT)) (-3517 (($ $ (-585 (-696)) (-856 |#2|)) 72 T ELT) (($ $ (-585 (-696)) (-696)) 73 T ELT) (($ $ (-696) (-856 |#2|)) 75 T ELT)) (-3521 (($ $ $) 57 T ELT) (($ (-585 $)) 59 T ELT)) (-3509 (((-696) $) 87 T ELT)) (-3530 (((-85) $) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3528 (((-85) $) 22 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3510 (((-145) $) 85 T ELT)) (-3513 (((-856 |#2|) $) 81 T ELT)) (-3512 (((-696) $) 82 T ELT)) (-3511 (((-85) $) 84 T ELT)) (-3515 (($ $ (-585 (-696)) (-145)) 78 T ELT)) (-3522 (($ $) 52 T ELT)) (-3949 (((-774) $) 99 T ELT)) (-3516 (($ $ (-585 (-696)) (-85)) 77 T ELT)) (-3525 (((-585 $) $) 11 T ELT)) (-3526 (($ $ (-696)) 46 T ELT)) (-3527 (($ $) 43 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3518 (($ $ $ (-856 |#2|) (-696)) 68 T ELT)) (-3519 (($ $ (-856 |#2|)) 67 T ELT)) (-3520 (($ $ (-585 (-696)) (-856 |#2|)) 66 T ELT) (($ $ (-585 (-696)) (-696)) 70 T ELT) (((-696) $ (-856 |#2|)) 71 T ELT)) (-3059 (((-85) $ $) 92 T ELT))) +(((-1081 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3530 ((-85) $)) (-15 -3529 ((-85) $)) (-15 -3528 ((-85) $)) (-15 -3617 ($)) (-15 -3891 ($)) (-15 -3527 ($ $)) (-15 -3526 ($ $ (-696))) (-15 -3525 ((-585 $) $)) (-15 -3524 ((-696) $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -3521 ($ $ $)) (-15 -3521 ($ (-585 $))) (-15 -3754 ((-585 $) $)) (-15 -3520 ($ $ (-585 (-696)) (-856 |#2|))) (-15 -3519 ($ $ (-856 |#2|))) (-15 -3518 ($ $ $ (-856 |#2|) (-696))) (-15 -3517 ($ $ (-585 (-696)) (-856 |#2|))) (-15 -3520 ($ $ (-585 (-696)) (-696))) (-15 -3517 ($ $ (-585 (-696)) (-696))) (-15 -3520 ((-696) $ (-856 |#2|))) (-15 -3517 ($ $ (-696) (-856 |#2|))) (-15 -3516 ($ $ (-585 (-696)) (-85))) (-15 -3515 ($ $ (-585 (-696)) (-145))) (-15 -3514 ($ $ (-585 (-696)))) (-15 -3513 ((-856 |#2|) $)) (-15 -3512 ((-696) $)) (-15 -3511 ((-85) $)) (-15 -3510 ((-145) $)) (-15 -3509 ((-696) $)) (-15 -3508 ($ $)) (-15 -3507 ((-585 (-856 |#2|)) $)))) (-832) (-963)) (T -1081)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3617 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3891 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3527 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3521 (*1 *1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-856 *4)) (-4 *4 (-963)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)))) (-3518 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-856 *5)) (-5 *3 (-696)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *2 (-696)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-85)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-145)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-856 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-585 (-856 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3531 ((|#2| $) 11 T ELT)) (-3532 ((|#1| $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3533 (($ |#1| |#2|) 9 T ELT)) (-3949 (((-774) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1082 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3533 ($ |#1| |#2|)) (-15 -3532 (|#1| $)) (-15 -3531 (|#2| $)))) (-1015) (-1015)) (T -1082)) +((-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3532 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1015)))) (-3531 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3534 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1083) (-13 (-997) (-10 -8 (-15 -3534 ((-1051) $))))) (T -1083)) +((-3534 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1083))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-1091 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3774 (($ $ (-486)) NIL T ELT) (($ $ (-486) (-486)) 75 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) NIL T ELT)) (-3734 (((-1091 |#1| |#2| |#3|) $) 42 T ELT)) (-3731 (((-3 (-1091 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3732 (((-1091 |#1| |#2| |#3|) $) 33 T ELT)) (-3495 (($ $) 116 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 92 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) 112 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 88 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) 120 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 96 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1091 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1092) #1#) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3159 (((-1091 |#1| |#2| |#3|) $) 140 T ELT) (((-1092) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-350 (-486)) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-486) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3733 (($ $) 37 T ELT) (($ (-486) $) 38 T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-1091 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1091 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1091 |#1| |#2| |#3|)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-3470 (((-3 $ #1#) $) 54 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 74 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 76 (|has| |#1| (-497)) ELT)) (-2997 (($) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2895 (((-85) $) 28 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-798 (-330))) (|has| |#1| (-312))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-798 (-486))) (|has| |#1| (-312))) ELT)) (-3775 (((-486) $) NIL T ELT) (((-486) $ (-486)) 26 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3001 (((-1091 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) ELT)) (-3190 (((-85) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3780 (($ $ (-832)) NIL T ELT)) (-3818 (($ (-1 |#1| (-486)) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-486)) 19 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-2534 (($ $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2860 (($ $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 81 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 (-1091 |#1| |#2| |#3|)) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1091 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1091 |#1| |#2| |#3|)))) (-1181 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) (-1091 |#1| |#2| |#3|)) 36 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 79 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 80 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3131 (($ $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3133 (((-1091 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 158 T ELT)) (-3469 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) 82 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) (-1091 |#1| |#2| |#3|)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-457 (-1092) (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092)) (-585 (-1091 |#1| |#2| |#3|))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-457 (-1092) (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 (-1091 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1091 |#1| |#2| |#3|))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091 |#1| |#2| |#3|)) (-585 (-1091 |#1| |#2| |#3|))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) NIL T ELT) (($ $ $) 61 (|has| (-486) (-1027)) ELT) (($ $ (-1091 |#1| |#2| |#3|)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-241 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1091 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3951 (((-486) $) 43 T ELT)) (-3498 (($ $) 122 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 98 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 118 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 94 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 114 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 90 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-475) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-555 (-475))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-802 (-330)) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-555 (-802 (-330)))) (|has| |#1| (-312))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-555 (-802 (-486)))) (|has| |#1| (-312))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) 162 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1091 |#1| |#2| |#3|)) 30 T ELT) (($ (-1178 |#2|)) 25 T ELT) (($ (-1092)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT) (($ (-350 (-486))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3680 ((|#1| $ (-486)) 77 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-3134 (((-1091 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 128 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 104 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3499 (($ $) 124 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 100 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 132 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 108 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 134 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 110 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 130 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 106 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 126 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 102 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2570 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2688 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 23 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 60 T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 137 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1091 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1091 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1084 |#1| |#2| |#3|) (-13 (-1145 |#1| (-1091 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3949 ($ (-1178 |#2|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1084)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3535 ((|#2| |#2| (-1006 |#2|)) 26 T ELT) ((|#2| |#2| (-1092)) 28 T ELT))) +(((-1085 |#1| |#2|) (-10 -7 (-15 -3535 (|#2| |#2| (-1092))) (-15 -3535 (|#2| |#2| (-1006 |#2|)))) (-13 (-497) (-952 (-486)) (-582 (-486))) (-13 (-364 |#1|) (-133) (-27) (-1117))) (T -1085)) +((-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1085 *4 *2)))) (-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1085 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117)))))) +((-3535 (((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1006 (-350 (-859 |#1|)))) 31 T ELT) (((-350 (-859 |#1|)) (-859 |#1|) (-1006 (-859 |#1|))) 44 T ELT) (((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1092)) 33 T ELT) (((-350 (-859 |#1|)) (-859 |#1|) (-1092)) 36 T ELT))) +(((-1086 |#1|) (-10 -7 (-15 -3535 ((-350 (-859 |#1|)) (-859 |#1|) (-1092))) (-15 -3535 ((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1092))) (-15 -3535 ((-350 (-859 |#1|)) (-859 |#1|) (-1006 (-859 |#1|)))) (-15 -3535 ((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1006 (-350 (-859 |#1|)))))) (-13 (-497) (-952 (-486)))) (T -1086)) +((-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1086 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-859 *5))) (-5 *3 (-859 *5)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 *3)) (-5 *1 (-1086 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-3 (-350 (-859 *5)) (-265 *5))) (-5 *1 (-1086 *5)) (-5 *3 (-350 (-859 *5))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 (-859 *5))) (-5 *1 (-1086 *5)) (-5 *3 (-859 *5))))) +((-2571 (((-85) $ $) 172 T ELT)) (-3191 (((-85) $) 44 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#1|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) 83 T ELT) (((-1087 |#1|) $) 72 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) 166 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) 160 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 97 (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) 117 (|has| |#1| (-823)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3764 (($ $ (-696)) 62 T ELT)) (-3763 (($ $ (-696)) 64 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-996) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) 133 T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3957 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3506 (($ $) 167 (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-696) $) 70 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3536 (((-774) $ (-774)) 150 T ELT)) (-3775 (((-696) $ $) NIL (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 49 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) 74 T ELT) (($ (-1087 $) (-996)) 91 T ELT)) (-3780 (($ $ (-696)) 52 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 89 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 155 T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1627 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1087 |#1|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) 77 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) 61 T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 51 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 105 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) 169 (|has| |#1| (-393)) ELT)) (-3741 (($ $ (-696) |#1| $) 125 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 103 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 102 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 110 (|has| |#1| (-823)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) 55 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3951 (((-696) $) 79 T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 164 (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-497)) ELT)) (-3949 (((-774) $) 151 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-996)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) 42 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 20 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 122 T ELT)) (-3952 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 92 T ELT)) (** (($ $ (-832)) 14 T ELT) (($ $ (-696)) 12 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1087 |#1|) (-13 (-1157 |#1|) (-10 -8 (-15 -3536 ((-774) $ (-774))) (-15 -3741 ($ $ (-696) |#1| $)))) (-963)) (T -1087)) +((-3536 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1087 *3)) (-4 *3 (-963)))) (-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1087 *3)) (-4 *3 (-963))))) +((-3961 (((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 13 T ELT))) +(((-1088 |#1| |#2|) (-10 -7 (-15 -3961 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)))) (-963) (-963)) (T -1088)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-1087 *6)) (-5 *1 (-1088 *5 *6))))) +((-3974 (((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|))) 51 T ELT)) (-3735 (((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|))) 52 T ELT))) +(((-1089 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|)))) (-15 -3974 ((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|))))) (-719) (-758) (-393) (-863 |#3| |#1| |#2|)) (T -1089)) +((-3974 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) (-5 *3 (-1087 (-350 *7))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) (-5 *3 (-1087 (-350 *7)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1084 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1091 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3159 (((-1084 |#1| |#2| |#3|) $) NIL T ELT) (((-1091 |#1| |#2| |#3|) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3784 (((-350 (-486)) $) 59 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) (-1084 |#1| |#2| |#3|)) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) 20 T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (((-1084 |#1| |#2| |#3|) $) 41 T ELT)) (-3781 (((-3 (-1084 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3782 (((-1084 |#1| |#2| |#3|) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 39 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 40 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) 38 T ELT)) (-3951 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) 62 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1084 |#1| |#2| |#3|)) 30 T ELT) (($ (-1091 |#1| |#2| |#3|)) 31 T ELT) (($ (-1178 |#2|)) 26 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 22 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 24 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1090 |#1| |#2| |#3|) (-13 (-1166 |#1| (-1084 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-952 (-1091 |#1| |#2| |#3|)) (-557 (-1178 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1090)) +((-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 129 T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 119 T ELT)) (-3814 (((-1150 |#2| |#1|) $ (-696)) 69 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-696)) 85 T ELT) (($ $ (-696) (-696)) 82 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 105 T ELT)) (-3495 (($ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1071 |#1|)) 113 T ELT)) (-3497 (($ $) 177 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 25 T ELT)) (-3819 (($ $) 28 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 81 T ELT) (((-859 |#1|) $ (-696) (-696)) 83 T ELT)) (-2895 (((-85) $) 124 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $) 126 T ELT) (((-696) $ (-696)) 128 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT)) (-3818 (($ (-1 |#1| (-486)) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 13 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3945 (($ $) 135 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $) 133 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 134 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3772 (($ $ (-696)) 15 T ELT)) (-3469 (((-3 $ #1#) $ $) 26 (|has| |#1| (-497)) ELT)) (-3946 (($ $) 137 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3803 ((|#1| $ (-696)) 122 T ELT) (($ $ $) 132 (|has| (-696) (-1027)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) 31 T ELT)) (-3951 (((-696) $) NIL T ELT)) (-3498 (($ $) 179 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) 206 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1150 |#2| |#1|)) 55 T ELT) (($ (-1178 |#2|)) 36 T ELT)) (-3820 (((-1071 |#1|) $) 101 T ELT)) (-3680 ((|#1| $ (-696)) 121 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 58 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 185 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 181 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 189 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-696)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 191 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 187 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 183 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 20 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3842 (($ $ $) 35 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 141 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1091 |#1| |#2| |#3|) (-13 (-1174 |#1|) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3949 ($ (-1150 |#2| |#1|))) (-15 -3814 ((-1150 |#2| |#1|) $ (-696))) (-15 -3949 ($ (-1178 |#2|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1091)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1091 *3 *4 *5)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1091 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3540 (($ $ (-585 (-774))) 48 T ELT)) (-3541 (($ $ (-585 (-774))) 46 T ELT)) (-3538 (((-1075) $) 88 T ELT)) (-3543 (((-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774)))) $) 95 T ELT)) (-3544 (((-85) $) 86 T ELT)) (-3542 (($ $ (-585 (-585 (-774)))) 45 T ELT) (($ $ (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774))))) 85 T ELT)) (-3727 (($) 151 T CONST)) (-3160 (((-3 (-448) "failed") $) 155 T ELT)) (-3159 (((-448) $) NIL T ELT)) (-3546 (((-1187)) 123 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 55 T ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 62 T ELT)) (-3617 (($) 109 T ELT) (($ $) 118 T ELT)) (-3545 (($ $) 87 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3537 (((-585 $) $) 124 T ELT)) (-3245 (((-1075) $) 101 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 (($ $ (-585 (-774))) 47 T ELT)) (-3975 (((-475) $) 33 T ELT) (((-1092) $) 34 T ELT) (((-802 (-486)) $) 66 T ELT) (((-802 (-330)) $) 64 T ELT)) (-3949 (((-774) $) 41 T ELT) (($ (-1075)) 35 T ELT) (($ (-448)) 153 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3539 (($ $ (-585 (-774))) 49 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 37 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 38 T ELT))) +(((-1092) (-13 (-758) (-555 (-475)) (-555 (-1092)) (-557 (-1075)) (-952 (-448)) (-555 (-802 (-486))) (-555 (-802 (-330))) (-798 (-486)) (-798 (-330)) (-10 -8 (-15 -3617 ($)) (-15 -3617 ($ $)) (-15 -3546 ((-1187))) (-15 -3545 ($ $)) (-15 -3544 ((-85) $)) (-15 -3543 ((-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774)))) $)) (-15 -3542 ($ $ (-585 (-585 (-774))))) (-15 -3542 ($ $ (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774)))))) (-15 -3541 ($ $ (-585 (-774)))) (-15 -3540 ($ $ (-585 (-774)))) (-15 -3539 ($ $ (-585 (-774)))) (-15 -3803 ($ $ (-585 (-774)))) (-15 -3538 ((-1075) $)) (-15 -3537 ((-585 $) $)) (-15 -3727 ($) -3955)))) (T -1092)) +((-3617 (*1 *1) (-5 *1 (-1092))) (-3617 (*1 *1 *1) (-5 *1 (-1092))) (-3546 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1092)))) (-3545 (*1 *1 *1) (-5 *1 (-1092))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1092)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774))))) (-5 *1 (-1092)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-1092)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774))))) (-5 *1 (-1092)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1092)))) (-3727 (*1 *1) (-5 *1 (-1092)))) +((-3547 (((-1181 |#1|) |#1| (-832)) 18 T ELT) (((-1181 |#1|) (-585 |#1|)) 25 T ELT))) +(((-1093 |#1|) (-10 -7 (-15 -3547 ((-1181 |#1|) (-585 |#1|))) (-15 -3547 ((-1181 |#1|) |#1| (-832)))) (-963)) (T -1093)) +((-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-1181 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-963)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4)) (-5 *1 (-1093 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1626 (($ $ |#1| (-886) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 18 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-886)) NIL T ELT)) (-2823 (((-886) $) NIL T ELT)) (-1627 (($ (-1 (-886) (-886)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-3741 (($ $ (-886) |#1| $) NIL (-12 (|has| (-886) (-104)) (|has| |#1| (-497))) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3951 (((-886) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-886)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 13 T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 22 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1094 |#1|) (-13 (-277 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-497)) (IF (|has| (-886) (-104)) (-15 -3741 ($ $ (-886) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3996)) (-6 -3996) |%noBranch|))) (-963)) (T -1094)) +((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-104)) (-5 *1 (-1094 *3)) (-4 *3 (-497)) (-4 *3 (-963))))) +((-3548 (((-1096) (-1092) $) 26 T ELT)) (-3558 (($) 30 T ELT)) (-3550 (((-3 (|:| |fst| (-377)) (|:| -3913 #1="void")) (-1092) $) 23 T ELT)) (-3552 (((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3913 #1#)) $) 42 T ELT) (((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) 43 T ELT) (((-1187) (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) 44 T ELT)) (-3560 (((-1187) (-1092)) 59 T ELT)) (-3551 (((-1187) (-1092) $) 56 T ELT) (((-1187) (-1092)) 57 T ELT) (((-1187)) 58 T ELT)) (-3556 (((-1187) (-1092)) 38 T ELT)) (-3554 (((-1092)) 37 T ELT)) (-3568 (($) 35 T ELT)) (-3567 (((-379) (-1092) (-379) (-1092) $) 46 T ELT) (((-379) (-585 (-1092)) (-379) (-1092) $) 50 T ELT) (((-379) (-1092) (-379)) 47 T ELT) (((-379) (-1092) (-379) (-1092)) 51 T ELT)) (-3555 (((-1092)) 36 T ELT)) (-3949 (((-774) $) 29 T ELT)) (-3557 (((-1187)) 31 T ELT) (((-1187) (-1092)) 34 T ELT)) (-3549 (((-585 (-1092)) (-1092) $) 25 T ELT)) (-3553 (((-1187) (-1092) (-585 (-1092)) $) 39 T ELT) (((-1187) (-1092) (-585 (-1092))) 40 T ELT) (((-1187) (-585 (-1092))) 41 T ELT))) +(((-1095) (-13 (-554 (-774)) (-10 -8 (-15 -3558 ($)) (-15 -3557 ((-1187))) (-15 -3557 ((-1187) (-1092))) (-15 -3567 ((-379) (-1092) (-379) (-1092) $)) (-15 -3567 ((-379) (-585 (-1092)) (-379) (-1092) $)) (-15 -3567 ((-379) (-1092) (-379))) (-15 -3567 ((-379) (-1092) (-379) (-1092))) (-15 -3556 ((-1187) (-1092))) (-15 -3555 ((-1092))) (-15 -3554 ((-1092))) (-15 -3553 ((-1187) (-1092) (-585 (-1092)) $)) (-15 -3553 ((-1187) (-1092) (-585 (-1092)))) (-15 -3553 ((-1187) (-585 (-1092)))) (-15 -3552 ((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3913 #1="void")) $)) (-15 -3552 ((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3913 #1#)))) (-15 -3552 ((-1187) (-3 (|:| |fst| (-377)) (|:| -3913 #1#)))) (-15 -3551 ((-1187) (-1092) $)) (-15 -3551 ((-1187) (-1092))) (-15 -3551 ((-1187))) (-15 -3560 ((-1187) (-1092))) (-15 -3568 ($)) (-15 -3550 ((-3 (|:| |fst| (-377)) (|:| -3913 #1#)) (-1092) $)) (-15 -3549 ((-585 (-1092)) (-1092) $)) (-15 -3548 ((-1096) (-1092) $))))) (T -1095)) +((-3558 (*1 *1) (-5 *1 (-1095))) (-3557 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *4 (-1092)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3555 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-3554 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-3553 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3552 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3913 #1="void"))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3551 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3551 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3568 (*1 *1) (-5 *1 (-1095))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) (-5 *1 (-1095)))) (-3549 (*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095))))) +((-3562 (((-585 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) $) 66 T ELT)) (-3564 (((-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))) (-377) $) 47 T ELT)) (-3559 (($ (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| (-379))))) 17 T ELT)) (-3560 (((-1187) $) 73 T ELT)) (-3565 (((-585 (-1092)) $) 22 T ELT)) (-3561 (((-1017) $) 60 T ELT)) (-3566 (((-379) (-1092) $) 27 T ELT)) (-3563 (((-585 (-1092)) $) 30 T ELT)) (-3568 (($) 19 T ELT)) (-3567 (((-379) (-585 (-1092)) (-379) $) 25 T ELT) (((-379) (-1092) (-379) $) 24 T ELT)) (-3949 (((-774) $) 12 T ELT) (((-1104 (-1092) (-379)) $) 13 T ELT))) +(((-1096) (-13 (-554 (-774)) (-10 -8 (-15 -3949 ((-1104 (-1092) (-379)) $)) (-15 -3568 ($)) (-15 -3567 ((-379) (-585 (-1092)) (-379) $)) (-15 -3567 ((-379) (-1092) (-379) $)) (-15 -3566 ((-379) (-1092) $)) (-15 -3565 ((-585 (-1092)) $)) (-15 -3564 ((-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))) (-377) $)) (-15 -3563 ((-585 (-1092)) $)) (-15 -3562 ((-585 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) $)) (-15 -3561 ((-1017) $)) (-15 -3560 ((-1187) $)) (-15 -3559 ($ (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| (-379))))))))) (T -1096)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-1104 (-1092) (-379))) (-5 *1 (-1096)))) (-3568 (*1 *1) (-5 *1 (-1096))) (-3567 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *1 (-1096)))) (-3567 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1096)))) (-3566 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-379)) (-5 *1 (-1096)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096)))) (-3564 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) (-5 *1 (-1096)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))))) (-5 *1 (-1096)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1096)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1096)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| (-379))))) (-5 *1 (-1096))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3160 (((-3 (-486) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-448) #1#) $) 43 T ELT) (((-3 (-1075) #1#) $) 47 T ELT)) (-3159 (((-486) $) 30 T ELT) (((-179) $) 36 T ELT) (((-448) $) 40 T ELT) (((-1075) $) 48 T ELT)) (-3573 (((-85) $) 53 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3572 (((-3 (-486) (-179) (-448) (-1075) $) $) 56 T ELT)) (-3571 (((-585 $) $) 58 T ELT)) (-3975 (((-1017) $) 24 T ELT) (($ (-1017)) 25 T ELT)) (-3570 (((-85) $) 57 T ELT)) (-3949 (((-774) $) 23 T ELT) (($ (-486)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-448)) 38 T ELT) (($ (-1075)) 44 T ELT) (((-475) $) 60 T ELT) (((-486) $) 31 T ELT) (((-179) $) 37 T ELT) (((-448) $) 41 T ELT) (((-1075) $) 49 T ELT)) (-3569 (((-85) $ (|[\|\|]| (-486))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-448))) 19 T ELT) (((-85) $ (|[\|\|]| (-1075))) 16 T ELT)) (-3574 (($ (-448) (-585 $)) 51 T ELT) (($ $ (-585 $)) 52 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3575 (((-486) $) 27 T ELT) (((-179) $) 33 T ELT) (((-448) $) 39 T ELT) (((-1075) $) 45 T ELT)) (-3059 (((-85) $ $) 7 T ELT))) +(((-1097) (-13 (-1177) (-1015) (-952 (-486)) (-952 (-179)) (-952 (-448)) (-952 (-1075)) (-554 (-475)) (-10 -8 (-15 -3975 ((-1017) $)) (-15 -3975 ($ (-1017))) (-15 -3949 ((-486) $)) (-15 -3575 ((-486) $)) (-15 -3949 ((-179) $)) (-15 -3575 ((-179) $)) (-15 -3949 ((-448) $)) (-15 -3575 ((-448) $)) (-15 -3949 ((-1075) $)) (-15 -3575 ((-1075) $)) (-15 -3574 ($ (-448) (-585 $))) (-15 -3574 ($ $ (-585 $))) (-15 -3573 ((-85) $)) (-15 -3572 ((-3 (-486) (-179) (-448) (-1075) $) $)) (-15 -3571 ((-585 $) $)) (-15 -3570 ((-85) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-486)))) (-15 -3569 ((-85) $ (|[\|\|]| (-179)))) (-15 -3569 ((-85) $ (|[\|\|]| (-448)))) (-15 -3569 ((-85) $ (|[\|\|]| (-1075))))))) (T -1097)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-3574 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-1097))) (-5 *1 (-1097)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-3 (-486) (-179) (-448) (-1075) (-1097))) (-5 *1 (-1097)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-1097))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 21 T ELT)) (-3727 (($) 10 T CONST)) (-2997 (($) 25 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2012 (((-832) $) 23 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 22 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) +(((-1098 |#1|) (-13 (-754) (-10 -8 (-15 -3727 ($) -3955))) (-832)) (T -1098)) +((-3727 (*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832))))) +((-486) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 24 T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) 18 T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-3728 (($ $ $) 20 T ELT)) (-3729 (($ $ $) 19 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 22 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) 21 T ELT))) +(((-1099 |#1|) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3955))) (-832)) (T -1099)) +((-3729 (*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) (-3728 (*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) (-3727 (*1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832))))) +((-696) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 7 T ELT))) +(((-1100) (-1015)) (T -1100)) +NIL +((-3577 (((-585 (-585 (-859 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 69 T ELT)) (-3576 (((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|)))) 81 T ELT) (((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|))) 77 T ELT) (((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092)) 82 T ELT) (((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092)) 76 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|))))) 108 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|)))) 107 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092))) 109 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 106 T ELT))) +(((-1101 |#1|) (-10 -7 (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|))))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|)))))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|)))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|))))) (-15 -3577 ((-585 (-585 (-859 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092))))) (-497)) (T -1101)) +((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-859 *5)))) (-5 *1 (-1101 *5)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) (-5 *3 (-249 (-350 (-859 *4)))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) (-5 *3 (-350 (-859 *4))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) (-5 *1 (-1101 *5)) (-5 *3 (-249 (-350 (-859 *5)))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) (-5 *1 (-1101 *5)) (-5 *3 (-350 (-859 *5))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-1101 *4)) (-5 *3 (-585 (-249 (-350 (-859 *4))))))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-1101 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5)) (-5 *3 (-585 (-249 (-350 (-859 *5))))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5))))) +((-3582 (((-1075)) 7 T ELT)) (-3579 (((-1075)) 11 T CONST)) (-3578 (((-1187) (-1075)) 13 T ELT)) (-3581 (((-1075)) 8 T CONST)) (-3580 (((-103)) 10 T CONST))) +(((-1102) (-13 (-1131) (-10 -7 (-15 -3582 ((-1075))) (-15 -3581 ((-1075)) -3955) (-15 -3580 ((-103)) -3955) (-15 -3579 ((-1075)) -3955) (-15 -3578 ((-1187) (-1075)))))) (T -1102)) +((-3582 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102)))) (-3581 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102)))) (-3580 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1102)))) (-3579 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1102))))) +((-3586 (((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 56 T ELT)) (-3589 (((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|))) 38 T ELT)) (-3590 (((-1105 (-585 |#1|)) (-585 |#1|)) 49 T ELT)) (-3592 (((-585 (-585 |#1|)) (-585 |#1|)) 45 T ELT)) (-3595 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))) 53 T ELT)) (-3594 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|)))) 52 T ELT)) (-3591 (((-585 (-585 |#1|)) (-585 (-585 |#1|))) 43 T ELT)) (-3593 (((-585 |#1|) (-585 |#1|)) 46 T ELT)) (-3585 (((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 32 T ELT)) (-3584 (((-585 (-585 (-585 |#1|))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 29 T ELT)) (-3583 (((-2 (|:| |fs| (-85)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|))) 24 T ELT)) (-3587 (((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 58 T ELT)) (-3588 (((-585 (-585 |#1|)) (-1105 (-585 |#1|))) 60 T ELT))) +(((-1103 |#1|) (-10 -7 (-15 -3583 ((-2 (|:| |fs| (-85)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|)))) (-15 -3584 ((-585 (-585 (-585 |#1|))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3585 ((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3586 ((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -3587 ((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -3588 ((-585 (-585 |#1|)) (-1105 (-585 |#1|)))) (-15 -3589 ((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)))) (-15 -3590 ((-1105 (-585 |#1|)) (-585 |#1|))) (-15 -3591 ((-585 (-585 |#1|)) (-585 (-585 |#1|)))) (-15 -3592 ((-585 (-585 |#1|)) (-585 |#1|))) (-15 -3593 ((-585 |#1|) (-585 |#1|))) (-15 -3594 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))))) (-15 -3595 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))))) (-758)) (T -1103)) +((-3595 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) (-5 *1 (-1103 *4)) (-5 *3 (-585 (-585 (-585 *4)))))) (-3594 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-758)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) (-5 *1 (-1103 *6)) (-5 *4 (-585 *5)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-1103 *3)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)) (-5 *3 (-585 *4)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-758)) (-5 *1 (-1103 *3)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-1105 (-585 *4))) (-5 *1 (-1103 *4)) (-5 *3 (-585 *4)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-585 (-585 *4))))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1105 (-585 *4))) (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)) (-4 *4 (-758)))) (-3586 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-758)) (-5 *1 (-1103 *4)))) (-3585 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *1 (-1103 *4)))) (-3584 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-585 *5)) (-4 *5 (-758)) (-5 *1 (-1103 *5)))) (-3583 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-758)) (-5 *4 (-585 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-585 *4)))) (-5 *1 (-1103 *6)) (-5 *5 (-585 *4))))) +((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1578 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1468 (($) NIL T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3949 (((-774) $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1104 |#1| |#2|) (-1109 |#1| |#2|) (-1015) (-1015)) (T -1104)) +NIL +((-3596 (($ (-585 (-585 |#1|))) 10 T ELT)) (-3597 (((-585 (-585 |#1|)) $) 11 T ELT)) (-3949 (((-774) $) 33 T ELT))) +(((-1105 |#1|) (-10 -8 (-15 -3596 ($ (-585 (-585 |#1|)))) (-15 -3597 ((-585 (-585 |#1|)) $)) (-15 -3949 ((-774) $))) (-1015)) (T -1105)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1105 *3)) (-4 *3 (-1015)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1015)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-1105 *3))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3598 (($ |#1| (-55)) 11 T ELT)) (-3545 ((|#1| $) 13 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2636 (((-85) $ |#1|) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) 15 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1106 |#1|) (-13 (-749 |#1|) (-10 -8 (-15 -3598 ($ |#1| (-55))))) (-1015)) (T -1106)) +((-3598 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1106 *2)) (-4 *2 (-1015))))) +((-3599 ((|#1| (-585 |#1|)) 46 T ELT)) (-3601 ((|#1| |#1| (-486)) 24 T ELT)) (-3600 (((-1087 |#1|) |#1| (-832)) 20 T ELT))) +(((-1107 |#1|) (-10 -7 (-15 -3599 (|#1| (-585 |#1|))) (-15 -3600 ((-1087 |#1|) |#1| (-832))) (-15 -3601 (|#1| |#1| (-486)))) (-312)) (T -1107)) +((-3601 (*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-1107 *2)) (-4 *2 (-312)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-1087 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-312)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1107 *2)) (-4 *2 (-312))))) +((-3602 (($) 10 T ELT) (($ (-585 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3408 (($ (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2611 (((-585 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) $) 34 T ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) $) 52 T ELT) (($ (-1 |#3| |#3|) $) 28 T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) $) 48 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) $) 48 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 33 T ELT)) (-1276 (((-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) $) 55 T ELT)) (-2205 (((-585 |#2|) $) 17 T ELT)) (-2206 (((-85) |#2| $) 60 T ELT)) (-1356 (((-3 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) $) 59 T ELT)) (-1277 (((-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) $) 64 T ELT)) (-2207 (((-585 |#3|) $) 36 T ELT)) (-3949 (((-774) $) 25 T ELT)) (-3059 (((-85) $ $) 46 T ELT))) +(((-1108 |#1| |#2| |#3|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3961 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3602 (|#1| (-585 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))))) (-15 -3602 (|#1|)) (-15 -3961 (|#1| (-1 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2611 ((-585 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3408 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3329 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3961 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2207 ((-585 |#3|) |#1|)) (-15 -2206 ((-85) |#2| |#1|)) (-15 -2205 ((-585 |#2|) |#1|)) (-15 -3408 (|#1| (-1 (-85) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3408 (|#1| (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1356 ((-3 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1276 ((-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1277 ((-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3329 (|#1| (-1 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3961 (|#1| (-1 (-2 (|:| -3863 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3863 |#2|) (|:| |entry| |#3|))) |#1|))) (-1109 |#2| |#3|) (-1015) (-1015)) (T -1108)) +NIL +((-2571 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3602 (($) 95 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2200 (((-1187) $ |#1| |#1|) 82 (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1037 |#2|)) ELT)) (-1572 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT)) (-3408 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 43 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 60 T ELT)) (-3409 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 110 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 106 T ELT)) (-1578 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 105 T ELT)) (-3248 (((-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3961 (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT)) (-3245 (((-1075) $) 21 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2234 (((-585 |#1|) $) 61 T ELT)) (-2235 (((-85) |#1| $) 62 T ELT)) (-1276 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2205 (((-585 |#1|) $) 76 T ELT)) (-2206 (((-85) |#1| $) 75 T ELT)) (-3246 (((-1035) $) 20 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-758)) ELT)) (-1356 (((-3 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 47 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 68 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 100 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) 99 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 98 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))))) 97 (-12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 77 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 74 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1468 (($) 45 T ELT) (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 44 T ELT)) (-1732 (((-696) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) $) 108 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 104 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-3949 (((-774) $) 16 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-1267 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3059 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-1109 |#1| |#2|) (-113) (-1015) (-1015)) (T -1109)) +((-3602 (*1 *1) (-12 (-4 *1 (-1109 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3863 *3) (|:| |entry| *4)))) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *1 (-1109 *3 *4)))) (-3961 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +(-13 (-551 |t#1| |t#2|) (-318 (-2 (|:| -3863 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3602 ($)) (-15 -3602 ($ (-585 (-2 (|:| -3863 |t#1|) (|:| |entry| |t#2|))))) (-15 -3961 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-475)) |has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ((-183 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-318 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-381 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-381 |#2|) . T) ((-430 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-430 |#2|) . T) ((-540 |#1| |#2|) . T) ((-457 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015))) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-551 |#1| |#2|) . T) ((-1015) OR (|has| (-2 (|:| -3863 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ((-1037 (-2 (|:| -3863 |#1|) (|:| |entry| |#2|))) . T) ((-1037 |#2|) . T) ((-1131) . T)) +((-3608 (((-85)) 29 T ELT)) (-3605 (((-1187) (-1075)) 31 T ELT)) (-3609 (((-85)) 41 T ELT)) (-3606 (((-1187)) 39 T ELT)) (-3604 (((-1187) (-1075) (-1075)) 30 T ELT)) (-3610 (((-85)) 42 T ELT)) (-3612 (((-1187) |#1| |#2|) 53 T ELT)) (-3603 (((-1187)) 26 T ELT)) (-3611 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3607 (((-1187)) 40 T ELT))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -3603 ((-1187))) (-15 -3604 ((-1187) (-1075) (-1075))) (-15 -3605 ((-1187) (-1075))) (-15 -3606 ((-1187))) (-15 -3607 ((-1187))) (-15 -3608 ((-85))) (-15 -3609 ((-85))) (-15 -3610 ((-85))) (-15 -3611 ((-3 |#2| "failed") |#1|)) (-15 -3612 ((-1187) |#1| |#2|))) (-1015) (-1015)) (T -1110)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3611 (*1 *2 *3) (|partial| -12 (-4 *2 (-1015)) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1015)))) (-3610 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3609 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3607 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3606 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)))) (-3604 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)))) (-3603 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3618 (((-585 (-1075)) $) 37 T ELT)) (-3614 (((-585 (-1075)) $ (-585 (-1075))) 40 T ELT)) (-3613 (((-585 (-1075)) $ (-585 (-1075))) 39 T ELT)) (-3615 (((-585 (-1075)) $ (-585 (-1075))) 41 T ELT)) (-3616 (((-585 (-1075)) $) 36 T ELT)) (-3617 (($) 26 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3619 (((-585 (-1075)) $) 38 T ELT)) (-3620 (((-1187) $ (-486)) 33 T ELT) (((-1187) $) 34 T ELT)) (-3975 (($ (-774) (-486)) 31 T ELT) (($ (-774) (-486) (-774)) NIL T ELT)) (-3949 (((-774) $) 47 T ELT) (($ (-774)) 30 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1111) (-13 (-1015) (-557 (-774)) (-10 -8 (-15 -3975 ($ (-774) (-486))) (-15 -3975 ($ (-774) (-486) (-774))) (-15 -3620 ((-1187) $ (-486))) (-15 -3620 ((-1187) $)) (-15 -3619 ((-585 (-1075)) $)) (-15 -3618 ((-585 (-1075)) $)) (-15 -3617 ($)) (-15 -3616 ((-585 (-1075)) $)) (-15 -3615 ((-585 (-1075)) $ (-585 (-1075)))) (-15 -3614 ((-585 (-1075)) $ (-585 (-1075)))) (-15 -3613 ((-585 (-1075)) $ (-585 (-1075))))))) (T -1111)) +((-3975 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) (-3975 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1111)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3617 (*1 *1) (-5 *1 (-1111))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3615 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) +((-3949 (((-1111) |#1|) 11 T ELT))) +(((-1112 |#1|) (-10 -7 (-15 -3949 ((-1111) |#1|))) (-1015)) (T -1112)) +((-3949 (*1 *2 *3) (-12 (-5 *2 (-1111)) (-5 *1 (-1112 *3)) (-4 *3 (-1015))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3625 (((-1075) $ (-1075)) 21 T ELT) (((-1075) $) 20 T ELT)) (-1699 (((-1075) $ (-1075)) 19 T ELT)) (-1703 (($ $ (-1075)) NIL T ELT)) (-3623 (((-3 (-1075) #1="failed") $) 11 T ELT)) (-3624 (((-1075) $) 8 T ELT)) (-3622 (((-3 (-1075) #1#) $) 12 T ELT)) (-1700 (((-1075) $) 9 T ELT)) (-1704 (($ (-338)) NIL T ELT) (($ (-338) (-1075)) NIL T ELT)) (-3545 (((-338) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1701 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3621 (((-85) $) 25 T ELT)) (-3949 (((-774) $) NIL T ELT)) (-1702 (($ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1113) (-13 (-314 (-338) (-1075)) (-10 -8 (-15 -3625 ((-1075) $ (-1075))) (-15 -3625 ((-1075) $)) (-15 -3624 ((-1075) $)) (-15 -3623 ((-3 (-1075) #1="failed") $)) (-15 -3622 ((-3 (-1075) #1#) $)) (-15 -3621 ((-85) $))))) (T -1113)) +((-3625 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3623 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3622 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1113))))) +((-3626 (((-3 (-486) #1="failed") |#1|) 19 T ELT)) (-3627 (((-3 (-486) #1#) |#1|) 14 T ELT)) (-3628 (((-486) (-1075)) 33 T ELT))) +(((-1114 |#1|) (-10 -7 (-15 -3626 ((-3 (-486) #1="failed") |#1|)) (-15 -3627 ((-3 (-486) #1#) |#1|)) (-15 -3628 ((-486) (-1075)))) (-963)) (T -1114)) +((-3628 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-1114 *4)) (-4 *4 (-963)))) (-3627 (*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963)))) (-3626 (*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963))))) +((-3629 (((-1049 (-179))) 9 T ELT))) +(((-1115) (-10 -7 (-15 -3629 ((-1049 (-179)))))) (T -1115)) +((-3629 (*1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1115))))) +((-3630 (($) 12 T ELT)) (-3501 (($ $) 36 T ELT)) (-3499 (($ $) 34 T ELT)) (-3487 (($ $) 26 T ELT)) (-3503 (($ $) 18 T ELT)) (-3504 (($ $) 16 T ELT)) (-3502 (($ $) 20 T ELT)) (-3490 (($ $) 31 T ELT)) (-3500 (($ $) 35 T ELT)) (-3488 (($ $) 30 T ELT))) +(((-1116 |#1|) (-10 -7 (-15 -3630 (|#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3488 (|#1| |#1|))) (-1117)) (T -1116)) +NIL +((-3495 (($ $) 26 T ELT)) (-3642 (($ $) 11 T ELT)) (-3493 (($ $) 27 T ELT)) (-3641 (($ $) 10 T ELT)) (-3497 (($ $) 28 T ELT)) (-3640 (($ $) 9 T ELT)) (-3630 (($) 16 T ELT)) (-3945 (($ $) 19 T ELT)) (-3946 (($ $) 18 T ELT)) (-3498 (($ $) 29 T ELT)) (-3639 (($ $) 8 T ELT)) (-3496 (($ $) 30 T ELT)) (-3638 (($ $) 7 T ELT)) (-3494 (($ $) 31 T ELT)) (-3637 (($ $) 6 T ELT)) (-3501 (($ $) 20 T ELT)) (-3489 (($ $) 32 T ELT)) (-3499 (($ $) 21 T ELT)) (-3487 (($ $) 33 T ELT)) (-3503 (($ $) 22 T ELT)) (-3491 (($ $) 34 T ELT)) (-3504 (($ $) 23 T ELT)) (-3492 (($ $) 35 T ELT)) (-3502 (($ $) 24 T ELT)) (-3490 (($ $) 36 T ELT)) (-3500 (($ $) 25 T ELT)) (-3488 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1117) (-113)) (T -1117)) +((-3630 (*1 *1) (-4 *1 (-1117)))) +(-13 (-1120) (-66) (-434) (-35) (-239) (-10 -8 (-15 -3630 ($)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-434) . T) ((-1120) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 19 T ELT)) (-3635 (($ |#1| (-585 $)) 28 T ELT) (($ (-585 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3028 ((|#1| $ |#1|) 14 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 13 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) 59 T ELT)) (-3030 (((-85) $ $) 50 (|has| |#1| (-72)) ELT)) (-2611 (((-585 |#1|) $) 70 T ELT)) (-3248 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3033 (((-585 |#1|) $) 55 T ELT)) (-3530 (((-85) $) 53 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 101 T ELT)) (-3406 (((-85) $) 9 T ELT)) (-3568 (($) 10 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT)) (-3032 (((-486) $ $) 48 T ELT)) (-3631 (((-585 $) $) 83 T ELT)) (-3632 (((-85) $ $) 104 T ELT)) (-3633 (((-585 $) $) 99 T ELT)) (-3634 (($ $) 100 T ELT)) (-3636 (((-85) $) 76 T ELT)) (-1732 (((-696) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 25 T ELT)) (-3403 (($ $) 82 T ELT)) (-3949 (((-774) $) 85 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 12 T ELT)) (-3031 (((-85) $ $) 39 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3059 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3960 (((-696) $) 80 T ELT))) +(((-1118 |#1|) (-13 (-925 |#1|) (-318 |#1|) (-1037 |#1|) (-10 -8 (-15 -3635 ($ |#1| (-585 $))) (-15 -3635 ($ (-585 |#1|))) (-15 -3635 ($ |#1|)) (-15 -3636 ((-85) $)) (-15 -3634 ($ $)) (-15 -3633 ((-585 $) $)) (-15 -3632 ((-85) $ $)) (-15 -3631 ((-585 $) $)))) (-1015)) (T -1118)) +((-3636 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015)))) (-3635 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-1118 *2))) (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-1118 *3)))) (-3635 (*1 *1 *2) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) (-3634 (*1 *1 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015)))) (-3632 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) +((-3642 (($ $) 15 T ELT)) (-3640 (($ $) 12 T ELT)) (-3639 (($ $) 10 T ELT)) (-3638 (($ $) 17 T ELT))) +(((-1119 |#1|) (-10 -7 (-15 -3638 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3642 (|#1| |#1|))) (-1120)) (T -1119)) +NIL +((-3642 (($ $) 11 T ELT)) (-3641 (($ $) 10 T ELT)) (-3640 (($ $) 9 T ELT)) (-3639 (($ $) 8 T ELT)) (-3638 (($ $) 7 T ELT)) (-3637 (($ $) 6 T ELT))) +(((-1120) (-113)) (T -1120)) +((-3642 (*1 *1 *1) (-4 *1 (-1120))) (-3641 (*1 *1 *1) (-4 *1 (-1120))) (-3640 (*1 *1 *1) (-4 *1 (-1120))) (-3639 (*1 *1 *1) (-4 *1 (-1120))) (-3638 (*1 *1 *1) (-4 *1 (-1120))) (-3637 (*1 *1 *1) (-4 *1 (-1120)))) +(-13 (-10 -8 (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $)) (-15 -3641 ($ $)) (-15 -3642 ($ $)))) +((-3645 ((|#2| |#2|) 95 T ELT)) (-3648 (((-85) |#2|) 29 T ELT)) (-3646 ((|#2| |#2|) 33 T ELT)) (-3647 ((|#2| |#2|) 35 T ELT)) (-3643 ((|#2| |#2| (-1092)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3649 (((-142 |#2|) |#2|) 31 T ELT)) (-3644 ((|#2| |#2| (-1092)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1121 |#1| |#2|) (-10 -7 (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1092))) (-15 -3644 (|#2| |#2|)) (-15 -3644 (|#2| |#2| (-1092))) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 ((-85) |#2|)) (-15 -3649 ((-142 |#2|) |#2|))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -1121)) +((-3649 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-142 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-85)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3644 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) +((-3650 ((|#4| |#4| |#1|) 31 T ELT)) (-3651 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1122 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3650 (|#4| |#4| |#1|)) (-15 -3651 (|#4| |#4| |#1|))) (-497) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -1122)) +((-3651 (*1 *2 *2 *3) (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3650 (*1 *2 *2 *3) (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +((-3669 ((|#2| |#2|) 148 T ELT)) (-3671 ((|#2| |#2|) 145 T ELT)) (-3668 ((|#2| |#2|) 136 T ELT)) (-3670 ((|#2| |#2|) 133 T ELT)) (-3667 ((|#2| |#2|) 141 T ELT)) (-3666 ((|#2| |#2|) 129 T ELT)) (-3655 ((|#2| |#2|) 44 T ELT)) (-3654 ((|#2| |#2|) 105 T ELT)) (-3652 ((|#2| |#2|) 88 T ELT)) (-3665 ((|#2| |#2|) 143 T ELT)) (-3664 ((|#2| |#2|) 131 T ELT)) (-3677 ((|#2| |#2|) 153 T ELT)) (-3675 ((|#2| |#2|) 151 T ELT)) (-3676 ((|#2| |#2|) 152 T ELT)) (-3674 ((|#2| |#2|) 150 T ELT)) (-3653 ((|#2| |#2|) 163 T ELT)) (-3678 ((|#2| |#2|) 30 (-12 (|has| |#2| (-555 (-802 |#1|))) (|has| |#2| (-798 |#1|)) (|has| |#1| (-555 (-802 |#1|))) (|has| |#1| (-798 |#1|))) ELT)) (-3656 ((|#2| |#2|) 89 T ELT)) (-3657 ((|#2| |#2|) 154 T ELT)) (-3966 ((|#2| |#2|) 155 T ELT)) (-3663 ((|#2| |#2|) 142 T ELT)) (-3662 ((|#2| |#2|) 130 T ELT)) (-3661 ((|#2| |#2|) 149 T ELT)) (-3673 ((|#2| |#2|) 147 T ELT)) (-3660 ((|#2| |#2|) 137 T ELT)) (-3672 ((|#2| |#2|) 135 T ELT)) (-3659 ((|#2| |#2|) 139 T ELT)) (-3658 ((|#2| |#2|) 127 T ELT))) +(((-1123 |#1| |#2|) (-10 -7 (-15 -3966 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-798 |#1|)) (IF (|has| |#1| (-555 (-802 |#1|))) (IF (|has| |#2| (-555 (-802 |#1|))) (IF (|has| |#2| (-798 |#1|)) (-15 -3678 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-393) (-13 (-364 |#1|) (-1117))) (T -1123)) +((-3678 (*1 *2 *2) (-12 (-4 *3 (-555 (-802 *3))) (-4 *3 (-798 *3)) (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-555 (-802 *3))) (-4 *2 (-798 *3)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-1092)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3817 (((-859 |#1|) $ (-696)) 18 T ELT) (((-859 |#1|) $ (-696) (-696)) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $ (-1092)) NIL T ELT) (((-696) $ (-1092) (-696)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ $ (-585 (-1092)) (-585 (-471 (-1092)))) NIL T ELT) (($ $ (-1092) (-471 (-1092))) NIL T ELT) (($ |#1| (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $ (-1092)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3679 (($ (-1 $) (-1092) |#1|) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3772 (($ $ (-696)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (($ $ (-1092) $) NIL T ELT) (($ $ (-585 (-1092)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT)) (-3761 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3951 (((-471 (-1092)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-1092)) NIL T ELT) (($ (-859 |#1|)) NIL T ELT)) (-3680 ((|#1| $ (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (((-859 |#1|) $ (-696)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1124 |#1|) (-13 (-681 |#1| (-1092)) (-10 -8 (-15 -3680 ((-859 |#1|) $ (-696))) (-15 -3949 ($ (-1092))) (-15 -3949 ($ (-859 |#1|))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $ (-1092) |#1|)) (-15 -3679 ($ (-1 $) (-1092) |#1|))) |%noBranch|))) (-963)) (T -1124)) +((-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-859 *4)) (-5 *1 (-1124 *4)) (-4 *4 (-963)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-963)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-5 *1 (-1124 *3)))) (-3815 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)))) (-3679 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1124 *4))) (-5 *3 (-1092)) (-5 *1 (-1124 *4)) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963))))) +((-3696 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3691 ((|#5| |#5| $) 83 T ELT)) (-3713 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3692 (((-585 |#5|) (-585 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3160 (((-3 $ #1#) (-585 |#5|)) 134 T ELT)) (-3802 (((-3 $ #1#) $) 119 T ELT)) (-3688 ((|#5| |#5| $) 101 T ELT)) (-3697 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3686 ((|#5| |#5| $) 105 T ELT)) (-3845 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#5|)) (|:| -1704 (-585 |#5|))) $) 63 T ELT)) (-3698 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3183 ((|#4| $) 115 T ELT)) (-3801 (((-3 |#5| #1#) $) 117 T ELT)) (-3700 (((-585 |#5|) $) 55 T ELT)) (-3694 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3689 ((|#5| |#5| $) 89 T ELT)) (-3702 (((-85) $ $) 29 T ELT)) (-3695 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3690 ((|#5| |#5| $) 86 T ELT)) (-3804 (((-3 |#5| #1#) $) 116 T ELT)) (-3772 (($ $ |#5|) 135 T ELT)) (-3951 (((-696) $) 60 T ELT)) (-3533 (($ (-585 |#5|)) 132 T ELT)) (-2913 (($ $ |#4|) 130 T ELT)) (-2915 (($ $ |#4|) 128 T ELT)) (-3687 (($ $) 127 T ELT)) (-3949 (((-774) $) NIL T ELT) (((-585 |#5|) $) 120 T ELT)) (-3681 (((-696) $) 139 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3693 (((-85) $ (-1 (-85) |#5| (-585 |#5|))) 107 T ELT)) (-3683 (((-585 |#4|) $) 122 T ELT)) (-3936 (((-85) |#4| $) 125 T ELT)) (-3059 (((-85) $ $) 20 T ELT))) +(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3681 ((-696) |#1|)) (-15 -3772 (|#1| |#1| |#5|)) (-15 -3713 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3936 ((-85) |#4| |#1|)) (-15 -3683 ((-585 |#4|) |#1|)) (-15 -3802 ((-3 |#1| #1#) |#1|)) (-15 -3801 ((-3 |#5| #1#) |#1|)) (-15 -3804 ((-3 |#5| #1#) |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#1| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 (|#5| |#5| |#1|)) (-15 -3691 (|#5| |#5| |#1|)) (-15 -3692 ((-585 |#5|) (-585 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3845 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3694 ((-85) |#1|)) (-15 -3695 ((-85) |#1|)) (-15 -3696 ((-85) |#1|)) (-15 -3693 ((-85) |#1| (-1 (-85) |#5| (-585 |#5|)))) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1|)) (-15 -3696 ((-85) |#5| |#1|)) (-15 -3697 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3698 ((-85) |#1|)) (-15 -3698 ((-85) |#5| |#1|)) (-15 -3699 ((-2 (|:| -3864 (-585 |#5|)) (|:| -1704 (-585 |#5|))) |#1|)) (-15 -3951 ((-696) |#1|)) (-15 -3700 ((-585 |#5|) |#1|)) (-15 -3701 ((-3 (-2 (|:| |bas| |#1|) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3701 ((-3 (-2 (|:| |bas| |#1|) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3702 ((-85) |#1| |#1|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2915 (|#1| |#1| |#4|)) (-15 -3183 (|#4| |#1|)) (-15 -3160 ((-3 |#1| #1#) (-585 |#5|))) (-15 -3949 ((-585 |#5|) |#1|)) (-15 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3533 (|#1| (-585 |#5|))) (-15 -3713 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3949 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-1126 |#2| |#3| |#4| |#5|) (-497) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -1125)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3727 (($) 58 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ "failed") $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 53 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) 111 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 52 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3961 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3801 (((-3 |#4| "failed") $) 89 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| "failed") $) 90 T ELT)) (-1356 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3682 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 54 T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 56 T ELT)) (-3951 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 51 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 55 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 64 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3949 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3936 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3960 (((-696) $) 44 T ELT))) +(((-1126 |#1| |#2| |#3| |#4|) (-113) (-497) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1126)) +((-3702 (*1 *2 *1 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3701 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *8)))) (-5 *3 (-585 *8)) (-4 *1 (-1126 *5 *6 *7 *8)))) (-3701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *9)))) (-5 *3 (-585 *9)) (-4 *1 (-1126 *6 *7 *8 *9)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *6)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-696)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-2 (|:| -3864 (-585 *6)) (|:| -1704 (-585 *6)))))) (-3698 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3697 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1126 *5 *6 *7 *3)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)))) (-3696 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-585 *7))) (-4 *1 (-1126 *4 *5 *6 *7)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3845 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1126 *5 *6 *7 *2)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *2 (-979 *5 *6 *7)))) (-3692 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1126 *5 *6 *7 *8)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)))) (-3691 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3690 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3687 (*1 *1 *1) (-12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-1126 *4 *5 *6 *7)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| -3864 *1) (|:| -1704 (-585 *7))))) (-5 *3 (-585 *7)) (-4 *1 (-1126 *4 *5 *6 *7)))) (-3804 (*1 *2 *1) (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3801 (*1 *2 *1) (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3802 (*1 *1 *1) (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-3936 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *3 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) (-3713 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1126 *4 *5 *3 *2)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *2 (-979 *4 *5 *3)))) (-3682 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-696))))) +(-13 (-891 |t#1| |t#2| |t#3| |t#4|) (-1037 |t#4|) (-10 -8 (-15 -3702 ((-85) $ $)) (-15 -3701 ((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3701 ((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3700 ((-585 |t#4|) $)) (-15 -3951 ((-696) $)) (-15 -3699 ((-2 (|:| -3864 (-585 |t#4|)) (|:| -1704 (-585 |t#4|))) $)) (-15 -3698 ((-85) |t#4| $)) (-15 -3698 ((-85) $)) (-15 -3697 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3696 ((-85) |t#4| $)) (-15 -3695 ((-85) |t#4| $)) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) $ (-1 (-85) |t#4| (-585 |t#4|)))) (-15 -3696 ((-85) $)) (-15 -3695 ((-85) $)) (-15 -3694 ((-85) $)) (-15 -3845 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3692 ((-585 |t#4|) (-585 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3691 (|t#4| |t#4| $)) (-15 -3690 (|t#4| |t#4| $)) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 ($ $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 ((-585 $) (-585 |t#4|))) (-15 -3684 ((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |t#4|)))) (-585 |t#4|))) (-15 -3804 ((-3 |t#4| "failed") $)) (-15 -3801 ((-3 |t#4| "failed") $)) (-15 -3802 ((-3 $ "failed") $)) (-15 -3683 ((-585 |t#3|) $)) (-15 -3936 ((-85) |t#3| $)) (-15 -3713 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3682 ((-3 $ "failed") $ |t#4|)) (-15 -3772 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3681 ((-696) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1131) . T)) +((-3708 (($ |#1| (-585 (-585 (-856 (-179)))) (-85)) 19 T ELT)) (-3707 (((-85) $ (-85)) 18 T ELT)) (-3706 (((-85) $) 17 T ELT)) (-3704 (((-585 (-585 (-856 (-179)))) $) 13 T ELT)) (-3703 ((|#1| $) 8 T ELT)) (-3705 (((-85) $) 15 T ELT))) +(((-1127 |#1|) (-10 -8 (-15 -3703 (|#1| $)) (-15 -3704 ((-585 (-585 (-856 (-179)))) $)) (-15 -3705 ((-85) $)) (-15 -3706 ((-85) $)) (-15 -3707 ((-85) $ (-85))) (-15 -3708 ($ |#1| (-585 (-585 (-856 (-179)))) (-85)))) (-889)) (T -1127)) +((-3708 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-85)) (-5 *1 (-1127 *2)) (-4 *2 (-889)))) (-3707 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3703 (*1 *2 *1) (-12 (-5 *1 (-1127 *2)) (-4 *2 (-889))))) +((-3710 (((-856 (-179)) (-856 (-179))) 31 T ELT)) (-3709 (((-856 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3712 (((-585 (-856 (-179))) (-856 (-179)) (-856 (-179)) (-856 (-179)) (-179) (-585 (-585 (-179)))) 57 T ELT)) (-3839 (((-179) (-856 (-179)) (-856 (-179))) 27 T ELT)) (-3837 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 28 T ELT)) (-3711 (((-585 (-585 (-179))) (-486)) 45 T ELT)) (-3840 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 26 T ELT)) (-3842 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 24 T ELT)) (* (((-856 (-179)) (-179) (-856 (-179))) 22 T ELT))) +(((-1128) (-10 -7 (-15 -3709 ((-856 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-856 (-179)) (-179) (-856 (-179)))) (-15 -3842 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3840 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3839 ((-179) (-856 (-179)) (-856 (-179)))) (-15 -3837 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3710 ((-856 (-179)) (-856 (-179)))) (-15 -3711 ((-585 (-585 (-179))) (-486))) (-15 -3712 ((-585 (-856 (-179))) (-856 (-179)) (-856 (-179)) (-856 (-179)) (-179) (-585 (-585 (-179))))))) (T -1128)) +((-3712 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-585 (-585 (-179)))) (-5 *4 (-179)) (-5 *2 (-585 (-856 *4))) (-5 *1 (-1128)) (-5 *3 (-856 *4)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-1128)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (-3839 (*1 *2 *3 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-179)) (-5 *1 (-1128)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (-3842 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-856 (-179))) (-5 *3 (-179)) (-5 *1 (-1128)))) (-3709 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)) (-5 *3 (-179))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3713 ((|#1| $ (-696)) 18 T ELT)) (-3836 (((-696) $) 13 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3949 (((-871 |#1|) $) 12 T ELT) (($ (-871 |#1|)) 11 T ELT) (((-774) $) 29 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3059 (((-85) $ $) 22 (|has| |#1| (-1015)) ELT))) +(((-1129 |#1|) (-13 (-431 (-871 |#1|)) (-10 -8 (-15 -3713 (|#1| $ (-696))) (-15 -3836 ((-696) $)) (IF (|has| |#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|))) (-1131)) (T -1129)) +((-3713 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1129 *3)) (-4 *3 (-1131))))) +((-3716 (((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-486)) 92 T ELT)) (-3714 (((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|))) 84 T ELT)) (-3715 (((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|))) 68 T ELT))) +(((-1130 |#1|) (-10 -7 (-15 -3714 ((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -3715 ((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -3716 ((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-486)))) (-299)) (T -1130)) +((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-4 *5 (-299)) (-5 *2 (-348 (-1087 (-1087 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-1087 (-1087 *5))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1087 (-1087 *4))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1087 (-1087 *4)))))) +NIL +(((-1131) (-113)) (T -1131)) NIL (-13) (((-13) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 9 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1131) (-996)) (T -1131)) -NIL -((-3719 (((-85)) 18 T ELT)) (-3716 (((-1186) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1186) (-584 |#1|)) 23 T ELT)) (-3721 (((-85) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3718 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3720 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3717 (((-2 (|:| -3231 (-584 |#1|)) (|:| -3230 (-584 |#1|)))) 20 T ELT))) -(((-1132 |#1|) (-10 -7 (-15 -3716 ((-1186) (-584 |#1|))) (-15 -3716 ((-1186) (-584 |#1|) (-584 |#1|))) (-15 -3717 ((-2 (|:| -3231 (-584 |#1|)) (|:| -3230 (-584 |#1|))))) (-15 -3718 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3718 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3720 (|#1| (-584 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3719 ((-85))) (IF (|has| |#1| (-757)) (PROGN (-15 -3720 (|#1| (-584 |#1|))) (-15 -3721 ((-85) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1132)) -((-3721 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2)))) (-3719 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-1014)))) (-3718 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85)) (-5 *1 (-1132 *3)))) (-3718 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3717 (*1 *2) (-12 (-5 *2 (-2 (|:| -3231 (-584 *3)) (|:| -3230 (-584 *3)))) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))) -((-3722 (((-1186) (-584 (-1091)) (-584 (-1091))) 14 T ELT) (((-1186) (-584 (-1091))) 12 T ELT)) (-3724 (((-1186)) 16 T ELT)) (-3723 (((-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091))))) 20 T ELT))) -(((-1133) (-10 -7 (-15 -3722 ((-1186) (-584 (-1091)))) (-15 -3722 ((-1186) (-584 (-1091)) (-584 (-1091)))) (-15 -3723 ((-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091)))))) (-15 -3724 ((-1186))))) (T -1133)) -((-3724 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3723 (*1 *2) (-12 (-5 *2 (-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091))))) (-5 *1 (-1133)))) (-3722 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))) -((-3777 (($ $) 17 T ELT)) (-3725 (((-85) $) 27 T ELT))) -(((-1134 |#1|) (-10 -7 (-15 -3777 (|#1| |#1|)) (-15 -3725 ((-85) |#1|))) (-1135)) (T -1134)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 66 T ELT)) (-3973 (((-348 $) $) 67 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3725 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 65 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-1135) (-113)) (T -1135)) -((-3725 (*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) (-3777 (*1 *1 *1) (-4 *1 (-1135))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135))))) -(-13 (-392) (-10 -8 (-15 -3725 ((-85) $)) (-15 -3973 ((-348 $) $)) (-15 -3777 ($ $)) (-15 -3734 ((-348 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-1136) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1136)) -((-3728 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3726 (*1 *1) (-5 *1 (-1136)))) -((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-1137) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1137)) -((-3728 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3726 (*1 *1) (-5 *1 (-1137)))) -((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-1138) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1138)) -((-3728 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3726 (*1 *1) (-5 *1 (-1138)))) -((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) -(((-1139) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1139)) -((-3728 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3726 (*1 *1) (-5 *1 (-1139)))) -((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 10 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3773 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3733 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3730 (((-3 (-1170 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3731 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1170 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3158 (((-1170 |#1| |#2| |#3|) $) NIL T ELT) (((-1091) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3732 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-1170 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) NIL (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) NIL (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3774 (((-485) $) NIL T ELT) (((-485) $ (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3779 (($ $ (-831)) NIL T ELT)) (-3817 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 18 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1170 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) (-1170 |#1| |#2| |#3|)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 27 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 28 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3132 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1170 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1170 |#1| |#2| |#3|)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) NIL T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-474) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1170 |#1| |#2| |#3|)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT) (($ (-1091)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3679 ((|#1| $ (-485)) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 11 T ELT)) (-3133 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2662 (($) 20 T CONST)) (-2668 (($) 15 T CONST)) (-2671 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1140 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1170 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1140)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3960 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23 T ELT))) -(((-1141 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3960 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1141)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3950 (((-485) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-485)) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1142 |#1|) (-113) (-962)) (T -1142)) -((-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1142 *3)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962)))) (-3729 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3729 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3814 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))) -(-13 (-1159 |t#1| (-485)) (-10 -8 (-15 -3820 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |t#1|))))) (-15 -3817 ($ (-1 |t#1| (-485)) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -3729 ((-350 (-858 |t#1|)) $ (-485))) (-15 -3729 ((-350 (-858 |t#1|)) $ (-485) (-485)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (IF (|has| |t#1| (-15 -3814 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-584 (-1091)) |t#1|))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-485)) . T)) -((-3190 (((-85) $) 12 T ELT)) (-3159 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT)) (-3158 ((|#3| $) 14 T ELT) (((-1091) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT))) -(((-1143 |#1| |#2| |#3|) (-10 -7 (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -3159 ((-3 |#3| #1#) |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3190 ((-85) |#1|))) (-1144 |#2| |#3|) (-962) (-1173 |#2|)) (T -1143)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 ((|#2| $) 266 (-2564 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3733 ((|#2| $) 302 T ELT)) (-3730 (((-3 |#2| "failed") $) 298 T ELT)) (-3731 ((|#2| $) 299 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 275 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 272 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) 284 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-485) #2#) $) 295 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #2#) $) 293 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-1091) #2#) $) 277 (-2564 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT)) (-3158 ((|#2| $) 306 T ELT) (((-485) $) 294 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) 292 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-1091) $) 276 (-2564 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT)) (-3732 (($ $) 301 T ELT) (($ (-485) $) 300 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-2280 (((-631 |#2|) (-631 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 252 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) 251 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2996 (($) 268 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) 282 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 260 (-2564 (|has| |#2| (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 259 (-2564 (|has| |#2| (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3774 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2998 (($ $) 264 (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) 296 (-2564 (|has| |#2| (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) 283 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-2533 (($ $ $) 291 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2859 (($ $ $) 290 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1180 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 250 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) 249 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) |#2|) 303 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3448 (($) 297 (-2564 (|has| |#2| (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3130 (($ $) 267 (-2564 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3132 ((|#2| $) 270 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 273 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 274 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) 243 (-2564 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 242 (-2564 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 |#2|))) 241 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 238 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT) (($ $ |#2|) 237 (-2564 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 109 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 119 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 117 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 116 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-179) $) 281 (-2564 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2564 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-474) $) 279 (-2564 (|has| |#2| (-554 (-474))) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) 258 (-2564 (|has| |#2| (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) 257 (-2564 (|has| |#2| (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 271 (-2564 (-2564 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#1| (-312))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1091)) 278 (-2564 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-485)) 79 T ELT)) (-2704 (((-633 $) $) 68 (OR (-2564 (OR (|has| |#2| (-118)) (-2564 (|has| $ (-118)) (|has| |#2| (-822)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-3133 ((|#2| $) 269 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) 285 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 108 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 118 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 114 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 113 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) 289 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2569 (((-85) $ $) 287 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 288 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2687 (((-85) $ $) 286 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1144 |#1| |#2|) (-113) (-962) (-1173 |t#1|)) (T -1144)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) (-3781 (*1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3732 (*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3730 (*1 *2 *1) (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) -(-13 (-1142 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3781 ($ (-485) |t#2|)) (-15 -3950 ((-485) $)) (-15 -3733 (|t#2| $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)) (-15 -3731 (|t#2| $)) (-15 -3730 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-905 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 (-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ((-456 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-312)) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-312)) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 |#2|) |has| |#1| (-312)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-581 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-581 |#2|) |has| |#1| (-312)) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 |#2|) |has| |#1| (-312)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-715) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-717) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-719) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-722) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-741) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-756) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-757) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-760) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-807 $ (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-810 (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-812 (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-797 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ((-795 |#2|) |has| |#1| (-312)) ((-822) -12 (|has| |#1| (-312)) (|has| |#2| (-822))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-905 |#2|) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-934) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-951 (-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-312)) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-312)) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) -12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1142 |#1|) . T) ((-1159 |#1| (-485)) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 83 T ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 102 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 111 T ELT) (($ $ (-485) (-485)) 114 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 51 T ELT)) (-3733 ((|#2| $) 11 T ELT)) (-3730 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3731 ((|#2| $) 36 T ELT)) (-3494 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 59 T ELT)) (-3496 (($ $) 212 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT)) (-3158 ((|#2| $) 158 T ELT) (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-1091) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT)) (-3732 (($ $) 65 T ELT) (($ (-485) $) 28 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-3469 (((-3 $ #1#) $) 90 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 126 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 128 (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2894 (((-85) $) 76 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ELT)) (-3774 (((-485) $) 107 T ELT) (((-485) $ (-485)) 109 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3779 (($ $ (-831)) 150 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 146 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 20 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2859 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) |#2|) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 230 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT)) (-3448 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 140 T ELT)) (-3468 (((-3 $ #1#) $ $) 130 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) 105 T ELT) (($ $ $) 92 (|has| (-485) (-1026)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 155 (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) 12 T ELT)) (-3497 (($ $) 214 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ELT) (((-801 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2893 (($ $) 138 T ELT)) (-3948 (((-773) $) 268 T ELT) (($ (-485)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT) (($ (-350 (-485))) 171 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-485)) 87 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3128 (((-695)) 157 T CONST)) (-3775 ((|#1| $) 104 T ELT)) (-3133 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 220 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 216 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 224 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 226 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 222 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 218 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2662 (($) 13 T CONST)) (-2668 (($) 18 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT)) (-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3058 (((-85) $ $) 74 T ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3841 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-485)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1145 |#1| |#2|) (-1144 |#1| |#2|) (-962) (-1173 |#1|)) (T -1145)) -NIL -((-3736 (((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 13 T ELT)) (-3735 (((-348 |#1|) |#1|) 26 T ELT)) (-3734 (((-348 |#1|) |#1|) 24 T ELT))) -(((-1146 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3736 ((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)))) (-1156 (-485))) (T -1146)) -((-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) -((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3960 (((-1070 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3231 ((|#1| $) 15 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3229 (((-485) $) 19 T ELT)) (-3230 ((|#1| $) 18 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3737 (((-85) $) 17 T ELT)) (-3965 (((-1070 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1070 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3974 (($ |#1|) 26 T ELT)) (-3948 (($ (-1002 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3739 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3234 (($ $ (-485)) 14 T ELT)) (-3058 (((-85) $ $) 30 (|has| |#1| (-1014)) ELT))) -(((-1147 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -3739 ($ |#1|)) (-15 -3738 ($ |#1|)) (-15 -3948 ($ (-1002 |#1|))) (-15 -3737 ((-85) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-1070 |#1|))) |%noBranch|))) (-1130)) (T -1147)) -((-3739 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3738 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130))))) -((-3960 (((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 17 T ELT))) -(((-1148 |#1| |#2|) (-10 -7 (-15 -3960 ((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) (IF (|has| |#1| (-756)) (-15 -3960 ((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1148)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3769 (((-1180 |#2|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#2|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#2|) (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-695) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) NIL (|has| |#2| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3086 (($ (-1086 |#2|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3779 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-695)) 18 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3768 (((-1086 |#2|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#2| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3740 (($ $ (-695) |#2| $) NIL T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#2|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-3802 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-496)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3950 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-496)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) NIL T ELT) (($ (-1177 |#1|)) 20 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1149 |#1| |#2|) (-13 (-1156 |#2|) (-556 (-1177 |#1|)) (-10 -8 (-15 -3740 ($ $ (-695) |#2| $)))) (-1091) (-962)) (T -1149)) -((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-962))))) -((-3960 (((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)) 15 T ELT))) -(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 ((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)))) (-1091) (-962) (-1091) (-962)) (T -1150)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) (-14 *7 (-1091))))) -((-3743 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3741 ((|#1| |#3|) 13 T ELT)) (-3742 ((|#3| |#3|) 19 T ELT))) -(((-1151 |#1| |#2| |#3|) (-10 -7 (-15 -3741 (|#1| |#3|)) (-15 -3742 (|#3| |#3|)) (-15 -3743 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-1156 |#2|)) (T -1151)) -((-3743 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-1156 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) (-4 *3 (-1156 *4))))) -((-3745 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3744 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3747 (((-3 (-2 (|:| -3140 |#2|) (|:| -3139 |#2|)) #1#) |#2|) 50 T ELT)) (-3748 (((-584 |#2|) |#2|) 52 T ELT)) (-3746 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1152 |#1| |#2|) (-10 -7 (-15 -3744 ((-3 |#2| #1="failed") |#2| (-695))) (-15 -3745 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-15 -3746 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3747 ((-3 (-2 (|:| -3140 |#2|) (|:| -3139 |#2|)) #1#) |#2|)) (-15 -3748 ((-584 |#2|) |#2|))) (-13 (-496) (-120)) (-1156 |#1|)) (T -1152)) -((-3748 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3747 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3746 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1156 *3)))) (-3745 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))) (-3744 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) -((-3749 (((-3 (-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -3749 ((-3 (-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) "failed") |#2| |#2|))) (-496) (-1156 |#1|)) (T -1153)) -((-3749 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4))))) -((-3750 ((|#2| |#2| |#2|) 22 T ELT)) (-3751 ((|#2| |#2| |#2|) 36 T ELT)) (-3752 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT))) -(((-1154 |#1| |#2|) (-10 -7 (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1156 |#1|)) (T -1154)) -((-3752 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))) (-3751 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) -((-3769 (((-1180 |#2|) $ (-695)) 129 T ELT)) (-3083 (((-584 (-995)) $) 16 T ELT)) (-3767 (($ (-1086 |#2|)) 80 T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) 21 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 217 T ELT)) (-3777 (($ $) 207 T ELT)) (-3973 (((-348 $) $) 205 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 95 T ELT)) (-3763 (($ $ (-695)) 84 T ELT)) (-3762 (($ $ (-695)) 86 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3159 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#2| $) 130 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) (((-995) $) NIL T ELT)) (-3755 (($ $ $) 182 T ELT)) (-3754 (((-2 (|:| -3956 |#2|) (|:| -1973 $) (|:| -2904 $)) $ $) 185 T ELT)) (-3774 (((-695) $ $) 202 T ELT)) (-3447 (((-633 $) $) 149 T ELT)) (-2895 (($ |#2| (-695)) NIL T ELT) (($ $ (-995) (-695)) 59 T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) 54 T ELT) (((-584 (-695)) $ (-584 (-995))) 55 T ELT)) (-3768 (((-1086 |#2|) $) 72 T ELT)) (-3084 (((-3 (-995) #1#) $) 52 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) 83 T ELT)) (-3814 (($ $) 232 T ELT)) (-3448 (($) 134 T CONST)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 214 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 101 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 99 T ELT)) (-3734 (((-348 $) $) 120 T ELT)) (-3770 (($ $ (-584 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) 39 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 36 T ELT) (($ $ (-995) $) 32 T ELT) (($ $ (-584 (-995)) (-584 $)) 30 T ELT)) (-1608 (((-695) $) 220 T ELT)) (-3802 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 225 T ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3950 (((-695) $) NIL T ELT) (((-695) $ (-995)) 17 T ELT) (((-584 (-695)) $ (-584 (-995))) 23 T ELT)) (-2819 ((|#2| $) NIL T ELT) (($ $ (-995)) 151 T ELT)) (-3756 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) 64 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT))) -(((-1155 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#1|)) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -3802 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1608 ((-695) |#1|)) (-15 -2881 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3802 (|#2| (-350 |#1|) |#2|)) (-15 -3753 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3754 ((-2 (|:| -3956 |#2|) (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -3756 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3756 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3774 ((-695) |#1| |#1|)) (-15 -3802 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3762 (|#1| |#1| (-695))) (-15 -3763 (|#1| |#1| (-695))) (-15 -3764 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| (-695))) (-15 -3767 (|#1| (-1086 |#2|))) (-15 -3768 ((-1086 |#2|) |#1|)) (-15 -3769 ((-1180 |#2|) |#1| (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#2| |#1| |#2|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -2709 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2819 (|#1| |#1| (-995))) (-15 -3083 ((-584 (-995)) |#1|)) (-15 -2821 ((-695) |#1| (-584 (-995)))) (-15 -2821 ((-695) |#1|)) (-15 -2895 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -2895 (|#1| |#1| (-995) (-695))) (-15 -2822 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -2822 ((-695) |#1| (-995))) (-15 -3084 ((-3 (-995) #1#) |#1|)) (-15 -3950 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -3950 ((-695) |#1| (-995))) (-15 -3948 (|#1| (-995))) (-15 -3159 ((-3 (-995) #1#) |#1|)) (-15 -3158 ((-995) |#1|)) (-15 -3770 (|#1| |#1| (-584 (-995)) (-584 |#1|))) (-15 -3770 (|#1| |#1| (-995) |#1|)) (-15 -3770 (|#1| |#1| (-584 (-995)) (-584 |#2|))) (-15 -3770 (|#1| |#1| (-995) |#2|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3950 ((-695) |#1|)) (-15 -2895 (|#1| |#2| (-695))) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -2822 ((-695) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3760 (|#1| |#1| (-995))) (-15 -3760 (|#1| |#1| (-584 (-995)))) (-15 -3760 (|#1| |#1| (-995) (-695))) (-15 -3760 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-1156 |#2|) (-962)) (T -1155)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) 271 T ELT)) (-3083 (((-584 (-995)) $) 123 T ELT)) (-3767 (($ (-1086 |#1|)) 269 T ELT)) (-3085 (((-1086 $) $ (-995)) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 (-995))) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3757 (($ $ $) 256 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3763 (($ $ (-695)) 264 T ELT)) (-3762 (($ $ (-695)) 263 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-392)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #2#) $) 153 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-995) $) 154 T ELT)) (-3758 (($ $ $ (-995)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) 262 T ELT)) (-3755 (($ $ $) 253 (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) 252 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 239 (|has| |#1| (-312)) ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ (-995)) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) 257 (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3447 (((-633 $) $) 237 (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) 130 T ELT) (($ (-1086 $) (-995)) 129 T ELT)) (-3779 (($ $ (-695)) 268 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 248 (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| (-695)) 170 T ELT) (($ $ (-995) (-695)) 132 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 131 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) 133 T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 266 T ELT)) (-2822 (((-695) $) 187 T ELT) (((-695) $ (-995)) 135 T ELT) (((-584 (-695)) $ (-584 (-995))) 134 T ELT)) (-1626 (($ (-1 (-695) (-695)) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3768 (((-1086 |#1|) $) 270 T ELT)) (-3084 (((-3 (-995) #4="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) 265 T ELT)) (-2825 (((-3 (-584 $) #4#) $) 127 T ELT)) (-2824 (((-3 (-584 $) #4#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #4#) $) 126 T ELT)) (-3814 (($ $) 249 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) 236 (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 240 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ (-995) |#1|) 158 T ELT) (($ $ (-584 (-995)) (-584 |#1|)) 157 T ELT) (($ $ (-995) $) 156 T ELT) (($ $ (-584 (-995)) (-584 $)) 155 T ELT)) (-1608 (((-695) $) 242 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ "failed") $ (-695)) 267 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) 52 T ELT) (($ $ (-995) (-695)) 51 T ELT) (($ $ (-584 (-995))) 50 T ELT) (($ $ (-995)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-695)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1091)) 235 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 231 (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) 167 T ELT) (((-695) $ (-995)) 143 T ELT) (((-584 (-695)) $ (-584 (-995))) 142 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ (-995)) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3756 (((-3 $ "failed") $ $) 255 (|has| |#1| (-496)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-995)) 152 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ (-695)) 172 T ELT) (($ $ (-995) (-695)) 141 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) 55 T ELT) (($ $ (-995) (-695)) 54 T ELT) (($ $ (-584 (-995))) 53 T ELT) (($ $ (-995)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-695)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 272 T ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 230 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 228 (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-1156 |#1|) (-113) (-962)) (T -1156)) -((-3769 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3766 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3765 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-1156 *3)))) (-3764 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-1156 *4)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3761 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)))) (-3760 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3758 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3774 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3756 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3756 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3956 *3) (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-1156 *3)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))) (-3802 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))) -(-13 (-862 |t#1| (-695) (-995)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3769 ((-1180 |t#1|) $ (-695))) (-15 -3768 ((-1086 |t#1|) $)) (-15 -3767 ($ (-1086 |t#1|))) (-15 -3779 ($ $ (-695))) (-15 -3766 ((-3 $ "failed") $ (-695))) (-15 -3765 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3764 ((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695))) (-15 -3763 ($ $ (-695))) (-15 -3762 ($ $ (-695))) (-15 -3761 ($ $ $)) (-15 -3760 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3759 (|t#1| $)) (-15 -3758 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3802 ((-350 $) (-350 $) (-350 $))) (-15 -3774 ((-695) $ $)) (-15 -3757 ($ $ $)) (-15 -3756 ((-3 $ "failed") $ $)) (-15 -3756 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3755 ($ $ $)) (-15 -3754 ((-2 (|:| -3956 |t#1|) (|:| -1973 $) (|:| -2904 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-15 -3753 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3993) (-15 -3802 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-15 -3814 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-995)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| (-995) (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| (-995) (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| (-995) (-554 (-801 (-485))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-496)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-695)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-456 (-995) |#1|) . T) ((-456 (-995) $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-995)) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-995)) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-995)) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| (-995) (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| (-995) (-797 (-485)))) ((-862 |#1| (-695) (-995)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-312)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-995)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) |has| |#1| (-822))) -((-3960 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1156 |#1|) (-962) (-1156 |#3|)) (T -1157)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6)) (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5))))) -((-3083 (((-584 (-995)) $) 34 T ELT)) (-3961 (($ $) 31 T ELT)) (-2895 (($ |#2| |#3|) NIL T ELT) (($ $ (-995) |#3|) 28 T ELT) (($ $ (-584 (-995)) (-584 |#3|)) 27 T ELT)) (-2896 (($ $) 14 T ELT)) (-3176 ((|#2| $) 12 T ELT)) (-3950 ((|#3| $) 10 T ELT))) -(((-1158 |#1| |#2| |#3|) (-10 -7 (-15 -3083 ((-584 (-995)) |#1|)) (-15 -2895 (|#1| |#1| (-584 (-995)) (-584 |#3|))) (-15 -2895 (|#1| |#1| (-995) |#3|)) (-15 -3961 (|#1| |#1|)) (-15 -2895 (|#1| |#2| |#3|)) (-15 -3950 (|#3| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -3176 (|#2| |#1|))) (-1159 |#2| |#3|) (-962) (-717)) (T -1158)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-3774 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT) (($ $ (-995) |#2|) 97 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3771 (($ $ |#2|) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3802 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1026)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3772 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1159 |#1| |#2|) (-113) (-962) (-717)) (T -1159)) -((-3776 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3774 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3773 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3773 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3772 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3948 (*2 (-1091)))) (-4 *2 (-962)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3770 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) -(-13 (-887 |t#1| |t#2| (-995)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3776 ((-1070 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3833 ((-1091) $)) (-15 -3775 (|t#1| $)) (-15 -3779 ($ $ (-831))) (-15 -3774 (|t#2| $)) (-15 -3774 (|t#2| $ |t#2|)) (-15 -3773 ($ $ |t#2|)) (-15 -3773 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3948 (|t#1| (-1091)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3772 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3771 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3770 ((-1070 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1026)) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-995)) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-3777 ((|#2| |#2|) 12 T ELT)) (-3973 (((-348 |#2|) |#2|) 14 T ELT)) (-3778 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))) 30 T ELT))) -(((-1160 |#1| |#2|) (-10 -7 (-15 -3973 ((-348 |#2|) |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -3778 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))))) (-496) (-13 (-1156 |#1|) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (T -1160)) -((-3778 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-485)))) (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (-4 *3 (-496)) (-5 *1 (-1160 *3 *4)))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3146 ($ $ $)))))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1170 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3158 (((-1140 |#1| |#2| |#3|) $) NIL T ELT) (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3783 (((-350 (-485)) $) 68 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) (-1140 |#1| |#2| |#3|)) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) 30 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (((-1140 |#1| |#2| |#3|) $) 71 T ELT)) (-3780 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3781 (((-1140 |#1| |#2| |#3|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 107 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1140 |#1| |#2| |#3|)) 16 T ELT) (($ (-1170 |#1| |#2| |#3|)) 17 T ELT) (($ (-1177 |#2|)) 36 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 26 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1161 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1140 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1170 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1161)) -((-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3960 (((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)) 24 T ELT))) -(((-1162 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3960 ((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1162)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1163 |#1|) (-113) (-962)) (T -1163)) -((-3820 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1163 *4)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3814 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))) -(-13 (-1159 |t#1| (-350 (-485))) (-10 -8 (-15 -3820 ($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |t#1|))))) (-15 -3779 ($ $ (-350 (-485)))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (IF (|has| |t#1| (-15 -3814 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-584 (-1091)) |t#1|))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-350 (-485))) . T)) -((-3190 (((-85) $) 12 T ELT)) (-3159 (((-3 |#3| "failed") $) 17 T ELT)) (-3158 ((|#3| $) 14 T ELT))) -(((-1164 |#1| |#2| |#3|) (-10 -7 (-15 -3159 ((-3 |#3| "failed") |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3190 ((-85) |#1|))) (-1165 |#2| |#3|) (-962) (-1142 |#2|)) (T -1164)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#2| "failed") $) 212 T ELT)) (-3158 ((|#2| $) 213 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3783 (((-350 (-485)) $) 209 T ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) |#2|) 210 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3782 ((|#2| $) 208 T ELT)) (-3780 (((-3 |#2| "failed") $) 206 T ELT)) (-3781 ((|#2| $) 207 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1165 |#1| |#2|) (-113) (-962) (-1142 |t#1|)) (T -1165)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-350 (-485))))) (-3784 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3)) (-4 *3 (-1142 *4)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-350 (-485))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3780 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) -(-13 (-1163 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3784 ($ (-350 (-485)) |t#2|)) (-15 -3783 ((-350 (-485)) $)) (-15 -3782 (|t#2| $)) (-15 -3950 ((-350 (-485)) $)) (-15 -3781 (|t#2| $)) (-15 -3780 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-350 (-485))) . T) ((-1163 |#1|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 104 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) 116 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 118 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 54 T ELT)) (-3494 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 65 T ELT)) (-3496 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 85 T ELT)) (-3783 (((-350 (-485)) $) 13 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) |#2|) 11 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 74 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) 113 T ELT) (((-350 (-485)) $ (-350 (-485))) 114 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 130 T ELT) (($ $ (-350 (-485))) 128 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) 33 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3944 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 ((|#2| $) 12 T ELT)) (-3780 (((-3 |#2| #1#) $) 44 T ELT)) (-3781 ((|#2| $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) 122 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 138 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) 16 T ELT)) (-3497 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 120 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-485))) 139 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 107 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 127 T CONST)) (-3775 ((|#1| $) 106 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 72 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3841 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-485)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1166 |#1| |#2|) (-1165 |#1| |#2|) (-962) (-1142 |#1|)) (T -1166)) -NIL -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3158 (((-485) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3961 (($ $) 41 T ELT)) (-3469 (((-3 $ #1#) $) 27 T ELT)) (-3505 (($ $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-1625 (($ $ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 11 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2822 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1626 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3960 (($ (-1 (-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3786 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 (((-1161 |#2| |#3| |#4|) $) 20 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-496)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3785 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $) 74 T ELT)) (-3950 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2819 (((-1161 |#2| |#3| |#4|) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) ELT)) (-3819 (((-584 (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3679 (((-1161 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| (-1161 |#2| |#3| |#4|) (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT))) -(((-1167 |#1| |#2| |#3| |#4|) (-13 (-277 (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-496) (-10 -8 (-15 -3786 ((-3 (-751 |#2|) #1="failed") $)) (-15 -3785 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $)))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -1167)) -((-3786 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))))) (|:| |%type| (-1074)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) -((-3404 ((|#2| $) 34 T ELT)) (-3797 ((|#2| $) 18 T ELT)) (-3799 (($ $) 43 T ELT)) (-3787 (($ $ (-485)) 78 T ELT)) (-3027 ((|#2| $ |#2|) 75 T ELT)) (-3788 ((|#2| $ |#2|) 71 T ELT)) (-3790 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3028 (($ $ (-584 $)) 74 T ELT)) (-3798 ((|#2| $) 17 T ELT)) (-3801 (($ $) NIL T ELT) (($ $ (-695)) 51 T ELT)) (-3033 (((-584 $) $) 31 T ELT)) (-3029 (((-85) $ $) 62 T ELT)) (-3529 (((-85) $) 33 T ELT)) (-3800 ((|#2| $) 25 T ELT) (($ $ (-695)) 57 T ELT)) (-3802 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3635 (((-85) $) 23 T ELT)) (-3794 (($ $) 46 T ELT)) (-3792 (($ $) 79 T ELT)) (-3795 (((-695) $) 50 T ELT)) (-3796 (($ $) 49 T ELT)) (-3804 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3524 (((-584 $) $) 32 T ELT)) (-3058 (((-85) $ $) 60 T ELT))) -(((-1168 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3787 (|#1| |#1| (-485))) (-15 -3790 (|#2| |#1| #1="last" |#2|)) (-15 -3788 (|#2| |#1| |#2|)) (-15 -3790 (|#1| |#1| #2="rest" |#1|)) (-15 -3790 (|#2| |#1| #3="first" |#2|)) (-15 -3792 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3795 ((-695) |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| #1#)) (-15 -3800 (|#2| |#1|)) (-15 -3801 (|#1| |#1| (-695))) (-15 -3802 (|#1| |#1| #2#)) (-15 -3801 (|#1| |#1|)) (-15 -3802 (|#2| |#1| #3#)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3027 (|#2| |#1| |#2|)) (-15 -3790 (|#2| |#1| #4="value" |#2|)) (-15 -3028 (|#1| |#1| (-584 |#1|))) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3635 ((-85) |#1|)) (-15 -3802 (|#2| |#1| #4#)) (-15 -3404 (|#2| |#1|)) (-15 -3529 ((-85) |#1|)) (-15 -3033 ((-584 |#1|) |#1|)) (-15 -3524 ((-584 |#1|) |#1|))) (-1169 |#2|) (-1130)) (T -1168)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 42 T ELT)) (-3797 ((|#1| $) 61 T ELT)) (-3799 (($ $) 63 T ELT)) (-3787 (($ $ (-485)) 48 (|has| $ (-1036 |#1|)) ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 52 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 34 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ "first" |#1|) 53 (|has| $ (-1036 |#1|)) ELT) (($ $ "rest" $) 51 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ "last" |#1|) 49 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3726 (($) 6 T CONST)) (-3801 (($ $) 69 T ELT) (($ $ (-695)) 67 T ELT)) (-3033 (((-584 $) $) 44 T ELT)) (-3029 (((-85) $ $) 36 (|has| |#1| (-72)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3032 (((-584 |#1|) $) 39 T ELT)) (-3529 (((-85) $) 43 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 66 T ELT) (($ $ (-695)) 64 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 72 T ELT) (($ $ (-695)) 70 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 41 T ELT) ((|#1| $ "first") 71 T ELT) (($ $ "rest") 68 T ELT) ((|#1| $ "last") 65 T ELT)) (-3031 (((-485) $ $) 38 T ELT)) (-3635 (((-85) $) 40 T ELT)) (-3794 (($ $) 58 T ELT)) (-3792 (($ $) 55 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 59 T ELT)) (-3796 (($ $) 60 T ELT)) (-3402 (($ $) 9 T ELT)) (-3793 (($ $ $) 57 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 56 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 74 T ELT) (($ |#1| $) 73 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT))) -(((-1169 |#1|) (-113) (-1130)) (T -1169)) -((-3804 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3788 (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3804 ($ $ $)) (-15 -3804 ($ |t#1| $)) (-15 -3803 (|t#1| $)) (-15 -3802 (|t#1| $ "first")) (-15 -3803 ($ $ (-695))) (-15 -3801 ($ $)) (-15 -3802 ($ $ "rest")) (-15 -3801 ($ $ (-695))) (-15 -3800 (|t#1| $)) (-15 -3802 (|t#1| $ "last")) (-15 -3800 ($ $ (-695))) (-15 -3799 ($ $)) (-15 -3798 (|t#1| $)) (-15 -3797 (|t#1| $)) (-15 -3796 ($ $)) (-15 -3795 ((-695) $)) (-15 -3794 ($ $)) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3793 ($ $ $)) (-15 -3793 ($ $ |t#1|)) (-15 -3792 ($ $)) (-15 -3791 (|t#1| $ |t#1|)) (-15 -3790 (|t#1| $ "first" |t#1|)) (-15 -3789 ($ $ $)) (-15 -3790 ($ $ "rest" $)) (-15 -3788 (|t#1| $ |t#1|)) (-15 -3790 (|t#1| $ "last" |t#1|)) (-15 -3787 ($ $ (-485)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 87 T ELT)) (-3813 (((-1149 |#2| |#1|) $ (-695)) 70 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 139 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1070 |#1|)) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3807 (($ $) 131 T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3818 (($ $) 137 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3810 (($ $) 115 T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3806 (($ (-485) (-485) $) 133 T ELT)) (-3779 (($ $ (-831)) 136 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 109 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 16 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3811 (($ $) 113 T ELT)) (-3812 (($ $) 111 T ELT)) (-3805 (($ (-485) (-485) $) 135 T ELT)) (-3814 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3808 (($ $ (-485) (-485)) 119 T ELT)) (-3771 (($ $ (-695)) 121 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3809 (($ $) 117 T ELT)) (-3770 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3802 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1026)) ELT)) (-3760 (($ $ (-1091)) 106 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 101 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 123 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 26 T ELT) (($ (-350 (-485))) 145 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 78 T ELT) (($ (-1177 |#2|)) 22 T ELT)) (-3819 (((-1070 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) 92 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 88 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-695)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 13 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3841 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1170 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1149 |#2| |#1|))) (-15 -3813 ((-1149 |#2| |#1|) $ (-695))) (-15 -3948 ($ (-1177 |#2|))) (-15 -3812 ($ $)) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $ (-485) (-485))) (-15 -3807 ($ $)) (-15 -3806 ($ (-485) (-485) $)) (-15 -3805 ($ (-485) (-485) $)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1170)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1170 *3 *4 *5)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3808 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3806 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3805 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3960 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1173 |#1|) (-1173 |#2|)) (T -1171)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5))))) -((-3190 (((-85) $) 17 T ELT)) (-3494 (($ $) 105 T ELT)) (-3641 (($ $) 81 T ELT)) (-3492 (($ $) 101 T ELT)) (-3640 (($ $) 77 T ELT)) (-3496 (($ $) 109 T ELT)) (-3639 (($ $) 85 T ELT)) (-3944 (($ $) 75 T ELT)) (-3945 (($ $) 73 T ELT)) (-3497 (($ $) 111 T ELT)) (-3638 (($ $) 87 T ELT)) (-3495 (($ $) 107 T ELT)) (-3637 (($ $) 83 T ELT)) (-3493 (($ $) 103 T ELT)) (-3636 (($ $) 79 T ELT)) (-3948 (((-773) $) 61 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3500 (($ $) 117 T ELT)) (-3488 (($ $) 93 T ELT)) (-3498 (($ $) 113 T ELT)) (-3486 (($ $) 89 T ELT)) (-3502 (($ $) 121 T ELT)) (-3490 (($ $) 97 T ELT)) (-3503 (($ $) 123 T ELT)) (-3491 (($ $) 99 T ELT)) (-3501 (($ $) 119 T ELT)) (-3489 (($ $) 95 T ELT)) (-3499 (($ $) 115 T ELT)) (-3487 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-485))) 71 T ELT))) -(((-1172 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3190 ((-85) |#1|)) (-15 -3948 ((-773) |#1|))) (-1173 |#2|) (-962)) (T -1172)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-695)) 124 T ELT) (($ $ (-695) (-695)) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1070 |#1|)) 181 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3818 (($ $) 180 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 178 T ELT) (((-858 |#1|) $ (-695) (-695)) 177 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $) 126 T ELT) (((-695) $ (-695)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 179 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-695)) 81 T ELT) (($ $ (-995) (-695)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3814 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 174 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-695)) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3802 ((|#1| $ (-695)) 131 T ELT) (($ $ $) 107 (|has| (-695) (-1026)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3950 (((-695) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3819 (((-1070 |#1|) $) 182 T ELT)) (-3679 ((|#1| $ (-695)) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-695)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) -(((-1173 |#1|) (-113) (-962)) (T -1173)) -((-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962)))) (-3816 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3816 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3814 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))) -(-13 (-1159 |t#1| (-695)) (-10 -8 (-15 -3820 ($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-15 -3819 ((-1070 |t#1|) $)) (-15 -3820 ($ (-1070 |t#1|))) (-15 -3818 ($ $)) (-15 -3817 ($ (-1 |t#1| (-485)) $)) (-15 -3816 ((-858 |t#1|) $ (-695))) (-15 -3816 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (IF (|has| |t#1| (-15 -3814 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-584 (-1091)) |t#1|))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-695) |#1|) . T) ((-241 $ $) |has| (-695) (-1026)) ((-246) |has| |#1| (-496)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-995)) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1159 |#1| (-695)) . T)) -((-3823 (((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3822 (((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3821 (((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3826 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3825 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3827 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3828 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3824 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1174 |#1| |#2|) (-10 -7 (-15 -3821 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-15 -3822 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3823 ((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|)))) (-15 -3824 (|#2| |#2| |#2|)) (-15 -3825 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3827 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-15 -3828 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-38 (-350 (-485))) (-1173 |#1|)) (T -1174)) -((-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1174 *5 *6)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485)))) (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))) (-3826 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3824 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) -((-3830 ((|#2| |#4| (-695)) 31 T ELT)) (-3829 ((|#4| |#2|) 26 T ELT)) (-3832 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-496)) ELT)) (-3831 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT))) -(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| |#2|)) (-15 -3830 (|#2| |#4| (-695))) (-15 -3831 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-496)) (-15 -3832 (|#4| (-350 |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-601 |#2|) (-1173 |#1|)) (T -1175)) -((-3832 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4)))) (-3830 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) -NIL -(((-1176) (-113)) (T -1176)) -NIL -(-13 (-10 -7 (-6 -2288))) -((-2570 (((-85) $ $) NIL T ELT)) (-3833 (((-1091)) 12 T ELT)) (-3244 (((-1074) $) 18 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT) (((-1091) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT))) -(((-1177 |#1|) (-13 (-1014) (-553 (-1091)) (-10 -8 (-15 -3948 ((-1091) $)) (-15 -3833 ((-1091))))) (-1091)) (T -1177)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-3833 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))) -((-3840 (($ (-695)) 19 T ELT)) (-3837 (((-631 |#2|) $ $) 41 T ELT)) (-3834 ((|#2| $) 51 T ELT)) (-3835 ((|#2| $) 50 T ELT)) (-3838 ((|#2| $ $) 36 T ELT)) (-3836 (($ $ $) 47 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3841 (($ $ $) 15 T ELT)) (* (($ (-485) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1178 |#1| |#2|) (-10 -7 (-15 -3834 (|#2| |#1|)) (-15 -3835 (|#2| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3837 ((-631 |#2|) |#1| |#1|)) (-15 -3838 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3840 (|#1| (-695))) (-15 -3841 (|#1| |#1| |#1|))) (-1179 |#2|) (-1130)) (T -1178)) -NIL -((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) 122 (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 34 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 46 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 54 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 109 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) 45 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-72)) ELT)) (-3837 (((-631 |#1|) $ $) 115 (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) 64 T ELT)) (-2201 (((-485) $) 37 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 104 T ELT)) (-3247 (((-85) |#1| $) 108 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 111 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 59 T ELT)) (-3834 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 56 T ELT) (($ $ $ (-485)) 55 T ELT)) (-2204 (((-584 (-485)) $) 40 T ELT)) (-2205 (((-85) (-485) $) 41 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 36 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 67 T ELT)) (-2200 (($ $ |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 39 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 42 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 44 T ELT) ((|#1| $ (-485)) 43 T ELT) (($ $ (-1147 (-485))) 65 T ELT)) (-3838 ((|#1| $ $) 116 (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) 58 T ELT) (($ $ (-1147 (-485))) 57 T ELT)) (-3836 (($ $ $) 114 (|has| |#1| (-962)) ELT)) (-1731 (((-695) |#1| $) 107 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 103 T ELT)) (-1735 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 66 T ELT)) (-3804 (($ $ |#1|) 63 T ELT) (($ |#1| $) 62 T ELT) (($ $ $) 61 T ELT) (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2568 (((-85) $ $) 82 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-664)) ELT) (($ $ |#1|) 117 (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) 100 T ELT))) -(((-1179 |#1|) (-113) (-1130)) (T -1179)) -((-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3841 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3840 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3839 ($ $)) (-15 -3839 ($ $ $)) (-15 * ($ (-485) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3838 (|t#1| $ $)) (-15 -3837 ((-631 |t#1|) $ $)) (-15 -3836 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3835 (|t#1| $)) (-15 -3834 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T)) -((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-3842 (($ (-584 |#1|)) 9 T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3837 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 15 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 11 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3838 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 19 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 8 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1180 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3842 ($ (-584 |#1|))))) (-1130)) (T -1180)) -((-3842 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3))))) -((-3843 (((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 13 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 15 T ELT)) (-3960 (((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)) 30 T ELT) (((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|)) 18 T ELT))) -(((-1181 |#1| |#2|) (-10 -7 (-15 -3843 ((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3960 ((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|))) (-15 -3960 ((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)))) (-1130) (-1130)) (T -1181)) -((-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1181 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5))))) -((-3845 (((-408) (-584 (-584 (-855 (-179)))) (-584 (-221))) 22 T ELT) (((-408) (-584 (-584 (-855 (-179))))) 21 T ELT) (((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 20 T ELT)) (-3846 (((-1183) (-584 (-584 (-855 (-179)))) (-584 (-221))) 30 T ELT) (((-1183) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 29 T ELT)) (-3948 (((-1183) (-408)) 46 T ELT))) -(((-1182) (-10 -7 (-15 -3845 ((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3845 ((-408) (-584 (-584 (-855 (-179)))))) (-15 -3845 ((-408) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3846 ((-1183) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3846 ((-1183) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3948 ((-1183) (-408))))) (T -1182)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3846 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3864 (((-1074) $ (-1074)) 107 T ELT) (((-1074) $ (-1074) (-1074)) 105 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 104 T ELT)) (-3860 (($) 69 T ELT)) (-3847 (((-1186) $ (-408) (-831)) 54 T ELT)) (-3853 (((-1186) $ (-831) (-1074)) 89 T ELT) (((-1186) $ (-831) (-784)) 90 T ELT)) (-3875 (((-1186) $ (-831) (-330) (-330)) 57 T ELT)) (-3885 (((-1186) $ (-1074)) 84 T ELT)) (-3848 (((-1186) $ (-831) (-1074)) 94 T ELT)) (-3849 (((-1186) $ (-831) (-330) (-330)) 58 T ELT)) (-3886 (((-1186) $ (-831) (-831)) 55 T ELT)) (-3866 (((-1186) $) 85 T ELT)) (-3851 (((-1186) $ (-831) (-1074)) 93 T ELT)) (-3855 (((-1186) $ (-408) (-831)) 41 T ELT)) (-3852 (((-1186) $ (-831) (-1074)) 92 T ELT)) (-3888 (((-584 (-221)) $) 29 T ELT) (($ $ (-584 (-221))) 30 T ELT)) (-3887 (((-1186) $ (-695) (-695)) 52 T ELT)) (-3859 (($ $) 70 T ELT) (($ (-408) (-584 (-221))) 71 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3862 (((-485) $) 48 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3856 (((-1180 (-3 (-408) "undefined")) $) 47 T ELT)) (-3857 (((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $) 46 T ELT)) (-3858 (((-1186) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485)) 83 T ELT)) (-3861 (((-584 (-855 (-179))) $) NIL T ELT)) (-3854 (((-408) $ (-831)) 43 T ELT)) (-3884 (((-1186) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3882 (((-1186) $ (-1074)) 95 T ELT)) (-3850 (((-1186) $ (-831) (-1074)) 91 T ELT)) (-3948 (((-773) $) 102 T ELT)) (-3863 (((-1186) $) 96 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3881 (((-1186) $ (-831) (-1074)) 87 T ELT) (((-1186) $ (-831) (-784)) 88 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1183) (-13 (-1014) (-10 -8 (-15 -3861 ((-584 (-855 (-179))) $)) (-15 -3860 ($)) (-15 -3859 ($ $)) (-15 -3888 ((-584 (-221)) $)) (-15 -3888 ($ $ (-584 (-221)))) (-15 -3859 ($ (-408) (-584 (-221)))) (-15 -3858 ((-1186) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485))) (-15 -3857 ((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $)) (-15 -3856 ((-1180 (-3 (-408) "undefined")) $)) (-15 -3885 ((-1186) $ (-1074))) (-15 -3855 ((-1186) $ (-408) (-831))) (-15 -3854 ((-408) $ (-831))) (-15 -3881 ((-1186) $ (-831) (-1074))) (-15 -3881 ((-1186) $ (-831) (-784))) (-15 -3853 ((-1186) $ (-831) (-1074))) (-15 -3853 ((-1186) $ (-831) (-784))) (-15 -3852 ((-1186) $ (-831) (-1074))) (-15 -3851 ((-1186) $ (-831) (-1074))) (-15 -3850 ((-1186) $ (-831) (-1074))) (-15 -3882 ((-1186) $ (-1074))) (-15 -3863 ((-1186) $)) (-15 -3884 ((-1186) $ (-695) (-695) (-831) (-831))) (-15 -3849 ((-1186) $ (-831) (-330) (-330))) (-15 -3875 ((-1186) $ (-831) (-330) (-330))) (-15 -3848 ((-1186) $ (-831) (-1074))) (-15 -3887 ((-1186) $ (-695) (-695))) (-15 -3847 ((-1186) $ (-408) (-831))) (-15 -3886 ((-1186) $ (-831) (-831))) (-15 -3864 ((-1074) $ (-1074))) (-15 -3864 ((-1074) $ (-1074) (-1074))) (-15 -3864 ((-1074) $ (-1074) (-584 (-1074)))) (-15 -3866 ((-1186) $)) (-15 -3862 ((-485) $)) (-15 -3948 ((-773) $))))) (T -1183)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1183)))) (-3860 (*1 *1) (-5 *1 (-1183))) (-3859 (*1 *1 *1) (-5 *1 (-1183))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1183)))) (-3858 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) (-5 *1 (-1183)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3849 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3887 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3876 (((-1186) $ (-330)) 168 T ELT) (((-1186) $ (-330) (-330) (-330)) 169 T ELT)) (-3864 (((-1074) $ (-1074)) 177 T ELT) (((-1074) $ (-1074) (-1074)) 175 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 174 T ELT)) (-3892 (($) 67 T ELT)) (-3883 (((-1186) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1186) $ (-485) (-485) (-330) (-330) (-330)) 143 T ELT) (((-1186) $ (-330) (-330)) 144 T ELT) (((-1186) $ (-330) (-330) (-330)) 151 T ELT)) (-3895 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3897 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3896 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3893 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3894 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3875 (((-1186) $ (-330) (-330)) 170 T ELT)) (-3885 (((-1186) $ (-1074)) 152 T ELT)) (-3890 (((-1048 (-179)) $) 68 T ELT) (($ $ (-1048 (-179))) 69 T ELT)) (-3871 (((-1186) $ (-1074)) 186 T ELT)) (-3870 (((-1186) $ (-1074)) 187 T ELT)) (-3877 (((-1186) $ (-330) (-330)) 150 T ELT) (((-1186) $ (-485) (-485)) 167 T ELT)) (-3886 (((-1186) $ (-831) (-831)) 159 T ELT)) (-3866 (((-1186) $) 136 T ELT)) (-3874 (((-1186) $ (-1074)) 185 T ELT)) (-3879 (((-1186) $ (-1074)) 133 T ELT)) (-3888 (((-584 (-221)) $) 70 T ELT) (($ $ (-584 (-221))) 71 T ELT)) (-3887 (((-1186) $ (-695) (-695)) 158 T ELT)) (-3889 (((-1186) $ (-695) (-855 (-179))) 192 T ELT)) (-3891 (($ $) 73 T ELT) (($ (-1048 (-179)) (-1074)) 74 T ELT) (($ (-1048 (-179)) (-584 (-221))) 75 T ELT)) (-3868 (((-1186) $ (-330) (-330) (-330)) 130 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3862 (((-485) $) 127 T ELT)) (-3867 (((-1186) $ (-330)) 172 T ELT)) (-3872 (((-1186) $ (-330)) 190 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3873 (((-1186) $ (-330)) 189 T ELT)) (-3878 (((-1186) $ (-1074)) 135 T ELT)) (-3884 (((-1186) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3880 (((-1186) $ (-1074)) 132 T ELT)) (-3882 (((-1186) $ (-1074)) 134 T ELT)) (-3865 (((-1186) $ (-130) (-130)) 156 T ELT)) (-3948 (((-773) $) 165 T ELT)) (-3863 (((-1186) $) 137 T ELT)) (-3869 (((-1186) $ (-1074)) 188 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3881 (((-1186) $ (-1074)) 131 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1184) (-13 (-1014) (-10 -8 (-15 -3897 ((-330))) (-15 -3897 ((-330) (-330))) (-15 -3896 ((-330))) (-15 -3896 ((-330) (-330))) (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ((-330))) (-15 -3893 ((-330) (-330))) (-15 -3892 ($)) (-15 -3891 ($ $)) (-15 -3891 ($ (-1048 (-179)) (-1074))) (-15 -3891 ($ (-1048 (-179)) (-584 (-221)))) (-15 -3890 ((-1048 (-179)) $)) (-15 -3890 ($ $ (-1048 (-179)))) (-15 -3889 ((-1186) $ (-695) (-855 (-179)))) (-15 -3888 ((-584 (-221)) $)) (-15 -3888 ($ $ (-584 (-221)))) (-15 -3887 ((-1186) $ (-695) (-695))) (-15 -3886 ((-1186) $ (-831) (-831))) (-15 -3885 ((-1186) $ (-1074))) (-15 -3884 ((-1186) $ (-695) (-695) (-831) (-831))) (-15 -3883 ((-1186) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3883 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3883 ((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3883 ((-1186) $ (-485) (-485) (-330) (-330) (-330))) (-15 -3883 ((-1186) $ (-330) (-330))) (-15 -3883 ((-1186) $ (-330) (-330) (-330))) (-15 -3882 ((-1186) $ (-1074))) (-15 -3881 ((-1186) $ (-1074))) (-15 -3880 ((-1186) $ (-1074))) (-15 -3879 ((-1186) $ (-1074))) (-15 -3878 ((-1186) $ (-1074))) (-15 -3877 ((-1186) $ (-330) (-330))) (-15 -3877 ((-1186) $ (-485) (-485))) (-15 -3876 ((-1186) $ (-330))) (-15 -3876 ((-1186) $ (-330) (-330) (-330))) (-15 -3875 ((-1186) $ (-330) (-330))) (-15 -3874 ((-1186) $ (-1074))) (-15 -3873 ((-1186) $ (-330))) (-15 -3872 ((-1186) $ (-330))) (-15 -3871 ((-1186) $ (-1074))) (-15 -3870 ((-1186) $ (-1074))) (-15 -3869 ((-1186) $ (-1074))) (-15 -3868 ((-1186) $ (-330) (-330) (-330))) (-15 -3867 ((-1186) $ (-330))) (-15 -3866 ((-1186) $)) (-15 -3865 ((-1186) $ (-130) (-130))) (-15 -3864 ((-1074) $ (-1074))) (-15 -3864 ((-1074) $ (-1074) (-1074))) (-15 -3864 ((-1074) $ (-1074) (-584 (-1074)))) (-15 -3863 ((-1186) $)) (-15 -3862 ((-485) $))))) (T -1184)) -((-3897 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3896 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3893 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3892 (*1 *1) (-5 *1 (-1184))) (-3891 (*1 *1 *1) (-5 *1 (-1184))) (-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) (-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1184)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) (-3887 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3884 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3868 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184))))) -((-3906 (((-584 (-1074)) (-584 (-1074))) 103 T ELT) (((-584 (-1074))) 96 T ELT)) (-3907 (((-584 (-1074))) 94 T ELT)) (-3904 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3903 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3905 (((-1186)) 71 T ELT)) (-3909 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3908 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3901 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3911 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3910 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3902 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3898 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3899 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3900 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT))) -(((-1185) (-10 -7 (-15 -3898 ((-784))) (-15 -3898 ((-784) (-784))) (-15 -3899 ((-784))) (-15 -3899 ((-784) (-784))) (-15 -3900 ((-784))) (-15 -3900 ((-784) (-784))) (-15 -3901 ((-784))) (-15 -3901 ((-784) (-784))) (-15 -3902 ((-831))) (-15 -3902 ((-831) (-831))) (-15 -3903 ((-584 (-695)))) (-15 -3903 ((-584 (-695)) (-584 (-695)))) (-15 -3904 ((-584 (-831)))) (-15 -3904 ((-584 (-831)) (-584 (-831)))) (-15 -3905 ((-1186))) (-15 -3906 ((-584 (-1074)))) (-15 -3906 ((-584 (-1074)) (-584 (-1074)))) (-15 -3907 ((-584 (-1074)))) (-15 -3908 ((-831))) (-15 -3909 ((-831))) (-15 -3908 ((-831) (-831))) (-15 -3909 ((-831) (-831))) (-15 -3910 ((-831) (-831))) (-15 -3910 ((-831))) (-15 -3911 ((-179) (-330))) (-15 -3911 ((-179))))) (T -1185)) -((-3911 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1185)))) (-3910 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3909 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3908 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3907 (*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3906 (*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3905 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3904 (*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3903 (*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3902 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3901 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3899 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3898 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) -((-3912 (($) 6 T ELT)) (-3948 (((-773) $) 9 T ELT))) -(((-1186) (-13 (-553 (-773)) (-10 -8 (-15 -3912 ($))))) (T -1186)) -((-3912 (*1 *1) (-5 *1 (-1186)))) -((-3951 (($ $ |#2|) 10 T ELT))) -(((-1187 |#1| |#2|) (-10 -7 (-15 -3951 (|#1| |#1| |#2|))) (-1188 |#2|) (-312)) (T -1187)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3913 (((-107)) 39 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 40 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-1188 |#1|) (-113) (-312)) (T -1188)) -((-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) (-3913 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(-13 (-655 |t#1|) (-10 -8 (-15 -3951 ($ $ |t#1|)) (-15 -3913 ((-107))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) -((-3918 (((-584 (-1123 |#1|)) (-1091) (-1123 |#1|)) 83 T ELT)) (-3916 (((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|))) 63 T ELT)) (-3919 (((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))) 74 T ELT)) (-3914 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 65 T ELT)) (-3917 (((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091)) 32 T ELT)) (-3915 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 64 T ELT))) -(((-1189 |#1|) (-10 -7 (-15 -3914 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-15 -3915 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-15 -3916 ((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|)))) (-15 -3917 ((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091))) (-15 -3918 ((-584 (-1123 |#1|)) (-1091) (-1123 |#1|))) (-15 -3919 ((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))))) (-312)) (T -1189)) -((-3919 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-584 (-1123 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-858 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5))))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312))))) -((-3921 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT))) -(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3920 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3921 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-299) (-1156 |#1|) (-1156 |#2|) (-353 |#2| |#3|)) (T -1190)) -((-3921 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3920 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3922 (((-1050) $) 12 T ELT)) (-3923 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1191) (-13 (-996) (-10 -8 (-15 -3923 ((-1050) $)) (-15 -3922 ((-1050) $))))) (T -1191)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3924 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) -(((-1192) (-13 (-996) (-10 -8 (-15 -3924 ((-1050) $))))) (T -1192)) -((-3924 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 82 T ELT) (($ (-485)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3925 (((-1186) (-695)) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 36 T CONST)) (-2668 (($) 85 T CONST)) (-3058 (((-85) $ $) 88 T ELT)) (-3951 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-1193 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3951 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3925 ((-1186) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1193)) -((-3951 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-14 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-14 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3)))) -((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 77 T ELT)) (-3687 ((|#4| |#4| $) 82 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 83 T ELT)) (-2610 (((-584 |#4|) $) 32 T ELT)) (-3247 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3928 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-3328 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3960 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) NIL T ELT)) (-3699 (((-584 |#4|) $) 53 T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) 81 T ELT)) (-3701 (((-85) $ $) 92 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 76 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3771 (($ $ |#4|) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 74 T ELT)) (-3567 (($) 45 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-3927 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3926 (((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3935 (((-85) |#3| $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT))) -(((-1194 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3928 ((-3 $ #1="failed") (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3928 ((-3 $ #1#) (-584 |#4|))) (-15 -3927 ((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3927 ((-3 $ #1#) (-584 |#4|))) (-15 -3926 ((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-584 $) (-584 |#4|))))) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1194)) -((-3928 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3928 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3927 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3927 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3926 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7))) (-5 *1 (-1194 *4 *5 *6 *7))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) -(((-1195 |#1|) (-113) (-962)) (T -1195)) -NIL -(-13 (-962) (-82 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) -((-2570 (((-85) $ $) 69 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 54 T ELT)) (-3949 (($ $ (-695)) 47 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ (-695)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3159 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3158 (((-740 |#1|) $) NIL T ELT)) (-3961 (($ $) 40 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3953 (((-85) $) NIL T ELT)) (-3952 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3938 (($ $) 41 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3957 (((-740 |#1|) $) NIL T ELT)) (-3958 (((-740 |#1|) $) 42 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1753 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-740 |#1|) $) 36 T ELT)) (-3176 ((|#2| $) 38 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3950 (((-695) $) 44 T ELT)) (-3955 (((-85) $) 48 T ELT)) (-3954 ((|#2| $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-485)) NIL T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3956 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 14 T CONST)) (-2668 (($) 20 T CONST)) (-2667 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) 45 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1196 |#1| |#2|) (-13 (-335 |#2| (-740 |#1|)) (-1203 |#1| |#2|)) (-757) (-962)) (T -1196)) -NIL -((-3944 ((|#3| |#3| (-695)) 28 T ELT)) (-3945 ((|#3| |#3| (-695)) 34 T ELT)) (-3929 ((|#3| |#3| |#3| (-695)) 35 T ELT))) -(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -3945 (|#3| |#3| (-695))) (-15 -3944 (|#3| |#3| (-695))) (-15 -3929 (|#3| |#3| |#3| (-695)))) (-13 (-962) (-655 (-350 (-485)))) (-757) (-1203 |#2| |#1|)) (T -1197)) -((-3929 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) -((-3934 (((-85) $) 15 T ELT)) (-3935 (((-85) $) 14 T ELT)) (-3930 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| |#1| (-695))) (-15 -3930 (|#1| |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3935 ((-85) |#1|))) (-1199 |#2|) (-312)) (T -1198)) -NIL -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3934 (((-85) $) 114 T ELT)) (-3931 (((-695)) 110 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 121 T ELT)) (-3158 ((|#1| $) 122 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1768 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3933 (((-85) $) 113 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-3932 (((-744 (-831))) 111 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) 119 T ELT)) (-3950 (((-744 (-831)) $) 112 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2704 (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3935 (((-85) $) 115 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3930 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) -(((-1199 |#1|) (-113) (-312)) (T -1199)) -((-3935 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3932 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3931 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-695)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-320))))) -(-13 (-312) (-951 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3935 ((-85) $)) (-15 -3934 ((-85) $)) (-15 -3933 ((-85) $)) (-15 -3950 ((-744 (-831)) $)) (-15 -3932 ((-744 (-831)))) (-15 -3931 ((-695))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3930 ($ $)) (-15 -3930 ($ $ (-695)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T)) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3936 (((-584 |#1|) $) 55 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3937 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3726 (($) 23 T CONST)) (-3941 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3159 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3158 (((-740 |#1|) $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3953 (((-85) $) 60 T ELT)) (-3952 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 65 T ELT)) (-3940 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3938 (($ $) 64 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3957 (((-740 |#1|) $) 76 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3942 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3955 (((-85) $) 62 T ELT)) (-3954 ((|#2| $) 61 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3956 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) -(((-1200 |#1| |#2|) (-113) (-757) (-962)) (T -1200)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3956 (*1 *2 *1 *3) (-12 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3956 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3942 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3948 (*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3952 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3))))) -(-13 (-962) (-1195 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3957 ((-740 |t#1|) $)) (-15 -3943 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3956 (|t#2| $ (-740 |t#1|))) (-15 -3956 (|t#2| $ $)) (-15 -3942 ($ $ |t#1|)) (-15 -3942 ($ $ (-740 |t#1|))) (-15 -3942 ($ $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ (-740 |t#1|))) (-15 -3941 ($ $ $)) (-15 -3940 ($ (-740 |t#1|) |t#2|)) (-15 -3939 ((-85) $)) (-15 -3938 ($ $)) (-15 -3948 ($ |t#1|)) (-15 -3955 ((-85) $)) (-15 -3954 (|t#2| $)) (-15 -3953 ((-85) $)) (-15 -3952 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3937 ($ $ $)) (-15 -3937 ($ $ (-695)))) |%noBranch|) (-15 -3960 ($ (-1 |t#2| |t#2|) $)) (-15 -3936 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3990)) (-6 -3990) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 99 T ELT)) (-3949 (($ $ (-695)) 103 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3159 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3158 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3961 (($ $) 102 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3953 (((-85) $) 90 T ELT)) (-3952 (($ $) 93 T ELT)) (-3946 (($ $ $ (-695)) 104 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3938 (($ $) 120 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3957 (((-740 |#1|) $) NIL T ELT)) (-3958 (((-740 |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3944 (($ $ (-695)) 113 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-1753 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-804 |#1|) $) 84 T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3945 (($ $ (-695)) 110 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-3950 (((-695) $) 100 T ELT)) (-3955 (((-85) $) 85 T ELT)) (-3954 ((|#2| $) 88 T ELT)) (-3948 (((-773) $) 70 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1196 |#1| |#2|) $) 77 T ELT) (((-1205 |#1| |#2|) $) 82 T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3956 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 27 T CONST)) (-2667 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3947 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3058 (((-85) $ $) 78 T ELT)) (-3839 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3841 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT))) -(((-1201 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-335 |#2| (-804 |#1|)) (-10 -8 (-15 -3948 ($ (-607 |#1| |#2|))) (-15 -3948 ((-1196 |#1| |#2|) $)) (-15 -3948 ((-1205 |#1| |#2|) $)) (-15 -3947 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3946 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-350 (-485)))) (PROGN (-15 -3945 ($ $ (-695))) (-15 -3944 ($ $ (-695)))) |%noBranch|))) (-757) (-146)) (T -1201)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-1201 *3 *4)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3947 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3946 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 (-1091)) $) NIL T ELT)) (-3964 (($ (-1196 (-1091) |#1|)) NIL T ELT)) (-3949 (($ $ (-695)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3159 (((-3 (-740 (-1091)) #1#) $) NIL T ELT)) (-3158 (((-740 (-1091)) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3953 (((-85) $) NIL T ELT)) (-3952 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 (-1091)) |#1|) NIL T ELT)) (-3938 (($ $) NIL T ELT)) (-3943 (((-2 (|:| |k| (-740 (-1091))) (|:| |c| |#1|)) $) NIL T ELT)) (-3957 (((-740 (-1091)) $) NIL T ELT)) (-3958 (((-740 (-1091)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3965 (((-1196 (-1091) |#1|) $) NIL T ELT)) (-3950 (((-695) $) NIL T ELT)) (-3955 (((-85) $) NIL T ELT)) (-3954 ((|#1| $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT)) (-3956 ((|#1| $ (-740 (-1091))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3963 (((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $) NIL T ELT)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1091) $) NIL T ELT))) -(((-1202 |#1|) (-13 (-1203 (-1091) |#1|) (-10 -8 (-15 -3965 ((-1196 (-1091) |#1|) $)) (-15 -3964 ($ (-1196 (-1091) |#1|))) (-15 -3963 ((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $)))) (-962)) (T -1202)) -((-3965 (*1 *2 *1) (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) (-5 *1 (-1202 *3)) (-4 *3 (-962))))) -((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3936 (((-584 |#1|) $) 55 T ELT)) (-3949 (($ $ (-695)) 89 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3937 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3726 (($) 23 T CONST)) (-3941 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3159 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3158 (((-740 |#1|) $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3953 (((-85) $) 60 T ELT)) (-3952 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 65 T ELT)) (-3940 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3938 (($ $) 64 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3957 (((-740 |#1|) $) 76 T ELT)) (-3958 (((-740 |#1|) $) 91 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3942 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 (((-695) $) 90 T ELT)) (-3955 (((-85) $) 62 T ELT)) (-3954 ((|#2| $) 61 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3956 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) -(((-1203 |#1| |#2|) (-113) (-757) (-962)) (T -1203)) -((-3958 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) -(-13 (-1200 |t#1| |t#2|) (-10 -8 (-15 -3958 ((-740 |t#1|) $)) (-15 -3950 ((-695) $)) (-15 -3949 ($ $ (-695))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T) ((-1200 |#1| |#2|) . T)) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 43 T ELT)) (-3953 (((-85) $) 37 T ELT)) (-3952 (($ $) 38 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ |#2| |#1|) NIL T ELT)) (-3957 ((|#2| $) 25 T ELT)) (-3958 ((|#2| $) 23 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1753 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2896 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3955 (((-85) $) 33 T ELT)) (-3954 ((|#1| $) 34 T ELT)) (-3948 (((-773) $) 66 T ELT) (($ (-485)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ |#2|) NIL T ELT)) (-3956 ((|#1| $ |#2|) 29 T ELT)) (-3128 (((-695)) 14 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 11 T CONST)) (-2667 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) 31 T ELT)) (-3951 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3959 (((-695) $) 18 T ELT))) -(((-1204 |#1| |#2|) (-13 (-962) (-1195 |#1|) (-335 |#1| |#2|) (-556 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3959 ((-695) $)) (-15 -3958 (|#2| $)) (-15 -3957 (|#2| $)) (-15 -3961 ($ $)) (-15 -3956 (|#1| $ |#2|)) (-15 -3955 ((-85) $)) (-15 -3954 (|#1| $)) (-15 -3953 ((-85) $)) (-15 -3952 ($ $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3951 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962) (-755)) (T -1204)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-755)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3958 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3957 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3956 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3954 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3952 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755))))) -((-2570 (((-85) $ $) 27 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 132 T ELT)) (-3964 (($ (-1196 |#1| |#2|)) 50 T ELT)) (-3949 (($ $ (-695)) 38 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-695)) 52 (|has| |#2| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3159 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3158 (((-740 |#1|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 122 T ELT)) (-3953 (((-85) $) 117 T ELT)) (-3952 (($ $) 118 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3938 (($ $) NIL T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3957 (((-740 |#1|) $) 123 T ELT)) (-3958 (((-740 |#1|) $) 126 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3942 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3965 (((-1196 |#1| |#2|) $) 94 T ELT)) (-3950 (((-695) $) 129 T ELT)) (-3955 (((-85) $) 81 T ELT)) (-3954 ((|#2| $) 32 T ELT)) (-3948 (((-773) $) 73 T ELT) (($ (-485)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3956 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3128 (((-695)) 120 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3963 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2668 (($) 33 T CONST)) (-3058 (((-85) $ $) 14 T ELT)) (-3839 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3841 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-485) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1205 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -8 (-15 -3965 ((-1196 |#1| |#2|) $)) (-15 -3964 ($ (-1196 |#1| |#2|))) (-15 -3963 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1205)) -((-3965 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1205 *3 *4)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3967 (($ (-584 (-831))) 11 T ELT)) (-3966 (((-885) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT))) -(((-1206) (-13 (-1014) (-430 (-885)) (-10 -8 (-15 -3967 ($ (-584 (-831)))) (-15 -3966 ((-885) $))))) (T -1206)) -((-3967 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1206)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1206))))) -((-3968 (((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)) 16 T ELT) (((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|))) 13 T ELT))) -(((-1207 |#1|) (-10 -7 (-15 -3968 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-15 -3968 ((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)))) (-1130)) (T -1207)) -((-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485)) (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1130))))) -((-3970 (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 173 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 172 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3969 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85)) 83 T ELT)) (-3973 (((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3971 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 139 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 138 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3972 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 144 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 143 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3974 (((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1086 (-938 (-350 |#1|))) (-1086 |#1|)) 102 T ELT) (((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-350 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT))) -(((-1208 |#1| |#2| |#3|) (-10 -7 (-15 -3969 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3969 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85))) (-15 -3969 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3973 ((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-15 -3974 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-15 -3974 ((-858 (-938 (-350 |#1|))) (-858 |#1|))) (-15 -3974 ((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|)))) (-15 -3974 ((-1086 (-938 (-350 |#1|))) (-1086 |#1|))) (-15 -3974 ((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-13 (-756) (-258) (-120) (-934)) (-584 (-1091)) (-584 (-1091))) (T -1208)) -((-3974 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-1086 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3972 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))) -((-3977 (((-3 (-1180 (-350 (-485))) #1="failed") (-1180 |#1|) |#1|) 21 T ELT)) (-3975 (((-85) (-1180 |#1|)) 12 T ELT)) (-3976 (((-3 (-1180 (-485)) #1#) (-1180 |#1|)) 16 T ELT))) -(((-1209 |#1|) (-10 -7 (-15 -3975 ((-85) (-1180 |#1|))) (-15 -3976 ((-3 (-1180 (-485)) #1="failed") (-1180 |#1|))) (-15 -3977 ((-3 (-1180 (-350 (-485))) #1#) (-1180 |#1|) |#1|))) (-13 (-962) (-581 (-485)))) (T -1209)) -((-3977 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4)))) (-3976 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1209 *4))))) -((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) 9 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) 57 T ELT)) (-2996 (($) 46 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-3447 (((-633 $) $) 36 T ELT)) (-2011 (((-831) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3448 (($) 26 T CONST)) (-2401 (($ (-831)) 47 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (((-485) $) 16 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-485)) 18 T ELT)) (-3128 (((-695)) 10 T CONST)) (-1266 (((-85) $ $) 59 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2668 (($) 25 T CONST)) (-3058 (((-85) $ $) 31 T ELT)) (-3839 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3841 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1210 |#1|) (-13 (-146) (-320) (-554 (-485)) (-1067)) (-831)) (T -1210)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2793098 2793103 2793108 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2793083 2793088 2793093 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2793068 2793073 2793078 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2793053 2793058 2793063 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2792032 2792971 2793048 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2791247 2791426 2791645 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2782406 2784275 2786209 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2781794 2781947 2782136 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2781256 2781559 2781672 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2778816 2780718 2780921 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2775580 2777233 2777804 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2772837 2774567 2774621 "XPOLYC" 2774906 XPOLYC (NIL T T) -9 NIL 2775019 NIL) (-1202 2770356 2772341 2772544 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2766604 2769215 2769603 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2761451 2763084 2763138 "XFALG" 2765283 XFALG (NIL T T) -9 NIL 2766067 NIL) (-1199 2756607 2759340 2759382 "XF" 2760000 XF (NIL T) -9 NIL 2760396 NIL) (-1198 2756325 2756435 2756602 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2755552 2755674 2755878 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2753294 2755452 2755547 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2751875 2752670 2752712 "XALG" 2752717 XALG (NIL T) -9 NIL 2752826 NIL) (-1194 2745726 2750285 2750763 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2743969 2744971 2745292 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2743568 2743840 2743909 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2743055 2743358 2743451 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2742132 2742342 2742637 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2740428 2740891 2741353 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2739317 2739902 2739944 "VSPACE" 2740080 VSPACE (NIL T) -9 NIL 2740154 NIL) (-1187 2739188 2739221 2739312 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2739031 2739085 2739153 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2736014 2736809 2737546 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2727112 2729713 2731886 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2720689 2722580 2724159 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2719173 2719568 2719974 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2718000 2718281 2718597 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2713397 2717827 2717919 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2706742 2711070 2711113 "VECTCAT" 2712101 VECTCAT (NIL T) -9 NIL 2712685 NIL) (-1178 2706021 2706347 2706737 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2705515 2705757 2705877 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2705448 2705453 2705483 "UTYPE" 2705488 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2704435 2704611 2704872 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2702286 2702794 2703318 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2692168 2698138 2698180 "UTSCAT" 2699278 UTSCAT (NIL T) -9 NIL 2700035 NIL) (-1172 2690233 2691176 2692163 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2689907 2689956 2690087 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2681618 2688103 2688582 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2676180 2678453 2678496 "URAGG" 2680536 URAGG (NIL T) -9 NIL 2681261 NIL) (-1168 2674251 2675183 2676175 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2669958 2673227 2673689 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2662387 2669882 2669953 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2651038 2658525 2658586 "UPXSCCA" 2659154 UPXSCCA (NIL T T) -9 NIL 2659386 NIL) (-1164 2650759 2650861 2651033 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2639311 2646523 2646565 "UPXSCAT" 2647205 UPXSCAT (NIL T) -9 NIL 2647813 NIL) (-1162 2638824 2638909 2639086 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2630510 2638415 2638677 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2629405 2629675 2630025 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2622108 2625593 2625647 "UPSCAT" 2626716 UPSCAT (NIL T T) -9 NIL 2627480 NIL) (-1158 2621528 2621780 2622103 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2621202 2621251 2621382 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2605332 2614286 2614328 "UPOLYC" 2616406 UPOLYC (NIL T) -9 NIL 2617626 NIL) (-1155 2599387 2602235 2605327 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2598823 2598948 2599111 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2598457 2598544 2598683 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2597270 2597537 2597841 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2596603 2596733 2596918 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2596195 2596270 2596417 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2586959 2595961 2596089 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2586321 2586458 2586663 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2584922 2585769 2586045 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2584151 2584348 2584573 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2570961 2584075 2584146 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2550767 2564002 2564063 "ULSCCAT" 2564694 ULSCCAT (NIL T T) -9 NIL 2564981 NIL) (-1143 2550102 2550388 2550762 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2538474 2545608 2545650 "ULSCAT" 2546503 ULSCAT (NIL T) -9 NIL 2547233 NIL) (-1141 2537987 2538072 2538249 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2520104 2537486 2537727 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2519138 2519831 2519945 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2520056) (-1138 2518171 2518864 2518978 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2519089) (-1137 2517204 2517897 2518011 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2518122) (-1136 2516237 2516930 2517044 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2517155) (-1135 2514244 2515465 2515495 "UFD" 2515706 UFD (NIL) -9 NIL 2515819 NIL) (-1134 2514088 2514145 2514239 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2513340 2513547 2513763 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2511560 2512013 2512478 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2511285 2511525 2511555 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2511223 2511228 2511258 "TYPE" 2511263 TYPE (NIL) -9 NIL 2511270 NIL) (-1129 2510382 2510602 2510842 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2509560 2509991 2510226 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2507714 2508287 2508826 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2506748 2506984 2507220 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2495365 2499541 2499637 "TSETCAT" 2504852 TSETCAT (NIL T T T T) -9 NIL 2506356 NIL) (-1124 2491702 2493518 2495360 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2486094 2490928 2491210 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2481431 2482444 2483373 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2480928 2481003 2481166 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2479004 2479294 2479649 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2478488 2478637 2478667 "TRIGCAT" 2478880 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2478239 2478342 2478483 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2475294 2477345 2477626 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2474400 2475096 2475126 "TRANFUN" 2475161 TRANFUN (NIL) -9 NIL 2475227 NIL) (-1115 2473864 2474115 2474395 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2473701 2473739 2473800 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2473158 2473289 2473440 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2471899 2472556 2472792 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2471711 2471748 2471820 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2469925 2470571 2471000 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2468305 2468642 2468964 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2458366 2466066 2466122 "TBAGG" 2466439 TBAGG (NIL T T) -9 NIL 2466649 NIL) (-1107 2455902 2457091 2458361 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2455379 2455504 2455649 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2454889 2455209 2455299 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2454386 2454503 2454641 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2446890 2454314 2454381 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2442643 2443938 2445183 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2442012 2442171 2442352 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2439166 2439919 2440702 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2438940 2439130 2439161 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2437894 2438579 2438705 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2438891) (-1097 2437158 2437706 2437785 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2437845) (-1096 2433981 2435140 2435840 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2431664 2432347 2432981 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2427742 2428788 2429765 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2424841 2427397 2427626 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2424437 2424524 2424646 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2421061 2422535 2423354 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2414021 2420258 2420551 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2405707 2413612 2413874 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2404986 2405125 2405342 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2404670 2404735 2404846 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2395393 2404382 2404507 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2394123 2394421 2394776 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2393528 2393606 2393797 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2375680 2393027 2393268 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2375279 2375551 2375620 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2374615 2374896 2375036 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2369217 2370476 2371429 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2368749 2368849 2369013 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2363860 2365142 2366289 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2358318 2359789 2361100 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2351233 2353297 2355088 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2343402 2351171 2351228 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2338351 2343116 2343231 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2337938 2338021 2338165 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2337089 2337290 2337525 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2336829 2336887 2336980 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2330296 2335032 2335640 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2329472 2329677 2329908 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2328717 2329088 2329235 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2328205 2328447 2328477 "STEP" 2328571 STEP (NIL) -9 NIL 2328642 NIL) (-1066 2320699 2328123 2328200 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2315684 2319497 2319540 "STAGG" 2319967 STAGG (NIL T) -9 NIL 2320141 NIL) (-1064 2314142 2314850 2315679 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2312363 2313969 2314061 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2311643 2312182 2312212 "SRING" 2312217 SRING (NIL) -9 NIL 2312237 NIL) (-1061 2304558 2310181 2310620 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2298332 2299771 2301275 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2290970 2295627 2295657 "SRAGG" 2296956 SRAGG (NIL) -9 NIL 2297560 NIL) (-1058 2290267 2290587 2290965 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2284427 2289589 2290012 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2278439 2281780 2282531 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2274868 2275687 2276324 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2273843 2274148 2274178 "SPFCAT" 2274622 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2272780 2273032 2273296 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2263538 2265812 2265842 "SPADXPT" 2270479 SPADXPT (NIL) -9 NIL 2272603 NIL) (-1051 2263340 2263386 2263455 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2260996 2263304 2263335 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2252670 2254759 2254801 "SPACEC" 2259116 SPACEC (NIL T) -9 NIL 2260921 NIL) (-1048 2250499 2252617 2252665 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2249478 2249667 2249950 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2247882 2248215 2248626 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2247147 2247381 2247642 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2243327 2244287 2245282 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2239685 2240384 2241113 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2233726 2238988 2239084 "SNTSCAT" 2239089 SNTSCAT (NIL T T T T) -9 NIL 2239159 NIL) (-1041 2227547 2232367 2232757 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2221319 2227466 2227542 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2219751 2220082 2220480 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2211443 2216317 2216419 "SMATCAT" 2217762 SMATCAT (NIL NIL T T T) -9 NIL 2218310 NIL) (-1037 2209284 2210268 2211438 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2207901 2208753 2208796 "SMAGG" 2208881 SMAGG (NIL T) -9 NIL 2208945 NIL) (-1035 2205520 2207068 2207111 "SKAGG" 2207372 SKAGG (NIL T) -9 NIL 2207508 NIL) (-1034 2201566 2205340 2205451 "SINT" NIL SINT (NIL) -8 NIL NIL 2205492) (-1033 2201376 2201420 2201486 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2200451 2200683 2200951 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2199455 2199617 2199893 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2198801 2199141 2199264 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2198147 2198454 2198594 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2196258 2196750 2197256 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2189796 2196177 2196253 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2189299 2189536 2189566 "SGROUP" 2189659 SGROUP (NIL) -9 NIL 2189721 NIL) (-1025 2189189 2189221 2189294 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2188827 2188867 2188908 "SGPOPC" 2188913 SGPOPC (NIL T) -9 NIL 2189114 NIL) (-1023 2188361 2188638 2188744 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2185784 2186553 2187275 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2179924 2185186 2185282 "SFRTCAT" 2185287 SFRTCAT (NIL T T T T) -9 NIL 2185325 NIL) (-1020 2174316 2175429 2176556 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2168492 2169653 2170817 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2167464 2168366 2168487 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2163072 2163967 2164062 "SEXCAT" 2166675 SEXCAT (NIL T T T T T) -9 NIL 2167226 NIL) (-1016 2162045 2162999 2163067 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2160436 2161021 2161323 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2159959 2160144 2160174 "SETCAT" 2160291 SETCAT (NIL) -9 NIL 2160375 NIL) (-1013 2159791 2159855 2159954 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2156803 2158245 2158288 "SETAGG" 2159156 SETAGG (NIL T) -9 NIL 2159494 NIL) (-1011 2156409 2156561 2156798 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2153654 2156356 2156404 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2153120 2153430 2153530 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2152247 2152613 2152674 "SEGXCAT" 2152960 SEGXCAT (NIL T T) -9 NIL 2153080 NIL) (-1007 2151172 2151440 2151483 "SEGCAT" 2152005 SEGCAT (NIL T) -9 NIL 2152226 NIL) (-1006 2150852 2150917 2151030 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2149918 2150388 2150596 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2149496 2149775 2149851 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2148861 2148997 2149201 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2147927 2148674 2148856 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2147180 2147875 2147922 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2138665 2147047 2147175 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2137525 2137815 2138132 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2136831 2137043 2137231 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2136181 2136338 2136514 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2135754 2135985 2136013 "SASTCAT" 2136018 SASTCAT (NIL) -9 NIL 2136031 NIL) (-995 2135221 2135646 2135720 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2134824 2134865 2135036 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2134455 2134496 2134653 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2127536 2134372 2134450 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2126186 2126515 2126911 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2124947 2125308 2125608 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2124571 2124792 2124873 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2122031 2122665 2123118 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2121870 2121903 2121971 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2121361 2121664 2121755 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2116989 2117857 2118768 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2106063 2111325 2111419 "RSETCAT" 2115475 RSETCAT (NIL T T T T) -9 NIL 2116563 NIL) (-983 2104601 2105243 2106058 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2098375 2099820 2101327 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2096257 2096814 2096886 "RRCC" 2097959 RRCC (NIL T T) -9 NIL 2098300 NIL) (-980 2095782 2095981 2096252 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2095252 2095562 2095660 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2067804 2078517 2078581 "RPOLCAT" 2089055 RPOLCAT (NIL T T T) -9 NIL 2092200 NIL) (-977 2061903 2064726 2067799 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2058070 2061651 2061789 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2056398 2057137 2057393 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2052041 2054853 2054881 "RNS" 2055143 RNS (NIL) -9 NIL 2055395 NIL) (-973 2050944 2051431 2051968 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2050062 2050463 2050663 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2049200 2049762 2049790 "RNG" 2049850 RNG (NIL) -9 NIL 2049904 NIL) (-970 2049089 2049123 2049195 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2048351 2048856 2048896 "RMODULE" 2048901 RMODULE (NIL T) -9 NIL 2048927 NIL) (-968 2047290 2047396 2047726 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2044241 2046880 2047173 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2036989 2039375 2039487 "RMATCAT" 2042792 RMATCAT (NIL NIL NIL T T T) -9 NIL 2043758 NIL) (-965 2036506 2036685 2036984 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2036074 2036285 2036326 "RLINSET" 2036387 RLINSET (NIL T) -9 NIL 2036431 NIL) (-963 2035719 2035800 2035926 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2034565 2035296 2035324 "RING" 2035379 RING (NIL) -9 NIL 2035471 NIL) (-961 2034410 2034466 2034560 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2033464 2033731 2033987 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2024688 2033092 2033293 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2023913 2024424 2024463 "RGBCSPC" 2024520 RGBCSPC (NIL T) -9 NIL 2024571 NIL) (-957 2022947 2023433 2023472 "RGBCMDL" 2023700 RGBCMDL (NIL T) -9 NIL 2023814 NIL) (-956 2022659 2022728 2022829 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2022422 2022463 2022558 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2020846 2021276 2021656 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2018433 2019101 2019769 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2017983 2018081 2018241 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2017605 2017703 2017744 "RETRACT" 2017875 RETRACT (NIL T) -9 NIL 2017962 NIL) (-950 2017485 2017516 2017600 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2017087 2017359 2017426 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2015567 2016458 2016655 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2015258 2015319 2015415 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2015001 2015042 2015147 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2014736 2014777 2014886 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2009807 2011258 2012473 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2006906 2007664 2008472 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2004875 2005497 2006097 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 1997803 2003426 2003862 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 1997115 1997395 1997544 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 1996600 1996715 1996880 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 1992193 1996003 1996224 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 1991425 1991624 1991837 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 1988715 1989553 1990435 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 1985297 1986333 1987392 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 1985133 1985186 1985214 "REAL" 1985219 REAL (NIL) -9 NIL 1985254 NIL) (-933 1984623 1984927 1985018 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 1984103 1984181 1984386 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 1983336 1983528 1983739 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1982224 1982521 1982888 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1980491 1980961 1981494 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1979413 1979690 1980077 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1978240 1978549 1978968 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1971588 1975100 1975128 "RCFIELD" 1976405 RCFIELD (NIL) -9 NIL 1977135 NIL) (-925 1970206 1970818 1971515 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1966978 1968310 1968351 "RCAGG" 1969405 RCAGG (NIL T) -9 NIL 1969867 NIL) (-923 1966705 1966815 1966973 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1966150 1966279 1966440 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1965767 1965846 1965965 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1965182 1965332 1965482 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1964964 1965014 1965085 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1957406 1964082 1964390 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1947108 1957273 1957401 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1946742 1946835 1946863 "RADCAT" 1947020 RADCAT (NIL) -9 NIL NIL NIL) (-915 1946580 1946640 1946737 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1944744 1946411 1946500 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1944425 1944474 1944601 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1936712 1940796 1940836 "QUATCAT" 1941614 QUATCAT (NIL T) -9 NIL 1942378 NIL) (-911 1933962 1935242 1936618 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1929802 1933912 1933957 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1927216 1928817 1928858 "QUAGG" 1929233 QUAGG (NIL T) -9 NIL 1929409 NIL) (-908 1926818 1927090 1927157 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1925824 1926454 1926617 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1925505 1925554 1925681 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1915105 1921274 1921314 "QFCAT" 1921972 QFCAT (NIL T) -9 NIL 1922965 NIL) (-904 1911989 1913428 1915011 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1911535 1911669 1911799 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1905731 1906892 1908054 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1905150 1905330 1905562 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1902972 1903500 1903923 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1901871 1902113 1902430 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1900232 1900430 1900783 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1895988 1897204 1897245 "PTRANFN" 1899129 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1894635 1894980 1895301 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1894328 1894391 1894498 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1888644 1893087 1893127 "PTCAT" 1893419 PTCAT (NIL T) -9 NIL 1893572 NIL) (-893 1888337 1888378 1888502 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1887216 1887532 1887866 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1876095 1878656 1880965 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1869315 1871878 1871972 "PSETCAT" 1874946 PSETCAT (NIL T T T T) -9 NIL 1875755 NIL) (-889 1867765 1868499 1869310 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1867084 1867279 1867307 "PSCURVE" 1867575 PSCURVE (NIL) -9 NIL 1867742 NIL) (-887 1862686 1864506 1864570 "PSCAT" 1865405 PSCAT (NIL T T T) -9 NIL 1865644 NIL) (-886 1862000 1862282 1862681 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1860397 1861312 1861575 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1859888 1860191 1860282 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1850908 1853330 1855518 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1848678 1850189 1850229 "PRQAGG" 1850412 PRQAGG (NIL T) -9 NIL 1850515 NIL) (-881 1847851 1848297 1848325 "PROPLOG" 1848464 PROPLOG (NIL) -9 NIL 1848578 NIL) (-880 1847526 1847589 1847712 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1846962 1847101 1847273 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1845210 1845973 1846270 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1844762 1844894 1845022 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1839203 1843702 1844522 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1839032 1839070 1839129 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1838471 1838611 1838762 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1836939 1837358 1837824 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1836656 1836717 1836745 "PRIMCAT" 1836869 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1835827 1836023 1836251 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1831988 1835777 1835822 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1831687 1831749 1831860 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1828823 1831336 1831569 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1828274 1828431 1828459 "PPCURVE" 1828664 PPCURVE (NIL) -9 NIL 1828800 NIL) (-866 1827887 1828132 1828215 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1825643 1826064 1826656 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1825086 1825150 1825383 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1821806 1822292 1822903 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1807397 1813526 1813590 "POLYCAT" 1817075 POLYCAT (NIL T T T) -9 NIL 1818952 NIL) (-861 1802907 1805054 1807392 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1802564 1802638 1802757 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1802257 1802320 1802427 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1795620 1801990 1802149 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1794507 1794770 1795046 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1793111 1793424 1793754 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1788554 1793061 1793106 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1787042 1787453 1787828 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1785799 1786108 1786504 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1785470 1785554 1785671 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1785049 1785124 1785298 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1784535 1784631 1784791 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1784007 1784127 1784281 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1782902 1783120 1783497 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1782513 1782598 1782750 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1782064 1782146 1782327 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1781756 1781837 1781950 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1781269 1781344 1781552 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1780617 1780745 1780947 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1779979 1780113 1780276 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1779283 1779465 1779646 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1779006 1779080 1779174 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1775574 1776763 1777679 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1774658 1774859 1775094 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1770223 1771607 1772749 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1750144 1755031 1759878 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1749884 1749937 1750040 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1749325 1749459 1749639 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1747334 1748555 1748583 "PID" 1748780 PID (NIL) -9 NIL 1748907 NIL) (-832 1747122 1747165 1747240 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1746309 1746969 1747056 "PI" NIL PI (NIL) -8 NIL NIL 1747096) (-830 1745761 1745912 1746088 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1742089 1743047 1743952 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1740453 1740742 1741108 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1739895 1740010 1740171 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1736436 1738764 1739117 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1735042 1735322 1735647 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1733807 1734061 1734409 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1732517 1732744 1733096 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1729527 1731087 1731115 "PFECAT" 1731708 PFECAT (NIL) -9 NIL 1732085 NIL) (-821 1729150 1729315 1729522 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1727974 1728256 1728557 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1726156 1726543 1726973 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1722126 1726082 1726151 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1718029 1719176 1720043 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1715961 1717050 1717091 "PERMCAT" 1717490 PERMCAT (NIL T) -9 NIL 1717787 NIL) (-815 1715657 1715704 1715827 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1712106 1713787 1714432 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1710132 1711861 1711982 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1709001 1709264 1709305 "PDSPC" 1709838 PDSPC (NIL T) -9 NIL 1710083 NIL) (-811 1708368 1708634 1708996 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1707003 1707996 1708037 "PDRING" 1708042 PDRING (NIL T) -9 NIL 1708069 NIL) (-809 1705713 1706502 1706555 "PDMOD" 1706560 PDMOD (NIL T T) -9 NIL 1706663 NIL) (-808 1704806 1705018 1705267 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1704411 1704478 1704532 "PDDOM" 1704697 PDDOM (NIL T T) -9 NIL 1704777 NIL) (-806 1704263 1704299 1704406 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1704049 1704088 1704177 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1702366 1703120 1703419 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1702055 1702118 1702227 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1700193 1700623 1701074 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1693813 1695642 1696934 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1693444 1693517 1693649 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1691146 1691826 1692307 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1689350 1689778 1690181 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1688796 1689044 1689085 "PATMAB" 1689192 PATMAB (NIL T) -9 NIL 1689275 NIL) (-796 1687443 1687847 1688104 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1686981 1687112 1687153 "PATAB" 1687158 PATAB (NIL T) -9 NIL 1687330 NIL) (-794 1685524 1685961 1686384 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1685202 1685277 1685379 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1684891 1684954 1685063 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1684696 1684742 1684809 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1684374 1684449 1684551 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1684063 1684126 1684235 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1683754 1683824 1683921 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1683443 1683506 1683615 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1682604 1682983 1683162 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1682211 1682309 1682428 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1681179 1681604 1681823 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1679844 1680498 1680858 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1672934 1679248 1679442 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1665355 1672432 1672616 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1662080 1663995 1664035 "PADICCT" 1664616 PADICCT (NIL NIL) -9 NIL 1664898 NIL) (-779 1660070 1662030 1662075 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1659232 1659442 1659708 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1658574 1658717 1658921 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1656955 1657982 1658260 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1656479 1656738 1656835 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1655538 1656216 1656388 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1645960 1648829 1651028 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1645352 1645666 1645792 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1644629 1644824 1644852 "OUTBCON" 1645170 OUTBCON (NIL) -9 NIL 1645336 NIL) (-770 1644337 1644467 1644624 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1643718 1643863 1644024 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1643089 1643516 1643605 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1642504 1642919 1642947 "OSGROUP" 1642952 OSGROUP (NIL) -9 NIL 1642974 NIL) (-766 1641468 1641729 1642014 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1638737 1641343 1641463 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1635878 1638488 1638614 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1633896 1634424 1634984 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1627238 1629778 1629818 "OREPCAT" 1632139 OREPCAT (NIL T) -9 NIL 1633241 NIL) (-761 1625264 1626198 1627233 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1624461 1624732 1624760 "ORDTYPE" 1625065 ORDTYPE (NIL) -9 NIL 1625223 NIL) (-759 1623995 1624206 1624456 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1623457 1623833 1623990 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1622951 1623314 1623342 "ORDSET" 1623347 ORDSET (NIL) -9 NIL 1623369 NIL) (-756 1621516 1622538 1622566 "ORDRING" 1622571 ORDRING (NIL) -9 NIL 1622599 NIL) (-755 1620764 1621321 1621349 "ORDMON" 1621354 ORDMON (NIL) -9 NIL 1621375 NIL) (-754 1620068 1620230 1620422 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1619279 1619787 1619815 "ORDFIN" 1619880 ORDFIN (NIL) -9 NIL 1619954 NIL) (-752 1618673 1618812 1618998 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1615348 1617641 1618047 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1614755 1615110 1615215 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1614563 1614608 1614674 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1613864 1614140 1614181 "OPERCAT" 1614392 OPERCAT (NIL T) -9 NIL 1614488 NIL) (-747 1613676 1613743 1613859 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1611042 1612478 1612974 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1610463 1610590 1610764 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1607364 1609602 1609968 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1604248 1606757 1606797 "OMSAGG" 1606858 OMSAGG (NIL T) -9 NIL 1606922 NIL) (-742 1602660 1603919 1604087 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1600856 1602097 1602125 "OINTDOM" 1602130 OINTDOM (NIL) -9 NIL 1602151 NIL) (-740 1598286 1599858 1600187 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1597540 1598236 1598281 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1594742 1597381 1597535 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1586279 1594613 1594737 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1579788 1586170 1586274 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1578760 1578997 1579270 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1576394 1577064 1577768 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1572171 1573131 1574154 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1571679 1571767 1571961 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1569128 1569710 1570383 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1566523 1567031 1567627 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1563520 1564059 1564705 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1562875 1562983 1563241 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1562033 1562158 1562379 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1558317 1559113 1560026 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1557757 1557852 1558074 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1557438 1557487 1557614 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1554041 1557237 1557356 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1553201 1553823 1553851 "OCAMON" 1553856 OCAMON (NIL) -9 NIL 1553877 NIL) (-721 1547413 1550227 1550267 "OC" 1551362 OC (NIL T) -9 NIL 1552218 NIL) (-720 1545413 1546339 1547319 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1544829 1545247 1545275 "OASGP" 1545280 OASGP (NIL) -9 NIL 1545300 NIL) (-718 1543892 1544541 1544569 "OAMONS" 1544609 OAMONS (NIL) -9 NIL 1544652 NIL) (-717 1543037 1543618 1543646 "OAMON" 1543703 OAMON (NIL) -9 NIL 1543754 NIL) (-716 1542933 1542965 1543032 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1541684 1542458 1542486 "OAGROUP" 1542632 OAGROUP (NIL) -9 NIL 1542724 NIL) (-714 1541475 1541562 1541679 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1541215 1541271 1541359 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1536277 1537840 1539367 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1532972 1534006 1535041 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1532082 1532315 1532533 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1520943 1523971 1526419 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1515085 1520347 1520441 "NTSCAT" 1520446 NTSCAT (NIL T T T T) -9 NIL 1520484 NIL) (-707 1514426 1514605 1514798 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1514119 1514182 1514289 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1501786 1511739 1512549 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1490795 1501651 1501781 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1489515 1489840 1490197 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1488351 1488615 1488973 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1487518 1487651 1487867 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1485836 1486155 1486561 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1485549 1485583 1485707 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1485368 1485403 1485472 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1485144 1485334 1485363 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1484708 1484775 1484952 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1482994 1484071 1484326 "NNI" NIL NNI (NIL) -8 NIL NIL 1484673) (-694 1481722 1482059 1482423 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1480699 1480951 1481253 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1479786 1480351 1480392 "NETCLT" 1480563 NETCLT (NIL T) -9 NIL 1480644 NIL) (-691 1478690 1478957 1479238 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1478489 1478532 1478607 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1477020 1477408 1477828 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1475653 1476619 1476647 "NASRING" 1476757 NASRING (NIL) -9 NIL 1476837 NIL) (-687 1475498 1475554 1475648 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1474427 1475105 1475133 "NARNG" 1475250 NARNG (NIL) -9 NIL 1475341 NIL) (-685 1474203 1474288 1474422 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1472969 1473723 1473763 "NAALG" 1473842 NAALG (NIL T) -9 NIL 1473903 NIL) (-683 1472839 1472874 1472964 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1467818 1469003 1470189 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1467213 1467300 1467484 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1459223 1463717 1463769 "MTSCAT" 1464829 MTSCAT (NIL T T) -9 NIL 1465343 NIL) (-679 1458989 1459049 1459141 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1458815 1458854 1458914 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1456404 1458347 1458388 "MSETAGG" 1458393 MSETAGG (NIL T) -9 NIL 1458427 NIL) (-676 1452774 1455447 1455768 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1449048 1450871 1451611 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1448685 1448758 1448887 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1448338 1448379 1448523 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1446203 1446540 1446971 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1439601 1446102 1446198 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1439126 1439167 1439375 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1438685 1438734 1438917 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1437959 1438052 1438271 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1436576 1436937 1437327 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1436097 1436164 1436203 "MONOPC" 1436263 MONOPC (NIL T) -9 NIL 1436482 NIL) (-665 1435548 1435884 1436012 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1434690 1435069 1435097 "MONOID" 1435315 MONOID (NIL) -9 NIL 1435459 NIL) (-663 1434349 1434499 1434685 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1423287 1430157 1430216 "MONOGEN" 1430890 MONOGEN (NIL T T) -9 NIL 1431346 NIL) (-661 1421299 1422185 1423168 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1420013 1420557 1420585 "MONADWU" 1420976 MONADWU (NIL) -9 NIL 1421211 NIL) (-659 1419561 1419761 1420008 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1418838 1419139 1419167 "MONAD" 1419374 MONAD (NIL) -9 NIL 1419486 NIL) (-657 1418605 1418701 1418833 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1416995 1417765 1418044 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1416129 1416656 1416696 "MODULE" 1416701 MODULE (NIL T) -9 NIL 1416739 NIL) (-654 1415808 1415934 1416124 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1413519 1414405 1414719 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1410698 1412115 1412628 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1409332 1409906 1410182 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1398551 1407997 1408410 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1395507 1397551 1397820 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1394591 1394958 1395148 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1394160 1394209 1394388 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1391985 1392981 1393021 "MLO" 1393438 MLO (NIL T) -9 NIL 1393678 NIL) (-645 1389866 1390393 1390988 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1389334 1389430 1389584 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1389004 1389080 1389203 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1388216 1388402 1388630 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1387709 1387825 1387981 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1387081 1387195 1387380 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1386108 1386381 1386658 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1385541 1385629 1385800 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1382699 1383578 1384457 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1381366 1381714 1382067 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1378750 1380471 1380512 "MDAGG" 1380769 MDAGG (NIL T) -9 NIL 1380914 NIL) (-634 1378024 1378188 1378388 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1377102 1377388 1377618 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1375199 1375776 1376337 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1370997 1374789 1375036 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1367346 1368115 1368849 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1366099 1366268 1366597 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1355622 1359186 1359262 "MATCAT" 1364250 MATCAT (NIL T T T) -9 NIL 1365696 NIL) (-627 1352903 1354209 1355617 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1351304 1351664 1352048 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1350437 1350634 1350856 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1349188 1349514 1349841 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1348350 1348752 1348928 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1348019 1348083 1348206 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1347667 1347740 1347854 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1347202 1347317 1347459 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1345411 1346179 1346480 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1344905 1345207 1345297 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1339186 1343220 1343261 "LZSTAGG" 1344038 LZSTAGG (NIL T) -9 NIL 1344328 NIL) (-616 1336535 1337847 1339181 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1333922 1334888 1335371 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1333503 1333782 1333856 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1325772 1333364 1333498 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1325135 1325280 1325508 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1322619 1323317 1324029 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1320835 1321158 1321592 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1314234 1319885 1319926 "LSAGG" 1319988 LSAGG (NIL T) -9 NIL 1320066 NIL) (-608 1311928 1313027 1314229 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1309408 1311277 1311526 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1309075 1309166 1309289 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1308746 1308825 1308853 "LOGIC" 1308964 LOGIC (NIL) -9 NIL 1309046 NIL) (-604 1308641 1308670 1308741 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1307960 1308118 1308311 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1306745 1306994 1307345 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1302567 1305366 1305406 "LODOCAT" 1305838 LODOCAT (NIL T) -9 NIL 1306049 NIL) (-600 1302360 1302436 1302562 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1299360 1302237 1302355 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1296458 1299310 1299355 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1293545 1296388 1296453 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1292598 1292773 1293075 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1290730 1291860 1292113 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1286605 1288889 1288930 "LNAGG" 1289789 LNAGG (NIL T) -9 NIL 1290227 NIL) (-593 1285992 1286259 1286600 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1282564 1283505 1284142 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1281826 1282331 1282371 "LMODULE" 1282376 LMODULE (NIL T) -9 NIL 1282402 NIL) (-590 1279295 1281562 1281685 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1278863 1279074 1279115 "LLINSET" 1279176 LLINSET (NIL T) -9 NIL 1279220 NIL) (-588 1278539 1278799 1278858 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1278138 1278218 1278357 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1276589 1276937 1277336 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1275760 1275956 1276184 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1269073 1275016 1275270 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1268650 1268883 1268924 "LINSET" 1268929 LINSET (NIL T) -9 NIL 1268962 NIL) (-582 1267551 1268273 1268440 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1265817 1266572 1266612 "LINEXP" 1267098 LINEXP (NIL T) -9 NIL 1267371 NIL) (-580 1264439 1265426 1265607 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1263266 1263538 1263840 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1262479 1263068 1263178 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1260029 1260751 1261501 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1258659 1258956 1259347 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1257452 1258054 1258094 "LIECAT" 1258234 LIECAT (NIL T) -9 NIL 1258385 NIL) (-574 1257326 1257359 1257447 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1251582 1257016 1257244 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1243222 1251258 1251414 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1239674 1240623 1241558 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1238298 1239206 1239234 "LFCAT" 1239441 LFCAT (NIL) -9 NIL 1239580 NIL) (-569 1236537 1236867 1237212 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1234054 1234719 1235400 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1231066 1232044 1232547 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1230557 1230860 1230951 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1229264 1229588 1229988 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1228530 1228615 1228841 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1223533 1227098 1227634 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1223158 1223208 1223368 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1221929 1222702 1222742 "LALG" 1222803 LALG (NIL T) -9 NIL 1222861 NIL) (-560 1221712 1221789 1221924 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1219565 1220980 1221231 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1219394 1219424 1219465 "KVTFROM" 1219527 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1218210 1218925 1219114 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1218039 1218069 1218110 "KRCFROM" 1218172 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1217141 1217338 1217633 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1216970 1217000 1217041 "KONVERT" 1217103 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1216799 1216829 1216870 "KOERCE" 1216932 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1216369 1216462 1216594 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1214422 1215316 1215688 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1207351 1212173 1212227 "KDAGG" 1212603 KDAGG (NIL T T) -9 NIL 1212843 NIL) (-549 1207009 1207144 1207346 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1200313 1206801 1206947 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1199963 1200245 1200308 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1198933 1199432 1199681 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1198059 1198508 1198713 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1196923 1197415 1197715 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1196205 1196604 1196765 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1195915 1196151 1196200 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1190170 1195605 1195833 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1189588 1189921 1190041 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1186314 1187774 1187828 "IXAGG" 1188743 IXAGG (NIL T T) -9 NIL 1189203 NIL) (-538 1185599 1185930 1186309 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1184566 1184841 1185104 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1183228 1183435 1183728 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1182179 1182401 1182684 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1181854 1181917 1182040 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1181116 1181488 1181662 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1179092 1180392 1180666 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1168640 1174409 1175566 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1167885 1168037 1168273 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1167376 1167679 1167770 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1166669 1166760 1166973 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1165801 1166026 1166266 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1164214 1164595 1165023 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1163999 1164043 1164119 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1162849 1163146 1163441 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1162122 1162473 1162624 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1161325 1161456 1161669 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1159480 1159977 1160521 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1156561 1157829 1158518 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1156386 1156426 1156486 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1152384 1156312 1156381 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1150387 1152323 1152379 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1149758 1150057 1150187 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1149211 1149499 1149631 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1148292 1148917 1149043 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1147702 1148196 1148224 "IOBCON" 1148229 IOBCON (NIL) -9 NIL 1148250 NIL) (-512 1147273 1147337 1147519 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1139317 1141688 1144013 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1136428 1137211 1138075 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1136105 1136202 1136319 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1133547 1136041 1136100 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1131659 1132188 1132755 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1131161 1131275 1131415 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1129545 1129951 1130413 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1127324 1127918 1128529 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1124697 1125307 1126027 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1124101 1124259 1124467 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1123620 1123706 1123894 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1121825 1122346 1122803 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1114907 1116560 1118289 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1114273 1114435 1114608 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1112146 1112610 1113154 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1110272 1111222 1111250 "INTDOM" 1111549 INTDOM (NIL) -9 NIL 1111754 NIL) (-495 1109825 1110027 1110267 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1105632 1108104 1108158 "INTCAT" 1108954 INTCAT (NIL T) -9 NIL 1109270 NIL) (-493 1105197 1105317 1105444 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1104037 1104209 1104515 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1103610 1103706 1103863 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1096093 1103517 1103605 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1095391 1095946 1096011 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096045) (-488 1094688 1095243 1095308 "INT64" NIL INT64 (NIL) -8 NIL NIL 1095342) (-487 1093985 1094540 1094605 "INT32" NIL INT32 (NIL) -8 NIL NIL 1094639) (-486 1093282 1093837 1093902 "INT16" NIL INT16 (NIL) -8 NIL NIL 1093936) (-485 1089745 1093201 1093277 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1083802 1087285 1087313 "INS" 1088243 INS (NIL) -9 NIL 1088902 NIL) (-483 1081864 1082782 1083729 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1080923 1081146 1081421 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1080137 1080278 1080475 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1079127 1079268 1079505 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1078279 1078443 1078703 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1077559 1077674 1077862 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1076298 1076567 1076891 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1075578 1075719 1075902 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1075241 1075313 1075411 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1072319 1073805 1074328 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1071918 1072025 1072139 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1071074 1071719 1071820 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1069924 1070192 1070513 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1068914 1069854 1069919 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1068539 1068619 1068736 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1067453 1067998 1068202 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1063548 1064603 1065546 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1062402 1062725 1062753 "INBCON" 1063266 INBCON (NIL) -9 NIL 1063532 NIL) (-465 1061856 1062121 1062397 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1061350 1061652 1061742 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1060807 1061116 1061221 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1059646 1059787 1060104 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1058069 1058338 1058677 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1052912 1058000 1058064 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1052292 1052626 1052741 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1047384 1051730 1051916 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1046414 1047306 1047379 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1045986 1046063 1046117 "IEVALAB" 1046324 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1045741 1045821 1045981 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1045126 1045353 1045510 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1044119 1045046 1045121 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1043182 1044039 1044114 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1042264 1042911 1043048 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1040627 1041198 1041249 "IDPC" 1041755 IDPC (NIL T T) -9 NIL 1042068 NIL) (-449 1039915 1040549 1040622 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1039085 1039837 1039910 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1038778 1038991 1039051 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1038482 1038522 1038561 "IDEMOPC" 1038566 IDEMOPC (NIL T) -9 NIL 1038703 NIL) (-445 1035553 1036434 1037326 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1029179 1030456 1031495 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1028441 1028571 1028770 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1027614 1028113 1028251 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1026003 1026334 1026725 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1022040 1025959 1025998 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1019298 1019922 1020617 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1017524 1018004 1018537 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1015398 1017430 1017519 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1011540 1015336 1015393 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1005119 1010504 1010972 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1004687 1004750 1004923 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1004179 1004328 1004356 "HYPCAT" 1004563 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1003835 1003988 1004174 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1003448 1003693 1003776 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1003281 1003330 1003371 "HOMOTOP" 1003376 HOMOTOP (NIL T) -9 NIL 1003409 NIL) (-429 1001701 1002513 1002554 "HOAGG" 1002638 HOAGG (NIL T) -9 NIL 1002960 NIL) (-428 1001328 1001475 1001696 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 994528 1001053 1001201 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 993463 993721 993984 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 992398 993328 993458 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 990656 992231 992319 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 989971 990323 990456 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 983523 989904 989966 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 976662 983259 983410 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 976115 976272 976435 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 968615 976032 976110 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 968106 968409 968500 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 965656 967893 968072 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 961342 965539 965651 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 953819 961239 961337 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 945756 953188 953443 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 944780 945289 945317 "GROUP" 945520 GROUP (NIL) -9 NIL 945654 NIL) (-412 944323 944524 944775 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 942995 943334 943721 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 941817 942174 942225 "GRMOD" 942754 GRMOD (NIL T T) -9 NIL 942920 NIL) (-409 941636 941684 941812 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 937759 938970 939970 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 936481 936805 937120 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 936034 936162 936303 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 935107 935606 935657 "GRALG" 935810 GRALG (NIL T T) -9 NIL 935900 NIL) (-404 934826 934927 935102 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 931845 934517 934684 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 931258 931321 931578 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 927112 928008 928533 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 926287 926489 926727 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 921290 922217 923236 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 921038 921095 921184 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 920520 920609 920774 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 920029 920070 920283 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 918830 919113 919417 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 912105 918520 918681 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 901888 906895 907999 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 899940 901043 901071 "GCDDOM" 901326 GCDDOM (NIL) -9 NIL 901483 NIL) (-391 899563 899720 899935 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 890356 892826 895214 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 888491 888816 889234 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 887432 887621 887888 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 886303 886510 886814 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 885766 885908 886056 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 884378 884726 885039 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 882923 883244 883566 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 880549 880905 881310 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 873801 875462 877040 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 873453 873674 873742 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 873077 873298 873379 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 871174 871857 872317 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 869767 870074 870466 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 868422 868781 869105 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 867725 867849 868036 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 866699 866965 867312 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 864357 864887 865369 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 863940 864000 864169 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 862240 863154 863457 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 861388 861522 861745 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 860559 860720 860947 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 856793 859454 859495 "FSAGG" 859865 FSAGG (NIL T) -9 NIL 860126 NIL) (-368 855147 855906 856698 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 853103 853399 853943 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 852150 852332 852632 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 851831 851880 852007 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 831987 841488 841529 "FS" 845399 FS (NIL T) -9 NIL 847677 NIL) (-363 824218 827711 831690 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 823752 823879 824031 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 818275 821433 821473 "FRNAALG" 822793 FRNAALG (NIL T) -9 NIL 823391 NIL) (-360 815016 816267 817525 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 814697 814746 814873 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 813184 813741 814035 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 812470 812563 812850 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 810304 811070 811386 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 809413 809856 809897 "FRETRCT" 809902 FRETRCT (NIL T) -9 NIL 810073 NIL) (-354 808786 809064 809408 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 805530 807050 807109 "FRAMALG" 807991 FRAMALG (NIL T T) -9 NIL 808283 NIL) (-352 804126 804677 805307 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 803819 803882 803989 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 797460 803624 803814 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 797153 797216 797323 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 789461 794032 795360 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 783239 786742 786770 "FPS" 787889 FPS (NIL) -9 NIL 788445 NIL) (-346 782796 782929 783093 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 779606 781649 781677 "FPC" 781902 FPC (NIL) -9 NIL 782044 NIL) (-344 779452 779504 779601 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 778229 778938 778979 "FPATMAB" 778984 FPATMAB (NIL T) -9 NIL 779136 NIL) (-342 776659 777255 777602 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 776234 776292 776465 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 774737 775632 775806 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 773352 773857 773885 "FNCAT" 774342 FNCAT (NIL) -9 NIL 774599 NIL) (-338 772809 773319 773347 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 771396 772758 772804 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 767984 769342 769383 "FMONCAT" 770600 FMONCAT (NIL T) -9 NIL 771204 NIL) (-335 764842 765920 765973 "FMCAT" 767154 FMCAT (NIL T T) -9 NIL 767646 NIL) (-334 763542 764665 764764 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 762590 763390 763537 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 760777 761229 761723 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 758712 759248 759826 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 752098 757049 757663 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 750579 751680 751720 "FLINEXP" 751725 FLINEXP (NIL T) -9 NIL 751818 NIL) (-328 749988 750247 750574 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 749237 749396 749610 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 746120 747199 747251 "FLALG" 748478 FLALG (NIL T T) -9 NIL 748945 NIL) (-325 745291 745452 745679 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 739016 742705 742746 "FLAGG" 743985 FLAGG (NIL T) -9 NIL 744633 NIL) (-323 738124 738528 739011 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 734685 735949 736008 "FINRALG" 737136 FINRALG (NIL T T) -9 NIL 737644 NIL) (-321 734076 734341 734680 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 733374 733670 733698 "FINITE" 733894 FINITE (NIL) -9 NIL 734001 NIL) (-319 733282 733308 733369 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 730275 731543 731584 "FINAGG" 732489 FINAGG (NIL T) -9 NIL 732943 NIL) (-317 729306 729771 730270 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 721267 723858 723898 "FINAALG" 727550 FINAALG (NIL T) -9 NIL 728988 NIL) (-315 717534 718779 719902 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 716086 716505 716559 "FILECAT" 717243 FILECAT (NIL T T) -9 NIL 717459 NIL) (-313 715437 715911 716014 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 712685 714563 714591 "FIELD" 714631 FIELD (NIL) -9 NIL 714711 NIL) (-311 711710 712171 712680 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 709714 710660 711006 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 708957 709138 709357 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 704227 708895 708952 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 703889 703956 704091 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 703429 703471 703680 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 700109 700986 701763 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 695393 700041 700104 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 690072 694882 695072 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 684553 689353 689611 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 678760 684004 684215 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 677783 677993 678308 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 673223 675928 675956 "FFIELDC" 676575 FFIELDC (NIL) -9 NIL 676950 NIL) (-298 672292 672732 673218 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 671907 671965 672089 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 670051 670574 671091 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 665145 669850 669951 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 660245 664934 665041 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 654911 660036 660144 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 654365 654414 654649 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 632940 643974 644060 "FFCAT" 649210 FFCAT (NIL T T T) -9 NIL 650646 NIL) (-290 629180 630406 631712 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 624023 629111 629175 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 622915 623384 623425 "FEVALAB" 623509 FEVALAB (NIL T) -9 NIL 623770 NIL) (-287 622320 622572 622910 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 619147 620058 620173 "FDIVCAT" 621740 FDIVCAT (NIL T T T T) -9 NIL 622176 NIL) (-285 618941 618973 619142 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 618248 618341 618618 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 616734 617732 617935 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 615827 616211 616413 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 614949 615438 615578 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 606536 611179 611219 "FAXF" 613020 FAXF (NIL T) -9 NIL 613710 NIL) (-279 604452 605256 606071 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 599601 603974 604148 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 594059 596482 596534 "FAMR" 597545 FAMR (NIL T T) -9 NIL 598004 NIL) (-276 593258 593623 594054 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 592279 593200 593253 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 589873 590752 590805 "FAMONC" 591746 FAMONC (NIL T T) -9 NIL 592131 NIL) (-273 588429 589731 589868 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 586509 586870 587272 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 585786 585983 586205 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 577646 585233 585432 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 575665 576235 576821 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 572567 573209 573929 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 567724 568431 569236 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 567413 567476 567585 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 552206 566462 566888 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 542733 551526 551814 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 542227 542529 542619 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 542003 542193 542222 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 541692 541760 541873 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 541209 541351 541392 "EVALAB" 541562 EVALAB (NIL T) -9 NIL 541666 NIL) (-259 540837 540983 541204 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 537880 539475 539503 "EUCDOM" 540057 EUCDOM (NIL) -9 NIL 540406 NIL) (-257 536807 537300 537875 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 536532 536588 536688 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 536220 536284 536393 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 529991 531891 531919 "ES" 534661 ES (NIL) -9 NIL 536045 NIL) (-253 526506 528038 529830 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 525854 526007 526183 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 518360 525784 525849 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 518049 518112 518221 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 511676 514801 516234 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 507979 509075 510168 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 506808 507158 507463 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 505693 506424 506452 "ENTIRER" 506457 ENTIRER (NIL) -9 NIL 506501 NIL) (-245 505582 505616 505688 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 502215 504012 504361 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 501306 501521 501575 "ELTAGG" 501949 ELTAGG (NIL T T) -9 NIL 502163 NIL) (-242 501086 501160 501301 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 500832 500867 500921 "ELTAB" 501005 ELTAB (NIL T T) -9 NIL 501057 NIL) (-240 500083 500253 500452 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 499807 499881 499909 "ELEMFUN" 500014 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 499707 499734 499802 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 494984 497732 497773 "ELAGG" 498706 ELAGG (NIL T) -9 NIL 499167 NIL) (-236 493782 494320 494979 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 493200 493367 493523 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 492113 492432 492711 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 485506 487504 488331 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 479485 481481 482291 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 477299 477705 478176 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 468299 470212 471753 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 467412 467913 468062 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 466110 466784 466824 "DVARCAT" 467107 DVARCAT (NIL T) -9 NIL 467247 NIL) (-227 465529 465793 466105 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 457596 465397 465524 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 455934 456725 456766 "DSEXT" 457129 DSEXT (NIL T) -9 NIL 457423 NIL) (-224 454739 455263 455929 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 454463 454528 454626 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 450614 451830 452961 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 446260 447615 448679 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 444935 445296 445682 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 444621 444680 444798 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 443596 443894 444184 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 443181 443256 443406 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 435594 437706 439821 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 431111 432130 433209 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 427735 429738 429779 "DQAGG" 430408 DQAGG (NIL T) -9 NIL 430681 NIL) (-213 414278 421918 422000 "DPOLCAT" 423837 DPOLCAT (NIL T T T T) -9 NIL 424380 NIL) (-212 410686 412334 414273 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 403789 410584 410681 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 396801 403618 403784 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 396394 396654 396743 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 395808 396256 396336 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 395094 395419 395570 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 388233 394830 394981 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 385982 387299 387339 "DMEXT" 387344 DMEXT (NIL T) -9 NIL 387519 NIL) (-204 385638 385700 385844 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 379230 385123 385313 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 376456 378059 378100 "DLAGG" 378641 DLAGG (NIL T) -9 NIL 378873 NIL) (-201 374807 375678 375706 "DIVRING" 375798 DIVRING (NIL) -9 NIL 375881 NIL) (-200 374258 374502 374802 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 372686 373103 373509 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 371723 371944 372209 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 365295 371655 371718 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 353693 360055 360108 "DIRPCAT" 360364 DIRPCAT (NIL NIL T) -9 NIL 361239 NIL) (-195 351699 352469 353356 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 351146 351312 351498 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 348429 350023 350064 "DIOPS" 350484 DIOPS (NIL T) -9 NIL 350712 NIL) (-192 348089 348233 348424 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 347096 347842 347870 "DIOID" 347875 DIOID (NIL) -9 NIL 347897 NIL) (-190 345924 346753 346781 "DIFRING" 346786 DIFRING (NIL) -9 NIL 346807 NIL) (-189 345560 345658 345686 "DIFFSPC" 345805 DIFFSPC (NIL) -9 NIL 345880 NIL) (-188 345301 345403 345555 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 344204 344829 344869 "DIFFMOD" 344874 DIFFMOD (NIL T) -9 NIL 344971 NIL) (-186 343888 343945 343986 "DIFFDOM" 344107 DIFFDOM (NIL T) -9 NIL 344175 NIL) (-185 343769 343799 343883 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 341442 342963 343003 "DIFEXT" 343008 DIFEXT (NIL T) -9 NIL 343160 NIL) (-183 339330 340924 340965 "DIAGG" 340970 DIAGG (NIL T) -9 NIL 340990 NIL) (-182 338886 339076 339325 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 334124 338076 338353 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 330582 331635 332645 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 325132 329736 330063 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 323698 323990 324365 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 320818 322070 322466 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 318602 320649 320738 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 317985 318130 318312 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 315303 316027 316827 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 313412 313870 314432 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 312795 313128 313242 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 305995 312520 312668 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 303915 304425 304929 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 303554 303603 303754 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 302813 303375 303466 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 300837 301279 301639 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 300129 300418 300564 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 299580 299726 299878 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 296942 297735 298462 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 296381 296527 296698 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 294453 294764 295131 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 294010 294265 294366 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 293211 293594 293622 "CTORCAT" 293803 CTORCAT (NIL) -9 NIL 293915 NIL) (-159 292914 293048 293206 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 292407 292664 292772 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 291823 292254 292327 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 291282 291399 291552 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 287676 288432 289187 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 287167 287470 287561 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 286386 286595 286823 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 285890 285995 286199 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 285643 285677 285783 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 282582 283344 284062 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 282101 282243 282382 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 277994 280564 281056 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 277868 277895 277923 "CONDUIT" 277960 CONDUIT (NIL) -9 NIL NIL NIL) (-146 276747 277478 277506 "COMRING" 277511 COMRING (NIL) -9 NIL 277561 NIL) (-145 275912 276279 276457 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 275608 275649 275777 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 275301 275364 275471 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 264143 275251 275296 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 263604 263743 263903 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 263357 263398 263496 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 244788 257038 257078 "COMPCAT" 258079 COMPCAT (NIL T) -9 NIL 259421 NIL) (-138 237326 240839 244432 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 237085 237119 237221 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 236915 236954 237012 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 236496 236775 236849 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 236073 236314 236401 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 235268 235516 235544 "COMBOPC" 235882 COMBOPC (NIL) -9 NIL 236057 NIL) (-132 234332 234584 234826 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 231264 231948 232571 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 230144 230595 230830 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 229635 229938 230029 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 229322 229375 229500 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 228792 229102 229200 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 225312 226382 227462 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 223607 224592 224830 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221024 222243 222284 "CLAGG" 222847 CLAGG (NIL T) -9 NIL 223227 NIL) (-123 220582 220772 221019 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220211 220302 220442 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218148 218655 219203 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217109 217840 217868 "CHARZ" 217873 CHARZ (NIL) -9 NIL 217887 NIL) (-119 216903 216949 217027 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215742 216505 216533 "CHARNZ" 216594 CHARNZ (NIL) -9 NIL 216642 NIL) (-117 213220 214317 214840 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 212928 213007 213035 "CFCAT" 213146 CFCAT (NIL) -9 NIL NIL NIL) (-115 212271 212400 212582 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208539 211684 211964 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 207917 208104 208281 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207445 207864 207912 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 206918 207227 207324 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206409 206712 206803 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205658 205818 206039 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201758 203015 203723 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200124 201155 201406 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199705 199984 200058 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199139 199392 199420 "CACHSET" 199552 CACHSET (NIL) -9 NIL 199630 NIL) (-104 198491 198906 198934 "CABMON" 198984 CABMON (NIL) -9 NIL 199040 NIL) (-103 198021 198285 198395 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193510 197689 197850 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192480 193184 193319 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193482) (-100 190005 192247 192353 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187501 189759 189867 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184755 186903 186942 "BTCAT" 187009 BTCAT (NIL T) -9 NIL 187090 NIL) (-97 184506 184604 184750 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179843 183698 183724 "BTAGG" 183835 BTAGG (NIL) -9 NIL 183943 NIL) (-95 179474 179635 179838 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176612 178966 179156 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175882 176034 176212 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 172976 174597 174636 "BRAGG" 175265 BRAGG (NIL T) -9 NIL 175525 NIL) (-91 172051 172482 172971 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164585 171556 171737 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162577 164537 164580 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162310 162346 162457 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160549 160982 161430 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156515 157931 158821 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155391 156282 156404 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 154977 155134 155160 "BOOLE" 155268 BOOLE (NIL) -9 NIL 155349 NIL) (-83 154770 154851 154972 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 153908 154435 154485 "BMODULE" 154490 BMODULE (NIL T T) -9 NIL 154554 NIL) (-81 149793 153765 153834 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149606 149646 149685 "BINOPC" 149690 BINOPC (NIL T) -9 NIL 149735 NIL) (-79 149148 149421 149523 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 148669 148813 148951 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 141875 148399 148544 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 140122 141095 141134 "BGAGG" 141390 BGAGG (NIL T) -9 NIL 141517 NIL) (-75 139991 140029 140117 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 138842 139043 139328 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 135556 138022 138327 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 135141 135234 135260 "BASTYPE" 135431 BASTYPE (NIL) -9 NIL 135527 NIL) (-71 134911 135007 135136 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 134426 134514 134664 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 133325 134000 134185 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133073 133078 133104 "ATTREG" 133109 ATTREG (NIL) -9 NIL NIL NIL) (-67 132678 132950 133015 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 132178 132327 132353 "ATRIG" 132554 ATRIG (NIL) -9 NIL NIL NIL) (-65 132033 132086 132173 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 131603 131834 131860 "ASTCAT" 131865 ASTCAT (NIL) -9 NIL 131895 NIL) (-63 131402 131479 131598 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 129625 131235 131323 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 128432 128745 129110 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 126284 128362 128427 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 125475 125666 125887 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 121343 125206 125320 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 115655 117659 117734 "ARR2CAT" 120246 ARR2CAT (NIL T T T) -9 NIL 120967 NIL) (-56 114616 115098 115650 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 113984 114355 114477 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 112916 113084 113380 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 112617 112671 112789 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 112000 112146 112302 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 111405 111695 111815 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 108973 110134 110457 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 108498 108758 108854 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 102193 107560 108002 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 97727 99390 99440 "AMR" 100178 AMR (NIL T T) -9 NIL 100775 NIL) (-46 97081 97361 97722 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79065 97015 97076 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 75468 78741 78910 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 72478 73138 73745 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 71857 71970 72154 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68269 68894 69486 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 57758 67962 68112 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57075 57229 57407 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 55788 56583 56621 "ALGEBRA" 56626 ALGEBRA (NIL T) -9 NIL 56666 NIL) (-37 55574 55651 55783 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33879 52662 52714 "ALAGG" 52849 ALAGG (NIL T T) -9 NIL 53007 NIL) (-35 33379 33528 33554 "AHYP" 33755 AHYP (NIL) -9 NIL NIL NIL) (-34 32861 32993 33019 "AGG" 33224 AGG (NIL) -9 NIL 33350 NIL) (-33 32704 32762 32856 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30843 31303 31703 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30338 30641 30730 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29708 30003 30159 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17266 26545 26583 "ACFS" 27190 ACFS (NIL T) -9 NIL 27429 NIL) (-28 15889 16499 17261 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11441 13820 13846 "ACF" 14725 ACF (NIL) -9 NIL 15137 NIL) (-26 10537 10943 11436 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10039 10279 10305 "ABELSG" 10397 ABELSG (NIL) -9 NIL 10462 NIL) (-24 9937 9968 10034 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9092 9466 9492 "ABELMON" 9717 ABELMON (NIL) -9 NIL 9850 NIL) (-22 8774 8914 9087 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 7986 8469 8495 "ABELGRP" 8567 ABELGRP (NIL) -9 NIL 8642 NIL) (-20 7539 7735 7981 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6766 6805 "A1AGG" 6810 A1AGG (NIL T) -9 NIL 6844 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 9 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1132) (-997)) (T -1132)) +NIL +((-3720 (((-85)) 18 T ELT)) (-3717 (((-1187) (-585 |#1|) (-585 |#1|)) 22 T ELT) (((-1187) (-585 |#1|)) 23 T ELT)) (-3722 (((-85) |#1| |#1|) 37 (|has| |#1| (-758)) ELT)) (-3719 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3721 ((|#1| (-585 |#1|)) 38 (|has| |#1| (-758)) ELT) ((|#1| (-585 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3718 (((-2 (|:| -3232 (-585 |#1|)) (|:| -3231 (-585 |#1|)))) 20 T ELT))) +(((-1133 |#1|) (-10 -7 (-15 -3717 ((-1187) (-585 |#1|))) (-15 -3717 ((-1187) (-585 |#1|) (-585 |#1|))) (-15 -3718 ((-2 (|:| -3232 (-585 |#1|)) (|:| -3231 (-585 |#1|))))) (-15 -3719 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3719 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3721 (|#1| (-585 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3720 ((-85))) (IF (|has| |#1| (-758)) (PROGN (-15 -3721 (|#1| (-585 |#1|))) (-15 -3722 ((-85) |#1| |#1|))) |%noBranch|)) (-1015)) (T -1133)) +((-3722 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-758)) (-4 *3 (-1015)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-758)) (-5 *1 (-1133 *2)))) (-3720 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1133 *2)) (-4 *2 (-1015)))) (-3719 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1015)) (-5 *2 (-85)) (-5 *1 (-1133 *3)))) (-3719 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) (-3718 (*1 *2) (-12 (-5 *2 (-2 (|:| -3232 (-585 *3)) (|:| -3231 (-585 *3)))) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) (-3717 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4))))) +((-3723 (((-1187) (-585 (-1092)) (-585 (-1092))) 14 T ELT) (((-1187) (-585 (-1092))) 12 T ELT)) (-3725 (((-1187)) 16 T ELT)) (-3724 (((-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092))))) 20 T ELT))) +(((-1134) (-10 -7 (-15 -3723 ((-1187) (-585 (-1092)))) (-15 -3723 ((-1187) (-585 (-1092)) (-585 (-1092)))) (-15 -3724 ((-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092)))))) (-15 -3725 ((-1187))))) (T -1134)) +((-3725 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1134)))) (-3724 (*1 *2) (-12 (-5 *2 (-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092))))) (-5 *1 (-1134)))) (-3723 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134))))) +((-3778 (($ $) 17 T ELT)) (-3726 (((-85) $) 27 T ELT))) +(((-1135 |#1|) (-10 -7 (-15 -3778 (|#1| |#1|)) (-15 -3726 ((-85) |#1|))) (-1136)) (T -1135)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-348 $) $) 67 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-85) $) 68 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 65 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-1136) (-113)) (T -1136)) +((-3726 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-85)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136)))) (-3778 (*1 *1 *1) (-4 *1 (-1136))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136))))) +(-13 (-393) (-10 -8 (-15 -3726 ((-85) $)) (-15 -3974 ((-348 $) $)) (-15 -3778 ($ $)) (-15 -3735 ((-348 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1137) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3955)))) (T -1137)) +((-3729 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3727 (*1 *1) (-5 *1 (-1137)))) +((-696) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1138) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3955)))) (T -1138)) +((-3729 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3727 (*1 *1) (-5 *1 (-1138)))) +((-696) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1139) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3955)))) (T -1139)) +((-3729 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3727 (*1 *1) (-5 *1 (-1139)))) +((-696) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1140) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3955)))) (T -1140)) +((-3729 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3727 (*1 *1) (-5 *1 (-1140)))) +((-696) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 10 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3774 (($ $ (-486)) NIL T ELT) (($ $ (-486) (-486)) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) NIL T ELT)) (-3734 (((-1171 |#1| |#2| |#3|) $) NIL T ELT)) (-3731 (((-3 (-1171 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3732 (((-1171 |#1| |#2| |#3|) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1171 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3159 (((-1171 |#1| |#2| |#3|) $) NIL T ELT) (((-1092) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-350 (-486)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-486) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-486) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-1171 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1171 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1171 |#1| |#2| |#3|)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) NIL (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) NIL (|has| |#1| (-497)) ELT)) (-2997 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-798 (-330))) (|has| |#1| (-312))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-798 (-486))) (|has| |#1| (-312))) ELT)) (-3775 (((-486) $) NIL T ELT) (((-486) $ (-486)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3001 (((-1171 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) ELT)) (-3190 (((-85) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3780 (($ $ (-832)) NIL T ELT)) (-3818 (($ (-1 |#1| (-486)) $) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-486)) 18 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-2534 (($ $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2860 (($ $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 (-1171 |#1| |#2| |#3|)) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1171 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1171 |#1| |#2| |#3|)))) (-1181 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) (-1171 |#1| |#2| |#3|)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 27 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 28 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3131 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3133 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-457 (-1092) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092)) (-585 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-457 (-1092) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 (-1171 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1171 |#1| |#2| |#3|)) (-585 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) NIL T ELT) (($ $ $) NIL (|has| (-486) (-1027)) ELT) (($ $ (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-241 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1171 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3951 (((-486) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-475) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-555 (-475))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-802 (-330)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-555 (-802 (-330)))) (|has| |#1| (-312))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-555 (-802 (-486)))) (|has| |#1| (-312))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1171 |#1| |#2| |#3|)) NIL T ELT) (($ (-1178 |#2|)) 24 T ELT) (($ (-1092)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT) (($ (-350 (-486))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3680 ((|#1| $ (-486)) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 11 T ELT)) (-3134 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2663 (($) 20 T CONST)) (-2669 (($) 15 T CONST)) (-2672 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2570 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2688 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 22 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1171 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1171 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1141 |#1| |#2| |#3|) (-13 (-1145 |#1| (-1171 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3949 ($ (-1178 |#2|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1141)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3961 (((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)) 23 T ELT))) +(((-1142 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3961 ((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)))) (-963) (-963) (-1092) (-1092) |#1| |#2|) (T -1142)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1142 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 95 T ELT)) (-3834 (((-1092) $) 129 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 124 T ELT) (($ $ (-486) (-486)) 123 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 130 T ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 201 T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 199 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 198 (|has| |#1| (-497)) ELT)) (-2566 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 94 T ELT)) (-3630 (($) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-486) $) 126 T ELT) (((-486) $ (-486)) 125 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 127 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 200 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| (-486)) 81 T ELT) (($ $ (-996) (-486)) 97 T ELT) (($ $ (-585 (-996)) (-585 (-486))) 96 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3945 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 197 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 196 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 178 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 121 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT)) (-1609 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) 131 T ELT) (($ $ $) 107 (|has| (-486) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3951 (((-486) $) 84 T ELT)) (-3498 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-486)) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 128 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1143 |#1|) (-113) (-963)) (T -1143)) +((-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1143 *3)))) (-3818 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1143 *3)) (-4 *3 (-963)))) (-3730 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) (-5 *2 (-350 (-859 *4))))) (-3730 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) (-5 *2 (-350 (-859 *4))))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) (-3815 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) (-4 *3 (-38 (-350 (-486)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486))))))))) +(-13 (-1160 |t#1| (-486)) (-10 -8 (-15 -3821 ($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |t#1|))))) (-15 -3818 ($ (-1 |t#1| (-486)) $)) (IF (|has| |t#1| (-497)) (PROGN (-15 -3730 ((-350 (-859 |t#1|)) $ (-486))) (-15 -3730 ((-350 (-859 |t#1|)) $ (-486) (-486)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (IF (|has| |t#1| (-15 -3815 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -3084 ((-585 (-1092)) |t#1|))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-486))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1117))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-486)) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-486) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-486) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-486) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-486) |#1|) . T) ((-241 $ $) |has| (-486) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ((-888 |#1| (-486) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1160 |#1| (-486)) . T)) +((-3191 (((-85) $) 12 T ELT)) (-3160 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT)) (-3159 ((|#3| $) 14 T ELT) (((-1092) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT))) +(((-1144 |#1| |#2| |#3|) (-10 -7 (-15 -3160 ((-3 (-486) #1="failed") |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-1092) #1#) |#1|)) (-15 -3159 ((-1092) |#1|)) (-15 -3160 ((-3 |#3| #1#) |#1|)) (-15 -3159 (|#3| |#1|)) (-15 -3191 ((-85) |#1|))) (-1145 |#2| |#3|) (-963) (-1174 |#2|)) (T -1144)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 ((|#2| $) 266 (-2565 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3084 (((-585 (-996)) $) 95 T ELT)) (-3834 (((-1092) $) 129 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 124 T ELT) (($ $ (-486) (-486)) 123 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 130 T ELT)) (-3734 ((|#2| $) 302 T ELT)) (-3731 (((-3 |#2| "failed") $) 298 T ELT)) (-3732 ((|#2| $) 299 T ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 275 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-3778 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 272 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-1610 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) 284 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 201 T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-486) #2#) $) 295 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-486)) #2#) $) 293 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-1092) #2#) $) 277 (-2565 (|has| |#2| (-952 (-1092))) (|has| |#1| (-312))) ELT)) (-3159 ((|#2| $) 306 T ELT) (((-486) $) 294 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-350 (-486)) $) 292 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-1092) $) 276 (-2565 (|has| |#2| (-952 (-1092))) (|has| |#1| (-312))) ELT)) (-3733 (($ $) 301 T ELT) (($ (-486) $) 300 T ELT)) (-2567 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 80 T ELT)) (-2281 (((-632 |#2|) (-632 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 252 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-632 $)) 251 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 199 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 198 (|has| |#1| (-497)) ELT)) (-2997 (($) 268 (-2565 (|has| |#2| (-485)) (|has| |#1| (-312))) ELT)) (-2566 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) 282 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-2895 (((-85) $) 94 T ELT)) (-3630 (($) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 260 (-2565 (|has| |#2| (-798 (-330))) (|has| |#1| (-312))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 259 (-2565 (|has| |#2| (-798 (-486))) (|has| |#1| (-312))) ELT)) (-3775 (((-486) $) 126 T ELT) (((-486) $ (-486)) 125 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2999 (($ $) 264 (|has| |#1| (-312)) ELT)) (-3001 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) 296 (-2565 (|has| |#2| (-1068)) (|has| |#1| (-312))) ELT)) (-3190 (((-85) $) 283 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-3780 (($ $ (-832)) 127 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 200 T ELT)) (-1607 (((-3 (-585 $) #3="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| (-486)) 81 T ELT) (($ $ (-996) (-486)) 97 T ELT) (($ $ (-585 (-996)) (-585 (-486))) 96 T ELT)) (-2534 (($ $ $) 291 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2860 (($ $ $) 290 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 |#2|) (-1181 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 250 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-1181 $)) 249 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) |#2|) 303 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 197 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 196 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3449 (($) 297 (-2565 (|has| |#2| (-1068)) (|has| |#1| (-312))) CONST)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 178 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3131 (($ $) 267 (-2565 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3133 ((|#2| $) 270 (-2565 (|has| |#2| (-485)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 273 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 274 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-3735 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 121 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) |#2|) 243 (-2565 (|has| |#2| (-457 (-1092) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092)) (-585 |#2|)) 242 (-2565 (|has| |#2| (-457 (-1092) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 |#2|))) 241 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 238 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1609 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) 131 T ELT) (($ $ $) 107 (|has| (-486) (-1027)) ELT) (($ $ |#2|) 237 (-2565 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) 109 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) 119 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) 117 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) 116 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 115 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2998 (($ $) 265 (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3951 (((-486) $) 84 T ELT)) (-3498 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-179) $) 281 (-2565 (|has| |#2| (-935)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2565 (|has| |#2| (-935)) (|has| |#1| (-312))) ELT) (((-475) $) 279 (-2565 (|has| |#2| (-555 (-475))) (|has| |#1| (-312))) ELT) (((-802 (-330)) $) 258 (-2565 (|has| |#2| (-555 (-802 (-330)))) (|has| |#1| (-312))) ELT) (((-802 (-486)) $) 257 (-2565 (|has| |#2| (-555 (-802 (-486)))) (|has| |#1| (-312))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 271 (-2565 (-2565 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1092)) 278 (-2565 (|has| |#2| (-952 (-1092))) (|has| |#1| (-312))) ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-486)) 79 T ELT)) (-2705 (((-634 $) $) 68 (OR (-2565 (OR (|has| |#2| (-118)) (-2565 (|has| $ (-118)) (|has| |#2| (-823)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 128 T ELT)) (-3134 ((|#2| $) 269 (-2565 (|has| |#2| (-485)) (|has| |#1| (-312))) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) 285 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) 108 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) 118 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) 114 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) 113 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 112 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2569 (((-85) $ $) 289 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2570 (((-85) $ $) 287 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 288 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2688 (((-85) $ $) 286 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1145 |#1| |#2|) (-113) (-963) (-1174 |t#1|)) (T -1145)) +((-3951 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)) (-5 *2 (-486)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-486)) (-4 *4 (-963)) (-4 *1 (-1145 *4 *3)) (-4 *3 (-1174 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-1145 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1174 *2)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3)))) (-3731 (*1 *2 *1) (|partial| -12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) +(-13 (-1143 |t#1|) (-952 |t#2|) (-557 |t#2|) (-10 -8 (-15 -3782 ($ (-486) |t#2|)) (-15 -3951 ((-486) $)) (-15 -3734 (|t#2| $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)) (-15 -3732 (|t#2| $)) (-15 -3731 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-906 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-486)) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 (-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ((-557 |#1|) |has| |#1| (-146)) ((-557 |#2|) . T) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-555 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-555 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-555 (-475)) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-486))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-486) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-486) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-486) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-486) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-486) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-457 (-1092) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|))) ((-457 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ((-592 |#1|) . T) ((-592 |#2|) |has| |#1| (-312)) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 |#2|) |has| |#1| (-312)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-582 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ((-582 |#2|) |has| |#1| (-312)) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 |#2|) |has| |#1| (-312)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-720) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-723) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-742) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-757) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-758) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) ((-761) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) ((-808 $ (-1092)) OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092))))) ((-811 (-1092)) OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092))))) ((-813 (-1092)) OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092))))) ((-798 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-486)))) ((-796 |#2|) |has| |#1| (-312)) ((-823) -12 (|has| |#1| (-312)) (|has| |#2| (-823))) ((-888 |#1| (-486) (-996)) . T) ((-834) |has| |#1| (-312)) ((-906 |#2|) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-935) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-952 (-350 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ((-952 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ((-952 (-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ((-952 |#2|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 |#2|) |has| |#1| (-312)) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 |#2|) |has| |#1| (-312)) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) -12 (|has| |#1| (-312)) (|has| |#2| (-1068))) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1143 |#1|) . T) ((-1160 |#1| (-486)) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 83 T ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 102 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 111 T ELT) (($ $ (-486) (-486)) 114 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 51 T ELT)) (-3734 ((|#2| $) 11 T ELT)) (-3731 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3732 ((|#2| $) 36 T ELT)) (-3495 (($ $) 208 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 184 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) 204 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 180 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 59 T ELT)) (-3497 (($ $) 212 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 188 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-3 (-1092) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ELT)) (-3159 ((|#2| $) 158 T ELT) (((-486) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-1092) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ELT)) (-3733 (($ $) 65 T ELT) (($ (-486) $) 28 T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT)) (-3470 (((-3 $ #1#) $) 90 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 126 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 128 (|has| |#1| (-497)) ELT)) (-2997 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-485))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-2895 (((-85) $) 76 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-798 (-486)))) ELT)) (-3775 (((-486) $) 107 T ELT) (((-486) $ (-486)) 109 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3001 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1068))) ELT)) (-3190 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-3780 (($ $ (-832)) 150 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 146 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-486)) 20 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-2534 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2860 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 178 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 |#2|) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) |#2|) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 230 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT)) (-3449 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1068))) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3131 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3133 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-485))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 140 T ELT)) (-3469 (((-3 $ #1#) $ $) 130 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|))) ELT) (($ $ (-585 (-1092)) (-585 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) 105 T ELT) (($ $ $) 92 (|has| (-486) (-1027)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) 155 (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3951 (((-486) $) 12 T ELT)) (-3498 (($ $) 214 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 190 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 210 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 186 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 206 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 182 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-935))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-935))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-475)))) ELT) (((-802 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-486))))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-2894 (($ $) 138 T ELT)) (-3949 (((-774) $) 268 T ELT) (($ (-486)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1092)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ELT) (($ (-350 (-486))) 171 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-486)) 87 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-823))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3129 (((-696)) 157 T CONST)) (-3776 ((|#1| $) 104 T ELT)) (-3134 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-485))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 220 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 196 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 216 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 192 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 224 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 200 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 226 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 202 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 222 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 218 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 194 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-2663 (($) 13 T CONST)) (-2669 (($) 18 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT)) (-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2570 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3059 (((-85) $ $) 74 T ELT)) (-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2688 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3842 (($ $ $) 78 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 86 T ELT) (($ $ (-486)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1146 |#1| |#2|) (-1145 |#1| |#2|) (-963) (-1174 |#1|)) (T -1146)) +NIL +((-3737 (((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85)) 13 T ELT)) (-3736 (((-348 |#1|) |#1|) 26 T ELT)) (-3735 (((-348 |#1|) |#1|) 24 T ELT))) +(((-1147 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3736 ((-348 |#1|) |#1|)) (-15 -3737 ((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85)))) (-1157 (-486))) (T -1147)) +((-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) +((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3739 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3961 (((-1071 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-757)) ELT)) (-3232 ((|#1| $) 15 T ELT)) (-3234 ((|#1| $) 12 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3230 (((-486) $) 19 T ELT)) (-3231 ((|#1| $) 18 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3738 (((-85) $) 17 T ELT)) (-3966 (((-1071 |#1|) $) 41 (|has| |#1| (-757)) ELT) (((-1071 |#1|) (-585 $)) 40 (|has| |#1| (-757)) ELT)) (-3975 (($ |#1|) 26 T ELT)) (-3949 (($ (-1003 |#1|)) 25 T ELT) (((-774) $) 37 (|has| |#1| (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3740 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3235 (($ $ (-486)) 14 T ELT)) (-3059 (((-85) $ $) 30 (|has| |#1| (-1015)) ELT))) +(((-1148 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -3740 ($ |#1|)) (-15 -3739 ($ |#1|)) (-15 -3949 ($ (-1003 |#1|))) (-15 -3738 ((-85) $)) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-1009 |#1| (-1071 |#1|))) |%noBranch|))) (-1131)) (T -1148)) +((-3740 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131)))) (-3739 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1003 *3)) (-4 *3 (-1131)) (-5 *1 (-1148 *3)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1148 *3)) (-4 *3 (-1131))))) +((-3961 (((-1071 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 23 (|has| |#1| (-757)) ELT) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 17 T ELT))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -3961 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-757)) (-15 -3961 ((-1071 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|)) (-1131) (-1131)) (T -1149)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1071 *6)) (-5 *1 (-1149 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3770 (((-1181 |#2|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#2|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) NIL (|has| |#2| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-1610 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3764 (($ $ (-696)) NIL T ELT)) (-3763 (($ $ (-696)) NIL T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-996) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#2| (-497)) ELT)) (-3755 (((-2 (|:| -3957 |#2|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#2| (-312)) ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-996)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1626 (($ $ |#2| (-696) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) NIL (|has| |#2| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#2| (-1068)) ELT)) (-3087 (($ (-1087 |#2|) (-996)) NIL T ELT) (($ (-1087 $) (-996)) NIL T ELT)) (-3780 (($ $ (-696)) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-696)) 18 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1627 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3769 (((-1087 |#2|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#2| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3741 (($ $ (-696) |#2| $) NIL T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#2|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#2|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1609 (((-696) $) NIL (|has| |#2| (-312)) ELT)) (-3803 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-497)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3951 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-996)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-497)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-996)) NIL T ELT) (($ (-1178 |#1|)) 20 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1150 |#1| |#2|) (-13 (-1157 |#2|) (-557 (-1178 |#1|)) (-10 -8 (-15 -3741 ($ $ (-696) |#2| $)))) (-1092) (-963)) (T -1150)) +((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1150 *4 *3)) (-14 *4 (-1092)) (-4 *3 (-963))))) +((-3961 (((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|)) 15 T ELT))) +(((-1151 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 ((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|)))) (-1092) (-963) (-1092) (-963)) (T -1151)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1150 *5 *6)) (-14 *5 (-1092)) (-4 *6 (-963)) (-4 *8 (-963)) (-5 *2 (-1150 *7 *8)) (-5 *1 (-1151 *5 *6 *7 *8)) (-14 *7 (-1092))))) +((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3742 ((|#1| |#3|) 13 T ELT)) (-3743 ((|#3| |#3|) 19 T ELT))) +(((-1152 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#1| |#3|)) (-15 -3743 (|#3| |#3|)) (-15 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-497) (-906 |#1|) (-1157 |#2|)) (T -1152)) +((-3744 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1152 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-1152 *3 *4 *2)) (-4 *2 (-1157 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-1152 *2 *4 *3)) (-4 *3 (-1157 *4))))) +((-3746 (((-3 |#2| #1="failed") |#2| (-696) |#1|) 35 T ELT)) (-3745 (((-3 |#2| #1#) |#2| (-696)) 36 T ELT)) (-3748 (((-3 (-2 (|:| -3141 |#2|) (|:| -3140 |#2|)) #1#) |#2|) 50 T ELT)) (-3749 (((-585 |#2|) |#2|) 52 T ELT)) (-3747 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -3745 ((-3 |#2| #1="failed") |#2| (-696))) (-15 -3746 ((-3 |#2| #1#) |#2| (-696) |#1|)) (-15 -3747 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3748 ((-3 (-2 (|:| -3141 |#2|) (|:| -3140 |#2|)) #1#) |#2|)) (-15 -3749 ((-585 |#2|) |#2|))) (-13 (-497) (-120)) (-1157 |#1|)) (T -1153)) +((-3749 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-585 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1157 *4)))) (-3748 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1157 *4)))) (-3747 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))) (-3746 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4)))) (-3745 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4))))) +((-3750 (((-3 (-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1154 |#1| |#2|) (-10 -7 (-15 -3750 ((-3 (-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) "failed") |#2| |#2|))) (-497) (-1157 |#1|)) (T -1154)) +((-3750 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-1154 *4 *3)) (-4 *3 (-1157 *4))))) +((-3751 ((|#2| |#2| |#2|) 22 T ELT)) (-3752 ((|#2| |#2| |#2|) 36 T ELT)) (-3753 ((|#2| |#2| |#2| (-696) (-696)) 44 T ELT))) +(((-1155 |#1| |#2|) (-10 -7 (-15 -3751 (|#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-696) (-696)))) (-963) (-1157 |#1|)) (T -1155)) +((-3753 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-1155 *4 *2)) (-4 *2 (-1157 *4)))) (-3752 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3)))) (-3751 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3))))) +((-3770 (((-1181 |#2|) $ (-696)) 129 T ELT)) (-3084 (((-585 (-996)) $) 16 T ELT)) (-3768 (($ (-1087 |#2|)) 80 T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) 21 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 217 T ELT)) (-3778 (($ $) 207 T ELT)) (-3974 (((-348 $) $) 205 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 95 T ELT)) (-3764 (($ $ (-696)) 84 T ELT)) (-3763 (($ $ (-696)) 86 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3160 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#2| $) 130 T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT) (((-996) $) NIL T ELT)) (-3756 (($ $ $) 182 T ELT)) (-3755 (((-2 (|:| -3957 |#2|) (|:| -1974 $) (|:| -2905 $)) $ $) 185 T ELT)) (-3775 (((-696) $ $) 202 T ELT)) (-3448 (((-634 $) $) 149 T ELT)) (-2896 (($ |#2| (-696)) NIL T ELT) (($ $ (-996) (-696)) 59 T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) 54 T ELT) (((-585 (-696)) $ (-585 (-996))) 55 T ELT)) (-3769 (((-1087 |#2|) $) 72 T ELT)) (-3085 (((-3 (-996) #1#) $) 52 T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) 83 T ELT)) (-3815 (($ $) 232 T ELT)) (-3449 (($) 134 T CONST)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 214 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 101 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 99 T ELT)) (-3735 (((-348 $) $) 120 T ELT)) (-3771 (($ $ (-585 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#2|) 39 T ELT) (($ $ (-585 (-996)) (-585 |#2|)) 36 T ELT) (($ $ (-996) $) 32 T ELT) (($ $ (-585 (-996)) (-585 $)) 30 T ELT)) (-1609 (((-696) $) 220 T ELT)) (-3803 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 225 T ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3951 (((-696) $) NIL T ELT) (((-696) $ (-996)) 17 T ELT) (((-585 (-696)) $ (-585 (-996))) 23 T ELT)) (-2820 ((|#2| $) NIL T ELT) (($ $ (-996)) 151 T ELT)) (-3757 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-996)) 64 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT))) +(((-1156 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#1|)) (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3449 (|#1|) -3955) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -3803 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1609 ((-696) |#1|)) (-15 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3803 (|#2| (-350 |#1|) |#2|)) (-15 -3754 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3755 ((-2 (|:| -3957 |#2|) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -3757 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3757 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3775 ((-696) |#1| |#1|)) (-15 -3803 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3763 (|#1| |#1| (-696))) (-15 -3764 (|#1| |#1| (-696))) (-15 -3765 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| (-696))) (-15 -3768 (|#1| (-1087 |#2|))) (-15 -3769 ((-1087 |#2|) |#1|)) (-15 -3770 ((-1181 |#2|) |#1| (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#2| |#1| |#2|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -2710 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2709 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2708 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2707 ((-3 (-585 (-1087 |#1|)) #1#) (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -2820 (|#1| |#1| (-996))) (-15 -3084 ((-585 (-996)) |#1|)) (-15 -2822 ((-696) |#1| (-585 (-996)))) (-15 -2822 ((-696) |#1|)) (-15 -2896 (|#1| |#1| (-585 (-996)) (-585 (-696)))) (-15 -2896 (|#1| |#1| (-996) (-696))) (-15 -2823 ((-585 (-696)) |#1| (-585 (-996)))) (-15 -2823 ((-696) |#1| (-996))) (-15 -3085 ((-3 (-996) #1#) |#1|)) (-15 -3951 ((-585 (-696)) |#1| (-585 (-996)))) (-15 -3951 ((-696) |#1| (-996))) (-15 -3949 (|#1| (-996))) (-15 -3160 ((-3 (-996) #1#) |#1|)) (-15 -3159 ((-996) |#1|)) (-15 -3771 (|#1| |#1| (-585 (-996)) (-585 |#1|))) (-15 -3771 (|#1| |#1| (-996) |#1|)) (-15 -3771 (|#1| |#1| (-585 (-996)) (-585 |#2|))) (-15 -3771 (|#1| |#1| (-996) |#2|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3951 ((-696) |#1|)) (-15 -2896 (|#1| |#2| (-696))) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3949 (|#1| |#2|)) (-15 -2823 ((-696) |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3761 (|#1| |#1| (-996))) (-15 -3761 (|#1| |#1| (-585 (-996)))) (-15 -3761 (|#1| |#1| (-996) (-696))) (-15 -3761 (|#1| |#1| (-585 (-996)) (-585 (-696)))) (-15 -3949 (|#1| (-486))) (-15 -3949 ((-774) |#1|))) (-1157 |#2|) (-963)) (T -1156)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) 271 T ELT)) (-3084 (((-585 (-996)) $) 123 T ELT)) (-3768 (($ (-1087 |#1|)) 269 T ELT)) (-3086 (((-1087 $) $ (-996)) 138 T ELT) (((-1087 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 100 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 125 T ELT) (((-696) $ (-585 (-996))) 124 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3758 (($ $ $) 256 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 113 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 111 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 110 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-1610 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3764 (($ $ (-696)) 264 T ELT)) (-3763 (($ $ (-696)) 263 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-393)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-486)) #2#) $) 178 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 176 (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #2#) $) 153 T ELT)) (-3159 ((|#1| $) 180 T ELT) (((-350 (-486)) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 177 (|has| |#1| (-952 (-486))) ELT) (((-996) $) 154 T ELT)) (-3759 (($ $ $ (-996)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 171 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 148 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) 262 T ELT)) (-3756 (($ $ $) 253 (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3957 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) 252 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 239 (|has| |#1| (-312)) ELT)) (-3506 (($ $) 193 (|has| |#1| (-393)) ELT) (($ $ (-996)) 118 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 122 T ELT)) (-3726 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-1626 (($ $ |#1| (-696) $) 189 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 97 (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 96 (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) 257 (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3448 (((-634 $) $) 237 (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) 130 T ELT) (($ (-1087 $) (-996)) 129 T ELT)) (-3780 (($ $ (-696)) 268 T ELT)) (-1607 (((-3 (-585 $) #3="failed") (-585 $) $) 248 (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) 139 T ELT)) (-3940 (((-85) $) 169 T ELT)) (-2896 (($ |#1| (-696)) 170 T ELT) (($ $ (-996) (-696)) 132 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 131 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) 133 T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 266 T ELT)) (-2823 (((-696) $) 187 T ELT) (((-696) $ (-996)) 135 T ELT) (((-585 (-696)) $ (-585 (-996))) 134 T ELT)) (-1627 (($ (-1 (-696) (-696)) $) 188 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3769 (((-1087 |#1|) $) 270 T ELT)) (-3085 (((-3 (-996) #4="failed") $) 136 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 145 T ELT) (((-632 |#1|) (-1181 $)) 144 T ELT)) (-2897 (($ $) 166 T ELT)) (-3177 ((|#1| $) 165 T ELT)) (-1896 (($ (-585 $)) 107 (|has| |#1| (-393)) ELT) (($ $ $) 106 (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) 265 T ELT)) (-2826 (((-3 (-585 $) #4#) $) 127 T ELT)) (-2825 (((-3 (-585 $) #4#) $) 128 T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #4#) $) 126 T ELT)) (-3815 (($ $) 249 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) 236 (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 183 T ELT)) (-1801 ((|#1| $) 184 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 108 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 105 (|has| |#1| (-393)) ELT) (($ $ $) 104 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 112 (|has| |#1| (-823)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 240 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ (-996) |#1|) 158 T ELT) (($ $ (-585 (-996)) (-585 |#1|)) 157 T ELT) (($ $ (-996) $) 156 T ELT) (($ $ (-585 (-996)) (-585 $)) 155 T ELT)) (-1609 (((-696) $) 242 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ "failed") $ (-696)) 267 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) 52 T ELT) (($ $ (-996) (-696)) 51 T ELT) (($ $ (-585 (-996))) 50 T ELT) (($ $ (-996)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-696)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1092)) 235 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 233 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 232 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 231 (|has| |#1| (-813 (-1092))) ELT)) (-3951 (((-696) $) 167 T ELT) (((-696) $ (-996)) 143 T ELT) (((-585 (-696)) $ (-585 (-996))) 142 T ELT)) (-3975 (((-802 (-330)) $) 95 (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 94 (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 93 (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 192 (|has| |#1| (-393)) ELT) (($ $ (-996)) 119 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 117 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3757 (((-3 $ "failed") $ $) 255 (|has| |#1| (-497)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-497)) ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-996)) 152 T ELT) (($ (-350 (-486))) 91 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT) (($ $) 98 (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) 185 T ELT)) (-3680 ((|#1| $ (-696)) 172 T ELT) (($ $ (-996) (-696)) 141 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 140 T ELT)) (-2705 (((-634 $) $) 92 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1625 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) 55 T ELT) (($ $ (-996) (-696)) 54 T ELT) (($ $ (-585 (-996))) 53 T ELT) (($ $ (-996)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-696)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 272 T ELT) (($ $ (-1092)) 234 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 230 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 229 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 228 (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 174 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-1157 |#1|) (-113) (-963)) (T -1157)) +((-3770 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1157 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-5 *2 (-1087 *3)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-963)) (-4 *1 (-1157 *3)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3767 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1157 *3)))) (-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1157 *4)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3762 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)))) (-3761 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146)))) (-3759 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)))) (-3775 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)) (-5 *2 (-696)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-3757 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-3757 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3957 *3) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1157 *3)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *3 (-393)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3)))) (-3803 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486))))))) +(-13 (-863 |t#1| (-696) (-996)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3770 ((-1181 |t#1|) $ (-696))) (-15 -3769 ((-1087 |t#1|) $)) (-15 -3768 ($ (-1087 |t#1|))) (-15 -3780 ($ $ (-696))) (-15 -3767 ((-3 $ "failed") $ (-696))) (-15 -3766 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3765 ((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696))) (-15 -3764 ($ $ (-696))) (-15 -3763 ($ $ (-696))) (-15 -3762 ($ $ $)) (-15 -3761 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3760 (|t#1| $)) (-15 -3759 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3803 ((-350 $) (-350 $) (-350 $))) (-15 -3775 ((-696) $ $)) (-15 -3758 ($ $ $)) (-15 -3757 ((-3 $ "failed") $ $)) (-15 -3757 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3756 ($ $ $)) (-15 -3755 ((-2 (|:| -3957 |t#1|) (|:| -1974 $) (|:| -2905 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-393)) (-15 -3754 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3994) (-15 -3803 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (-15 -3815 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-696)) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 (-996)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| (-996) (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| (-996) (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| (-996) (-555 (-802 (-486))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-497)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-696)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-457 (-996) |#1|) . T) ((-457 (-996) $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-996)) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-996)) . T) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-996)) . T) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| (-996) (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| (-996) (-798 (-486)))) ((-863 |#1| (-696) (-996)) . T) ((-823) |has| |#1| (-823)) ((-834) |has| |#1| (-312)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-996)) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-1068)) ((-1131) . T) ((-1136) |has| |#1| (-823))) +((-3961 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-1157 |#1|) (-963) (-1157 |#3|)) (T -1158)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1157 *6)) (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1157 *5))))) +((-3084 (((-585 (-996)) $) 34 T ELT)) (-3962 (($ $) 31 T ELT)) (-2896 (($ |#2| |#3|) NIL T ELT) (($ $ (-996) |#3|) 28 T ELT) (($ $ (-585 (-996)) (-585 |#3|)) 27 T ELT)) (-2897 (($ $) 14 T ELT)) (-3177 ((|#2| $) 12 T ELT)) (-3951 ((|#3| $) 10 T ELT))) +(((-1159 |#1| |#2| |#3|) (-10 -7 (-15 -3084 ((-585 (-996)) |#1|)) (-15 -2896 (|#1| |#1| (-585 (-996)) (-585 |#3|))) (-15 -2896 (|#1| |#1| (-996) |#3|)) (-15 -3962 (|#1| |#1|)) (-15 -2896 (|#1| |#2| |#3|)) (-15 -3951 (|#3| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -3177 (|#2| |#1|))) (-1160 |#2| |#3|) (-963) (-718)) (T -1159)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 95 T ELT)) (-3834 (((-1092) $) 129 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-3774 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3777 (((-1071 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2895 (((-85) $) 94 T ELT)) (-3775 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3780 (($ $ (-832)) 127 T ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| |#2|) 81 T ELT) (($ $ (-996) |#2|) 97 T ELT) (($ $ (-585 (-996)) (-585 |#2|)) 96 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3772 (($ $ |#2|) 121 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3803 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1027)) ELT)) (-3761 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092))) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1092) (-696)) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3951 ((|#2| $) 84 T ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ |#2|) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 128 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3773 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092))) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1092) (-696)) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1160 |#1| |#2|) (-113) (-963) (-718)) (T -1160)) +((-3777 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1092)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3775 (*1 *2 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3774 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3949 (*2 (-1092)))) (-4 *2 (-963)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3))))) +(-13 (-888 |t#1| |t#2| (-996)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3777 ((-1071 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3834 ((-1092) $)) (-15 -3776 (|t#1| $)) (-15 -3780 ($ $ (-832))) (-15 -3775 (|t#2| $)) (-15 -3775 (|t#2| $ |t#2|)) (-15 -3774 ($ $ |t#2|)) (-15 -3774 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3949 (|t#1| (-1092)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3773 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3772 ($ $ |t#2|)) (IF (|has| |t#2| (-1027)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-811 (-1092))) (-6 (-811 (-1092))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3771 ((-1071 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1027)) ((-246) |has| |#1| (-497)) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-888 |#1| |#2| (-996)) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-3778 ((|#2| |#2|) 12 T ELT)) (-3974 (((-348 |#2|) |#2|) 14 T ELT)) (-3779 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-486))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-486)))) 30 T ELT))) +(((-1161 |#1| |#2|) (-10 -7 (-15 -3974 ((-348 |#2|) |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3779 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-486))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-486)))))) (-497) (-13 (-1157 |#1|) (-497) (-10 -8 (-15 -3147 ($ $ $))))) (T -1161)) +((-3779 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-486)))) (-4 *4 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $))))) (-4 *3 (-497)) (-5 *1 (-1161 *3 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $))))))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-1157 *4) (-497) (-10 -8 (-15 -3147 ($ $ $)))))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1141 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1171 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3159 (((-1141 |#1| |#2| |#3|) $) NIL T ELT) (((-1171 |#1| |#2| |#3|) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3784 (((-350 (-486)) $) 68 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) (-1141 |#1| |#2| |#3|)) NIL T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) 30 T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (((-1141 |#1| |#2| |#3|) $) 71 T ELT)) (-3781 (((-3 (-1141 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3782 (((-1141 |#1| |#2| |#3|) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 39 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 40 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) 38 T ELT)) (-3951 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3949 (((-774) $) 107 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1141 |#1| |#2| |#3|)) 16 T ELT) (($ (-1171 |#1| |#2| |#3|)) 17 T ELT) (($ (-1178 |#2|)) 36 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 26 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 34 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1162 |#1| |#2| |#3|) (-13 (-1166 |#1| (-1141 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-952 (-1171 |#1| |#2| |#3|)) (-557 (-1178 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1162)) +((-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1162 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3961 (((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|)) 24 T ELT))) +(((-1163 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3961 ((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|)))) (-963) (-963) (-1092) (-1092) |#1| |#2|) (T -1163)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1162 *6 *8 *10)) (-5 *1 (-1163 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 95 T ELT)) (-3834 (((-1092) $) 129 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) 124 T ELT) (($ $ (-350 (-486)) (-350 (-486))) 123 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 130 T ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) 199 T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 94 T ELT)) (-3630 (($) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) 126 T ELT) (((-350 (-486)) $ (-350 (-486))) 125 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 127 T ELT) (($ $ (-350 (-486))) 198 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| (-350 (-486))) 81 T ELT) (($ $ (-996) (-350 (-486))) 97 T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) 96 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3945 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 197 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 196 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 178 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) 121 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3951 (((-350 (-486)) $) 84 T ELT)) (-3498 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 128 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1164 |#1|) (-113) (-963)) (T -1164)) +((-3821 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))) (-4 *4 (-963)) (-4 *1 (-1164 *4)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-1164 *3)) (-4 *3 (-963)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) (-3815 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) (-4 *3 (-38 (-350 (-486)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486))))))))) +(-13 (-1160 |t#1| (-350 (-486))) (-10 -8 (-15 -3821 ($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |t#1|))))) (-15 -3780 ($ $ (-350 (-486)))) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (IF (|has| |t#1| (-15 -3815 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -3084 ((-585 (-1092)) |t#1|))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-486))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1117))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-486))) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-350 (-486)) |#1|) . T) ((-241 $ $) |has| (-350 (-486)) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-888 |#1| (-350 (-486)) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1160 |#1| (-350 (-486))) . T)) +((-3191 (((-85) $) 12 T ELT)) (-3160 (((-3 |#3| "failed") $) 17 T ELT)) (-3159 ((|#3| $) 14 T ELT))) +(((-1165 |#1| |#2| |#3|) (-10 -7 (-15 -3160 ((-3 |#3| "failed") |#1|)) (-15 -3159 (|#3| |#1|)) (-15 -3191 ((-85) |#1|))) (-1166 |#2| |#3|) (-963) (-1143 |#2|)) (T -1165)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 95 T ELT)) (-3834 (((-1092) $) 129 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) 124 T ELT) (($ $ (-350 (-486)) (-350 (-486))) 123 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 130 T ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) 199 T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| "failed") $) 212 T ELT)) (-3159 ((|#2| $) 213 T ELT)) (-2567 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3784 (((-350 (-486)) $) 209 T ELT)) (-2566 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) |#2|) 210 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 94 T ELT)) (-3630 (($) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) 126 T ELT) (((-350 (-486)) $ (-350 (-486))) 125 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 127 T ELT) (($ $ (-350 (-486))) 198 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| (-350 (-486))) 81 T ELT) (($ $ (-996) (-350 (-486))) 97 T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) 96 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3945 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3783 ((|#2| $) 208 T ELT)) (-3781 (((-3 |#2| "failed") $) 206 T ELT)) (-3782 ((|#2| $) 207 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 197 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 196 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 178 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) 121 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3951 (((-350 (-486)) $) 84 T ELT)) (-3498 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 128 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1166 |#1| |#2|) (-113) (-963) (-1143 |t#1|)) (T -1166)) +((-3951 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) (-5 *2 (-350 (-486))))) (-3785 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-4 *4 (-963)) (-4 *1 (-1166 *4 *3)) (-4 *3 (-1143 *4)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) (-5 *2 (-350 (-486))))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3)))) (-3781 (*1 *2 *1) (|partial| -12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) +(-13 (-1164 |t#1|) (-952 |t#2|) (-557 |t#2|) (-10 -8 (-15 -3785 ($ (-350 (-486)) |t#2|)) (-15 -3784 ((-350 (-486)) $)) (-15 -3783 (|t#2| $)) (-15 -3951 ((-350 (-486)) $)) (-15 -3782 (|t#2| $)) (-15 -3781 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-486))) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 |#2|) . T) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-350 (-486)) |#1|) . T) ((-241 $ $) |has| (-350 (-486)) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-888 |#1| (-350 (-486)) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-952 |#2|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1160 |#1| (-350 (-486))) . T) ((-1164 |#1|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 104 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) 116 T ELT) (($ $ (-350 (-486)) (-350 (-486))) 118 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 54 T ELT)) (-3495 (($ $) 192 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1610 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) 188 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) 65 T ELT)) (-3497 (($ $) 196 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 85 T ELT)) (-3784 (((-350 (-486)) $) 13 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) |#2|) 11 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 74 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) 113 T ELT) (((-350 (-486)) $ (-350 (-486))) 114 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 130 T ELT) (($ $ (-350 (-486))) 128 T ELT)) (-1607 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) 33 T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3945 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 ((|#2| $) 12 T ELT)) (-3781 (((-3 |#2| #1#) $) 44 T ELT)) (-3782 ((|#2| $) 45 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) 122 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1609 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 138 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3951 (((-350 (-486)) $) 16 T ELT)) (-3498 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 194 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 190 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 120 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-486))) 139 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 107 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 127 T CONST)) (-3776 ((|#1| $) 106 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 204 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 180 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 200 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 208 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 184 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 210 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 186 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 206 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 182 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 202 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 178 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3059 (((-85) $ $) 72 T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3842 (($ $ $) 76 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 82 T ELT) (($ $ (-486)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1167 |#1| |#2|) (-1166 |#1| |#2|) (-963) (-1143 |#1|)) (T -1167)) +NIL +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 37 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-350 (-486)))) ELT) (((-3 (-1162 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3159 (((-486) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-350 (-486)))) ELT) (((-1162 |#2| |#3| |#4|) $) NIL T ELT)) (-3962 (($ $) 41 T ELT)) (-3470 (((-3 $ #1#) $) 27 T ELT)) (-3506 (($ $) NIL (|has| (-1162 |#2| |#3| |#4|) (-393)) ELT)) (-1626 (($ $ (-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 11 T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ (-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2823 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1627 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3961 (($ (-1 (-1162 |#2| |#3| |#4|) (-1162 |#2| |#3| |#4|)) $) NIL T ELT)) (-3787 (((-3 (-752 |#2|) #1#) $) 91 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 (((-1162 |#2| |#3| |#4|) $) 20 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 (((-1162 |#2| |#3| |#4|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ (-1162 |#2| |#3| |#4|)) NIL (|has| (-1162 |#2| |#3| |#4|) (-497)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3786 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) #1#) $) 74 T ELT)) (-3951 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2820 (((-1162 |#2| |#3| |#4|) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-393)) ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-1162 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| (-1162 |#2| |#3| |#4|) (-952 (-350 (-486)))) (|has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) ELT)) (-3820 (((-585 (-1162 |#2| |#3| |#4|)) $) NIL T ELT)) (-3680 (((-1162 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1625 (($ $ $ (-696)) NIL (|has| (-1162 |#2| |#3| |#4|) (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ (-1162 |#2| |#3| |#4|)) NIL (|has| (-1162 |#2| |#3| |#4|) (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1162 |#2| |#3| |#4|)) NIL T ELT) (($ (-1162 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) ELT))) +(((-1168 |#1| |#2| |#3| |#4|) (-13 (-277 (-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-497) (-10 -8 (-15 -3787 ((-3 (-752 |#2|) #1="failed") $)) (-15 -3786 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) #1#) $)))) (-13 (-952 (-486)) (-582 (-486)) (-393)) (-13 (-27) (-1117) (-364 |#1|)) (-1092) |#2|) (T -1168)) +((-3787 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-752 *4)) (-5 *1 (-1168 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4))) (-3786 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))))) (|:| |%type| (-1075)))) (-5 *1 (-1168 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4)))) +((-3405 ((|#2| $) 34 T ELT)) (-3798 ((|#2| $) 18 T ELT)) (-3800 (($ $) 43 T ELT)) (-3788 (($ $ (-486)) 78 T ELT)) (-3028 ((|#2| $ |#2|) 75 T ELT)) (-3789 ((|#2| $ |#2|) 71 T ELT)) (-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3029 (($ $ (-585 $)) 74 T ELT)) (-3799 ((|#2| $) 17 T ELT)) (-3802 (($ $) NIL T ELT) (($ $ (-696)) 51 T ELT)) (-3034 (((-585 $) $) 31 T ELT)) (-3030 (((-85) $ $) 62 T ELT)) (-3530 (((-85) $) 33 T ELT)) (-3801 ((|#2| $) 25 T ELT) (($ $ (-696)) 57 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3636 (((-85) $) 23 T ELT)) (-3795 (($ $) 46 T ELT)) (-3793 (($ $) 79 T ELT)) (-3796 (((-696) $) 50 T ELT)) (-3797 (($ $) 49 T ELT)) (-3805 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3525 (((-585 $) $) 32 T ELT)) (-3059 (((-85) $ $) 60 T ELT))) +(((-1169 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3788 (|#1| |#1| (-486))) (-15 -3791 (|#2| |#1| #1="last" |#2|)) (-15 -3789 (|#2| |#1| |#2|)) (-15 -3791 (|#1| |#1| #2="rest" |#1|)) (-15 -3791 (|#2| |#1| #3="first" |#2|)) (-15 -3793 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 ((-696) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| #1#)) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#1| |#1| (-696))) (-15 -3803 (|#1| |#1| #2#)) (-15 -3802 (|#1| |#1|)) (-15 -3803 (|#2| |#1| #3#)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3028 (|#2| |#1| |#2|)) (-15 -3791 (|#2| |#1| #4="value" |#2|)) (-15 -3029 (|#1| |#1| (-585 |#1|))) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3636 ((-85) |#1|)) (-15 -3803 (|#2| |#1| #4#)) (-15 -3405 (|#2| |#1|)) (-15 -3530 ((-85) |#1|)) (-15 -3034 ((-585 |#1|) |#1|)) (-15 -3525 ((-585 |#1|) |#1|))) (-1170 |#2|) (-1131)) (T -1169)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-1170 |#1|) (-113) (-1131)) (T -1170)) +((-3805 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3802 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3792 (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3791 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3789 (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131))))) +(-13 (-925 |t#1|) (-10 -8 (-15 -3805 ($ $ $)) (-15 -3805 ($ |t#1| $)) (-15 -3804 (|t#1| $)) (-15 -3803 (|t#1| $ "first")) (-15 -3804 ($ $ (-696))) (-15 -3802 ($ $)) (-15 -3803 ($ $ "rest")) (-15 -3802 ($ $ (-696))) (-15 -3801 (|t#1| $)) (-15 -3803 (|t#1| $ "last")) (-15 -3801 ($ $ (-696))) (-15 -3800 ($ $)) (-15 -3799 (|t#1| $)) (-15 -3798 (|t#1| $)) (-15 -3797 ($ $)) (-15 -3796 ((-696) $)) (-15 -3795 ($ $)) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3794 ($ $ $)) (-15 -3794 ($ $ |t#1|)) (-15 -3793 ($ $)) (-15 -3792 (|t#1| $ |t#1|)) (-15 -3791 (|t#1| $ "first" |t#1|)) (-15 -3790 ($ $ $)) (-15 -3791 ($ $ "rest" $)) (-15 -3789 (|t#1| $ |t#1|)) (-15 -3791 (|t#1| $ "last" |t#1|)) (-15 -3788 ($ $ (-486)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 87 T ELT)) (-3814 (((-1150 |#2| |#1|) $ (-696)) 70 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 139 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-696)) 125 T ELT) (($ $ (-696) (-696)) 127 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 42 T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1071 |#1|)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3808 (($ $) 131 T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3819 (($ $) 137 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 60 T ELT) (((-859 |#1|) $ (-696) (-696)) 62 T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $) NIL T ELT) (((-696) $ (-696)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3811 (($ $) 115 T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3807 (($ (-486) (-486) $) 133 T ELT)) (-3780 (($ $ (-832)) 136 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 109 T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 16 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3812 (($ $) 113 T ELT)) (-3813 (($ $) 111 T ELT)) (-3806 (($ (-486) (-486) $) 135 T ELT)) (-3815 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3809 (($ $ (-486) (-486)) 119 T ELT)) (-3772 (($ $ (-696)) 121 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3810 (($ $) 117 T ELT)) (-3771 (((-1071 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3803 ((|#1| $ (-696)) 93 T ELT) (($ $ $) 129 (|has| (-696) (-1027)) ELT)) (-3761 (($ $ (-1092)) 106 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) 101 T ELT)) (-3951 (((-696) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 123 T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) 26 T ELT) (($ (-350 (-486))) 145 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1150 |#2| |#1|)) 78 T ELT) (($ (-1178 |#2|)) 22 T ELT)) (-3820 (((-1071 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) 92 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 88 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-696)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 13 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3952 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1171 |#1| |#2| |#3|) (-13 (-1174 |#1|) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3949 ($ (-1150 |#2| |#1|))) (-15 -3814 ((-1150 |#2| |#1|) $ (-696))) (-15 -3949 ($ (-1178 |#2|))) (-15 -3813 ($ $)) (-15 -3812 ($ $)) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $ (-486) (-486))) (-15 -3808 ($ $)) (-15 -3807 ($ (-486) (-486) $)) (-15 -3806 ($ (-486) (-486) $)) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1171)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1171 *3 *4 *5)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3809 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3807 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3))) (-3806 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3961 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3961 (|#4| (-1 |#2| |#1|) |#3|))) (-963) (-963) (-1174 |#1|) (-1174 |#2|)) (T -1172)) +((-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6 *4 *2)) (-4 *4 (-1174 *5))))) +((-3191 (((-85) $) 17 T ELT)) (-3495 (($ $) 105 T ELT)) (-3642 (($ $) 81 T ELT)) (-3493 (($ $) 101 T ELT)) (-3641 (($ $) 77 T ELT)) (-3497 (($ $) 109 T ELT)) (-3640 (($ $) 85 T ELT)) (-3945 (($ $) 75 T ELT)) (-3946 (($ $) 73 T ELT)) (-3498 (($ $) 111 T ELT)) (-3639 (($ $) 87 T ELT)) (-3496 (($ $) 107 T ELT)) (-3638 (($ $) 83 T ELT)) (-3494 (($ $) 103 T ELT)) (-3637 (($ $) 79 T ELT)) (-3949 (((-774) $) 61 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3501 (($ $) 117 T ELT)) (-3489 (($ $) 93 T ELT)) (-3499 (($ $) 113 T ELT)) (-3487 (($ $) 89 T ELT)) (-3503 (($ $) 121 T ELT)) (-3491 (($ $) 97 T ELT)) (-3504 (($ $) 123 T ELT)) (-3492 (($ $) 99 T ELT)) (-3502 (($ $) 119 T ELT)) (-3490 (($ $) 95 T ELT)) (-3500 (($ $) 115 T ELT)) (-3488 (($ $) 91 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-486))) 71 T ELT))) +(((-1173 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-486)))) (-15 -3642 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3949 (|#1| |#2|)) (-15 -3949 (|#1| |#1|)) (-15 -3949 (|#1| (-350 (-486)))) (-15 -3949 (|#1| (-486))) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832))) (-15 -3191 ((-85) |#1|)) (-15 -3949 ((-774) |#1|))) (-1174 |#2|) (-963)) (T -1173)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 95 T ELT)) (-3834 (((-1092) $) 129 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 71 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-696)) 124 T ELT) (($ $ (-696) (-696)) 123 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 130 T ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1071 |#1|)) 181 T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3819 (($ $) 180 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 178 T ELT) (((-859 |#1|) $ (-696) (-696)) 177 T ELT)) (-2895 (((-85) $) 94 T ELT)) (-3630 (($) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $) 126 T ELT) (((-696) $ (-696)) 125 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 127 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 179 T ELT)) (-3940 (((-85) $) 82 T ELT)) (-2896 (($ |#1| (-696)) 81 T ELT) (($ $ (-996) (-696)) 97 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 96 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3945 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3815 (($ $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 174 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3772 (($ $ (-696)) 121 T ELT)) (-3469 (((-3 $ "failed") $ $) 70 (|has| |#1| (-497)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3803 ((|#1| $ (-696)) 131 T ELT) (($ $ $) 107 (|has| (-696) (-1027)) ELT)) (-3761 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT)) (-3951 (((-696) $) 84 T ELT)) (-3498 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 93 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 69 (|has| |#1| (-497)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3820 (((-1071 |#1|) $) 182 T ELT)) (-3680 ((|#1| $ (-696)) 79 T ELT)) (-2705 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 128 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-696)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3949 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-486)) $) 76 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 75 (|has| |#1| (-38 (-350 (-486)))) ELT))) +(((-1174 |#1|) (-113) (-963)) (T -1174)) +((-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-696)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1174 *3)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-5 *2 (-1071 *3)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-4 *1 (-1174 *3)))) (-3819 (*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)))) (-3818 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1174 *3)) (-4 *3 (-963)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) (-3815 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) (-4 *3 (-38 (-350 (-486)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486))))))))) +(-13 (-1160 |t#1| (-696)) (-10 -8 (-15 -3821 ($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |t#1|))))) (-15 -3820 ((-1071 |t#1|) $)) (-15 -3821 ($ (-1071 |t#1|))) (-15 -3819 ($ $)) (-15 -3818 ($ (-1 |t#1| (-486)) $)) (-15 -3817 ((-859 |t#1|) $ (-696))) (-15 -3817 ((-859 |t#1|) $ (-696) (-696))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (IF (|has| |t#1| (-15 -3815 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -3084 ((-585 (-1092)) |t#1|))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-486))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1117))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-696)) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-696) |#1|) . T) ((-241 $ $) |has| (-696) (-1027)) ((-246) |has| |#1| (-497)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-888 |#1| (-696) (-996)) . T) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1160 |#1| (-696)) . T)) +((-3824 (((-1 (-1071 |#1|) (-585 (-1071 |#1|))) (-1 |#2| (-585 |#2|))) 24 T ELT)) (-3823 (((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3822 (((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3827 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3826 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3828 ((|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|)) 60 T ELT)) (-3829 (((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))) 66 T ELT)) (-3825 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -3822 ((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|))) (-15 -3823 ((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3824 ((-1 (-1071 |#1|) (-585 (-1071 |#1|))) (-1 |#2| (-585 |#2|)))) (-15 -3825 (|#2| |#2| |#2|)) (-15 -3826 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3827 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3828 (|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|))) (-15 -3829 ((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))))) (-38 (-350 (-486))) (-1174 |#1|)) (T -1175)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) (-4 *5 (-38 (-350 (-486)))) (-4 *6 (-1174 *5)) (-5 *2 (-585 *6)) (-5 *1 (-1175 *5 *6)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-38 (-350 (-486)))) (-4 *2 (-1174 *5)) (-5 *1 (-1175 *5 *2)))) (-3827 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) (-4 *4 (-38 (-350 (-486)))))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) (-4 *4 (-38 (-350 (-486)))))) (-3825 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-1174 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-1 (-1071 *4) (-585 (-1071 *4)))) (-5 *1 (-1175 *4 *5)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5))))) +((-3831 ((|#2| |#4| (-696)) 31 T ELT)) (-3830 ((|#4| |#2|) 26 T ELT)) (-3833 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-497)) ELT)) (-3832 (((-1 |#4| (-585 |#4|)) |#3|) 43 T ELT))) +(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3830 (|#4| |#2|)) (-15 -3831 (|#2| |#4| (-696))) (-15 -3832 ((-1 |#4| (-585 |#4|)) |#3|)) (IF (|has| |#1| (-497)) (-15 -3833 (|#4| (-350 |#2|))) |%noBranch|)) (-963) (-1157 |#1|) (-602 |#2|) (-1174 |#1|)) (T -1176)) +((-3833 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-497)) (-4 *4 (-963)) (-4 *2 (-1174 *4)) (-5 *1 (-1176 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-585 *6))) (-5 *1 (-1176 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1174 *4)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-1176 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1174 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-1157 *4)) (-4 *2 (-1174 *4)) (-5 *1 (-1176 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) +NIL +(((-1177) (-113)) (T -1177)) +NIL +(-13 (-10 -7 (-6 -2289))) +((-2571 (((-85) $ $) NIL T ELT)) (-3834 (((-1092)) 12 T ELT)) (-3245 (((-1075) $) 18 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 11 T ELT) (((-1092) $) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 15 T ELT))) +(((-1178 |#1|) (-13 (-1015) (-554 (-1092)) (-10 -8 (-15 -3949 ((-1092) $)) (-15 -3834 ((-1092))))) (-1092)) (T -1178)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2))) (-3834 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2)))) +((-3841 (($ (-696)) 19 T ELT)) (-3838 (((-632 |#2|) $ $) 41 T ELT)) (-3835 ((|#2| $) 51 T ELT)) (-3836 ((|#2| $) 50 T ELT)) (-3839 ((|#2| $ $) 36 T ELT)) (-3837 (($ $ $) 47 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) 15 T ELT)) (* (($ (-486) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1179 |#1| |#2|) (-10 -7 (-15 -3835 (|#2| |#1|)) (-15 -3836 (|#2| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3838 ((-632 |#2|) |#1| |#1|)) (-15 -3839 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3841 (|#1| (-696))) (-15 -3842 (|#1| |#1| |#1|))) (-1180 |#2|) (-1131)) (T -1179)) +NIL +((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) 123 (|has| |#1| (-23)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1037 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 89 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 99 T ELT)) (-1355 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1578 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 96 T ELT) (((-486) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 94 (|has| |#1| (-72)) ELT)) (-3838 (((-632 |#1|) $ $) 116 (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 105 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 82 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3836 ((|#1| $) 114 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-3839 ((|#1| $ $) 117 (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3837 (($ $ $) 115 (|has| |#1| (-963)) ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 104 T ELT)) (-1736 (($ $ $ (-486)) 90 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 73 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3949 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2569 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 86 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-486) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-665)) ELT) (($ $ |#1|) 118 (|has| |#1| (-665)) ELT)) (-3960 (((-696) $) 101 T ELT))) +(((-1180 |#1|) (-113) (-1131)) (T -1180)) +((-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-25)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1180 *3)) (-4 *3 (-23)) (-4 *3 (-1131)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) (-3839 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-963)) (-5 *2 (-632 *3)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3842 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3841 ($ (-696))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3840 ($ $)) (-15 -3840 ($ $ $)) (-15 * ($ (-486) $))) |%noBranch|) (IF (|has| |t#1| (-665)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-15 -3839 (|t#1| $ $)) (-15 -3838 ((-632 |t#1|) $ $)) (-15 -3837 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-917)) (IF (|has| |t#1| (-963)) (PROGN (-15 -3836 (|t#1| $)) (-15 -3835 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-19 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1131) . T)) +((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-3843 (($ (-585 |#1|)) 9 T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1578 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3838 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 15 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 11 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3836 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1356 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-963)) ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 19 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 8 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3949 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-486) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1181 |#1|) (-13 (-1180 |#1|) (-10 -8 (-15 -3843 ($ (-585 |#1|))))) (-1131)) (T -1181)) +((-3843 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1181 *3))))) +((-3844 (((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 13 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 15 T ELT)) (-3961 (((-3 (-1181 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1181 |#1|)) 30 T ELT) (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 18 T ELT))) +(((-1182 |#1| |#2|) (-10 -7 (-15 -3844 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3961 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3961 ((-3 (-1181 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1181 |#1|)))) (-1131) (-1131)) (T -1182)) +((-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-1182 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1181 *5)) (-5 *1 (-1182 *6 *5))))) +((-3846 (((-409) (-585 (-585 (-856 (-179)))) (-585 (-221))) 22 T ELT) (((-409) (-585 (-585 (-856 (-179))))) 21 T ELT) (((-409) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221))) 20 T ELT)) (-3847 (((-1184) (-585 (-585 (-856 (-179)))) (-585 (-221))) 30 T ELT) (((-1184) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221))) 29 T ELT)) (-3949 (((-1184) (-409)) 46 T ELT))) +(((-1183) (-10 -7 (-15 -3846 ((-409) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221)))) (-15 -3846 ((-409) (-585 (-585 (-856 (-179)))))) (-15 -3846 ((-409) (-585 (-585 (-856 (-179)))) (-585 (-221)))) (-15 -3847 ((-1184) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221)))) (-15 -3847 ((-1184) (-585 (-585 (-856 (-179)))) (-585 (-221)))) (-15 -3949 ((-1184) (-409))))) (T -1183)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-409)) (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3847 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *6 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-409)) (-5 *1 (-1183)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-409)) (-5 *1 (-1183)))) (-3846 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *6 (-585 (-221))) (-5 *2 (-409)) (-5 *1 (-1183))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3865 (((-1075) $ (-1075)) 107 T ELT) (((-1075) $ (-1075) (-1075)) 105 T ELT) (((-1075) $ (-1075) (-585 (-1075))) 104 T ELT)) (-3861 (($) 69 T ELT)) (-3848 (((-1187) $ (-409) (-832)) 54 T ELT)) (-3854 (((-1187) $ (-832) (-1075)) 89 T ELT) (((-1187) $ (-832) (-785)) 90 T ELT)) (-3876 (((-1187) $ (-832) (-330) (-330)) 57 T ELT)) (-3886 (((-1187) $ (-1075)) 84 T ELT)) (-3849 (((-1187) $ (-832) (-1075)) 94 T ELT)) (-3850 (((-1187) $ (-832) (-330) (-330)) 58 T ELT)) (-3887 (((-1187) $ (-832) (-832)) 55 T ELT)) (-3867 (((-1187) $) 85 T ELT)) (-3852 (((-1187) $ (-832) (-1075)) 93 T ELT)) (-3856 (((-1187) $ (-409) (-832)) 41 T ELT)) (-3853 (((-1187) $ (-832) (-1075)) 92 T ELT)) (-3889 (((-585 (-221)) $) 29 T ELT) (($ $ (-585 (-221))) 30 T ELT)) (-3888 (((-1187) $ (-696) (-696)) 52 T ELT)) (-3860 (($ $) 70 T ELT) (($ (-409) (-585 (-221))) 71 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3863 (((-486) $) 48 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3857 (((-1181 (-3 (-409) "undefined")) $) 47 T ELT)) (-3858 (((-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3853 (-486)) (|:| -3851 (-486)) (|:| |spline| (-486)) (|:| -3882 (-486)) (|:| |axesColor| (-785)) (|:| -3854 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486)))) $) 46 T ELT)) (-3859 (((-1187) $ (-832) (-179) (-179) (-179) (-179) (-486) (-486) (-486) (-486) (-785) (-486) (-785) (-486)) 83 T ELT)) (-3862 (((-585 (-856 (-179))) $) NIL T ELT)) (-3855 (((-409) $ (-832)) 43 T ELT)) (-3885 (((-1187) $ (-696) (-696) (-832) (-832)) 50 T ELT)) (-3883 (((-1187) $ (-1075)) 95 T ELT)) (-3851 (((-1187) $ (-832) (-1075)) 91 T ELT)) (-3949 (((-774) $) 102 T ELT)) (-3864 (((-1187) $) 96 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3882 (((-1187) $ (-832) (-1075)) 87 T ELT) (((-1187) $ (-832) (-785)) 88 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1184) (-13 (-1015) (-10 -8 (-15 -3862 ((-585 (-856 (-179))) $)) (-15 -3861 ($)) (-15 -3860 ($ $)) (-15 -3889 ((-585 (-221)) $)) (-15 -3889 ($ $ (-585 (-221)))) (-15 -3860 ($ (-409) (-585 (-221)))) (-15 -3859 ((-1187) $ (-832) (-179) (-179) (-179) (-179) (-486) (-486) (-486) (-486) (-785) (-486) (-785) (-486))) (-15 -3858 ((-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3853 (-486)) (|:| -3851 (-486)) (|:| |spline| (-486)) (|:| -3882 (-486)) (|:| |axesColor| (-785)) (|:| -3854 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486)))) $)) (-15 -3857 ((-1181 (-3 (-409) "undefined")) $)) (-15 -3886 ((-1187) $ (-1075))) (-15 -3856 ((-1187) $ (-409) (-832))) (-15 -3855 ((-409) $ (-832))) (-15 -3882 ((-1187) $ (-832) (-1075))) (-15 -3882 ((-1187) $ (-832) (-785))) (-15 -3854 ((-1187) $ (-832) (-1075))) (-15 -3854 ((-1187) $ (-832) (-785))) (-15 -3853 ((-1187) $ (-832) (-1075))) (-15 -3852 ((-1187) $ (-832) (-1075))) (-15 -3851 ((-1187) $ (-832) (-1075))) (-15 -3883 ((-1187) $ (-1075))) (-15 -3864 ((-1187) $)) (-15 -3885 ((-1187) $ (-696) (-696) (-832) (-832))) (-15 -3850 ((-1187) $ (-832) (-330) (-330))) (-15 -3876 ((-1187) $ (-832) (-330) (-330))) (-15 -3849 ((-1187) $ (-832) (-1075))) (-15 -3888 ((-1187) $ (-696) (-696))) (-15 -3848 ((-1187) $ (-409) (-832))) (-15 -3887 ((-1187) $ (-832) (-832))) (-15 -3865 ((-1075) $ (-1075))) (-15 -3865 ((-1075) $ (-1075) (-1075))) (-15 -3865 ((-1075) $ (-1075) (-585 (-1075)))) (-15 -3867 ((-1187) $)) (-15 -3863 ((-486) $)) (-15 -3949 ((-774) $))))) (T -1184)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1184)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-585 (-856 (-179)))) (-5 *1 (-1184)))) (-3861 (*1 *1) (-5 *1 (-1184))) (-3860 (*1 *1 *1) (-5 *1 (-1184))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) (-3860 (*1 *1 *2 *3) (-12 (-5 *2 (-409)) (-5 *3 (-585 (-221))) (-5 *1 (-1184)))) (-3859 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-832)) (-5 *4 (-179)) (-5 *5 (-486)) (-5 *6 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3853 (-486)) (|:| -3851 (-486)) (|:| |spline| (-486)) (|:| -3882 (-486)) (|:| |axesColor| (-785)) (|:| -3854 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486))))) (-5 *1 (-1184)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-409) "undefined"))) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3856 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-409)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3850 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3887 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1184)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1184))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3877 (((-1187) $ (-330)) 168 T ELT) (((-1187) $ (-330) (-330) (-330)) 169 T ELT)) (-3865 (((-1075) $ (-1075)) 177 T ELT) (((-1075) $ (-1075) (-1075)) 175 T ELT) (((-1075) $ (-1075) (-585 (-1075))) 174 T ELT)) (-3893 (($) 67 T ELT)) (-3884 (((-1187) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1187) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1187) $ (-486) (-486) (-330) (-330) (-330)) 143 T ELT) (((-1187) $ (-330) (-330)) 144 T ELT) (((-1187) $ (-330) (-330) (-330)) 151 T ELT)) (-3896 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3898 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3897 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3894 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3895 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3876 (((-1187) $ (-330) (-330)) 170 T ELT)) (-3886 (((-1187) $ (-1075)) 152 T ELT)) (-3891 (((-1049 (-179)) $) 68 T ELT) (($ $ (-1049 (-179))) 69 T ELT)) (-3872 (((-1187) $ (-1075)) 186 T ELT)) (-3871 (((-1187) $ (-1075)) 187 T ELT)) (-3878 (((-1187) $ (-330) (-330)) 150 T ELT) (((-1187) $ (-486) (-486)) 167 T ELT)) (-3887 (((-1187) $ (-832) (-832)) 159 T ELT)) (-3867 (((-1187) $) 136 T ELT)) (-3875 (((-1187) $ (-1075)) 185 T ELT)) (-3880 (((-1187) $ (-1075)) 133 T ELT)) (-3889 (((-585 (-221)) $) 70 T ELT) (($ $ (-585 (-221))) 71 T ELT)) (-3888 (((-1187) $ (-696) (-696)) 158 T ELT)) (-3890 (((-1187) $ (-696) (-856 (-179))) 192 T ELT)) (-3892 (($ $) 73 T ELT) (($ (-1049 (-179)) (-1075)) 74 T ELT) (($ (-1049 (-179)) (-585 (-221))) 75 T ELT)) (-3869 (((-1187) $ (-330) (-330) (-330)) 130 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3863 (((-486) $) 127 T ELT)) (-3868 (((-1187) $ (-330)) 172 T ELT)) (-3873 (((-1187) $ (-330)) 190 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3874 (((-1187) $ (-330)) 189 T ELT)) (-3879 (((-1187) $ (-1075)) 135 T ELT)) (-3885 (((-1187) $ (-696) (-696) (-832) (-832)) 157 T ELT)) (-3881 (((-1187) $ (-1075)) 132 T ELT)) (-3883 (((-1187) $ (-1075)) 134 T ELT)) (-3866 (((-1187) $ (-130) (-130)) 156 T ELT)) (-3949 (((-774) $) 165 T ELT)) (-3864 (((-1187) $) 137 T ELT)) (-3870 (((-1187) $ (-1075)) 188 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3882 (((-1187) $ (-1075)) 131 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1185) (-13 (-1015) (-10 -8 (-15 -3898 ((-330))) (-15 -3898 ((-330) (-330))) (-15 -3897 ((-330))) (-15 -3897 ((-330) (-330))) (-15 -3896 ((-330))) (-15 -3896 ((-330) (-330))) (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ($)) (-15 -3892 ($ $)) (-15 -3892 ($ (-1049 (-179)) (-1075))) (-15 -3892 ($ (-1049 (-179)) (-585 (-221)))) (-15 -3891 ((-1049 (-179)) $)) (-15 -3891 ($ $ (-1049 (-179)))) (-15 -3890 ((-1187) $ (-696) (-856 (-179)))) (-15 -3889 ((-585 (-221)) $)) (-15 -3889 ($ $ (-585 (-221)))) (-15 -3888 ((-1187) $ (-696) (-696))) (-15 -3887 ((-1187) $ (-832) (-832))) (-15 -3886 ((-1187) $ (-1075))) (-15 -3885 ((-1187) $ (-696) (-696) (-832) (-832))) (-15 -3884 ((-1187) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3884 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3884 ((-1187) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ((-1187) $ (-486) (-486) (-330) (-330) (-330))) (-15 -3884 ((-1187) $ (-330) (-330))) (-15 -3884 ((-1187) $ (-330) (-330) (-330))) (-15 -3883 ((-1187) $ (-1075))) (-15 -3882 ((-1187) $ (-1075))) (-15 -3881 ((-1187) $ (-1075))) (-15 -3880 ((-1187) $ (-1075))) (-15 -3879 ((-1187) $ (-1075))) (-15 -3878 ((-1187) $ (-330) (-330))) (-15 -3878 ((-1187) $ (-486) (-486))) (-15 -3877 ((-1187) $ (-330))) (-15 -3877 ((-1187) $ (-330) (-330) (-330))) (-15 -3876 ((-1187) $ (-330) (-330))) (-15 -3875 ((-1187) $ (-1075))) (-15 -3874 ((-1187) $ (-330))) (-15 -3873 ((-1187) $ (-330))) (-15 -3872 ((-1187) $ (-1075))) (-15 -3871 ((-1187) $ (-1075))) (-15 -3870 ((-1187) $ (-1075))) (-15 -3869 ((-1187) $ (-330) (-330) (-330))) (-15 -3868 ((-1187) $ (-330))) (-15 -3867 ((-1187) $)) (-15 -3866 ((-1187) $ (-130) (-130))) (-15 -3865 ((-1075) $ (-1075))) (-15 -3865 ((-1075) $ (-1075) (-1075))) (-15 -3865 ((-1075) $ (-1075) (-585 (-1075)))) (-15 -3864 ((-1187) $)) (-15 -3863 ((-486) $))))) (T -1185)) +((-3898 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3897 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3896 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3893 (*1 *1) (-5 *1 (-1185))) (-3892 (*1 *1 *1) (-5 *1 (-1185))) (-3892 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1075)) (-5 *1 (-1185)))) (-3892 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-585 (-221))) (-5 *1 (-1185)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185)))) (-3891 (*1 *1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185)))) (-3890 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185)))) (-3888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3887 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3886 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3885 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3884 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1185)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3884 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-486)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3884 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3877 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3869 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3865 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185)))) (-3865 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185)))) (-3865 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1185)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1185))))) +((-3907 (((-585 (-1075)) (-585 (-1075))) 103 T ELT) (((-585 (-1075))) 96 T ELT)) (-3908 (((-585 (-1075))) 94 T ELT)) (-3905 (((-585 (-832)) (-585 (-832))) 69 T ELT) (((-585 (-832))) 64 T ELT)) (-3904 (((-585 (-696)) (-585 (-696))) 61 T ELT) (((-585 (-696))) 55 T ELT)) (-3906 (((-1187)) 71 T ELT)) (-3910 (((-832) (-832)) 87 T ELT) (((-832)) 86 T ELT)) (-3909 (((-832) (-832)) 85 T ELT) (((-832)) 84 T ELT)) (-3902 (((-785) (-785)) 81 T ELT) (((-785)) 80 T ELT)) (-3912 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3911 (((-832)) 88 T ELT) (((-832) (-832)) 89 T ELT)) (-3903 (((-832) (-832)) 83 T ELT) (((-832)) 82 T ELT)) (-3899 (((-785) (-785)) 75 T ELT) (((-785)) 73 T ELT)) (-3900 (((-785) (-785)) 77 T ELT) (((-785)) 76 T ELT)) (-3901 (((-785) (-785)) 79 T ELT) (((-785)) 78 T ELT))) +(((-1186) (-10 -7 (-15 -3899 ((-785))) (-15 -3899 ((-785) (-785))) (-15 -3900 ((-785))) (-15 -3900 ((-785) (-785))) (-15 -3901 ((-785))) (-15 -3901 ((-785) (-785))) (-15 -3902 ((-785))) (-15 -3902 ((-785) (-785))) (-15 -3903 ((-832))) (-15 -3903 ((-832) (-832))) (-15 -3904 ((-585 (-696)))) (-15 -3904 ((-585 (-696)) (-585 (-696)))) (-15 -3905 ((-585 (-832)))) (-15 -3905 ((-585 (-832)) (-585 (-832)))) (-15 -3906 ((-1187))) (-15 -3907 ((-585 (-1075)))) (-15 -3907 ((-585 (-1075)) (-585 (-1075)))) (-15 -3908 ((-585 (-1075)))) (-15 -3909 ((-832))) (-15 -3910 ((-832))) (-15 -3909 ((-832) (-832))) (-15 -3910 ((-832) (-832))) (-15 -3911 ((-832) (-832))) (-15 -3911 ((-832))) (-15 -3912 ((-179) (-330))) (-15 -3912 ((-179))))) (T -1186)) +((-3912 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1186)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1186)))) (-3911 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3910 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3909 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3908 (*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) (-3907 (*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) (-3906 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1186)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186)))) (-3905 (*1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186)))) (-3904 (*1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3903 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3902 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3901 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3900 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3899 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) +((-3913 (($) 6 T ELT)) (-3949 (((-774) $) 9 T ELT))) +(((-1187) (-13 (-554 (-774)) (-10 -8 (-15 -3913 ($))))) (T -1187)) +((-3913 (*1 *1) (-5 *1 (-1187)))) +((-3952 (($ $ |#2|) 10 T ELT))) +(((-1188 |#1| |#2|) (-10 -7 (-15 -3952 (|#1| |#1| |#2|))) (-1189 |#2|) (-312)) (T -1188)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3914 (((-107)) 39 T ELT)) (-3949 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ |#1|) 40 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-1189 |#1|) (-113) (-312)) (T -1189)) +((-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-312)))) (-3914 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(-13 (-656 |t#1|) (-10 -8 (-15 -3952 ($ $ |t#1|)) (-15 -3914 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) +((-3919 (((-585 (-1124 |#1|)) (-1092) (-1124 |#1|)) 83 T ELT)) (-3917 (((-1071 (-1071 (-859 |#1|))) (-1092) (-1071 (-859 |#1|))) 63 T ELT)) (-3920 (((-1 (-1071 (-1124 |#1|)) (-1071 (-1124 |#1|))) (-696) (-1124 |#1|) (-1071 (-1124 |#1|))) 74 T ELT)) (-3915 (((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696)) 65 T ELT)) (-3918 (((-1 (-1087 (-859 |#1|)) (-859 |#1|)) (-1092)) 32 T ELT)) (-3916 (((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696)) 64 T ELT))) +(((-1190 |#1|) (-10 -7 (-15 -3915 ((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696))) (-15 -3916 ((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696))) (-15 -3917 ((-1071 (-1071 (-859 |#1|))) (-1092) (-1071 (-859 |#1|)))) (-15 -3918 ((-1 (-1087 (-859 |#1|)) (-859 |#1|)) (-1092))) (-15 -3919 ((-585 (-1124 |#1|)) (-1092) (-1124 |#1|))) (-15 -3920 ((-1 (-1071 (-1124 |#1|)) (-1071 (-1124 |#1|))) (-696) (-1124 |#1|) (-1071 (-1124 |#1|))))) (-312)) (T -1190)) +((-3920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-696)) (-4 *6 (-312)) (-5 *4 (-1124 *6)) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1190 *6)) (-5 *5 (-1071 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-585 (-1124 *5))) (-5 *1 (-1190 *5)) (-5 *4 (-1124 *5)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1087 (-859 *4)) (-859 *4))) (-5 *1 (-1190 *4)) (-4 *4 (-312)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-1071 (-1071 (-859 *5)))) (-5 *1 (-1190 *5)) (-5 *4 (-1071 (-859 *5))))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) (-5 *1 (-1190 *4)) (-4 *4 (-312)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) (-5 *1 (-1190 *4)) (-4 *4 (-312))))) +((-3922 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 80 T ELT)) (-3921 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 79 T ELT))) +(((-1191 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -3922 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-299) (-1157 |#1|) (-1157 |#2|) (-353 |#2| |#3|)) (T -1191)) +((-3922 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1191 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3921 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1191 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3923 (((-1051) $) 12 T ELT)) (-3924 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1192) (-13 (-997) (-10 -8 (-15 -3924 ((-1051) $)) (-15 -3923 ((-1051) $))))) (T -1192)) +((-3924 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3925 (((-1051) $) 11 T ELT)) (-3949 (((-774) $) 17 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) +(((-1193) (-13 (-997) (-10 -8 (-15 -3925 ((-1051) $))))) (T -1193)) +((-3925 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1193))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 59 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 82 T ELT) (($ (-486)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3926 (((-1187) (-696)) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 36 T CONST)) (-2669 (($) 85 T CONST)) (-3059 (((-85) $ $) 88 T ELT)) (-3952 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 64 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-1194 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-963) (-431 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3952 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3926 ((-1187) (-696))))) (-963) (-758) (-719) (-863 |#1| |#3| |#2|) (-585 |#2|) (-585 (-696)) (-696)) (T -1194)) +((-3952 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-719)) (-14 *6 (-585 *3)) (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-863 *2 *4 *3)) (-14 *7 (-585 (-696))) (-14 *8 (-696)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-14 *8 (-585 *5)) (-5 *2 (-1187)) (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-863 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) +((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3864 $) (|:| -1704 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) 95 T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 28 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 77 T ELT)) (-3688 ((|#4| |#4| $) 82 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3864 (-585 |#4|)) (|:| -1704 (-585 |#4|))) $) NIL T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 83 T ELT)) (-2611 (((-585 |#4|) $) 32 T ELT)) (-3248 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3929 (((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-585 |#4|)) 38 T ELT)) (-3329 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3961 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) NIL T ELT)) (-3700 (((-585 |#4|) $) 53 T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) 81 T ELT)) (-3702 (((-85) $ $) 92 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 76 T ELT)) (-1356 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3772 (($ $ |#4|) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 74 T ELT)) (-3568 (($) 45 T ELT)) (-3951 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2915 (($ $ |#3|) NIL T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (((-585 |#4|) $) 62 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-3928 (((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-585 |#4|)) 44 T ELT)) (-3927 (((-585 $) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-585 $) (-585 |#4|)) 73 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3936 (((-85) |#3| $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3960 (((-696) $) NIL T ELT))) +(((-1195 |#1| |#2| |#3| |#4|) (-13 (-1126 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3929 ((-3 $ #1="failed") (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3929 ((-3 $ #1#) (-585 |#4|))) (-15 -3928 ((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3928 ((-3 $ #1#) (-585 |#4|))) (-15 -3927 ((-585 $) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3927 ((-585 $) (-585 |#4|))))) (-497) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -1195)) +((-3929 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-3928 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-3928 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-3927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-585 (-1195 *6 *7 *8 *9))) (-5 *1 (-1195 *6 *7 *8 *9)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-1195 *4 *5 *6 *7))) (-5 *1 (-1195 *4 *5 *6 *7))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) +(((-1196 |#1|) (-113) (-963)) (T -1196)) +NIL +(-13 (-963) (-82 |t#1| |t#1|) (-557 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) +((-2571 (((-85) $ $) 69 T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3937 (((-585 |#1|) $) 54 T ELT)) (-3950 (($ $ (-696)) 47 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3938 (($ $ (-696)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3942 (($ $ $) 72 T ELT) (($ $ (-741 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3160 (((-3 (-741 |#1|) #1#) $) NIL T ELT)) (-3159 (((-741 |#1|) $) NIL T ELT)) (-3962 (($ $) 40 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3954 (((-85) $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ (-741 |#1|) |#2|) 39 T ELT)) (-3939 (($ $) 41 T ELT)) (-3944 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3958 (((-741 |#1|) $) NIL T ELT)) (-3959 (((-741 |#1|) $) 42 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3943 (($ $ $) 71 T ELT) (($ $ (-741 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1754 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-741 |#1|) $) 36 T ELT)) (-3177 ((|#2| $) 38 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3951 (((-696) $) 44 T ELT)) (-3956 (((-85) $) 48 T ELT)) (-3955 ((|#2| $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-741 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-486)) NIL T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-741 |#1|)) NIL T ELT)) (-3957 ((|#2| $ $) 78 T ELT) ((|#2| $ (-741 |#1|)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 14 T CONST)) (-2669 (($) 20 T CONST)) (-2668 (((-585 (-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) 45 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 29 T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-741 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1197 |#1| |#2|) (-13 (-335 |#2| (-741 |#1|)) (-1204 |#1| |#2|)) (-758) (-963)) (T -1197)) +NIL +((-3945 ((|#3| |#3| (-696)) 28 T ELT)) (-3946 ((|#3| |#3| (-696)) 34 T ELT)) (-3930 ((|#3| |#3| |#3| (-696)) 35 T ELT))) +(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#3| |#3| (-696))) (-15 -3945 (|#3| |#3| (-696))) (-15 -3930 (|#3| |#3| |#3| (-696)))) (-13 (-963) (-656 (-350 (-486)))) (-758) (-1204 |#2| |#1|)) (T -1198)) +((-3930 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4))))) +((-3935 (((-85) $) 15 T ELT)) (-3936 (((-85) $) 14 T ELT)) (-3931 (($ $) 19 T ELT) (($ $ (-696)) 21 T ELT))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -3931 (|#1| |#1| (-696))) (-15 -3931 (|#1| |#1|)) (-15 -3935 ((-85) |#1|)) (-15 -3936 ((-85) |#1|))) (-1200 |#2|) (-312)) (T -1199)) +NIL +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3935 (((-85) $) 114 T ELT)) (-3932 (((-696)) 110 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1610 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 121 T ELT)) (-3159 ((|#1| $) 122 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3957 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1769 (($ $ (-696)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-745 (-832)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1607 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3934 (((-85) $) 113 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-3933 (((-745 (-832))) 111 T ELT)) (-1608 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1609 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-696) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3914 (((-107)) 119 T ELT)) (-3951 (((-745 (-832)) $) 112 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2705 (((-634 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3936 (((-85) $) 115 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3931 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-696)) 108 (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3952 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-1200 |#1|) (-113) (-312)) (T -1200)) +((-3936 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) (-3933 (*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) (-3932 (*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-696)))) (-3931 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-4 *3 (-320))))) +(-13 (-312) (-952 |t#1|) (-1189 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3936 ((-85) $)) (-15 -3935 ((-85) $)) (-15 -3934 ((-85) $)) (-15 -3951 ((-745 (-832)) $)) (-15 -3933 ((-745 (-832)))) (-15 -3932 ((-696))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3931 ($ $)) (-15 -3931 ($ $ (-696)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T) ((-1189 |#1|) . T)) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3937 (((-585 |#1|) $) 55 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3938 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-696)) 57 (|has| |#2| (-146)) ELT)) (-3727 (($) 23 T CONST)) (-3942 (($ $ |#1|) 69 T ELT) (($ $ (-741 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3160 (((-3 (-741 |#1|) "failed") $) 79 T ELT)) (-3159 (((-741 |#1|) $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3954 (((-85) $) 60 T ELT)) (-3953 (($ $) 59 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3940 (((-85) $) 65 T ELT)) (-3941 (($ (-741 |#1|) |#2|) 66 T ELT)) (-3939 (($ $) 64 T ELT)) (-3944 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3958 (((-741 |#1|) $) 76 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3943 (($ $ |#1|) 72 T ELT) (($ $ (-741 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3956 (((-85) $) 62 T ELT)) (-3955 ((|#2| $) 61 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-741 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3957 ((|#2| $ (-741 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1201 |#1| |#2|) (-113) (-758) (-963)) (T -1201)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |k| (-741 *3)) (|:| |c| *4))))) (-3957 (*1 *2 *1 *3) (-12 (-5 *3 (-741 *4)) (-4 *1 (-1201 *4 *2)) (-4 *4 (-758)) (-4 *2 (-963)))) (-3957 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3942 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3941 (*1 *1 *2 *3) (-12 (-5 *2 (-741 *4)) (-4 *4 (-758)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-963)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3939 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3949 (*1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)) (-4 *3 (-146)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-4 *4 (-146)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-585 *3))))) +(-13 (-963) (-1196 |t#2|) (-952 (-741 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3958 ((-741 |t#1|) $)) (-15 -3944 ((-2 (|:| |k| (-741 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3957 (|t#2| $ (-741 |t#1|))) (-15 -3957 (|t#2| $ $)) (-15 -3943 ($ $ |t#1|)) (-15 -3943 ($ $ (-741 |t#1|))) (-15 -3943 ($ $ $)) (-15 -3942 ($ $ |t#1|)) (-15 -3942 ($ $ (-741 |t#1|))) (-15 -3942 ($ $ $)) (-15 -3941 ($ (-741 |t#1|) |t#2|)) (-15 -3940 ((-85) $)) (-15 -3939 ($ $)) (-15 -3949 ($ |t#1|)) (-15 -3956 ((-85) $)) (-15 -3955 (|t#2| $)) (-15 -3954 ((-85) $)) (-15 -3953 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3938 ($ $ $)) (-15 -3938 ($ $ (-696)))) |%noBranch|) (-15 -3961 ($ (-1 |t#2| |t#2|) $)) (-15 -3937 ((-585 |t#1|) $)) (IF (|has| |t#2| (-6 -3991)) (-6 -3991) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 (-741 |#1|)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) |has| |#2| (-146)) ((-656 |#2|) |has| |#2| (-146)) ((-665) . T) ((-952 (-741 |#1|)) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1196 |#2|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3937 (((-585 |#1|) $) 99 T ELT)) (-3950 (($ $ (-696)) 103 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3938 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3942 (($ $ |#1|) NIL T ELT) (($ $ (-741 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3160 (((-3 (-741 |#1|) #1#) $) NIL T ELT) (((-3 (-805 |#1|) #1#) $) NIL T ELT)) (-3159 (((-741 |#1|) $) NIL T ELT) (((-805 |#1|) $) NIL T ELT)) (-3962 (($ $) 102 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3954 (((-85) $) 90 T ELT)) (-3953 (($ $) 93 T ELT)) (-3947 (($ $ $ (-696)) 104 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ (-741 |#1|) |#2|) NIL T ELT) (($ (-805 |#1|) |#2|) 28 T ELT)) (-3939 (($ $) 120 T ELT)) (-3944 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3958 (((-741 |#1|) $) NIL T ELT)) (-3959 (((-741 |#1|) $) NIL T ELT)) (-3961 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3943 (($ $ |#1|) NIL T ELT) (($ $ (-741 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3945 (($ $ (-696)) 113 (|has| |#2| (-656 (-350 (-486)))) ELT)) (-1754 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-805 |#1|) $) 84 T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3946 (($ $ (-696)) 110 (|has| |#2| (-656 (-350 (-486)))) ELT)) (-3951 (((-696) $) 100 T ELT)) (-3956 (((-85) $) 85 T ELT)) (-3955 ((|#2| $) 88 T ELT)) (-3949 (((-774) $) 70 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-741 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-805 |#1|)) NIL T ELT) (($ (-608 |#1| |#2|)) 47 T ELT) (((-1197 |#1| |#2|) $) 77 T ELT) (((-1206 |#1| |#2|) $) 82 T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-805 |#1|)) NIL T ELT)) (-3957 ((|#2| $ (-741 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 27 T CONST)) (-2668 (((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3948 (((-3 (-608 |#1| |#2|) #1#) $) 119 T ELT)) (-3059 (((-85) $ $) 78 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-805 |#1|)) NIL T ELT))) +(((-1202 |#1| |#2|) (-13 (-1204 |#1| |#2|) (-335 |#2| (-805 |#1|)) (-10 -8 (-15 -3949 ($ (-608 |#1| |#2|))) (-15 -3949 ((-1197 |#1| |#2|) $)) (-15 -3949 ((-1206 |#1| |#2|) $)) (-15 -3948 ((-3 (-608 |#1| |#2|) "failed") $)) (-15 -3947 ($ $ $ (-696))) (IF (|has| |#2| (-656 (-350 (-486)))) (PROGN (-15 -3946 ($ $ (-696))) (-15 -3945 ($ $ (-696)))) |%noBranch|))) (-758) (-146)) (T -1202)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *1 (-1202 *3 *4)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3948 (*1 *2 *1) (|partial| -12 (-5 *2 (-608 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3947 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) (-4 *3 (-758)) (-4 *4 (-146)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) (-4 *3 (-758)) (-4 *4 (-146))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3937 (((-585 (-1092)) $) NIL T ELT)) (-3965 (($ (-1197 (-1092) |#1|)) NIL T ELT)) (-3950 (($ $ (-696)) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3938 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3942 (($ $ (-1092)) NIL T ELT) (($ $ (-741 (-1092))) NIL T ELT) (($ $ $) NIL T ELT)) (-3160 (((-3 (-741 (-1092)) #1#) $) NIL T ELT)) (-3159 (((-741 (-1092)) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3954 (((-85) $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ (-741 (-1092)) |#1|) NIL T ELT)) (-3939 (($ $) NIL T ELT)) (-3944 (((-2 (|:| |k| (-741 (-1092))) (|:| |c| |#1|)) $) NIL T ELT)) (-3958 (((-741 (-1092)) $) NIL T ELT)) (-3959 (((-741 (-1092)) $) NIL T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $ (-1092)) NIL T ELT) (($ $ (-741 (-1092))) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3966 (((-1197 (-1092) |#1|) $) NIL T ELT)) (-3951 (((-696) $) NIL T ELT)) (-3956 (((-85) $) NIL T ELT)) (-3955 ((|#1| $) NIL T ELT)) (-3949 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-741 (-1092))) NIL T ELT) (($ (-1092)) NIL T ELT)) (-3957 ((|#1| $ (-741 (-1092))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3964 (((-585 (-2 (|:| |k| (-1092)) (|:| |c| $))) $) NIL T ELT)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1092) $) NIL T ELT))) +(((-1203 |#1|) (-13 (-1204 (-1092) |#1|) (-10 -8 (-15 -3966 ((-1197 (-1092) |#1|) $)) (-15 -3965 ($ (-1197 (-1092) |#1|))) (-15 -3964 ((-585 (-2 (|:| |k| (-1092)) (|:| |c| $))) $)))) (-963)) (T -1203)) +((-3966 (*1 *2 *1) (-12 (-5 *2 (-1197 (-1092) *3)) (-5 *1 (-1203 *3)) (-4 *3 (-963)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1197 (-1092) *3)) (-4 *3 (-963)) (-5 *1 (-1203 *3)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-1092)) (|:| |c| (-1203 *3))))) (-5 *1 (-1203 *3)) (-4 *3 (-963))))) +((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3937 (((-585 |#1|) $) 55 T ELT)) (-3950 (($ $ (-696)) 89 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3938 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-696)) 57 (|has| |#2| (-146)) ELT)) (-3727 (($) 23 T CONST)) (-3942 (($ $ |#1|) 69 T ELT) (($ $ (-741 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3160 (((-3 (-741 |#1|) "failed") $) 79 T ELT)) (-3159 (((-741 |#1|) $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3954 (((-85) $) 60 T ELT)) (-3953 (($ $) 59 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3940 (((-85) $) 65 T ELT)) (-3941 (($ (-741 |#1|) |#2|) 66 T ELT)) (-3939 (($ $) 64 T ELT)) (-3944 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3958 (((-741 |#1|) $) 76 T ELT)) (-3959 (((-741 |#1|) $) 91 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3943 (($ $ |#1|) 72 T ELT) (($ $ (-741 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3951 (((-696) $) 90 T ELT)) (-3956 (((-85) $) 62 T ELT)) (-3955 ((|#2| $) 61 T ELT)) (-3949 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-741 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3957 ((|#2| $ (-741 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1204 |#1| |#2|) (-113) (-758) (-963)) (T -1204)) +((-3959 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-696)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) +(-13 (-1201 |t#1| |t#2|) (-10 -8 (-15 -3959 ((-741 |t#1|) $)) (-15 -3951 ((-696) $)) (-15 -3950 ($ $ (-696))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 (-741 |#1|)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) |has| |#2| (-146)) ((-656 |#2|) |has| |#2| (-146)) ((-665) . T) ((-952 (-741 |#1|)) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1196 |#2|) . T) ((-1201 |#1| |#2|) . T)) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 43 T ELT)) (-3954 (((-85) $) 37 T ELT)) (-3953 (($ $) 38 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ |#2| |#1|) NIL T ELT)) (-3958 ((|#2| $) 25 T ELT)) (-3959 ((|#2| $) 23 T ELT)) (-3961 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2897 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3956 (((-85) $) 33 T ELT)) (-3955 ((|#1| $) 34 T ELT)) (-3949 (((-774) $) 66 T ELT) (($ (-486)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ |#2|) NIL T ELT)) (-3957 ((|#1| $ |#2|) 29 T ELT)) (-3129 (((-696)) 14 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 11 T CONST)) (-2668 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3059 (((-85) $ $) 31 T ELT)) (-3952 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 51 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 53 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3960 (((-696) $) 18 T ELT))) +(((-1205 |#1| |#2|) (-13 (-963) (-1196 |#1|) (-335 |#1| |#2|) (-557 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3960 ((-696) $)) (-15 -3959 (|#2| $)) (-15 -3958 (|#2| $)) (-15 -3962 ($ $)) (-15 -3957 (|#1| $ |#2|)) (-15 -3956 ((-85) $)) (-15 -3955 (|#1| $)) (-15 -3954 ((-85) $)) (-15 -3953 ($ $)) (-15 -3961 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3952 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |#1| (-6 -3996)) (-6 -3996) |%noBranch|))) (-963) (-756)) (T -1205)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-1205 *3 *4)) (-4 *4 (-756)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3959 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963)))) (-3958 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963)))) (-3957 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3955 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-756))))) +((-2571 (((-85) $ $) 27 T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3937 (((-585 |#1|) $) 132 T ELT)) (-3965 (($ (-1197 |#1| |#2|)) 50 T ELT)) (-3950 (($ $ (-696)) 38 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3938 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-696)) 52 (|has| |#2| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3942 (($ $ |#1|) 114 T ELT) (($ $ (-741 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3160 (((-3 (-741 |#1|) #1#) $) NIL T ELT)) (-3159 (((-741 |#1|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 122 T ELT)) (-3954 (((-85) $) 117 T ELT)) (-3953 (($ $) 118 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-3941 (($ (-741 |#1|) |#2|) 20 T ELT)) (-3939 (($ $) NIL T ELT)) (-3944 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3958 (((-741 |#1|) $) 123 T ELT)) (-3959 (((-741 |#1|) $) 126 T ELT)) (-3961 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3943 (($ $ |#1|) 112 T ELT) (($ $ (-741 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3966 (((-1197 |#1| |#2|) $) 94 T ELT)) (-3951 (((-696) $) 129 T ELT)) (-3956 (((-85) $) 81 T ELT)) (-3955 ((|#2| $) 32 T ELT)) (-3949 (((-774) $) 73 T ELT) (($ (-486)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-741 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3957 ((|#2| $ (-741 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3129 (((-696)) 120 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3964 (((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2669 (($) 33 T CONST)) (-3059 (((-85) $ $) 14 T ELT)) (-3840 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3842 (($ $ $) 61 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 55 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 53 T ELT) (($ (-486) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1206 |#1| |#2|) (-13 (-1204 |#1| |#2|) (-10 -8 (-15 -3966 ((-1197 |#1| |#2|) $)) (-15 -3965 ($ (-1197 |#1| |#2|))) (-15 -3964 ((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-758) (-963)) (T -1206)) +((-3966 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *1 (-1206 *3 *4)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3968 (($ (-585 (-832))) 11 T ELT)) (-3967 (((-886) $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3949 (((-774) $) 25 T ELT) (($ (-886)) 14 T ELT) (((-886) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT))) +(((-1207) (-13 (-1015) (-431 (-886)) (-10 -8 (-15 -3968 ($ (-585 (-832)))) (-15 -3967 ((-886) $))))) (T -1207)) +((-3968 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1207)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1207))))) +((-3969 (((-585 (-1071 |#1|)) (-1 (-585 (-1071 |#1|)) (-585 (-1071 |#1|))) (-486)) 16 T ELT) (((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|))) 13 T ELT))) +(((-1208 |#1|) (-10 -7 (-15 -3969 ((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|)))) (-15 -3969 ((-585 (-1071 |#1|)) (-1 (-585 (-1071 |#1|)) (-585 (-1071 |#1|))) (-486)))) (-1131)) (T -1208)) +((-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 (-1071 *5)) (-585 (-1071 *5)))) (-5 *4 (-486)) (-5 *2 (-585 (-1071 *5))) (-5 *1 (-1208 *5)) (-4 *5 (-1131)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1208 *4)) (-4 *4 (-1131))))) +((-3971 (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|))) 174 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85)) 173 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)) 172 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-960 |#1| |#2|)) 156 T ELT)) (-3970 (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|))) 85 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85)) 84 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85) (-85)) 83 T ELT)) (-3974 (((-585 (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) (-960 |#1| |#2|)) 73 T ELT)) (-3972 (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|))) 140 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85)) 139 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85)) 138 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|)) 132 T ELT)) (-3973 (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|))) 145 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85)) 144 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85)) 143 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|)) 142 T ELT)) (-3975 (((-585 (-705 |#1| (-775 |#3|))) (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) 111 T ELT) (((-1087 (-939 (-350 |#1|))) (-1087 |#1|)) 102 T ELT) (((-859 (-939 (-350 |#1|))) (-705 |#1| (-775 |#3|))) 109 T ELT) (((-859 (-939 (-350 |#1|))) (-859 |#1|)) 107 T ELT) (((-705 |#1| (-775 |#3|)) (-705 |#1| (-775 |#2|))) 33 T ELT))) +(((-1209 |#1| |#2| |#3|) (-10 -7 (-15 -3970 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3970 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85))) (-15 -3970 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-960 |#1| |#2|))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85) (-85))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85) (-85))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)))) (-15 -3974 ((-585 (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) (-960 |#1| |#2|))) (-15 -3975 ((-705 |#1| (-775 |#3|)) (-705 |#1| (-775 |#2|)))) (-15 -3975 ((-859 (-939 (-350 |#1|))) (-859 |#1|))) (-15 -3975 ((-859 (-939 (-350 |#1|))) (-705 |#1| (-775 |#3|)))) (-15 -3975 ((-1087 (-939 (-350 |#1|))) (-1087 |#1|))) (-15 -3975 ((-585 (-705 |#1| (-775 |#3|))) (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))))) (-13 (-757) (-258) (-120) (-935)) (-585 (-1092)) (-585 (-1092))) (T -1209)) +((-3975 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6)))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-705 *4 (-775 *6)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-1087 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-705 *4 (-775 *6))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1092))) (-5 *2 (-859 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-859 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-705 *4 (-775 *5))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-705 *4 (-775 *6))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3973 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3972 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3972 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) (-5 *1 (-1209 *4 *5 *6)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3971 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *4 *5))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092)))))) +((-3978 (((-3 (-1181 (-350 (-486))) #1="failed") (-1181 |#1|) |#1|) 21 T ELT)) (-3976 (((-85) (-1181 |#1|)) 12 T ELT)) (-3977 (((-3 (-1181 (-486)) #1#) (-1181 |#1|)) 16 T ELT))) +(((-1210 |#1|) (-10 -7 (-15 -3976 ((-85) (-1181 |#1|))) (-15 -3977 ((-3 (-1181 (-486)) #1="failed") (-1181 |#1|))) (-15 -3978 ((-3 (-1181 (-350 (-486))) #1#) (-1181 |#1|) |#1|))) (-13 (-963) (-582 (-486)))) (T -1210)) +((-3978 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-1181 (-350 (-486)))) (-5 *1 (-1210 *4)))) (-3977 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-1181 (-486))) (-5 *1 (-1210 *4)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-85)) (-5 *1 (-1210 *4))))) +((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 12 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) 9 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 57 T ELT)) (-2997 (($) 46 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 38 T ELT)) (-3448 (((-634 $) $) 36 T ELT)) (-2012 (((-832) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3449 (($) 26 T CONST)) (-2402 (($ (-832)) 47 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (((-486) $) 16 T ELT)) (-3949 (((-774) $) 21 T ELT) (($ (-486)) 18 T ELT)) (-3129 (((-696)) 10 T CONST)) (-1267 (((-85) $ $) 59 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 23 T CONST)) (-2669 (($) 25 T CONST)) (-3059 (((-85) $ $) 31 T ELT)) (-3840 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3842 (($ $ $) 29 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 52 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1211 |#1|) (-13 (-146) (-320) (-555 (-486)) (-1068)) (-832)) (T -1211)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2794292 2794297 2794302 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2794277 2794282 2794287 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2794262 2794267 2794272 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2794247 2794252 2794257 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1211 2793226 2794165 2794242 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1210 2792441 2792620 2792839 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1209 2783600 2785469 2787403 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1208 2782988 2783141 2783330 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1207 2782450 2782753 2782866 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1206 2780010 2781912 2782115 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1205 2776774 2778427 2778998 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1204 2774031 2775761 2775815 "XPOLYC" 2776100 XPOLYC (NIL T T) -9 NIL 2776213 NIL) (-1203 2771550 2773535 2773738 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1202 2767798 2770409 2770797 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1201 2762645 2764278 2764332 "XFALG" 2766477 XFALG (NIL T T) -9 NIL 2767261 NIL) (-1200 2757801 2760534 2760576 "XF" 2761194 XF (NIL T) -9 NIL 2761590 NIL) (-1199 2757519 2757629 2757796 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1198 2756746 2756868 2757072 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1197 2754488 2756646 2756741 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1196 2753069 2753864 2753906 "XALG" 2753911 XALG (NIL T) -9 NIL 2754020 NIL) (-1195 2746920 2751479 2751957 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1194 2745163 2746165 2746486 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1193 2744762 2745034 2745103 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1192 2744249 2744552 2744645 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1191 2743326 2743536 2743831 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1190 2741622 2742085 2742547 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1189 2740511 2741096 2741138 "VSPACE" 2741274 VSPACE (NIL T) -9 NIL 2741348 NIL) (-1188 2740382 2740415 2740506 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1187 2740225 2740279 2740347 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1186 2737208 2738003 2738740 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1185 2728306 2730907 2733080 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1184 2721883 2723774 2725353 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1183 2720367 2720762 2721168 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1182 2719194 2719475 2719791 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1181 2714591 2719021 2719113 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1180 2707917 2712246 2712289 "VECTCAT" 2713277 VECTCAT (NIL T) -9 NIL 2713861 NIL) (-1179 2707196 2707522 2707912 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1178 2706690 2706932 2707052 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1177 2706623 2706628 2706658 "UTYPE" 2706663 UTYPE (NIL) -9 NIL NIL NIL) (-1176 2705610 2705786 2706047 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1175 2703461 2703969 2704493 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1174 2693343 2699313 2699355 "UTSCAT" 2700453 UTSCAT (NIL T) -9 NIL 2701210 NIL) (-1173 2691408 2692351 2693338 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1172 2691082 2691131 2691262 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1171 2682793 2689278 2689757 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1170 2677337 2679610 2679653 "URAGG" 2681693 URAGG (NIL T) -9 NIL 2682418 NIL) (-1169 2675408 2676340 2677332 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1168 2671115 2674384 2674846 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1167 2663544 2671039 2671110 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1166 2652195 2659682 2659743 "UPXSCCA" 2660311 UPXSCCA (NIL T T) -9 NIL 2660543 NIL) (-1165 2651916 2652018 2652190 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1164 2640468 2647680 2647722 "UPXSCAT" 2648362 UPXSCAT (NIL T) -9 NIL 2648970 NIL) (-1163 2639981 2640066 2640243 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1162 2631667 2639572 2639834 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1161 2630562 2630832 2631182 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1160 2623265 2626750 2626804 "UPSCAT" 2627873 UPSCAT (NIL T T) -9 NIL 2628637 NIL) (-1159 2622685 2622937 2623260 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1158 2622359 2622408 2622539 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1157 2606489 2615443 2615485 "UPOLYC" 2617563 UPOLYC (NIL T) -9 NIL 2618783 NIL) (-1156 2600544 2603392 2606484 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1155 2599980 2600105 2600268 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1154 2599614 2599701 2599840 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1153 2598427 2598694 2598998 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1152 2597760 2597890 2598075 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1151 2597352 2597427 2597574 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1150 2588116 2597118 2597246 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1149 2587478 2587615 2587820 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1148 2586079 2586926 2587202 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1147 2585308 2585505 2585730 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1146 2572118 2585232 2585303 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1145 2551924 2565159 2565220 "ULSCCAT" 2565851 ULSCCAT (NIL T T) -9 NIL 2566138 NIL) (-1144 2551259 2551545 2551919 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1143 2539631 2546765 2546807 "ULSCAT" 2547660 ULSCAT (NIL T) -9 NIL 2548390 NIL) (-1142 2539144 2539229 2539406 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1141 2521261 2538643 2538884 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1140 2520295 2520988 2521102 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2521213) (-1139 2519328 2520021 2520135 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2520246) (-1138 2518361 2519054 2519168 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2519279) (-1137 2517394 2518087 2518201 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2518312) (-1136 2515401 2516622 2516652 "UFD" 2516863 UFD (NIL) -9 NIL 2516976 NIL) (-1135 2515245 2515302 2515396 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1134 2514497 2514704 2514920 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1133 2512717 2513170 2513635 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1132 2512442 2512682 2512712 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1131 2512380 2512385 2512415 "TYPE" 2512420 TYPE (NIL) -9 NIL 2512427 NIL) (-1130 2511539 2511759 2511999 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1129 2510717 2511148 2511383 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1128 2508871 2509444 2509983 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1127 2507905 2508141 2508377 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1126 2496503 2500680 2500776 "TSETCAT" 2505991 TSETCAT (NIL T T T T) -9 NIL 2507495 NIL) (-1125 2492840 2494656 2496498 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1124 2487232 2492066 2492348 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1123 2482569 2483582 2484511 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1122 2482066 2482141 2482304 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1121 2480142 2480432 2480787 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1120 2479626 2479775 2479805 "TRIGCAT" 2480018 TRIGCAT (NIL) -9 NIL NIL NIL) (-1119 2479377 2479480 2479621 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1118 2476432 2478483 2478764 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1117 2475538 2476234 2476264 "TRANFUN" 2476299 TRANFUN (NIL) -9 NIL 2476365 NIL) (-1116 2475002 2475253 2475533 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1115 2474839 2474877 2474938 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1114 2474296 2474427 2474578 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1113 2473037 2473694 2473930 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1112 2472849 2472886 2472958 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1111 2471063 2471709 2472138 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1110 2469443 2469780 2470102 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1109 2459429 2467132 2467188 "TBAGG" 2467505 TBAGG (NIL T T) -9 NIL 2467715 NIL) (-1108 2456965 2458154 2459424 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1107 2456442 2456567 2456712 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1106 2455952 2456272 2456362 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1105 2455449 2455566 2455704 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1104 2447953 2455377 2455444 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1103 2443706 2445001 2446246 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1102 2443075 2443234 2443415 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1101 2440229 2440982 2441765 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1100 2440003 2440193 2440224 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1099 2438957 2439642 2439768 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2439954) (-1098 2438221 2438769 2438848 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2438908) (-1097 2435044 2436203 2436903 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1096 2432727 2433410 2434044 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1095 2428805 2429851 2430828 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1094 2425904 2428460 2428689 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1093 2425500 2425587 2425709 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1092 2422124 2423598 2424417 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1091 2415084 2421321 2421614 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1090 2406770 2414675 2414937 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2406049 2406188 2406405 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1088 2405733 2405798 2405909 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1087 2396456 2405445 2405570 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1086 2395186 2395484 2395839 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1085 2394591 2394669 2394860 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1084 2376743 2394090 2394331 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1083 2376342 2376614 2376683 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1082 2375678 2375959 2376099 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1081 2370280 2371539 2372492 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1080 2369812 2369912 2370076 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1079 2364923 2366205 2367352 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1078 2359381 2360852 2362163 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1077 2352296 2354360 2356151 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1076 2344465 2352234 2352291 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1075 2339414 2344179 2344294 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1074 2339001 2339084 2339228 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1073 2338152 2338353 2338588 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1072 2337892 2337950 2338043 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1071 2331359 2336095 2336703 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1070 2330535 2330740 2330971 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1069 2329780 2330151 2330298 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1068 2329268 2329510 2329540 "STEP" 2329634 STEP (NIL) -9 NIL 2329705 NIL) (-1067 2321762 2329186 2329263 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1066 2316728 2320542 2320585 "STAGG" 2321012 STAGG (NIL T) -9 NIL 2321186 NIL) (-1065 2315186 2315894 2316723 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1064 2313407 2315013 2315105 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1063 2312687 2313226 2313256 "SRING" 2313261 SRING (NIL) -9 NIL 2313281 NIL) (-1062 2305602 2311225 2311664 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1061 2299376 2300815 2302319 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1060 2291993 2296651 2296681 "SRAGG" 2297980 SRAGG (NIL) -9 NIL 2298584 NIL) (-1059 2291290 2291610 2291988 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1058 2285450 2290612 2291035 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1057 2279462 2282803 2283554 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1056 2275891 2276710 2277347 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1055 2274866 2275171 2275201 "SPFCAT" 2275645 SPFCAT (NIL) -9 NIL NIL NIL) (-1054 2273803 2274055 2274319 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1053 2264561 2266835 2266865 "SPADXPT" 2271502 SPADXPT (NIL) -9 NIL 2273626 NIL) (-1052 2264363 2264409 2264478 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1051 2262019 2264327 2264358 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1050 2253693 2255782 2255824 "SPACEC" 2260139 SPACEC (NIL T) -9 NIL 2261944 NIL) (-1049 2251522 2253640 2253688 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1048 2250501 2250690 2250973 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1047 2248905 2249238 2249649 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1046 2248170 2248404 2248665 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1045 2244350 2245310 2246305 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1044 2240708 2241407 2242136 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1043 2234730 2239993 2240089 "SNTSCAT" 2240094 SNTSCAT (NIL T T T T) -9 NIL 2240164 NIL) (-1042 2228551 2233371 2233761 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1041 2222323 2228470 2228546 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1040 2220755 2221086 2221484 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1039 2212428 2217303 2217405 "SMATCAT" 2218748 SMATCAT (NIL NIL T T T) -9 NIL 2219296 NIL) (-1038 2210269 2211253 2212423 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1037 2208868 2209720 2209763 "SMAGG" 2209848 SMAGG (NIL T) -9 NIL 2209912 NIL) (-1036 2206469 2208017 2208060 "SKAGG" 2208321 SKAGG (NIL T) -9 NIL 2208457 NIL) (-1035 2202515 2206289 2206400 "SINT" NIL SINT (NIL) -8 NIL NIL 2206441) (-1034 2202325 2202369 2202435 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1033 2201400 2201632 2201900 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1032 2200404 2200566 2200842 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1031 2199750 2200090 2200213 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1030 2199096 2199403 2199543 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1029 2197207 2197699 2198205 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1028 2190745 2197126 2197202 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1027 2190248 2190485 2190515 "SGROUP" 2190608 SGROUP (NIL) -9 NIL 2190670 NIL) (-1026 2190138 2190170 2190243 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1025 2189776 2189816 2189857 "SGPOPC" 2189862 SGPOPC (NIL T) -9 NIL 2190063 NIL) (-1024 2189310 2189587 2189693 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1023 2186733 2187502 2188224 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1022 2180854 2186117 2186213 "SFRTCAT" 2186218 SFRTCAT (NIL T T T T) -9 NIL 2186256 NIL) (-1021 2175246 2176359 2177486 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1020 2169422 2170583 2171747 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1019 2168394 2169296 2169417 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1018 2164002 2164897 2164992 "SEXCAT" 2167605 SEXCAT (NIL T T T T T) -9 NIL 2168156 NIL) (-1017 2162975 2163929 2163997 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1016 2161366 2161951 2162253 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1015 2160889 2161074 2161104 "SETCAT" 2161221 SETCAT (NIL) -9 NIL 2161305 NIL) (-1014 2160721 2160785 2160884 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1013 2157715 2159157 2159200 "SETAGG" 2160068 SETAGG (NIL T) -9 NIL 2160406 NIL) (-1012 2157321 2157473 2157710 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1011 2154566 2157268 2157316 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1010 2154032 2154342 2154442 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1009 2153159 2153525 2153586 "SEGXCAT" 2153872 SEGXCAT (NIL T T) -9 NIL 2153992 NIL) (-1008 2152084 2152352 2152395 "SEGCAT" 2152917 SEGCAT (NIL T) -9 NIL 2153138 NIL) (-1007 2151764 2151829 2151942 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1006 2150830 2151300 2151508 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1005 2150408 2150687 2150763 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1004 2149773 2149909 2150113 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1003 2148839 2149586 2149768 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1002 2148092 2148787 2148834 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1001 2139577 2147959 2148087 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1000 2138431 2138721 2139040 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-999 2137737 2137949 2138137 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-998 2137087 2137244 2137420 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-997 2136660 2136891 2136919 "SASTCAT" 2136924 SASTCAT (NIL) -9 NIL 2136937 NIL) (-996 2136127 2136552 2136626 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-995 2135730 2135771 2135942 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-994 2135361 2135402 2135559 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-993 2128442 2135278 2135356 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-992 2127092 2127421 2127817 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-991 2125853 2126214 2126514 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-990 2125477 2125698 2125779 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-989 2122937 2123571 2124024 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-988 2122776 2122809 2122877 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-987 2122267 2122570 2122661 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-986 2117895 2118763 2119674 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-985 2106950 2112213 2112307 "RSETCAT" 2116363 RSETCAT (NIL T T T T) -9 NIL 2117451 NIL) (-984 2105488 2106130 2106945 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-983 2099262 2100707 2102214 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-982 2097144 2097701 2097773 "RRCC" 2098846 RRCC (NIL T T) -9 NIL 2099187 NIL) (-981 2096669 2096868 2097139 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-980 2096139 2096449 2096547 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-979 2068691 2079404 2079468 "RPOLCAT" 2089942 RPOLCAT (NIL T T T) -9 NIL 2093087 NIL) (-978 2062790 2065613 2068686 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-977 2058957 2062538 2062676 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-976 2057285 2058024 2058280 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-975 2052928 2055740 2055768 "RNS" 2056030 RNS (NIL) -9 NIL 2056282 NIL) (-974 2051831 2052318 2052855 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-973 2050949 2051350 2051550 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-972 2050087 2050649 2050677 "RNG" 2050737 RNG (NIL) -9 NIL 2050791 NIL) (-971 2049976 2050010 2050082 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-970 2049238 2049743 2049783 "RMODULE" 2049788 RMODULE (NIL T) -9 NIL 2049814 NIL) (-969 2048177 2048283 2048613 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-968 2045128 2047767 2048060 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-967 2037858 2040244 2040356 "RMATCAT" 2043661 RMATCAT (NIL NIL NIL T T T) -9 NIL 2044627 NIL) (-966 2037375 2037554 2037853 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-965 2036943 2037154 2037195 "RLINSET" 2037256 RLINSET (NIL T) -9 NIL 2037300 NIL) (-964 2036588 2036669 2036795 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-963 2035434 2036165 2036193 "RING" 2036248 RING (NIL) -9 NIL 2036340 NIL) (-962 2035279 2035335 2035429 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-961 2034333 2034600 2034856 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-960 2025557 2033961 2034162 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-959 2024782 2025293 2025332 "RGBCSPC" 2025389 RGBCSPC (NIL T) -9 NIL 2025440 NIL) (-958 2023816 2024302 2024341 "RGBCMDL" 2024569 RGBCMDL (NIL T) -9 NIL 2024683 NIL) (-957 2023528 2023597 2023698 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-956 2023291 2023332 2023427 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-955 2021715 2022145 2022525 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-954 2019302 2019970 2020638 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-953 2018852 2018950 2019110 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-952 2018474 2018572 2018613 "RETRACT" 2018744 RETRACT (NIL T) -9 NIL 2018831 NIL) (-951 2018354 2018385 2018469 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-950 2017956 2018228 2018295 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-949 2016436 2017327 2017524 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-948 2016127 2016188 2016284 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-947 2015870 2015911 2016016 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-946 2015605 2015646 2015755 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-945 2010676 2012127 2013342 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-944 2007775 2008533 2009341 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-943 2005744 2006366 2006966 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-942 1998672 2004295 2004731 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-941 1997984 1998264 1998413 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-940 1997469 1997584 1997749 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-939 1993062 1996872 1997093 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-938 1992294 1992493 1992706 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-937 1989584 1990422 1991304 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-936 1986166 1987202 1988261 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-935 1986002 1986055 1986083 "REAL" 1986088 REAL (NIL) -9 NIL 1986123 NIL) (-934 1985492 1985796 1985887 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-933 1984972 1985050 1985255 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-932 1984205 1984397 1984608 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-931 1983093 1983390 1983757 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-930 1981360 1981830 1982363 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-929 1980282 1980559 1980946 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-928 1979109 1979418 1979837 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-927 1972457 1975969 1975997 "RCFIELD" 1977274 RCFIELD (NIL) -9 NIL 1978004 NIL) (-926 1971075 1971687 1972384 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-925 1967829 1969161 1969202 "RCAGG" 1970256 RCAGG (NIL T) -9 NIL 1970718 NIL) (-924 1967556 1967666 1967824 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-923 1967001 1967130 1967291 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-922 1966618 1966697 1966816 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-921 1966033 1966183 1966333 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-920 1965815 1965865 1965936 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-919 1958257 1964933 1965241 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-918 1947959 1958124 1958252 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-917 1947593 1947686 1947714 "RADCAT" 1947871 RADCAT (NIL) -9 NIL NIL NIL) (-916 1947431 1947491 1947588 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-915 1945595 1947262 1947351 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-914 1945276 1945325 1945452 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-913 1937563 1941647 1941687 "QUATCAT" 1942465 QUATCAT (NIL T) -9 NIL 1943229 NIL) (-912 1934813 1936093 1937469 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-911 1930653 1934763 1934808 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-910 1928049 1929650 1929691 "QUAGG" 1930066 QUAGG (NIL T) -9 NIL 1930242 NIL) (-909 1927651 1927923 1927990 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-908 1926657 1927287 1927450 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-907 1926338 1926387 1926514 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-906 1915938 1922107 1922147 "QFCAT" 1922805 QFCAT (NIL T) -9 NIL 1923798 NIL) (-905 1912822 1914261 1915844 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-904 1912368 1912502 1912632 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-903 1906564 1907725 1908887 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-902 1905983 1906163 1906395 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-901 1903805 1904333 1904756 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-900 1902704 1902946 1903263 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-899 1901065 1901263 1901616 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-898 1896821 1898037 1898078 "PTRANFN" 1899962 PTRANFN (NIL T) -9 NIL NIL NIL) (-897 1895468 1895813 1896134 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-896 1895161 1895224 1895331 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-895 1889458 1893902 1893942 "PTCAT" 1894234 PTCAT (NIL T) -9 NIL 1894387 NIL) (-894 1889151 1889192 1889316 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-893 1888030 1888346 1888680 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-892 1876909 1879470 1881779 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-891 1870111 1872674 1872768 "PSETCAT" 1875742 PSETCAT (NIL T T T T) -9 NIL 1876551 NIL) (-890 1868561 1869295 1870106 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-889 1867880 1868075 1868103 "PSCURVE" 1868371 PSCURVE (NIL) -9 NIL 1868538 NIL) (-888 1863482 1865302 1865366 "PSCAT" 1866201 PSCAT (NIL T T T) -9 NIL 1866440 NIL) (-887 1862796 1863078 1863477 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-886 1861193 1862108 1862371 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-885 1860684 1860987 1861078 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-884 1851704 1854126 1856314 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-883 1849456 1850967 1851007 "PRQAGG" 1851190 PRQAGG (NIL T) -9 NIL 1851293 NIL) (-882 1848629 1849075 1849103 "PROPLOG" 1849242 PROPLOG (NIL) -9 NIL 1849356 NIL) (-881 1848304 1848367 1848490 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-880 1847740 1847879 1848051 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-879 1845988 1846751 1847048 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-878 1845540 1845672 1845800 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-877 1839981 1844480 1845300 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-876 1839810 1839848 1839907 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-875 1839249 1839389 1839540 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-874 1837717 1838136 1838602 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-873 1837434 1837495 1837523 "PRIMCAT" 1837647 PRIMCAT (NIL) -9 NIL NIL NIL) (-872 1836605 1836801 1837029 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-871 1832766 1836555 1836600 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-870 1832465 1832527 1832638 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-869 1829601 1832114 1832347 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-868 1829052 1829209 1829237 "PPCURVE" 1829442 PPCURVE (NIL) -9 NIL 1829578 NIL) (-867 1828665 1828910 1828993 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-866 1826421 1826842 1827434 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-865 1825864 1825928 1826161 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-864 1822584 1823070 1823681 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-863 1808175 1814304 1814368 "POLYCAT" 1817853 POLYCAT (NIL T T T) -9 NIL 1819730 NIL) (-862 1803685 1805832 1808170 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-861 1803342 1803416 1803535 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-860 1803035 1803098 1803205 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-859 1796398 1802768 1802927 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-858 1795285 1795548 1795824 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-857 1793889 1794202 1794532 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-856 1789332 1793839 1793884 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-855 1787820 1788231 1788606 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-854 1786577 1786886 1787282 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-853 1786248 1786332 1786449 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-852 1785827 1785902 1786076 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-851 1785313 1785409 1785569 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-850 1784785 1784905 1785059 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-849 1783680 1783898 1784275 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-848 1783291 1783376 1783528 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-847 1782842 1782924 1783105 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-846 1782534 1782615 1782728 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-845 1782047 1782122 1782330 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-844 1781395 1781523 1781725 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-843 1780757 1780891 1781054 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-842 1780061 1780243 1780424 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-841 1779784 1779858 1779952 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-840 1776352 1777541 1778457 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-839 1775436 1775637 1775872 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-838 1771001 1772385 1773527 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-837 1750922 1755809 1760656 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-836 1750662 1750715 1750818 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-835 1750103 1750237 1750417 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-834 1748112 1749333 1749361 "PID" 1749558 PID (NIL) -9 NIL 1749685 NIL) (-833 1747900 1747943 1748018 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-832 1747087 1747747 1747834 "PI" NIL PI (NIL) -8 NIL NIL 1747874) (-831 1746539 1746690 1746866 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-830 1742867 1743825 1744730 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-829 1741231 1741520 1741886 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-828 1740673 1740788 1740949 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-827 1737214 1739542 1739895 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-826 1735820 1736100 1736425 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-825 1734585 1734839 1735187 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-824 1733295 1733522 1733874 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-823 1730305 1731865 1731893 "PFECAT" 1732486 PFECAT (NIL) -9 NIL 1732863 NIL) (-822 1729928 1730093 1730300 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-821 1728752 1729034 1729335 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-820 1726934 1727321 1727751 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-819 1722904 1726860 1726929 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-818 1718807 1719954 1720821 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-817 1716739 1717828 1717869 "PERMCAT" 1718268 PERMCAT (NIL T) -9 NIL 1718565 NIL) (-816 1716435 1716482 1716605 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-815 1712884 1714565 1715210 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-814 1710910 1712639 1712760 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-813 1709779 1710042 1710083 "PDSPC" 1710616 PDSPC (NIL T) -9 NIL 1710861 NIL) (-812 1709146 1709412 1709774 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-811 1707781 1708774 1708815 "PDRING" 1708820 PDRING (NIL T) -9 NIL 1708847 NIL) (-810 1706491 1707280 1707333 "PDMOD" 1707338 PDMOD (NIL T T) -9 NIL 1707441 NIL) (-809 1705584 1705796 1706045 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-808 1705189 1705256 1705310 "PDDOM" 1705475 PDDOM (NIL T T) -9 NIL 1705555 NIL) (-807 1705041 1705077 1705184 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-806 1704827 1704866 1704955 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-805 1703144 1703898 1704197 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-804 1702833 1702896 1703005 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-803 1700971 1701401 1701852 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-802 1694591 1696420 1697712 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-801 1694222 1694295 1694427 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-800 1691924 1692604 1693085 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-799 1690128 1690556 1690959 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-798 1689574 1689822 1689863 "PATMAB" 1689970 PATMAB (NIL T) -9 NIL 1690053 NIL) (-797 1688221 1688625 1688882 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-796 1687759 1687890 1687931 "PATAB" 1687936 PATAB (NIL T) -9 NIL 1688108 NIL) (-795 1686302 1686739 1687162 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-794 1685980 1686055 1686157 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-793 1685669 1685732 1685841 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-792 1685474 1685520 1685587 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-791 1685152 1685227 1685329 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-790 1684841 1684904 1685013 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-789 1684532 1684602 1684699 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-788 1684221 1684284 1684393 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-787 1683382 1683761 1683940 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-786 1682989 1683087 1683206 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-785 1681957 1682382 1682601 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-784 1680622 1681276 1681636 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-783 1673712 1680026 1680220 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-782 1666133 1673210 1673394 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-781 1662858 1664773 1664813 "PADICCT" 1665394 PADICCT (NIL NIL) -9 NIL 1665676 NIL) (-780 1660848 1662808 1662853 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-779 1660010 1660220 1660486 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-778 1659352 1659495 1659699 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-777 1657733 1658760 1659038 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-776 1657257 1657516 1657613 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-775 1656316 1656994 1657166 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-774 1646738 1649607 1651806 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-773 1646130 1646444 1646570 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-772 1645407 1645602 1645630 "OUTBCON" 1645948 OUTBCON (NIL) -9 NIL 1646114 NIL) (-771 1645115 1645245 1645402 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-770 1644496 1644641 1644802 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-769 1643867 1644294 1644383 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-768 1643282 1643697 1643725 "OSGROUP" 1643730 OSGROUP (NIL) -9 NIL 1643752 NIL) (-767 1642246 1642507 1642792 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-766 1639515 1642121 1642241 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-765 1636656 1639266 1639392 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-764 1634674 1635202 1635762 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-763 1628016 1630556 1630596 "OREPCAT" 1632917 OREPCAT (NIL T) -9 NIL 1634019 NIL) (-762 1626042 1626976 1628011 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-761 1625239 1625510 1625538 "ORDTYPE" 1625843 ORDTYPE (NIL) -9 NIL 1626001 NIL) (-760 1624773 1624984 1625234 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-759 1624235 1624611 1624768 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-758 1623729 1624092 1624120 "ORDSET" 1624125 ORDSET (NIL) -9 NIL 1624147 NIL) (-757 1622294 1623316 1623344 "ORDRING" 1623349 ORDRING (NIL) -9 NIL 1623377 NIL) (-756 1621542 1622099 1622127 "ORDMON" 1622132 ORDMON (NIL) -9 NIL 1622153 NIL) (-755 1620846 1621008 1621200 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-754 1620057 1620565 1620593 "ORDFIN" 1620658 ORDFIN (NIL) -9 NIL 1620732 NIL) (-753 1619451 1619590 1619776 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-752 1616126 1618419 1618825 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-751 1615533 1615888 1615993 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-750 1615341 1615386 1615452 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-749 1614642 1614918 1614959 "OPERCAT" 1615170 OPERCAT (NIL T) -9 NIL 1615266 NIL) (-748 1614454 1614521 1614637 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-747 1611820 1613256 1613752 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-746 1611241 1611368 1611542 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-745 1608142 1610380 1610746 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-744 1605008 1607517 1607557 "OMSAGG" 1607618 OMSAGG (NIL T) -9 NIL 1607682 NIL) (-743 1603420 1604679 1604847 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-742 1601616 1602857 1602885 "OINTDOM" 1602890 OINTDOM (NIL) -9 NIL 1602911 NIL) (-741 1599046 1600618 1600947 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-740 1598300 1598996 1599041 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-739 1595502 1598141 1598295 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-738 1587039 1595373 1595497 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-737 1580548 1586930 1587034 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-736 1579520 1579757 1580030 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-735 1577154 1577824 1578528 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-734 1572931 1573891 1574914 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-733 1572439 1572527 1572721 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-732 1569888 1570470 1571143 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-731 1567283 1567791 1568387 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-730 1564280 1564819 1565465 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-729 1563635 1563743 1564001 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-728 1562793 1562918 1563139 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-727 1559077 1559873 1560786 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-726 1558517 1558612 1558834 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-725 1558198 1558247 1558374 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-724 1554801 1557997 1558116 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-723 1553961 1554583 1554611 "OCAMON" 1554616 OCAMON (NIL) -9 NIL 1554637 NIL) (-722 1548173 1550987 1551027 "OC" 1552122 OC (NIL T) -9 NIL 1552978 NIL) (-721 1546173 1547099 1548079 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-720 1545589 1546007 1546035 "OASGP" 1546040 OASGP (NIL) -9 NIL 1546060 NIL) (-719 1544652 1545301 1545329 "OAMONS" 1545369 OAMONS (NIL) -9 NIL 1545412 NIL) (-718 1543797 1544378 1544406 "OAMON" 1544463 OAMON (NIL) -9 NIL 1544514 NIL) (-717 1543693 1543725 1543792 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-716 1542444 1543218 1543246 "OAGROUP" 1543392 OAGROUP (NIL) -9 NIL 1543484 NIL) (-715 1542235 1542322 1542439 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-714 1541975 1542031 1542119 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-713 1537037 1538600 1540127 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-712 1533732 1534766 1535801 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-711 1532842 1533075 1533293 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-710 1521703 1524731 1527179 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-709 1515826 1521089 1521183 "NTSCAT" 1521188 NTSCAT (NIL T T T T) -9 NIL 1521226 NIL) (-708 1515167 1515346 1515539 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-707 1514860 1514923 1515030 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-706 1502527 1512480 1513290 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-705 1491536 1502392 1502522 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-704 1490256 1490581 1490938 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-703 1489092 1489356 1489714 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-702 1488259 1488392 1488608 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-701 1486577 1486896 1487302 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-700 1486290 1486324 1486448 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-699 1486109 1486144 1486213 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-698 1485885 1486075 1486104 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-697 1485449 1485516 1485693 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-696 1483735 1484812 1485067 "NNI" NIL NNI (NIL) -8 NIL NIL 1485414) (-695 1482463 1482800 1483164 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-694 1481440 1481692 1481994 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-693 1480527 1481092 1481133 "NETCLT" 1481304 NETCLT (NIL T) -9 NIL 1481385 NIL) (-692 1479431 1479698 1479979 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-691 1479230 1479273 1479348 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-690 1477761 1478149 1478569 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-689 1476394 1477360 1477388 "NASRING" 1477498 NASRING (NIL) -9 NIL 1477578 NIL) (-688 1476239 1476295 1476389 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-687 1475168 1475846 1475874 "NARNG" 1475991 NARNG (NIL) -9 NIL 1476082 NIL) (-686 1474944 1475029 1475163 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-685 1473710 1474464 1474504 "NAALG" 1474583 NAALG (NIL T) -9 NIL 1474644 NIL) (-684 1473580 1473615 1473705 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-683 1468559 1469744 1470930 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-682 1467954 1468041 1468225 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-681 1459964 1464458 1464510 "MTSCAT" 1465570 MTSCAT (NIL T T) -9 NIL 1466084 NIL) (-680 1459730 1459790 1459882 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-679 1459556 1459595 1459655 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-678 1457127 1459070 1459111 "MSETAGG" 1459116 MSETAGG (NIL T) -9 NIL 1459150 NIL) (-677 1453497 1456170 1456491 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-676 1449771 1451594 1452334 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-675 1449408 1449481 1449610 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-674 1449061 1449102 1449246 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-673 1446926 1447263 1447694 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-672 1440324 1446825 1446921 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-671 1439849 1439890 1440098 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-670 1439408 1439457 1439640 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-669 1438682 1438775 1438994 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1437299 1437660 1438050 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-667 1436820 1436887 1436926 "MONOPC" 1436986 MONOPC (NIL T) -9 NIL 1437205 NIL) (-666 1436271 1436607 1436735 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-665 1435413 1435792 1435820 "MONOID" 1436038 MONOID (NIL) -9 NIL 1436182 NIL) (-664 1435072 1435222 1435408 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-663 1424010 1430880 1430939 "MONOGEN" 1431613 MONOGEN (NIL T T) -9 NIL 1432069 NIL) (-662 1422022 1422908 1423891 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-661 1420736 1421280 1421308 "MONADWU" 1421699 MONADWU (NIL) -9 NIL 1421934 NIL) (-660 1420284 1420484 1420731 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-659 1419561 1419862 1419890 "MONAD" 1420097 MONAD (NIL) -9 NIL 1420209 NIL) (-658 1419328 1419424 1419556 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-657 1417718 1418488 1418767 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-656 1416852 1417379 1417419 "MODULE" 1417424 MODULE (NIL T) -9 NIL 1417462 NIL) (-655 1416531 1416657 1416847 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-654 1414242 1415128 1415442 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-653 1411421 1412838 1413351 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-652 1410055 1410629 1410905 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-651 1399274 1408720 1409133 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-650 1396230 1398274 1398543 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-649 1395314 1395681 1395871 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-648 1394883 1394932 1395111 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-647 1392708 1393704 1393744 "MLO" 1394161 MLO (NIL T) -9 NIL 1394401 NIL) (-646 1390589 1391116 1391711 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-645 1390057 1390153 1390307 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-644 1389727 1389803 1389926 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-643 1388939 1389125 1389353 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-642 1388432 1388548 1388704 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-641 1387804 1387918 1388103 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-640 1386831 1387104 1387381 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-639 1386264 1386352 1386523 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-638 1383422 1384301 1385180 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-637 1382089 1382437 1382790 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-636 1379455 1381176 1381217 "MDAGG" 1381474 MDAGG (NIL T) -9 NIL 1381619 NIL) (-635 1378729 1378893 1379093 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-634 1377807 1378093 1378323 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-633 1375904 1376481 1377042 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-632 1371702 1375494 1375741 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-631 1368051 1368820 1369554 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-630 1366804 1366973 1367302 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-629 1356308 1359873 1359949 "MATCAT" 1364937 MATCAT (NIL T T T) -9 NIL 1366383 NIL) (-628 1353589 1354895 1356303 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-627 1351990 1352350 1352734 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-626 1351123 1351320 1351542 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-625 1349874 1350200 1350527 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-624 1349036 1349438 1349614 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-623 1348705 1348769 1348892 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-622 1348353 1348426 1348540 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-621 1347888 1348003 1348145 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-620 1346097 1346865 1347166 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-619 1345591 1345893 1345983 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-618 1339853 1343888 1343929 "LZSTAGG" 1344706 LZSTAGG (NIL T) -9 NIL 1344996 NIL) (-617 1337202 1338514 1339848 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-616 1334589 1335555 1336038 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-615 1334170 1334449 1334523 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-614 1326439 1334031 1334165 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-613 1325802 1325947 1326175 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-612 1323286 1323984 1324696 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-611 1321502 1321825 1322259 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-610 1314882 1320534 1320575 "LSAGG" 1320637 LSAGG (NIL T) -9 NIL 1320715 NIL) (-609 1312576 1313675 1314877 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-608 1310056 1311925 1312174 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-607 1309723 1309814 1309937 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-606 1309394 1309473 1309501 "LOGIC" 1309612 LOGIC (NIL) -9 NIL 1309694 NIL) (-605 1309289 1309318 1309389 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-604 1308608 1308766 1308959 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-603 1307393 1307642 1307993 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-602 1303215 1306014 1306054 "LODOCAT" 1306486 LODOCAT (NIL T) -9 NIL 1306697 NIL) (-601 1303008 1303084 1303210 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-600 1300008 1302885 1303003 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-599 1297106 1299958 1300003 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-598 1294193 1297036 1297101 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-597 1293246 1293421 1293723 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-596 1291378 1292508 1292761 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-595 1287235 1289519 1289560 "LNAGG" 1290419 LNAGG (NIL T) -9 NIL 1290857 NIL) (-594 1286622 1286889 1287230 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-593 1283194 1284135 1284772 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-592 1282456 1282961 1283001 "LMODULE" 1283006 LMODULE (NIL T) -9 NIL 1283032 NIL) (-591 1279925 1282192 1282315 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-590 1279493 1279704 1279745 "LLINSET" 1279806 LLINSET (NIL T) -9 NIL 1279850 NIL) (-589 1279169 1279429 1279488 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-588 1278768 1278848 1278987 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-587 1277219 1277567 1277966 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-586 1276390 1276586 1276814 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-585 1269703 1275646 1275900 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-584 1269280 1269513 1269554 "LINSET" 1269559 LINSET (NIL T) -9 NIL 1269592 NIL) (-583 1268181 1268903 1269070 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-582 1266447 1267202 1267242 "LINEXP" 1267728 LINEXP (NIL T) -9 NIL 1268001 NIL) (-581 1265069 1266056 1266237 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-580 1263896 1264168 1264470 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-579 1263109 1263698 1263808 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-578 1260659 1261381 1262131 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-577 1259289 1259586 1259977 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-576 1258082 1258684 1258724 "LIECAT" 1258864 LIECAT (NIL T) -9 NIL 1259015 NIL) (-575 1257956 1257989 1258077 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-574 1252212 1257646 1257874 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-573 1243852 1251888 1252044 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-572 1240304 1241253 1242188 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-571 1238928 1239836 1239864 "LFCAT" 1240071 LFCAT (NIL) -9 NIL 1240210 NIL) (-570 1237167 1237497 1237842 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-569 1234684 1235349 1236030 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-568 1231696 1232674 1233177 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-567 1231187 1231490 1231581 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-566 1229894 1230218 1230618 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-565 1229160 1229245 1229471 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-564 1224163 1227728 1228264 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-563 1223788 1223838 1223998 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-562 1222559 1223332 1223372 "LALG" 1223433 LALG (NIL T) -9 NIL 1223491 NIL) (-561 1222342 1222419 1222554 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-560 1220195 1221610 1221861 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-559 1220024 1220054 1220095 "KVTFROM" 1220157 KVTFROM (NIL T) -9 NIL NIL NIL) (-558 1218840 1219555 1219744 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-557 1218669 1218699 1218740 "KRCFROM" 1218802 KRCFROM (NIL T) -9 NIL NIL NIL) (-556 1217771 1217968 1218263 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-555 1217600 1217630 1217671 "KONVERT" 1217733 KONVERT (NIL T) -9 NIL NIL NIL) (-554 1217429 1217459 1217500 "KOERCE" 1217562 KOERCE (NIL T) -9 NIL NIL NIL) (-553 1216999 1217092 1217224 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-552 1215052 1215946 1216318 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-551 1207909 1212731 1212785 "KDAGG" 1213161 KDAGG (NIL T T) -9 NIL 1213401 NIL) (-550 1207567 1207702 1207904 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-549 1200871 1207359 1207505 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-548 1200521 1200803 1200866 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-547 1199491 1199990 1200239 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-546 1198617 1199066 1199271 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-545 1197481 1197973 1198273 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-544 1196763 1197162 1197323 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-543 1196473 1196709 1196758 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-542 1190728 1196163 1196391 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-541 1190146 1190479 1190599 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-540 1186854 1188314 1188368 "IXAGG" 1189283 IXAGG (NIL T T) -9 NIL 1189743 NIL) (-539 1186139 1186470 1186849 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-538 1185106 1185381 1185644 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-537 1183768 1183975 1184268 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-536 1182719 1182941 1183224 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-535 1182394 1182457 1182580 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-534 1181656 1182028 1182202 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-533 1179632 1180932 1181206 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-532 1169180 1174949 1176106 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-531 1168425 1168577 1168813 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-530 1167916 1168219 1168310 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-529 1167209 1167300 1167513 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-528 1166341 1166566 1166806 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-527 1164754 1165135 1165563 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-526 1164539 1164583 1164659 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-525 1163389 1163686 1163981 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-524 1162662 1163013 1163164 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-523 1161865 1161996 1162209 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-522 1160020 1160517 1161061 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-521 1157101 1158369 1159058 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-520 1156926 1156966 1157026 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-519 1152924 1156852 1156921 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-518 1150927 1152863 1152919 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-517 1150298 1150597 1150727 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-516 1149751 1150039 1150171 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-515 1148832 1149457 1149583 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-514 1148242 1148736 1148764 "IOBCON" 1148769 IOBCON (NIL) -9 NIL 1148790 NIL) (-513 1147813 1147877 1148059 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-512 1139857 1142228 1144553 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-511 1136968 1137751 1138615 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-510 1136645 1136742 1136859 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-509 1134087 1136581 1136640 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-508 1132199 1132728 1133295 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-507 1131701 1131815 1131955 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-506 1130085 1130491 1130953 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-505 1127864 1128458 1129069 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-504 1125237 1125847 1126567 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-503 1124641 1124799 1125007 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-502 1124160 1124246 1124434 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-501 1122365 1122886 1123343 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-500 1115447 1117100 1118829 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-499 1114813 1114975 1115148 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-498 1112686 1113150 1113694 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-497 1110812 1111762 1111790 "INTDOM" 1112089 INTDOM (NIL) -9 NIL 1112294 NIL) (-496 1110365 1110567 1110807 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-495 1106172 1108644 1108698 "INTCAT" 1109494 INTCAT (NIL T) -9 NIL 1109810 NIL) (-494 1105737 1105857 1105984 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-493 1104577 1104749 1105055 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-492 1104150 1104246 1104403 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-491 1096633 1104057 1104145 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-490 1095931 1096486 1096551 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096585) (-489 1095228 1095783 1095848 "INT64" NIL INT64 (NIL) -8 NIL NIL 1095882) (-488 1094525 1095080 1095145 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095179) (-487 1093822 1094377 1094442 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094476) (-486 1090285 1093741 1093817 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-485 1084342 1087825 1087853 "INS" 1088783 INS (NIL) -9 NIL 1089442 NIL) (-484 1082404 1083322 1084269 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-483 1081463 1081686 1081961 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-482 1080677 1080818 1081015 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-481 1079667 1079808 1080045 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-480 1078819 1078983 1079243 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-479 1078099 1078214 1078402 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-478 1076838 1077107 1077431 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-477 1076118 1076259 1076442 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-476 1075781 1075853 1075951 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-475 1072859 1074345 1074868 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-474 1072458 1072565 1072679 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-473 1071614 1072259 1072360 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-472 1070464 1070732 1071053 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-471 1069454 1070394 1070459 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-470 1069079 1069159 1069276 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-469 1067993 1068538 1068742 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-468 1064088 1065143 1066086 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-467 1062942 1063265 1063293 "INBCON" 1063806 INBCON (NIL) -9 NIL 1064072 NIL) (-466 1062396 1062661 1062937 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-465 1061890 1062192 1062282 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-464 1061347 1061656 1061761 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-463 1060186 1060327 1060644 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-462 1058609 1058878 1059217 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-461 1053452 1058540 1058604 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-460 1052832 1053166 1053281 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-459 1047924 1052270 1052456 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-458 1046954 1047846 1047919 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-457 1046526 1046603 1046657 "IEVALAB" 1046864 IEVALAB (NIL T T) -9 NIL NIL NIL) (-456 1046281 1046361 1046521 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-455 1045666 1045893 1046050 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-454 1044659 1045586 1045661 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-453 1043722 1044579 1044654 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-452 1042804 1043451 1043588 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-451 1041167 1041738 1041789 "IDPC" 1042295 IDPC (NIL T T) -9 NIL 1042608 NIL) (-450 1040455 1041089 1041162 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-449 1039625 1040377 1040450 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-448 1039318 1039531 1039591 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-447 1039022 1039062 1039101 "IDEMOPC" 1039106 IDEMOPC (NIL T) -9 NIL 1039243 NIL) (-446 1036093 1036974 1037866 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-445 1029719 1030996 1032035 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-444 1028981 1029111 1029310 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-443 1028154 1028653 1028791 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-442 1026543 1026874 1027265 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-441 1022580 1026499 1026538 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-440 1019838 1020462 1021157 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-439 1018064 1018544 1019077 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-438 1015938 1017970 1018059 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-437 1012080 1015876 1015933 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-436 1005659 1011044 1011512 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-435 1005227 1005290 1005463 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-434 1004719 1004868 1004896 "HYPCAT" 1005103 HYPCAT (NIL) -9 NIL NIL NIL) (-433 1004375 1004528 1004714 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-432 1003988 1004233 1004316 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-431 1003821 1003870 1003911 "HOMOTOP" 1003916 HOMOTOP (NIL T) -9 NIL 1003949 NIL) (-430 1002324 1003136 1003177 "HOAGG" 1003182 HOAGG (NIL T) -9 NIL 1003482 NIL) (-429 1001951 1002098 1002319 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-428 995151 1001676 1001824 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-427 994086 994344 994607 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-426 993021 993951 994081 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-425 991279 992854 992942 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-424 990594 990946 991079 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-423 984146 990527 990589 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-422 977285 983882 984033 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-421 976738 976895 977058 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-420 969238 976655 976733 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-419 968729 969032 969123 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-418 966279 968516 968695 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-417 961965 966162 966274 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-416 954442 961862 961960 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-415 946379 953811 954066 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-414 945403 945912 945940 "GROUP" 946143 GROUP (NIL) -9 NIL 946277 NIL) (-413 944946 945147 945398 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-412 943618 943957 944344 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-411 942440 942797 942848 "GRMOD" 943377 GRMOD (NIL T T) -9 NIL 943543 NIL) (-410 942259 942307 942435 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-409 938382 939593 940593 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-408 937104 937428 937743 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-407 936657 936785 936926 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-406 935730 936229 936280 "GRALG" 936433 GRALG (NIL T T) -9 NIL 936523 NIL) (-405 935449 935550 935725 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-404 932468 935140 935307 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-403 931881 931944 932201 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-402 927735 928631 929156 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-401 926910 927112 927350 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-400 921913 922840 923859 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-399 921661 921718 921807 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-398 921143 921232 921397 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-397 920652 920693 920906 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-396 919453 919736 920040 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-395 912728 919143 919304 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-394 902511 907518 908622 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-393 900563 901666 901694 "GCDDOM" 901949 GCDDOM (NIL) -9 NIL 902106 NIL) (-392 900186 900343 900558 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-391 890979 893449 895837 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-390 889114 889439 889857 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-389 888055 888244 888511 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-388 886926 887133 887437 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-387 886389 886531 886679 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-386 885001 885349 885662 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-385 883546 883867 884189 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-384 881172 881528 881933 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-383 874424 876085 877663 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-382 874076 874297 874365 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-381 873821 873863 873904 "FUNCTOR" 873988 FUNCTOR (NIL T) -9 NIL 874047 NIL) (-380 873445 873666 873747 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 871542 872225 872685 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 870135 870442 870834 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 868790 869149 869473 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 868093 868217 868404 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 867067 867333 867680 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 864725 865255 865737 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 864308 864368 864537 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 862608 863522 863825 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 861756 861890 862113 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 860927 861088 861315 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 857143 859804 859845 "FSAGG" 860215 FSAGG (NIL T) -9 NIL 860476 NIL) (-368 855497 856256 857048 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 853453 853749 854293 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 852500 852682 852982 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 852181 852230 852357 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 832337 841838 841879 "FS" 845749 FS (NIL T) -9 NIL 848027 NIL) (-363 824568 828061 832040 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 824102 824229 824381 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 818625 821783 821823 "FRNAALG" 823143 FRNAALG (NIL T) -9 NIL 823741 NIL) (-360 815366 816617 817875 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 815047 815096 815223 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 813534 814091 814385 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 812820 812913 813200 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 810654 811420 811736 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 809763 810206 810247 "FRETRCT" 810252 FRETRCT (NIL T) -9 NIL 810423 NIL) (-354 809136 809414 809758 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 805880 807400 807459 "FRAMALG" 808341 FRAMALG (NIL T T) -9 NIL 808633 NIL) (-352 804476 805027 805657 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 804169 804232 804339 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 797810 803974 804164 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 797503 797566 797673 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 789811 794382 795710 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 783589 787092 787120 "FPS" 788239 FPS (NIL) -9 NIL 788795 NIL) (-346 783146 783279 783443 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 779956 781999 782027 "FPC" 782252 FPC (NIL) -9 NIL 782394 NIL) (-344 779802 779854 779951 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 778579 779288 779329 "FPATMAB" 779334 FPATMAB (NIL T) -9 NIL 779486 NIL) (-342 777009 777605 777952 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 776584 776642 776815 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 775087 775982 776156 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 773702 774207 774235 "FNCAT" 774692 FNCAT (NIL) -9 NIL 774949 NIL) (-338 773159 773669 773697 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 771746 773108 773154 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 768334 769692 769733 "FMONCAT" 770950 FMONCAT (NIL T) -9 NIL 771554 NIL) (-335 765192 766270 766323 "FMCAT" 767504 FMCAT (NIL T T) -9 NIL 767996 NIL) (-334 763892 765015 765114 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 762940 763740 763887 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 761127 761579 762073 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 759062 759598 760176 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 752448 757399 758013 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 750929 752030 752070 "FLINEXP" 752075 FLINEXP (NIL T) -9 NIL 752168 NIL) (-328 750338 750597 750924 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 749587 749746 749960 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 746470 747549 747601 "FLALG" 748828 FLALG (NIL T T) -9 NIL 749295 NIL) (-325 745641 745802 746029 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 739347 743037 743078 "FLAGG" 744317 FLAGG (NIL T) -9 NIL 744965 NIL) (-323 738455 738859 739342 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 735016 736280 736339 "FINRALG" 737467 FINRALG (NIL T T) -9 NIL 737975 NIL) (-321 734407 734672 735011 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 733705 734001 734029 "FINITE" 734225 FINITE (NIL) -9 NIL 734332 NIL) (-319 733613 733639 733700 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 730588 731856 731897 "FINAGG" 732802 FINAGG (NIL T) -9 NIL 733256 NIL) (-317 729619 730084 730583 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 721580 724171 724211 "FINAALG" 727863 FINAALG (NIL T) -9 NIL 729301 NIL) (-315 717847 719092 720215 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 716399 716818 716872 "FILECAT" 717556 FILECAT (NIL T T) -9 NIL 717772 NIL) (-313 715750 716224 716327 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 712998 714876 714904 "FIELD" 714944 FIELD (NIL) -9 NIL 715024 NIL) (-311 712023 712484 712993 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 710027 710973 711319 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 709270 709451 709670 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 704540 709208 709265 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 704202 704269 704404 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 703742 703784 703993 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 700422 701299 702076 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 695706 700354 700417 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 690385 695195 695385 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 684866 689666 689924 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 679073 684317 684528 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 678096 678306 678621 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 673536 676241 676269 "FFIELDC" 676888 FFIELDC (NIL) -9 NIL 677263 NIL) (-298 672605 673045 673531 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 672220 672278 672402 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 670364 670887 671404 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 665458 670163 670264 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 660558 665247 665354 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 655224 660349 660457 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 654678 654727 654962 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 633253 644287 644373 "FFCAT" 649523 FFCAT (NIL T T T) -9 NIL 650959 NIL) (-290 629493 630719 632025 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 624336 629424 629488 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 623228 623697 623738 "FEVALAB" 623822 FEVALAB (NIL T) -9 NIL 624083 NIL) (-287 622633 622885 623223 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 619460 620371 620486 "FDIVCAT" 622053 FDIVCAT (NIL T T T T) -9 NIL 622489 NIL) (-285 619254 619286 619455 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 618561 618654 618931 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 617047 618045 618248 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 616140 616524 616726 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 615262 615751 615891 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 606849 611492 611532 "FAXF" 613333 FAXF (NIL T) -9 NIL 614023 NIL) (-279 604765 605569 606384 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 599914 604287 604461 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 594372 596795 596847 "FAMR" 597858 FAMR (NIL T T) -9 NIL 598317 NIL) (-276 593571 593936 594367 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 592592 593513 593566 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 590186 591065 591118 "FAMONC" 592059 FAMONC (NIL T T) -9 NIL 592444 NIL) (-273 588742 590044 590181 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 586822 587183 587585 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 586099 586296 586518 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 577959 585546 585745 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 575978 576548 577134 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 572880 573522 574242 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 568037 568744 569549 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 567726 567789 567898 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 552519 566775 567201 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 543046 551839 552127 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 542540 542842 542932 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 542316 542506 542535 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 542005 542073 542186 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 541522 541664 541705 "EVALAB" 541875 EVALAB (NIL T) -9 NIL 541979 NIL) (-259 541150 541296 541517 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 538193 539788 539816 "EUCDOM" 540370 EUCDOM (NIL) -9 NIL 540719 NIL) (-257 537120 537613 538188 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 536845 536901 537001 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 536533 536597 536706 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 530304 532204 532232 "ES" 534974 ES (NIL) -9 NIL 536358 NIL) (-253 526819 528351 530143 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 526167 526320 526496 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 518673 526097 526162 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 518362 518425 518534 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 511989 515114 516547 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 508292 509388 510481 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 507121 507471 507776 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 506006 506737 506765 "ENTIRER" 506770 ENTIRER (NIL) -9 NIL 506814 NIL) (-245 505895 505929 506001 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 502528 504325 504674 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 501619 501834 501888 "ELTAGG" 502262 ELTAGG (NIL T T) -9 NIL 502476 NIL) (-242 501399 501473 501614 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 501145 501180 501234 "ELTAB" 501318 ELTAB (NIL T T) -9 NIL 501370 NIL) (-240 500396 500566 500765 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 500120 500194 500222 "ELEMFUN" 500327 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 500020 500047 500115 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 495279 498027 498068 "ELAGG" 499001 ELAGG (NIL T) -9 NIL 499462 NIL) (-236 494077 494615 495274 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 493495 493662 493818 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 492408 492727 493006 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 485801 487799 488626 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 479780 481776 482586 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 477594 478000 478471 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 468594 470507 472048 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 467707 468208 468357 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 466405 467079 467119 "DVARCAT" 467402 DVARCAT (NIL T) -9 NIL 467542 NIL) (-227 465824 466088 466400 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 457891 465692 465819 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 456229 457020 457061 "DSEXT" 457424 DSEXT (NIL T) -9 NIL 457718 NIL) (-224 455034 455558 456224 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 454758 454823 454921 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 450909 452125 453256 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 446555 447910 448974 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 445230 445591 445977 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 444916 444975 445093 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 443891 444189 444479 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 443476 443551 443701 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 435889 438001 440116 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 431406 432425 433504 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 428012 430015 430056 "DQAGG" 430685 DQAGG (NIL T) -9 NIL 430958 NIL) (-213 414555 422195 422277 "DPOLCAT" 424114 DPOLCAT (NIL T T T T) -9 NIL 424657 NIL) (-212 410963 412611 414550 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 404066 410861 410958 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 397078 403895 404061 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 396671 396931 397020 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 396085 396533 396613 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 395371 395696 395847 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 388510 395107 395258 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 386259 387576 387616 "DMEXT" 387621 DMEXT (NIL T) -9 NIL 387796 NIL) (-204 385915 385977 386121 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 379507 385400 385590 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 376715 378318 378359 "DLAGG" 378900 DLAGG (NIL T) -9 NIL 379132 NIL) (-201 375066 375937 375965 "DIVRING" 376057 DIVRING (NIL) -9 NIL 376140 NIL) (-200 374517 374761 375061 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 372945 373362 373768 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 371982 372203 372468 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 365554 371914 371977 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 353933 360296 360349 "DIRPCAT" 360605 DIRPCAT (NIL NIL T) -9 NIL 361480 NIL) (-195 351939 352709 353596 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 351386 351552 351738 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 348651 350245 350286 "DIOPS" 350706 DIOPS (NIL T) -9 NIL 350934 NIL) (-192 348311 348455 348646 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 347318 348064 348092 "DIOID" 348097 DIOID (NIL) -9 NIL 348119 NIL) (-190 346146 346975 347003 "DIFRING" 347008 DIFRING (NIL) -9 NIL 347029 NIL) (-189 345782 345880 345908 "DIFFSPC" 346027 DIFFSPC (NIL) -9 NIL 346102 NIL) (-188 345523 345625 345777 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 344426 345051 345091 "DIFFMOD" 345096 DIFFMOD (NIL T) -9 NIL 345193 NIL) (-186 344110 344167 344208 "DIFFDOM" 344329 DIFFDOM (NIL T) -9 NIL 344397 NIL) (-185 343991 344021 344105 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 341664 343185 343225 "DIFEXT" 343230 DIFEXT (NIL T) -9 NIL 343382 NIL) (-183 339534 341128 341169 "DIAGG" 341174 DIAGG (NIL T) -9 NIL 341194 NIL) (-182 339090 339280 339529 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 334328 338280 338557 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 330786 331839 332849 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 325336 329940 330267 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 323902 324194 324569 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 321022 322274 322670 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 318806 320853 320942 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 318189 318334 318516 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 315507 316231 317031 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 313616 314074 314636 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 312999 313332 313446 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 306199 312724 312872 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 304119 304629 305133 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 303758 303807 303958 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 303017 303579 303670 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 301041 301483 301843 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 300333 300622 300768 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 299784 299930 300082 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 297146 297939 298666 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 296585 296731 296902 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 294657 294968 295335 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 294214 294469 294570 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 293415 293798 293826 "CTORCAT" 294007 CTORCAT (NIL) -9 NIL 294119 NIL) (-159 293118 293252 293410 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 292611 292868 292976 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 292027 292458 292531 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 291486 291603 291756 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 287880 288636 289391 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 287371 287674 287765 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 286590 286799 287027 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 286094 286199 286403 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 285847 285881 285987 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 282786 283548 284266 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 282305 282447 282586 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 278198 280768 281260 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 278072 278099 278127 "CONDUIT" 278164 CONDUIT (NIL) -9 NIL NIL NIL) (-146 276951 277682 277710 "COMRING" 277715 COMRING (NIL) -9 NIL 277765 NIL) (-145 276116 276483 276661 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 275812 275853 275981 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 275505 275568 275675 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 264347 275455 275500 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 263808 263947 264107 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 263561 263602 263700 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 244992 257242 257282 "COMPCAT" 258283 COMPCAT (NIL T) -9 NIL 259625 NIL) (-138 237530 241043 244636 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 237289 237323 237425 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 237119 237158 237216 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 236700 236979 237053 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 236277 236518 236605 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 235472 235720 235748 "COMBOPC" 236086 COMBOPC (NIL) -9 NIL 236261 NIL) (-132 234536 234788 235030 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 231468 232152 232775 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 230348 230799 231034 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 229839 230142 230233 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 229526 229579 229704 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 228996 229306 229404 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 225516 226586 227666 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 223811 224796 225034 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221210 222429 222470 "CLAGG" 223033 CLAGG (NIL T) -9 NIL 223413 NIL) (-123 220768 220958 221205 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220397 220488 220628 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218334 218841 219389 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217295 218026 218054 "CHARZ" 218059 CHARZ (NIL) -9 NIL 218073 NIL) (-119 217089 217135 217213 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215928 216691 216719 "CHARNZ" 216780 CHARNZ (NIL) -9 NIL 216828 NIL) (-117 213406 214503 215026 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213114 213193 213221 "CFCAT" 213332 CFCAT (NIL) -9 NIL NIL NIL) (-115 212457 212586 212768 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208725 211870 212150 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208103 208290 208467 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207631 208050 208098 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207104 207413 207510 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206595 206898 206989 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205844 206004 206225 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201944 203201 203909 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200310 201341 201592 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199891 200170 200244 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199325 199578 199606 "CACHSET" 199738 CACHSET (NIL) -9 NIL 199816 NIL) (-104 198677 199092 199120 "CABMON" 199170 CABMON (NIL) -9 NIL 199226 NIL) (-103 198207 198471 198581 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193696 197875 198036 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192666 193370 193505 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193668) (-100 190191 192433 192539 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187687 189945 190053 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184923 187071 187110 "BTCAT" 187177 BTCAT (NIL T) -9 NIL 187258 NIL) (-97 184674 184772 184918 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179991 183847 183873 "BTAGG" 183984 BTAGG (NIL) -9 NIL 184092 NIL) (-95 179622 179783 179986 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176760 179114 179304 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 176030 176182 176360 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 173106 174727 174766 "BRAGG" 175395 BRAGG (NIL T) -9 NIL 175655 NIL) (-91 172181 172612 173101 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164715 171686 171867 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162707 164667 164710 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162440 162476 162587 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160679 161112 161560 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156645 158061 158951 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155521 156412 156534 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 155107 155264 155290 "BOOLE" 155398 BOOLE (NIL) -9 NIL 155479 NIL) (-83 154900 154981 155102 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 154038 154565 154615 "BMODULE" 154620 BMODULE (NIL T T) -9 NIL 154684 NIL) (-81 149923 153895 153964 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149736 149776 149815 "BINOPC" 149820 BINOPC (NIL T) -9 NIL 149865 NIL) (-79 149278 149551 149653 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 148799 148943 149081 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 142005 148529 148674 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 140234 141207 141246 "BGAGG" 141502 BGAGG (NIL T) -9 NIL 141629 NIL) (-75 140103 140141 140229 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 138954 139155 139440 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 135668 138134 138439 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 135253 135346 135372 "BASTYPE" 135543 BASTYPE (NIL) -9 NIL 135639 NIL) (-71 135023 135119 135248 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 134538 134626 134776 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 133437 134112 134297 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133185 133190 133216 "ATTREG" 133221 ATTREG (NIL) -9 NIL NIL NIL) (-67 132790 133062 133127 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 132290 132439 132465 "ATRIG" 132666 ATRIG (NIL) -9 NIL NIL NIL) (-65 132145 132198 132285 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 131715 131946 131972 "ASTCAT" 131977 ASTCAT (NIL) -9 NIL 132007 NIL) (-63 131514 131591 131710 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 129737 131347 131435 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 128544 128857 129222 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 126396 128474 128539 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 125587 125778 125999 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 121455 125318 125432 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 115749 117753 117828 "ARR2CAT" 120340 ARR2CAT (NIL T T T) -9 NIL 121061 NIL) (-56 114710 115192 115744 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 114078 114449 114571 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 113010 113178 113474 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 112711 112765 112883 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 112094 112240 112396 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 111499 111789 111909 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 109067 110228 110551 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 108592 108852 108948 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 102287 107654 108096 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 97821 99484 99534 "AMR" 100272 AMR (NIL T T) -9 NIL 100869 NIL) (-46 97175 97455 97816 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79159 97109 97170 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 75562 78835 79004 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 72572 73232 73839 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 71951 72064 72248 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68363 68988 69580 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 57852 68056 68206 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57169 57323 57501 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 55882 56677 56715 "ALGEBRA" 56720 ALGEBRA (NIL T) -9 NIL 56760 NIL) (-37 55668 55745 55877 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33898 52684 52736 "ALAGG" 52871 ALAGG (NIL T T) -9 NIL 53029 NIL) (-35 33398 33547 33573 "AHYP" 33774 AHYP (NIL) -9 NIL NIL NIL) (-34 32880 33012 33038 "AGG" 33243 AGG (NIL) -9 NIL 33369 NIL) (-33 32723 32781 32875 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30862 31322 31722 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30357 30660 30749 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29727 30022 30178 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17285 26564 26602 "ACFS" 27209 ACFS (NIL T) -9 NIL 27448 NIL) (-28 15908 16518 17280 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11460 13839 13865 "ACF" 14744 ACF (NIL) -9 NIL 15156 NIL) (-26 10556 10962 11455 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10058 10298 10324 "ABELSG" 10416 ABELSG (NIL) -9 NIL 10481 NIL) (-24 9956 9987 10053 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9111 9485 9511 "ABELMON" 9736 ABELMON (NIL) -9 NIL 9869 NIL) (-22 8793 8933 9106 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8005 8488 8514 "ABELGRP" 8586 ABELGRP (NIL) -9 NIL 8661 NIL) (-20 7558 7754 8000 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6767 6806 "A1AGG" 6811 A1AGG (NIL T) -9 NIL 6845 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 5c288fd2..10353b03 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,793 +1,793 @@ -(630173 . 3578007597) +(630177 . 3578010132) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) - (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4))))) + (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) + (-5 *2 (-1181 (-350 (-486)))) (-5 *1 (-1210 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) - (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4))))) + (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) + (-5 *2 (-1181 (-486))) (-5 *1 (-1210 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85)) - (-5 *1 (-1209 *4))))) + (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-85)) + (-5 *1 (-1210 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) - (-4 *4 (-1014)) (-4 *3 (-139 *5)))) + (-12 (-4 *5 (-13 (-555 *2) (-146))) (-5 *2 (-802 *4)) (-5 *1 (-144 *4 *5 *3)) + (-4 *4 (-1015)) (-4 *3 (-139 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) - (-4 *4 (-1156 *3)))) + (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) + (-4 *4 (-1157 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) - (-5 *2 (-1180 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) + (-5 *2 (-1181 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474)))) - ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-404 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-475)))) + ((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *1 *2) - (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) - (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757)))) + (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) + (-4 *5 (-555 (-1092))) (-4 *4 (-719)) (-4 *5 (-758)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) - (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) - (-5 *1 (-982 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) - (-5 *1 (-1060 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) - ((*1 *2 *3) - (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-14 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *6 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-14 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-350 *4)))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-1086 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) - (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) - (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-584 (-1091)))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-348 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3)) - (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) - (-5 *3 (-1086 (-350 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) - ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1160 *4 *3)) - (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3146 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-14 *5 (-584 (-1091))) - (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) + (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) + (-5 *1 (-983 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) + (-5 *1 (-1061 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *4 (-775 *5))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1092))) (-5 *2 (-705 *4 (-775 *6))) (-5 *1 (-1209 *4 *5 *6)) + (-14 *6 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-859 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) + (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *4 (-775 *6))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *6 (-585 (-1092))) (-5 *2 (-859 (-939 (-350 *4)))) + (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-1087 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) + (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6)))) + (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1092))) + (-5 *2 (-585 (-705 *4 (-775 *6)))) (-5 *1 (-1209 *4 *5 *6)) + (-14 *5 (-585 (-1092)))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) + (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-348 (-1087 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-393)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-348 *1)) (-4 *1 (-863 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-393)) (-5 *2 (-348 *3)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) + (-5 *3 (-1087 (-350 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136)))) + ((*1 *2 *3) + (-12 (-4 *4 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-1161 *4 *3)) + (-4 *3 (-13 (-1157 *4) (-497) (-10 -8 (-15 -3147 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1092))) + (-5 *2 (-585 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6))))) + (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) + (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091)))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) + (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) + (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) + (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091))) - (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330)))) + (-12 (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-585 (-1092))) + (-5 *2 (-585 (-585 (-330)))) (-5 *1 (-938)) (-5 *5 (-330)))) ((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) + (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) + (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-14 *5 (-584 (-1091))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) + (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) + (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) + (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1092))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) + (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) - (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) - (-14 *7 (-584 (-1091))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) + (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) + (-14 *7 (-585 (-1092))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) - (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) - (-14 *7 (-584 (-1091))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) - (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) - (-14 *7 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) - (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))) - (-14 *6 (-584 (-1091)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) + (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) + (-14 *7 (-585 (-1092))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) + (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) + (-14 *7 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) + (-5 *1 (-1209 *4 *5 *6)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))) + (-14 *6 (-585 (-1092)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) - (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) + (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) - (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) + (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) - (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) - (-14 *6 (-584 (-1091)))))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-960 *4 *5))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) + (-14 *6 (-585 (-1092)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) - (-4 *4 (-1130)))) + (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1208 *4)) + (-4 *4 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485)) - (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1206))))) -(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1206))))) + (-12 (-5 *3 (-1 (-585 (-1071 *5)) (-585 (-1071 *5)))) (-5 *4 (-486)) + (-5 *2 (-585 (-1071 *5))) (-5 *1 (-1208 *5)) (-4 *5 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1207))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6))) - (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962)))) - ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) + (-12 (-5 *4 (-832)) (-4 *6 (-497)) (-5 *2 (-585 (-265 *6))) + (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-963)))) + ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) ((*1 *2 *3) - (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) - (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) - (-5 *1 (-522 *4 *5)))) + (-12 (-5 *3 (-521 *5)) (-4 *5 (-13 (-29 *4) (-1117))) + (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 *5)) + (-5 *1 (-523 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-520 (-350 (-858 *4)))) - (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4))) - (-5 *1 (-526 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3)))) + (-12 (-5 *3 (-521 (-350 (-859 *4)))) + (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 (-265 *4))) + (-5 *1 (-527 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-757)) (-4 *2 (-1066 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) - (-4 *2 (-1065 *4)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) + (-4 *2 (-1066 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) ((*1 *2 *1) - (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-1197 (-1092) *3)) (-5 *1 (-1203 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) + (-4 *4 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3)))) + (-12 (-5 *2 (-1197 (-1092) *3)) (-4 *3 (-963)) (-5 *1 (-1203 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) - (-5 *1 (-1205 *3 *4))))) + (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) + (-5 *1 (-1206 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) - (-5 *1 (-1202 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-1092)) (|:| |c| (-1203 *3))))) + (-5 *1 (-1203 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) - (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831)))) + (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) + (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-696)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-832)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117))) (-5 *1 (-181 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695))) + (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3960 *3) (-696))) (-14 *7 - (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) - (-2 (|:| -2401 *5) (|:| -2402 *6)))) - (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) - (-4 *2 (-862 *4 *6 (-774 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) + (-2 (|:| -2402 *5) (|:| -2403 *6)))) + (-5 *1 (-402 *3 *4 *5 *6 *7 *2)) (-4 *5 (-758)) + (-4 *2 (-863 *4 *6 (-775 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-474))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-475))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1027)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *7 (-1015)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3)) + (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *1) (-4 *1 (-659))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) - (-5 *1 (-883 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026)))) - ((*1 *1 *1 *1) (-4 *1 (-1026))) + (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) + (-5 *1 (-884 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1027)))) + ((*1 *1 *1 *1) (-4 *1 (-1027))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) + (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1039 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) - (-4 *2 (-862 *3 (-470 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) + (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) + (-4 *2 (-863 *3 (-471 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-856 (-179))) (-5 *3 (-179)) (-5 *1 (-1128)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) + (-12 (-5 *2 (-486)) (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) - (-14 *3 (-584 (-1091))))) - ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) + (-14 *3 (-585 (-1092))))) + ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) ((*1 *1 *1) - (-12 (-14 *2 (-584 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3959 *2) (-695))) + (-12 (-14 *2 (-585 (-1092))) (-4 *3 (-146)) (-4 *5 (-196 (-3960 *2) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) - (-2 (|:| -2401 *4) (|:| -2402 *5)))) - (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) - (-4 *7 (-862 *3 *5 (-774 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) - ((*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) + (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) + (-2 (|:| -2402 *4) (|:| -2403 *5)))) + (-5 *1 (-402 *2 *3 *4 *5 *6 *7)) (-4 *4 (-758)) + (-4 *7 (-863 *3 *5 (-775 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) + ((*1 *1 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) ((*1 *1 *1) - (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))) - ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *2 (-963)) (-4 *3 (-665)))) + ((*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-585 (-1092))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) - (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) + (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757))) - (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-963) (-758))) + (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1092))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) - (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1131)) + (-4 *7 (-1131)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-249 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-552 *1)) (-4 *1 (-254)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-254)) - (-4 *2 (-1130)) (-5 *1 (-255 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1075)) (-5 *5 (-552 *6)) (-4 *6 (-254)) + (-4 *2 (-1131)) (-5 *1 (-255 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-552 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) - (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-350 *10))) + (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *9 (-312)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) - (-4 *7 (-1156 (-350 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1136)) (-4 *8 (-1136)) (-4 *6 (-1157 *5)) + (-4 *7 (-1157 (-350 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) - (-4 *10 (-1156 (-350 *9))))) + (-4 *10 (-1157 (-350 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-324 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-497)) (-5 *1 (-348 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) - (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6))) - (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10)) + (-4 *6 (-906 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-353 *6 *7) (-952 *6))) + (-4 *9 (-258)) (-4 *10 (-906 *9)) (-4 *11 (-1157 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-353 *10 *11) (-951 *10))))) + (-4 *12 (-13 (-353 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-451 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) - (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-521 *5)) (-4 *5 (-312)) (-4 *6 (-312)) + (-5 *2 (-521 *6)) (-5 *1 (-522 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) - (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6))) - (-5 *1 (-521 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) + (-4 *6 (-312)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) + (-5 *1 (-522 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) + (-4 *2 (-312)) (-5 *1 (-522 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-521 *5 *6)))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-522 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-538 *6)) (-5 *1 (-535 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) - (-5 *1 (-535 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-538 *7)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-538 *8)) + (-5 *1 (-536 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) - (-5 *1 (-535 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-538 *7)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) + (-5 *1 (-536 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) - (-5 *1 (-535 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-1071 *7)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) + (-5 *1 (-536 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-585 *6)) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8)) - (-5 *1 (-587 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-585 *8)) + (-5 *1 (-588 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) - (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) - (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-324 *5)) + (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) + (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) - (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) - (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) + (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) + (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) - (-4 *2 (-1156 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1156 (-350 *6))) (-4 *8 (-1156 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-497)) (-4 *7 (-497)) (-4 *6 (-1157 *5)) + (-4 *2 (-1157 (-350 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1157 (-350 *6))) (-4 *8 (-1157 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) - (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-758)) + (-4 *6 (-719)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) - (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-758)) (-4 *6 (-758)) (-4 *7 (-719)) + (-4 *9 (-963)) (-4 *2 (-863 *9 *8 *6)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-719)) (-4 *4 (-863 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) - (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-676 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) + (-4 *7 (-665)) (-5 *2 (-676 *6 *7)) (-5 *1 (-675 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-676 *3 *4)) (-4 *4 (-665)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-706 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-706 *6)) (-5 *1 (-707 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) - (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-722 *6)) + (-5 *1 (-725 *4 *5 *2 *6)) (-4 *4 (-722 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) + (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) + (-4 *6 (-1015)) (-5 *1 (-746 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-752 *6)) (-5 *1 (-753 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) + (-12 (-5 *2 (-752 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) + (-4 *6 (-1015)) (-5 *1 (-753 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-800 *5 *6)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *7 (-1015)) (-5 *2 (-800 *5 *7)) (-5 *1 (-801 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-802 *6)) (-5 *1 (-804 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-859 *6)) (-5 *1 (-860 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) - (-4 *6 (-718)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-758)) (-4 *8 (-963)) + (-4 *6 (-719)) (-4 *2 - (-13 (-1014) - (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) - (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))) + (-13 (-1015) + (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) + (-5 *1 (-865 *6 *7 *8 *5 *2)) (-4 *5 (-863 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-871 *6)) (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-879 *6)) (-5 *1 (-881 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-856 *6)) (-5 *1 (-896 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) - (-4 *5 (-718)) + (-12 (-5 *3 (-1 *2 (-859 *4))) (-4 *4 (-963)) (-4 *2 (-863 (-859 *4) *5 *6)) + (-4 *5 (-719)) (-4 *6 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) - (-5 *1 (-898 *4 *5 *6 *2)))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) + (-5 *1 (-899 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) - (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-4 *2 (-906 *6)) + (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) - (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-913 *6)) + (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) - (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) - (-4 *2 (-966 *5 *6 *10 *11 *12)) - (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-696)) + (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-4 *2 (-967 *5 *6 *10 *11 *12)) + (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-585 *6)) (-5 *1 (-1004 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1006 *6)) (-5 *1 (-1007 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) - (-4 *2 (-1065 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) + (-4 *2 (-1066 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1071 *6)) (-5 *1 (-1073 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) - (-5 *1 (-1073 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) + (-5 *1 (-1074 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-1087 *6)) (-5 *1 (-1088 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1109 *3 *4)) (-4 *3 (-1015)) + (-4 *4 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962)) - (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1091)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-963)) + (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1142 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-1071 *6)) (-5 *1 (-1149 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-962)) - (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) - (-14 *7 (-1091)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1150 *5 *6)) (-14 *5 (-1092)) (-4 *6 (-963)) + (-4 *8 (-963)) (-5 *2 (-1150 *7 *8)) (-5 *1 (-1151 *5 *6 *7 *8)) + (-14 *7 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6)) - (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1157 *6)) + (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1157 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962)) - (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1091)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5 *7 *9)) (-4 *5 (-963)) + (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1162 *6 *8 *10)) (-5 *1 (-1163 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6)) - (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1174 *6)) + (-5 *1 (-1172 *5 *6 *4 *2)) (-4 *4 (-1174 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209)))) - ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-1205 *3 *4)) (-4 *4 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-886)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485)))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-486)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962))))) + (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962))))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757)) + (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-758)) (-4 *2 (-146)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755))))) + (-12 (-5 *3 (-741 *4)) (-4 *1 (-1201 *4 *2)) (-4 *4 (-758)) (-4 *2 (-963)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) - (-4 *4 (-1014)))) - ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) - ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) + (-4 *4 (-1015)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) + ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) - ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) +(((*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-179)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131))))) ((*1 *1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) + (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-413))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-474))) + ((*1 *1 *1 *1) (-4 *1 (-414))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-475))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-664) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-560 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-665) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-664) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) + (-12 (-4 *4 (-146)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-665) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) - (-4 *3 (|SubsetCategory| (-664) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-596 *2 *4 *3)) (-4 *2 (-656 *4)) + (-4 *3 (|SubsetCategory| (-665) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) - (-4 *2 (|SubsetCategory| (-664) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)) + (-4 *2 (|SubsetCategory| (-665) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962)) - (-14 *3 (-584 (-1091))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) + (|partial| -12 (-5 *1 (-777 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-963)) + (-14 *3 (-585 (-1092))) (-14 *4 (-585 (-696))) (-14 *5 (-696)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) + (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-312)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) - (-14 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) + (|partial| -12 (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-719)) + (-14 *6 (-585 *3)) (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-863 *2 *4 *3)) (-14 *7 (-585 (-696))) (-14 *8 (-696)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) + (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *1) - (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-486)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1092))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-229)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) - (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) + (-12 (-5 *3 (-1087 *8)) (-5 *4 (-585 *6)) (-4 *6 (-758)) + (-4 *8 (-863 *7 *5 *6)) (-4 *5 (-719)) (-4 *7 (-963)) (-5 *2 (-585 (-696))) (-5 *1 (-272 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) + (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 (-695))))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 (-696))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-695)))) + (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) + (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *2 (-718)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) + (-12 (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)) (-5 *2 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) - (-5 *2 (-350 (-485))))) - ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) + (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) + (-5 *2 (-350 (-486))))) + ((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) ((*1 *2 *1) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695))))) + (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-696))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) + (-12 (-5 *2 (-696)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) + (-12 (-5 *2 (-696)) (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-631 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-14 *6 (-1181 (-632 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1131)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) - (-5 *2 (-1180 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4)))) + (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) + (-5 *2 (-1181 (-632 (-350 (-859 *4))))) (-5 *1 (-163 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330)))) - (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) + (-12 (-5 *3 (-1006 (-265 *4))) (-4 *4 (-13 (-758) (-497) (-555 (-330)))) + (-5 *2 (-1006 (-330))) (-5 *1 (-219 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229)))) ((*1 *2 *1) - (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) + (-12 (-4 *2 (-1157 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) - (-14 *5 (-1091)) (-14 *6 *4) - (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) + (-12 (-5 *2 (-1162 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) + (-14 *5 (-1092)) (-14 *6 *4) + (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *1 (-264 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) @@ -796,10796 +796,10796 @@ (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *2 (-1205 *3 *4)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *2 (-1206 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *2 (-1196 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *2 (-1197 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) + (-12 (-5 *2 (-350 (-859 (-350 *3)))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) + (-12 (-5 *2 (-859 (-350 *3))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) + (-12 (-5 *2 (-350 *3)) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) + (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-963)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4)) - (-4 *3 (-13 (-146) (-38 (-350 (-485))))))) + (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-758) (-21))) (-5 *1 (-372 *3 *4)) + (-4 *3 (-13 (-146) (-38 (-350 (-486))))))) ((*1 *1 *2) - (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485))))) - (-4 *3 (-13 (-757) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-377)))) + (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-486))))) + (-4 *3 (-13 (-758) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-377)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-377)))) ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 (-350 (-858 *3)))) (-4 *3 (-146)) - (-14 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831)) - (-14 *5 (-584 (-1091))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408)))) + (-12 (-5 *2 (-1181 (-350 (-859 *3)))) (-4 *3 (-146)) + (-14 *6 (-1181 (-632 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *4 (-832)) + (-14 *5 (-585 (-1092))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-409)))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) - (-5 *1 (-414 *3 *4 *5)))) + (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) + (-5 *1 (-415 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-542 *3 *2)) (-4 *2 (-685 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-963)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-574 *3 *2)) (-4 *2 (-685 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-624)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3)) + (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-4 *3 (-962)) - (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688)))) - ((*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) - ((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) - ((*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496)))) - ((*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130)))) - ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1130)))) + (-12 (-5 *2 (-585 (-2 (|:| -3957 *3) (|:| -3941 *4)))) (-4 *3 (-963)) + (-4 *4 (-665)) (-5 *1 (-676 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-689)))) + ((*1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-699 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-769)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 (-48))) (-5 *2 (-265 (-486))) (-5 *1 (-786)))) + ((*1 *2 *3) + (-12 (-5 *3 (-350 (-859 (-48)))) (-5 *2 (-265 (-486))) (-5 *1 (-786)))) + ((*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-827 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) + ((*1 *2 *3) + (-12 (-5 *3 (-418)) (-5 *2 (-265 *4)) (-5 *1 (-833 *4)) (-4 *4 (-497)))) + ((*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-948 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-948 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-954 *3)) (-4 *3 (-497)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) - (-4 *2 (-862 *3 (-470 *4) *4)))) + (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) + (-4 *2 (-863 *3 (-471 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) - (-4 *4 (-862 *3 (-470 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) + (-12 (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1042 *3 *2 *4)) + (-4 *4 (-863 *3 (-471 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1060)))) + ((*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) - (-5 *1 (-1090 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-379))) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) + (-5 *1 (-1091 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1104 (-1092) (-379))) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1105 *3)) (-4 *3 (-1015)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111)) (-5 *1 (-1112 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-5 *1 (-1124 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-963)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1003 *3)) (-4 *3 (-1131)) (-5 *1 (-1148 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) - (-5 *1 (-1170 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1183)))) - ((*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) + (-5 *1 (-1171 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-409)) (-5 *2 (-1184)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1184)))) + ((*1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) ((*1 *2 *1) - (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *1 (-1201 *3 *4))))) + (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *1 (-1202 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *1 (-607 *3 *4)))) + (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *1 (-608 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) + (|partial| -12 (-5 *2 (-608 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-585 (-486))) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5)) - (-14 *5 (-831)))) + (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-5 *1 (-568 *3 *4 *5)) + (-14 *5 (-832)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) - (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) + (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) + (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) - (-4 *3 (-757)) (-4 *4 (-146))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) + (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *2 *3) - (-12 (-5 *3 (-348 *4)) (-4 *4 (-496)) - (-5 *2 (-584 (-2 (|:| -3956 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) + (-12 (-5 *3 (-348 *4)) (-4 *4 (-497)) + (-5 *2 (-585 (-2 (|:| -3957 (-696)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) + (-12 (-5 *2 (-608 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) - (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) + (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) + (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) - (-4 *3 (-757)) (-4 *4 (-146))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) + (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) - (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) + (-5 *2 (-2 (|:| |k| (-741 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) + (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) + (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) + (-12 (-5 *4 (-486)) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-741 *4)) (-4 *4 (-758)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) + (-12 (-4 *3 (-497)) (-5 *2 (-85)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) + (-12 (-5 *2 (-85)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) - (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831)))) - ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) + (-12 (-5 *1 (-568 *2 *3 *4)) (-4 *2 (-758)) + (-4 *3 (-13 (-146) (-656 (-350 (-486))))) (-14 *4 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) + (-12 (-5 *2 (-696)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-4 *4 (-146)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146))))) + (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)) (-4 *3 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-585 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3))))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-585 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) - (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1126 *4 *5 *3 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *3 (-758)) + (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-832)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4)) + (-12 (-4 *4 (-312)) (-5 *2 (-745 (-832))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) - ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831)))))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) + ((*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832)))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-695))))) + (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-696))))) (((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) - (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-831)))) + (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1157 *4)) + (-5 *1 (-702 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-832)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) - ((*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-320))))) + (-12 (-5 *2 (-696)) (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) + ((*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-312)) (-4 *2 (-320))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) - (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) + (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) - (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) + (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) - (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) + (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7))) - (-5 *1 (-1194 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 (-1195 *4 *5 *6 *7))) + (-5 *1 (-1195 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) - (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9))))) + (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) + (-5 *2 (-585 (-1195 *6 *7 *8 *9))) (-5 *1 (-1195 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) - (-14 *5 (-584 (-1091))) (-14 *6 (-584 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-777 *4 *5 *6 *7)) (-4 *4 (-963)) + (-14 *5 (-585 (-1092))) (-14 *6 (-585 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) - (-14 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) + (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) + (-14 *8 (-585 *5)) (-5 *2 (-1187)) (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-863 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *2)) - (-4 *3 (-13 (-1014) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) + (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *2)) + (-4 *3 (-13 (-1015) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1193))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-4 *4 (-1156 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-4 *4 (-1157 *3)) (-5 *2 - (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) + (-12 (-5 *3 (-486)) (-4 *4 (-1157 *3)) (-5 *2 - (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-694 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 - (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-663 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 - (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5))))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-1191 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) - (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) + (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) + (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-4 *4 (-1156 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-4 *4 (-1157 *3)) (-5 *2 - (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1156 (-485))) + (-12 (-4 *3 (-1157 (-486))) (-5 *2 - (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) - (|:| |basisInv| (-631 (-485))))) - (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3)))) + (-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) + (|:| |basisInv| (-632 (-486))))) + (-5 *1 (-694 *3 *4)) (-4 *4 (-353 (-486) *3)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 - (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) - (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))) + (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) + (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-663 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 - (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) - (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) + (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) + (-5 *1 (-1191 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) - (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4))))) + (-12 (-5 *3 (-696)) (-4 *6 (-312)) (-5 *4 (-1124 *6)) + (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1190 *6)) (-5 *5 (-1071 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-584 (-1123 *5))) - (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5))))) + (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-585 (-1124 *5))) + (-5 *1 (-1190 *5)) (-5 *4 (-1124 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4))) - (-5 *1 (-1189 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1087 (-859 *4)) (-859 *4))) + (-5 *1 (-1190 *4)) (-4 *4 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-858 *5)))) - (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5)))))) + (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-1071 (-1071 (-859 *5)))) + (-5 *1 (-1190 *5)) (-5 *4 (-1071 (-859 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) - (-5 *1 (-1189 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) + (-5 *1 (-1190 *4)) (-4 *4 (-312))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) - (-5 *1 (-1189 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) + (-5 *1 (-1190 *4)) (-4 *4 (-312))))) (((*1 *2) - (-12 (-14 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 (-696)) (-4 *5 (-1131)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) - (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) - ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(((*1 *1) (-5 *1 (-1186)))) -(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) -(((*1 *1) (-5 *1 (-1184)))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-5 *2 (-486)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-963)) (-5 *2 (-832)))) + ((*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1187)))) +(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1186)))) + ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1186))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) + ((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) +(((*1 *1) (-5 *1 (-1185)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1184)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) - ((*1 *1 *1) (-5 *1 (-1184)))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184))))) + (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-585 (-221))) (-5 *1 (-1185)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1075)) (-5 *1 (-1185)))) + ((*1 *1 *1) (-5 *1 (-1185)))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-1081 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) + (-12 (-5 *2 (-696)) (-5 *3 (-856 *4)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-696)) (-5 *4 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + (-12 (-5 *3 (-486)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *2 (-1186)) (-5 *1 (-1184)))) + (-5 *2 (-1187)) (-5 *1 (-1185)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3850 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-1184)))) + (-5 *1 (-1185)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1185)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1187)) (-5 *1 (-1185))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1184)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1185)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1183))))) -(((*1 *1) (-5 *1 (-1183)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1183)))) - ((*1 *1 *1) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-409)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-856 (-179)))) (-5 *1 (-1184))))) +(((*1 *1) (-5 *1 (-1184)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-409)) (-5 *3 (-585 (-221))) (-5 *1 (-1184)))) + ((*1 *1 *1) (-5 *1 (-1184)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784)) - (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-832)) (-5 *4 (-179)) (-5 *5 (-486)) (-5 *6 (-785)) + (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *1) (-12 (-5 *2 - (-1180 + (-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) - (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) - (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) - (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) - (-5 *1 (-1183))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183))))) + (|:| |deltaY| (-179)) (|:| -3853 (-486)) (|:| -3851 (-486)) + (|:| |spline| (-486)) (|:| -3882 (-486)) (|:| |axesColor| (-785)) + (|:| -3854 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486))))) + (-5 *1 (-1184))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-409) "undefined"))) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-409)) (-5 *1 (-1184))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) + (-12 (-5 *2 (-585 (-330))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) - (-5 *6 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) + (-5 *6 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-1183)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) - (-5 *2 (-1183)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) + (-5 *2 (-1184)) (-5 *1 (-1183))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) - (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) + (-5 *6 (-585 (-221))) (-5 *2 (-409)) (-5 *1 (-1183)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-409)) (-5 *1 (-1183)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408)) - (-5 *1 (-1182))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-409)) + (-5 *1 (-1183))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1086 *4)) (|:| |deg| (-831)))) - (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496)))) + (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -2006 (-1087 *4)) (|:| |deg| (-832)))) + (-5 *1 (-175 *4 *5)) (-5 *3 (-1087 *4)) (-4 *5 (-497)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) - (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) + (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-198 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) + (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) + ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-497)) (-4 *2 (-1015)))) ((*1 *1 *1) - (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) - (-4 *4 (-1156 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) + (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1157 *2)) + (-4 *4 (-1157 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1015)) (-4 *2 (-1015)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) - ((*1 *1 *1) (-5 *1 (-435))) + ((*1 *1 *1) (-5 *1 (-436))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-585 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-586 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) - (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) - (-4 *10 (-628 *2 *8 *9)))) + (-5 *1 (-630 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) + (-4 *10 (-629 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) - (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) + (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-312)) + (-4 *3 (-146)) (-4 *1 (-663 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-871 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-872 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) - (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-696)) + (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) - (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) + (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-1072 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-1073 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) - (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *2 (-978 *5 *6 *7)))) + (-4 *1 (-1126 *5 *6 *7 *2)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *2 (-979 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-1181 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-1182 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) - (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-696)) + (-4 *7 (-1131)) (-4 *5 (-1131)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-324 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1015)) (-4 *5 (-1015)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) - (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) + (-5 *2 (-585 *5)) (-5 *1 (-586 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) - (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-871 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) + (-5 *2 (-871 *5)) (-5 *1 (-872 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) - (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1131)) (-4 *3 (-1131)) + (-5 *2 (-1071 *3)) (-5 *1 (-1073 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) - (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) + (-5 *2 (-1181 *5)) (-5 *1 (-1182 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1181 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) - (-15 -1964 ((-1186) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) + (-15 -1965 ((-1187) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1156 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1157 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-474))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-475))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25))))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-696)) (-4 *1 (-1180 *3)) (-4 *3 (-23)) (-4 *3 (-1131))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) - (-15 -1964 ((-1186) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) + (-15 -1965 ((-1187) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) - ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))) + ((*1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-179)) (-5 *1 (-1128)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))) -(((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) - ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) + (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-963)) (-5 *2 (-632 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-963)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963))))) +(((*1 *2 *3) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) + (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1129 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-758)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-903)))) + (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-775 *3)) (-14 *3 (-585 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-904)))) ((*1 *2 *1) - (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4)) - (-4 *3 (-1007 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) + (-12 (-4 *4 (-1131)) (-5 *2 (-1092)) (-5 *1 (-973 *3 *4)) + (-4 *3 (-1008 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1006 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091)))) - ((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1092)))) + ((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-350 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962)) - (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5))))) + (-12 (-5 *3 (-350 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-497)) (-4 *4 (-963)) + (-4 *2 (-1174 *4)) (-5 *1 (-1176 *4 *5 *6 *2)) (-4 *6 (-602 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6))) - (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4))))) + (-12 (-4 *4 (-963)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-585 *6))) + (-5 *1 (-1176 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1174 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5)) - (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-4 *2 (-1157 *5)) + (-5 *1 (-1176 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1174 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) - (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) + (-12 (-4 *4 (-963)) (-4 *3 (-1157 *4)) (-4 *2 (-1174 *4)) + (-5 *1 (-1176 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) - (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6)) - (-5 *1 (-1174 *5 *6))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) + (-4 *5 (-38 (-350 (-486)))) (-4 *6 (-1174 *5)) (-5 *2 (-585 *6)) + (-5 *1 (-1175 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485)))) - (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-38 (-350 (-486)))) + (-4 *2 (-1174 *5)) (-5 *1 (-1175 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) - (-4 *4 (-38 (-350 (-485))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) + (-4 *4 (-38 (-350 (-486))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) - (-4 *4 (-38 (-350 (-485))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) + (-4 *4 (-38 (-350 (-486))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3))))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-1174 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) - (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) + (-5 *2 (-1 (-1071 *4) (-585 (-1071 *4)))) (-5 *1 (-1175 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) - (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) + (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) - (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) + (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) + (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) - (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) + (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *6 *3)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) - (-4 *7 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) + (-4 *7 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) - (-4 *3 (-13 (-27) (-1116) (-364 *7))) - (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *7 *3)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) + (-4 *3 (-13 (-27) (-1117) (-364 *7))) + (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) - (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) - (-4 *8 (-13 (-27) (-1116) (-364 *7))) - (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) + (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) + (-4 *8 (-13 (-27) (-1117) (-364 *7))) + (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) - (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) - (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *8 *3)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) + (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) + (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) - (-5 *1 (-531 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) + (-5 *1 (-532 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-533 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) - (-4 *1 (-1142 *3)))) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) + (-4 *1 (-1143 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))) - (-4 *4 (-962)) (-4 *1 (-1163 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) + (-12 (-5 *2 (-696)) (-5 *3 (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))) + (-4 *4 (-963)) (-4 *1 (-1164 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-4 *1 (-1174 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) - (-4 *1 (-1173 *3))))) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-696)) (|:| |c| *3)))) (-4 *3 (-963)) + (-4 *1 (-1174 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-585 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-5 *2 (-1071 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-532 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1143 *3)) (-4 *3 (-963)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1174 *3)) (-4 *3 (-963))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) - (-5 *2 (-858 *4)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) + (-5 *2 (-859 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) - (-5 *2 (-858 *4)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) + (-5 *2 (-859 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) + (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))) + (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) + (-12 (-5 *3 (-350 (-486))) (-4 *4 (-952 (-486))) (-4 *4 (-497)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) ((*1 *1 *1 *1) (-5 *1 (-107))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) ((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-486)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) - (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) + (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1174 *4)) + (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1145 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) - (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5)))) + (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1143 *4)) + (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1166 *4 *5)) (-4 *6 (-898 *5)))) ((*1 *1 *1 *1) (-4 *1 (-239))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) ((*1 *1 *1 *1) (-5 *1 (-330))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485)))) + (-12 (-5 *2 (-696)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-1027)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-486)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-5 *2 (-696)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474)))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-475)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-475)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *4 (-1015)) (-5 *1 (-625 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-696)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) + (-12 (-5 *2 (-486)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)) (-4 *4 (-592 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) - (-4 *5 (-591 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-653 *4 *5)) + (-4 *5 (-592 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-696)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-747 *3)) (-4 *3 (-963)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831)))) + (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-5 *1 (-747 *4)) (-4 *4 (-963)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-350 (-486))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-832)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962)) + (-12 (-5 *2 (-486)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1116) (-872) (-29 *5))) - (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-1006 (-752 *3))) (-4 *3 (-13 (-1117) (-873) (-29 *5))) + (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) + (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074)) - (-4 *3 (-13 (-1116) (-872) (-29 *6))) - (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-1006 (-752 *3))) (-5 *5 (-1075)) + (-4 *3 (-13 (-1117) (-873) (-29 *6))) + (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5)))) - (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1006 (-752 (-265 *5)))) + (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) + (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6)))) - (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1006 (-752 (-265 *6)))) + (-5 *5 (-1075)) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) + (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5))) - (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-1006 (-752 (-350 (-859 *5))))) (-5 *3 (-350 (-859 *5))) + (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) + (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1074)) - (-5 *3 (-350 (-858 *6))) - (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-1006 (-752 (-350 (-859 *6))))) (-5 *5 (-1075)) + (-5 *3 (-350 (-859 *6))) + (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) + (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3)) - (-4 *3 (-13 (-1116) (-872) (-29 *5))))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-373 *5 *3)) + (-4 *3 (-13 (-1117) (-873) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) - (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) + (-5 *2 (-521 (-350 *5))) (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-3 (-265 *5) (-585 (-265 *5)))) (-5 *1 (-527 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) - (-4 *3 (-38 (-350 (-485)))))) + (-12 (-4 *1 (-681 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)) + (-4 *3 (-38 (-350 (-486)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485)))) - (-4 *3 (-962)))) + (-12 (-5 *2 (-1092)) (-5 *1 (-859 *3)) (-4 *3 (-38 (-350 (-486)))) + (-4 *3 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) - (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-4 *2 (-758)) + (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-863 *3 (-471 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) - (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) + (-5 *1 (-1077 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-350 (-485)))) - (-4 *3 (-962)))) + (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-38 (-350 (-486)))) + (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) - (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) - (-4 *3 (-38 (-350 (-485)))))) - (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) - (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) - (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))) + (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) + (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) + (-4 *3 (-38 (-350 (-486)))))) + (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) + (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) + (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) + (-12 (-4 *1 (-1143 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) + (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1162 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) - (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) - (-4 *3 (-38 (-350 (-485)))))) - (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) - (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) - (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))) + (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) + (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) + (-4 *3 (-38 (-350 (-486)))))) + (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) + (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) + (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) + (-12 (-4 *1 (-1164 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) - (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) - (-4 *3 (-38 (-350 (-485)))))) - (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) - (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) - (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))) + (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) + (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) + (-4 *3 (-38 (-350 (-486)))))) + (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) + (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) + (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))) + (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) - (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) + (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1091 *4 *5 *6)) + (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) - (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) + (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) + (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) + (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) + (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) + (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) + (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) - (-4 *4 (-1130)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) - (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1072 *4)) + (-4 *4 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) + (-12 (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) (-4 *3 (-758)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *2 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) + (-4 *5 (-324 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) - (-14 *4 (-485)) (-14 *5 (-695)))) + (-12 (-5 *3 (-585 (-486))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-486)) (-14 *5 (-696)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-695)))) + (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-696)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-695)))) + (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-696)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-695)))) + (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-696)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695)))) + (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-486)) (-14 *4 (-696)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-1092)) (-5 *2 (-203 (-1075))) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ *3)) (-15 -3619 ((-1186) $)) - (-15 -1964 ((-1186) $))))))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ *3)) (-15 -3620 ((-1187) $)) + (-15 -1965 ((-1187) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-904)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) - (-15 -1964 ((-1186) $))))))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) + (-15 -1965 ((-1187) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) + (-12 (-5 *3 "count") (-5 *2 (-696)) (-5 *1 (-203 *4)) (-4 *4 (-758)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-758)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-758)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) - (-4 *4 (-1156 (-350 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) + (-4 *4 (-1157 (-350 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-443)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) + (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) - (-4 *4 (-1014)))) + (-12 (-5 *2 (-86)) (-5 *3 (-585 (-802 *4))) (-5 *1 (-802 *4)) + (-4 *4 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-696)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-925 *2)) (-4 *2 (-1131)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) + (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-963)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) + (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-1014)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) + (-12 (-5 *3 (-832)) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-1014)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1059))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) + (-12 (-5 *3 (-832)) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-991 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1060))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-350 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) + (-12 (-5 *3 (-350 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) + (-12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) - (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1009)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) + (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1010)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) ((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) - ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) -(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) + ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *3 *2)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) +(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 "right") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 "left") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1036 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) - (-4 *2 (-1130)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-572)))) + (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) + (-4 *2 (-1131)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-573)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1147 (-485))) (-4 *1 (-1036 *2)) (-4 *1 (-594 *2)) - (-4 *2 (-1130)))) + (-12 (-5 *3 (-1148 (-486))) (-4 *1 (-1037 *2)) (-4 *1 (-595 *2)) + (-4 *2 (-1131)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) + (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 "value") (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 "last") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 "rest") (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) + (-12 (-5 *3 "first") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1071 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) - (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) + (-5 *2 (-752 *4)) (-5 *1 (-264 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) - (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) + (-5 *2 (-752 *4)) (-5 *1 (-1168 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) + (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) - (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))))) - (|:| |%type| (-1074)))) - (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) - (-14 *5 (-1091)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1162 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) + (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))))) + (|:| |%type| (-1075)))) + (-5 *1 (-1168 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) + (-14 *5 (-1092)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) + (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) - (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) + (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) - (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) - (-4 *8 (-13 (-27) (-1116) (-364 *7))) - (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) + (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) + (-4 *8 (-13 (-27) (-1117) (-364 *7))) + (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) - (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) - (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *8 *3)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) + (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) + (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3)) - (-4 *3 (-1142 *4))))) + (-12 (-5 *2 (-350 (-486))) (-4 *4 (-963)) (-4 *1 (-1166 *4 *3)) + (-4 *3 (-1143 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) - (-5 *2 (-350 (-485)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) + (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) + (-5 *2 (-350 (-486)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) + (-12 (-5 *4 (-486)) (-4 *5 (-13 (-393) (-952 *4) (-582 *4))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-393) (-952 *5) (-582 *5))) (-5 *5 (-486)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) - (-4 *7 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) + (-4 *7 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) - (-4 *3 (-13 (-27) (-1116) (-364 *7))) - (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *7 *3)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) + (-4 *3 (-13 (-27) (-1117) (-364 *7))) + (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) + (-12 (-5 *2 (-486)) (-4 *4 (-963)) (-4 *1 (-1145 *4 *3)) (-4 *3 (-1174 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) + (|partial| -12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-832)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-1164 *3)) (-4 *3 (-963))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-485)))) - (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (-4 *3 (-496)) - (-5 *1 (-1160 *3 *4))))) + (|:| |xpnt| (-486)))) + (-4 *4 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $))))) (-4 *3 (-497)) + (-5 *1 (-1161 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392)))) + (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) - (-4 *1 (-984 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1135))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *1)))) + (-4 *1 (-985 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1136))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) - (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $)))))))) + (-12 (-4 *3 (-497)) (-5 *1 (-1161 *3 *2)) + (-4 *2 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) - (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) + (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) - (-5 *2 (-584 (-454 *3 *4))))) + (-12 (-4 *1 (-451 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)) + (-5 *2 (-585 (-455 *3 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-5 *1 (-675 *3 *4)) - (-4 *3 (-962)) (-4 *4 (-664)))) + (-12 (-5 *2 (-585 (-2 (|:| -3957 *3) (|:| -3941 *4)))) (-5 *1 (-676 *3 *4)) + (-4 *3 (-963)) (-4 *4 (-665)))) ((*1 *2 *1) - (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) - (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) + (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) + (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))) + (-12 (-5 *2 (-585 (-1075))) (-5 *3 (-486)) (-5 *4 (-1075)) (-5 *1 (-199)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-832)))) ((*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) - (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) - (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831))))) - ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) - ((*1 *2 *1) - (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) + (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) + (-5 *2 (-696)) (-5 *1 (-341 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-745 (-832))))) + ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) + ((*1 *2 *1) + (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) + (-12 (-5 *2 (-696)) (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) + (-12 (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) - (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695)) - (-5 *1 (-823 *4 *5 *6 *7 *8)))) + (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-696)) + (-5 *1 (-824 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) - (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) - (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))) + (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) + (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) + (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-696)) (-5 *1 (-825 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) - (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) - (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))) + (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) + (-4 *9 (-13 (-320) (-312))) (-5 *2 (-696)) (-5 *1 (-933 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) -(((*1 *1 *1) (-4 *1 (-974))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) + (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)) (-5 *2 (-696)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + ((*1 *2 *1) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) +(((*1 *1 *1) (-4 *1 (-975))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-486)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485)))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-782 *4)) (-14 *4 *3) (-5 *3 (-486)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) - (-4 *5 (-780 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485))))) + (-12 (-14 *4 *3) (-5 *2 (-350 (-486))) (-5 *1 (-783 *4 *5)) (-5 *3 (-486)) + (-4 *5 (-781 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-927)) (-5 *2 (-350 (-486))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))) + (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3948 (*2 (-1091)))) (-4 *2 (-962))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) + (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3949 (*2 (-1092)))) (-4 *2 (-963))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-696)) (-4 *1 (-681 *3 *4)) (-4 *3 (-963)) (-4 *4 (-758)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-895 *3)) (-4 *3 (-963)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) - (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) + (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-350 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) - (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) + (-12 (-5 *3 (-350 *5)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1157 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) + (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014)) - (-4 *3 (-1130)) (-5 *1 (-249 *3)))) + (-12 (-5 *2 (-585 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1015)) + (-4 *3 (-1131)) (-5 *1 (-249 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) + (-12 (-4 *2 (-260 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)) (-5 *1 (-249 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) + (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-585 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-350 (-485)))) (-5 *1 (-261 *2)) - (-4 *2 (-38 (-350 (-485)))))) + (-12 (-5 *3 (-1 *2 (-486))) (-5 *4 (-1094 (-350 (-486)))) (-5 *1 (-261 *2)) + (-4 *2 (-38 (-350 (-486)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757)) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-758)) (-4 *5 (-146)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) - (-4 *5 (-1014)) (-4 *5 (-962)))) + (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) + (-4 *5 (-1015)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) - (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) + (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 (-585 *1))) + (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) - (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) - (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) + (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) + (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) - (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 *1))) + (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-364 *5)) - (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) + (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 *1)) (-5 *4 (-1092)) (-4 *1 (-364 *5)) + (-4 *5 (-1015)) (-4 *5 (-555 (-475))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) - (-4 *4 (-554 (-474))))) - ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1092)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) + (-4 *4 (-555 (-475))))) + ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-555 (-475))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-1091))) (-4 *1 (-364 *3)) (-4 *3 (-1014)) - (-4 *3 (-554 (-474))))) + (-12 (-5 *2 (-585 (-1092))) (-4 *1 (-364 *3)) (-4 *3 (-1015)) + (-4 *3 (-555 (-475))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) - (-4 *3 (-554 (-474))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) + (-4 *3 (-555 (-475))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1131)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) - (-4 *5 (-1130)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-457 *4 *5)) (-4 *4 (-1015)) + (-4 *5 (-1131)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-745 *3)) (-4 *3 (-312)) (-5 *1 (-657 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) - (-5 *1 (-953 *4)))) + (-12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) (-4 *4 (-497)) + (-5 *1 (-954 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-350 (-858 *5)))) - (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) + (-12 (-5 *3 (-585 (-1092))) (-5 *4 (-585 (-350 (-859 *5)))) + (-5 *2 (-350 (-859 *5))) (-4 *5 (-497)) (-5 *1 (-954 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) - (-5 *1 (-953 *4)))) + (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-5 *2 (-350 (-859 *4))) (-4 *4 (-497)) + (-5 *1 (-954 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4))) - (-4 *4 (-496)) (-5 *1 (-953 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-5 *2 (-350 (-859 *4))) + (-4 *4 (-497)) (-5 *1 (-954 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) + (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3))))) + (-12 (-5 *3 (-696)) (-4 *1 (-1157 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-5 *2 (-1087 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-963)) (-4 *1 (-1157 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) + (|partial| -12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-862 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-863 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-1156 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-1157 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-1156 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) + (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-1157 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) - (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) + (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + (-12 (-4 *2 (-312)) (-4 *2 (-811 *3)) (-5 *1 (-521 *2)) (-5 *3 (-1092)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-521 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) - (-4 *4 (-1014)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) + (-4 *4 (-1015)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) (((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1156 *2)) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1157 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) + (-12 (-4 *4 (-1157 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) + (-12 (-4 *3 (-1157 *2)) (-5 *2 (-486)) (-5 *1 (-694 *3 *4)) (-4 *4 (-353 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) - ((*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146))))) + ((*1 *2 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) - (-4 *3 (-496)))) + (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) + (-4 *3 (-497)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496))))) + (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3956 *4) (|:| -1973 *3) (|:| -2904 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -3957 *4) (|:| -1974 *3) (|:| -2905 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| -3956 *3) (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-1156 *3))))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| -3957 *3) (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) - (-5 *2 (-2 (|:| -1766 (-563 *4 *5)) (|:| -1765 (-350 *5)))) - (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5)))) + (-12 (-4 *4 (-312)) (-4 *4 (-497)) (-4 *5 (-1157 *4)) + (-5 *2 (-2 (|:| -1767 (-564 *4 *5)) (|:| -1766 (-350 *5)))) + (-5 *1 (-564 *4 *5)) (-5 *3 (-350 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-392)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3))))) + (-12 (-4 *3 (-393)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) + (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-1155 *4 *2)) (-4 *2 (-1157 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) - (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4))))) + (|partial| -12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) + (-5 *1 (-1154 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3)) - (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-585 *3)) (-5 *1 (-1153 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-496) (-120))) - (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-1152 *4 *3)) - (-4 *3 (-1156 *4))))) + (|partial| -12 (-4 *4 (-13 (-497) (-120))) + (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-1153 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) - (-4 *2 (-1156 *3))))) + (|partial| -12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1153 *3 *2)) + (-4 *2 (-1157 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) - (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) + (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) + (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) - (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) + (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) + (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) + (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) + (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) - (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) + (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) - (-5 *2 (-2 (|:| -3268 *7) (|:| |rh| (-584 (-350 *6))))) - (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6)) - (-4 *3 (-601 (-350 *6))))) + (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) + (-5 *2 (-2 (|:| -3269 *7) (|:| |rh| (-585 (-350 *6))))) + (-5 *1 (-730 *5 *6 *7 *3)) (-5 *4 (-585 (-350 *6))) (-4 *7 (-602 *6)) + (-4 *3 (-602 (-350 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) - (-4 *3 (-1156 *5))))) + (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1152 *4 *5 *3)) + (-4 *3 (-1157 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) + (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4)) - (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) + (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-4 *2 (-324 *4)) + (-5 *1 (-444 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) - (-5 *1 (-634 *4 *5)))) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) (-5 *2 (-632 *4)) + (-5 *1 (-635 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2)) - (-4 *2 (-1156 *4))))) + (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-1152 *3 *4 *2)) + (-4 *2 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) + (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) + (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-444 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) - (-5 *1 (-634 *2 *4)))) + (-12 (-5 *3 (-632 *4)) (-4 *4 (-906 *2)) (-4 *2 (-497)) + (-5 *1 (-635 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) - (-4 *3 (-1156 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) + (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-1152 *2 *4 *3)) + (-4 *3 (-1157 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-706 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962)) - (-4 *2 (-717)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))) + (-12 (-5 *1 (-869 *3 *2)) (-4 *2 (-104)) (-4 *3 (-497)) (-4 *3 (-963)) + (-4 *2 (-718)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1087 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) - (-4 *3 (-962)))) + (-12 (-5 *2 (-886)) (-4 *2 (-104)) (-5 *1 (-1094 *3)) (-4 *3 (-497)) + (-4 *3 (-963)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-962))))) -(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1150 *4 *3)) (-14 *4 (-1092)) (-4 *3 (-963))))) +(((*1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *2 (-1008 *3)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1148 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-485)) - (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) - (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) + (-2 (|:| |contp| (-486)) + (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) + (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-485)) - (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) - (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) + (-2 (|:| |contp| (-486)) + (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) + (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) (((*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1156 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) + (-4 *3 (-1157 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) + (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486)))))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1156 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) + (-12 (-5 *4 (-585 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1157 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5)))) + (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-863 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) - (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1086 *7)))) + (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) + (-4 *7 (-863 (-48) *6 *5)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1087 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) - (-4 *3 (-1156 (-142 *4))))) + (-4 *3 (-1157 (-142 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1156 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1157 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1156 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1157 (-142 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1156 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) + (-4 *3 (-1157 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485))))) + (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486))))) ((*1 *2 *3) - (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485))))) + (-12 (-5 *2 (-348 (-142 (-486)))) (-5 *1 (-387)) (-5 *3 (-142 (-486))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) - (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3)) - (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4)))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) + (-4 *5 (-719)) (-4 *7 (-497)) (-5 *2 (-348 *3)) + (-5 *1 (-397 *4 *5 *6 *7 *3)) (-4 *6 (-497)) (-4 *3 (-863 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1086 *4))) (-5 *1 (-398 *4)) - (-5 *3 (-1086 *4)))) + (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1087 *4))) (-5 *1 (-399 *4)) + (-5 *3 (-1087 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) - (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3)) - (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7)))) + (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) + (-4 *7 (-13 (-312) (-120) (-663 *5 *6))) (-5 *2 (-348 *3)) + (-5 *1 (-435 *5 *6 *7 *3)) (-4 *3 (-1157 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3)) - (-4 *3 (-862 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) (-5 *1 (-480 *5 *6 *7 *3)) + (-4 *3 (-863 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) - (-5 *2 (-348 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) + (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-863 *7 *6 *5)) + (-5 *2 (-348 (-1087 *8))) (-5 *1 (-480 *5 *6 *7 *8)) (-5 *3 (-1087 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6)) - (-5 *3 (-598 (-350 *6))))) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *6 (-1157 *5)) (-5 *2 (-585 (-599 (-350 *6)))) (-5 *1 (-603 *5 *6)) + (-5 *3 (-599 (-350 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) - (-5 *3 (-598 (-350 *5))))) + (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) + (-5 *3 (-599 (-350 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) - (-5 *1 (-615 *4)))) + (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-616 *4))) + (-5 *1 (-616 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) + (-12 (-5 *4 (-486)) (-5 *2 (-585 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1157 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3)) - (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-5 *2 (-348 *3)) + (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4)) - (-5 *2 (-348 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-4 *7 (-863 *6 *5 *4)) + (-5 *2 (-348 (-1087 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-718)) + (-12 (-4 *4 (-719)) (-4 *5 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) - (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-862 (-858 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) - (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) - (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) - (-4 *3 (-862 (-350 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7)) - (-5 *3 (-1086 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3)) - (-4 *3 (-1156 (-350 (-858 (-485))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1156 (-350 (-485)))) - (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3)) - (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1156 (-350 (-858 (-485))))) - (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3)) - (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) - (-5 *3 (-1086 (-350 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485)))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) + (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) + (-4 *3 (-863 (-859 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) + (-4 *6 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) + (-4 *3 (-863 (-350 (-859 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-348 *3)) (-5 *1 (-674 *4 *5 *6 *3)) + (-4 *3 (-863 (-350 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-682 *4 *5 *6 *7)) + (-5 *3 (-1087 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-348 *3)) (-5 *1 (-956 *3)) + (-4 *3 (-1157 (-350 (-859 (-486))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1157 (-350 (-486)))) + (-4 *5 (-13 (-312) (-120) (-663 (-350 (-486)) *4))) (-5 *2 (-348 *3)) + (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1157 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1157 (-350 (-859 (-486))))) + (-4 *5 (-13 (-312) (-120) (-663 (-350 (-859 (-486))) *4))) (-5 *2 (-348 *3)) + (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1157 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) + (-5 *3 (-1087 (-350 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-486)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-782 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-14 *2 (-486)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) + (-12 (-5 *2 (-486)) (-14 *3 *2) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-486)) (-5 *1 (-783 *2 *3)) (-4 *3 (-781 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2))))) + (-12 (-5 *2 (-486)) (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1145 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1174 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-696)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *6 *3)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-695))) - (-4 *7 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-696))) + (-4 *7 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-695))) - (-4 *3 (-13 (-27) (-1116) (-364 *7))) - (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) - (-5 *1 (-399 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) + (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-696))) + (-4 *3 (-13 (-27) (-1117) (-364 *7))) + (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) + (-5 *1 (-400 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) + (|partial| -12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) - (-5 *2 (-350 (-858 *4))))) + (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) + (-5 *2 (-350 (-859 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) - (-5 *2 (-350 (-858 *4)))))) + (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) + (-5 *2 (-350 (-859 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) - ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))) - ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))) + ((*1 *1 *1 *1) (-5 *1 (-1139))) ((*1 *1 *1 *1) (-5 *1 (-1140)))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) - ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))) - ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))) + ((*1 *1 *1 *1) (-5 *1 (-1139))) ((*1 *1 *1 *1) (-5 *1 (-1140)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) - ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1091))) - ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))) - ((*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) ((*1 *1) (-5 *1 (-1136))) - ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139)))) -(((*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) + ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-5 *1 (-489))) + ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-665))) ((*1 *1) (-5 *1 (-1092))) + ((*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) + ((*1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) ((*1 *1) (-5 *1 (-1137))) + ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139))) ((*1 *1) (-5 *1 (-1140)))) +(((*1 *2 *3) (-12 (-5 *3 (-142 (-486))) (-5 *2 (-85)) (-5 *1 (-387)))) ((*1 *2 *3) (-12 (-5 *3 - (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) - (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) - ((*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133))))) + (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) + (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-875 *3)) (-4 *3 (-485)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1134))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091))))) - (-5 *1 (-1133))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))) + (-12 (-5 *2 (-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092))))) + (-5 *1 (-1134))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) + (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-758)) (-4 *3 (-1015))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) - (-4 *2 (-1014)))) + (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1133 *2)) + (-4 *2 (-1015)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-758)) (-5 *1 (-1133 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) + (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85)) - (-5 *1 (-1132 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1015)) (-5 *2 (-85)) + (-5 *1 (-1133 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3231 (-584 *3)) (|:| -3230 (-584 *3)))) - (-5 *1 (-1132 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-2 (|:| -3232 (-585 *3)) (|:| -3231 (-585 *3)))) + (-5 *1 (-1133 *3)) (-4 *3 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1086 (-1086 *5)))) - (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5)))))) + (-12 (-5 *4 (-486)) (-4 *5 (-299)) (-5 *2 (-348 (-1087 (-1087 *5)))) + (-5 *1 (-1130 *5)) (-5 *3 (-1087 (-1087 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) - (-5 *3 (-1086 (-1086 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) + (-5 *3 (-1087 (-1087 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) - (-5 *3 (-1086 (-1086 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) + (-5 *3 (-1087 (-1087 *4)))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) - (-4 *3 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) + (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130))))) + (|partial| -12 (-4 *1 (-1126 *4 *5 *3 *2)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *3 (-758)) (-4 *2 (-979 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-1129 *2)) (-4 *2 (-1131))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) - (-5 *1 (-1127)) (-5 *3 (-855 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1127))))) + (-12 (-5 *5 (-585 (-585 (-179)))) (-5 *4 (-179)) (-5 *2 (-585 (-856 *4))) + (-5 *1 (-1128)) (-5 *3 (-856 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-1128))))) (((*1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130)))) + (-12 (-5 *2 (-832)) (-4 *1 (-196 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1131)))) ((*1 *1 *2) - (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695))) + (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3960 *3) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) - (-2 (|:| -2401 *2) (|:| -2402 *5)))) - (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) - (-4 *7 (-862 *4 *5 (-774 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127))))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) + (-2 (|:| -2402 *2) (|:| -2403 *5)))) + (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) (-4 *2 (-758)) + (-4 *7 (-863 *4 *5 (-775 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-895 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-856 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)) (-5 *3 (-179))))) + (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3)) - (-4 *3 (-888)))) + (-12 (-5 *4 (-179)) (-5 *5 (-486)) (-5 *2 (-1127 *3)) (-5 *1 (-714 *3)) + (-4 *3 (-889)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) - (-4 *2 (-888))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-85)) (-5 *1 (-1127 *2)) + (-4 *2 (-889))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) -(((*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-888))))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) +(((*1 *2 *1) (-12 (-5 *1 (-1127 *2)) (-4 *2 (-889))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) - (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *9)))) (-5 *3 (-584 *9)) - (-4 *1 (-1125 *6 *7 *8 *9)))) + (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *9)))) (-5 *3 (-585 *9)) + (-4 *1 (-1126 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *8)))) (-5 *3 (-584 *8)) - (-4 *1 (-1125 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-979 *5 *6 *7)) + (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *8)))) (-5 *3 (-585 *8)) + (-4 *1 (-1126 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-2 (|:| -3863 (-584 *6)) (|:| -1703 (-584 *6))))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-2 (|:| -3864 (-585 *6)) (|:| -1704 (-585 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1126 *5 *6 *7 *3)) (-4 *5 (-497)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) - (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-12 (-5 *3 (-1 (-85) *7 (-585 *7))) (-4 *1 (-1126 *4 *5 *6 *7)) + (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) - (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-978 *5 *6 *7))))) + (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1126 *5 *6 *7 *8)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-978 *2 *3 *4))))) + (-12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-979 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) - (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) - (-4 *10 (-1021 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *10)) + (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-985 *5 *6 *7 *8)) + (-4 *10 (-1022 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) + (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-584 (-1091))) - (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) - (-5 *1 (-568 *5 *6)))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) + (-14 *6 (-585 (-1092))) + (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) + (-5 *1 (-569 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) + (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-960 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) - (-5 *1 (-1061 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) + (-5 *1 (-1062 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) - (-5 *1 (-1061 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) + (-5 *1 (-1062 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-1126 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| -3863 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7)) - (-4 *1 (-1125 *4 *5 *6 *7))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| -3864 *1) (|:| -1704 (-585 *7))))) (-5 *3 (-585 *7)) + (-4 *1 (-1126 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) + (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-696))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) + (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) - (-14 *4 (-831)) (-14 *5 (-907 *4 *2)))) + (-12 (-5 *3 (-585 (-832))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-832)) (-14 *5 (-908 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1091))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1092))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-455 *2 *3)) (-4 *3 (-761)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) + (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-665)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) - (-4 *4 (-962)) (-4 *5 (-757)))) + (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) + (-4 *4 (-963)) (-4 *5 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) - (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) + (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *2 (-757)))) + (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *2 (-758)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) - (-4 *4 (-962)) (-4 *5 (-757)))) + (-12 (-5 *3 (-696)) (-4 *2 (-863 *4 (-471 *5) *5)) (-5 *1 (-1042 *4 *5 *2)) + (-4 *4 (-963)) (-4 *5 (-758)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962))))) + (-12 (-5 *3 (-696)) (-5 *2 (-859 *4)) (-5 *1 (-1124 *4)) (-4 *4 (-963))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)) - (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3)))) + (-12 (-5 *2 (-1 (-1042 *4 *3 *5))) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963)) + (-4 *3 (-758)) (-5 *1 (-1042 *4 *3 *5)) (-4 *5 (-863 *4 (-471 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) - (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))))) + (-12 (-5 *2 (-1 (-1124 *4))) (-5 *3 (-1092)) (-5 *1 (-1124 *4)) + (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963))))) (((*1 *2 *2) - (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) - (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) - (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-555 (-802 *3))) (-4 *3 (-798 *3)) (-4 *3 (-393)) + (-5 *1 (-1123 *3 *2)) (-4 *2 (-555 (-802 *3))) (-4 *2 (-798 *3)) + (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) -(((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) +(((*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757)) - (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033)))) + (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-393)) (-4 *3 (-758)) + (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-486))) (-5 *1 (-1034)))) ((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) + (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) + (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) + (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-142 (-265 *4))) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3)) - (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))) + (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-142 *3)) + (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) - (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))) + (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-85)) + (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3))))) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3))))) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1) (-4 *1 (-1119)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1) (-4 *1 (-1120)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1) (-4 *1 (-1119)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1) (-4 *1 (-1120)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1) (-4 *1 (-1119)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1) (-4 *1 (-1120)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1) (-4 *1 (-1119)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1) (-4 *1 (-1120)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1) (-4 *1 (-1119)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1) (-4 *1 (-1120)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) - ((*1 *1 *1) (-4 *1 (-1119)))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + ((*1 *1 *1) (-4 *1 (-1120)))) +(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-1118 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014))))) + (-12 (-5 *3 (-585 (-1118 *2))) (-5 *1 (-1118 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) - ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1116)))) -(((*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) + (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) + ((*1 *1) (-5 *1 (-418))) ((*1 *1) (-4 *1 (-1117)))) +(((*1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-1114 *4)) (-4 *4 (-963))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-486)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) - (-5 *2 (-485)))) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) + (-5 *2 (-486)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) - (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) + (|partial| -12 (-4 *4 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) + (-5 *1 (-1032 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) - (-5 *1 (-1031 *6 *3)))) + (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) + (-5 *1 (-1032 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) - (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) - (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))))) + (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075)) + (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) + (-5 *1 (-1032 *6 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) - (-5 *1 (-1032 *4)))) + (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-486)) + (-5 *1 (-1033 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 (-350 (-858 *6)))) - (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) + (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 (-350 (-859 *6)))) + (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) - (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) + (|partial| -12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1092)) (-5 *5 (-1075)) + (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1113))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-774))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-585 (-774)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-774) (-585 (-774))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) - (-15 -1964 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))) - ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648)))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) + (-15 -1965 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443)))) + ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-649)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1111)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1111))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-696)) (-4 *3 (-1131)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1) (-5 *1 (-145))) - ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) + ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-832)) (-4 *3 (-1015)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) ((*1 *1) - (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) - (-4 *4 (-609 *3)))) - ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) - ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) - ((*1 *1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1091))) - ((*1 *1) (-5 *1 (-1110)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014))))) + (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) + (-4 *4 (-610 *3)))) + ((*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) + ((*1 *1 *2) (-12 (-5 *1 (-1058 *3 *2)) (-14 *3 (-696)) (-4 *2 (-963)))) + ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) + ((*1 *1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1092))) + ((*1 *1) (-5 *1 (-1111)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-237 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-636 *2)) (-4 *2 (-1015)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1015)) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) - (-4 *5 (-1014))))) + (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) + (-4 *5 (-1015))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) - (-4 *5 (-1014))))) + (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) + (-4 *5 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3862 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) + (-12 (-5 *2 (-585 (-2 (|:| -3863 *3) (|:| |entry| *4)))) (-4 *3 (-1015)) + (-4 *4 (-1015)) (-4 *1 (-1109 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1109 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-1107 *2)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) + (-12 (-5 *4 (-832)) (-5 *2 (-1087 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1107 *2)) (-4 *2 (-312))))) (((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136)))) + (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) - (-4 *4 (-13 (-364 *3) (-916))))) + (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-230 *3 *4)) + (-4 *4 (-13 (-364 *3) (-917))))) ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) ((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1015)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) - (-4 *4 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1014))))) + (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1106 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3))))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-585 (-585 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-585 (-585 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-1105 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) + (-12 (-4 *4 (-758)) (-5 *2 - (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) - (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) - (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4))))))) + (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) + (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) + (-5 *1 (-1103 *4)) (-5 *3 (-585 (-585 (-585 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) + (-12 (-4 *6 (-758)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) - (-5 *1 (-1102 *6)) (-5 *4 (-584 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) + (-5 *1 (-1103 *6)) (-5 *4 (-585 *5))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) + (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) - (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) + (|partial| -12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) + (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962)))) + (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-312)) (-4 *2 (-963)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962)) + (|partial| -12 (-4 *1 (-1039 *2 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-1103 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) - (-5 *3 (-584 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3))))) + (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)) + (-5 *3 (-585 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-758)) (-5 *1 (-1103 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4)) - (-5 *3 (-584 *4))))) + (-12 (-4 *4 (-758)) (-5 *2 (-1105 (-585 *4))) (-5 *1 (-1103 *4)) + (-5 *3 (-585 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4)) - (-5 *3 (-584 (-584 *4)))))) + (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1103 *4)) + (-5 *3 (-585 (-585 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) - (-5 *1 (-1102 *4))))) + (-12 (-5 *3 (-1105 (-585 *4))) (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) + (-5 *1 (-1103 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) - (-5 *1 (-1102 *4)) (-4 *4 (-757))))) + (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) + (-5 *1 (-1103 *4)) (-4 *4 (-758))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) - (-5 *1 (-1102 *4))))) + (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-758)) + (-5 *1 (-1103 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) - (-5 *1 (-1102 *4))))) + (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-758)) + (-5 *1 (-1103 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) - (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5))))) + (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-585 *5)) (-4 *5 (-758)) (-5 *1 (-1103 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) - (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) - (-5 *1 (-1102 *6)) (-5 *5 (-584 *4))))) -(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) -(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) -(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101))))) -(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) - (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-350 (-858 (-485))))) - (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-756) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485)))))) - (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-756) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4)))) - (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4)))) - (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-758)) (-5 *4 (-585 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-585 *4)))) + (-5 *1 (-1103 *6)) (-5 *5 (-585 *4))))) +(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102))))) +(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1102))))) +(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) + (-5 *2 (-585 (-585 (-859 *5)))) (-5 *1 (-1101 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-350 (-859 (-486))))) + (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) + (-4 *4 (-13 (-757) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-249 (-350 (-859 (-486)))))) + (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) + (-4 *4 (-13 (-757) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 (-249 (-859 *4)))) + (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-350 (-859 (-486))))) (-5 *2 (-585 (-249 (-859 *4)))) + (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1091)) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-4 *4 (-13 (-29 *6) (-1116) (-872))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) - (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))) + (|partial| -12 (-5 *5 (-1092)) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-4 *4 (-13 (-29 *6) (-1117) (-873))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) + (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-602 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *2)) - (-4 *2 (-13 (-29 *6) (-1116) (-872))) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) + (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1117) (-873))) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-602 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) - (-4 *4 (-13 (-324 *5) (-1036 *5))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) + (-4 *4 (-13 (-324 *5) (-1037 *5))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) - (-4 *7 (-13 (-324 *5) (-1036 *5))) - (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2013 (-584 *7))))) - (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) + (-4 *7 (-13 (-324 *5) (-1037 *5))) + (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2014 (-585 *7))))) + (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-629 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1180 *5) #2="failed")) - (|:| -2013 (-584 (-1180 *5))))) - (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) + (-2 (|:| |particular| (-3 (-1181 *5) #2="failed")) + (|:| -2014 (-585 (-1181 *5))))) + (-5 *1 (-612 *5)) (-5 *4 (-1181 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1180 *5) #2#)) (|:| -2013 (-584 (-1180 *5))))) - (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) + (-2 (|:| |particular| (-3 (-1181 *5) #2#)) (|:| -2014 (-585 (-1181 *5))))) + (-5 *1 (-612 *5)) (-5 *4 (-1181 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 - (-584 - (-2 (|:| |particular| (-3 (-1180 *5) #2#)) - (|:| -2013 (-584 (-1180 *5)))))) - (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) + (-585 + (-2 (|:| |particular| (-3 (-1181 *5) #2#)) + (|:| -2014 (-585 (-1181 *5)))))) + (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 - (-584 - (-2 (|:| |particular| (-3 (-1180 *5) #2#)) - (|:| -2013 (-584 (-1180 *5)))))) - (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) + (-585 + (-2 (|:| |particular| (-3 (-1181 *5) #2#)) + (|:| -2014 (-585 (-1181 *5)))))) + (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) - (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1116) (-872))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1092)) + (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-697 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1117) (-873))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1091)) - (-4 *7 (-13 (-29 *6) (-1116) (-872))) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) - (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1091)) - (-4 *6 (-13 (-29 *5) (-1116) (-872))) - (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6)))) + (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1092)) + (-4 *7 (-13 (-29 *6) (-1117) (-873))) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) + (-5 *1 (-727 *6 *7)) (-5 *4 (-1181 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092)) + (-4 *6 (-13 (-29 *5) (-1117) (-873))) + (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-585 (-1181 *6))) (-5 *1 (-727 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) - (-4 *7 (-13 (-29 *6) (-1116) (-872))) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) - (-5 *1 (-726 *6 *7)))) + (|partial| -12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) + (-4 *7 (-13 (-29 *6) (-1117) (-873))) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) + (-5 *1 (-727 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) - (-4 *7 (-13 (-29 *6) (-1116) (-872))) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) - (-5 *1 (-726 *6 *7)))) + (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) + (-4 *7 (-13 (-29 *6) (-1117) (-873))) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) + (-5 *1 (-727 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) - (-4 *7 (-13 (-29 *6) (-1116) (-872))) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #3="failed")) - (-5 *1 (-726 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1092)) + (-4 *7 (-13 (-29 *6) (-1117) (-873))) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-585 *7))) *7 #3="failed")) + (-5 *1 (-727 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-1091)) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #3#)) - (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-872))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1092)) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-585 *3))) *3 #3#)) + (-5 *1 (-727 *6 *3)) (-4 *3 (-13 (-29 *6) (-1117) (-873))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) - (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2)) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))))) + (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-5 *1 (-727 *6 *2)) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2)) - (-4 *2 (-13 (-29 *6) (-1116) (-872))) - (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *1 (-726 *6 *2)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1117) (-873))) + (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *1 (-727 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6)) - (-4 *6 (-312)) (-4 *7 (-601 *6)) - (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2013 (-631 *6)))) - (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-585 *6))) "failed") *7 *6)) + (-4 *6 (-312)) (-4 *7 (-602 *6)) + (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -2014 (-632 *6)))) + (-5 *1 (-735 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) + (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) (-5 *4 (-330)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) + (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) (-5 *4 (-330)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4)))) + (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-265 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) + (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-249 (-265 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-249 (-265 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1091))) - (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) - (-5 *3 (-584 (-249 (-265 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)) - (-5 *3 (-584 (-249 (-350 (-858 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) - (-5 *1 (-1100 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) - (-5 *1 (-1100 *5)) (-5 *3 (-350 (-858 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) - (-5 *1 (-1100 *5)) (-5 *3 (-249 (-350 (-858 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) - (-5 *3 (-350 (-858 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) - (-5 *3 (-249 (-350 (-858 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-447)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-418)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1009)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1004)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-986)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-884)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-949)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-614)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-979)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-459)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-623)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1030)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-540)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1074) (-1096))) (-5 *1 (-1096))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-557)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557)))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-265 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1092))) + (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1047 *5)) + (-5 *3 (-585 (-249 (-265 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1092))) (-4 *5 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5)) + (-5 *3 (-585 (-249 (-350 (-859 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-1101 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) + (-5 *1 (-1101 *4)) (-5 *3 (-585 (-249 (-350 (-859 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) + (-5 *1 (-1101 *5)) (-5 *3 (-350 (-859 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) + (-5 *1 (-1101 *5)) (-5 *3 (-249 (-350 (-859 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) + (-5 *3 (-350 (-859 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) + (-5 *3 (-249 (-350 (-859 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-486)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1075)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-448)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-530)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-419)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1083)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-567)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1010)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1005)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-987)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-885)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-950)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-263)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-615)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1069)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-465)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1193)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-980)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-460)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-624)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1031)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-541)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1192)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-619)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-464)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-1097))) (-5 *1 (-1097))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-486) (-179) (-448) (-1075) (-1097))) (-5 *1 (-1097))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-234))) (-5 *1 (-234)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2858)) (-5 *2 (-85)) (-5 *1 (-558)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-85)) (-5 *1 (-558)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-558)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4)) - (-4 *4 (-553 (-773))))) + (-12 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-85)) (-5 *1 (-634 *4)) + (-4 *4 (-554 (-774))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) - (-5 *1 (-633 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-786)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1096)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-773))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-554 (-774))) (-5 *2 (-85)) + (-5 *1 (-634 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-787)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-787)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-419))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1005))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-885))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-950))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-465))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1193))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-980))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-541))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-1097)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-1097)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1097)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)) (-5 *1 (-1097))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-774))) ((*1 *1) - (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-998))) + (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-999))) ((*1 *1) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34))))) - ((*1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1095)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))))) + ((*1 *1) (-5 *1 (-1095))) ((*1 *1) (-5 *1 (-1096)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1095)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-379)) (-5 *1 (-1095))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095))))) + (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *4 (-1092)) (-5 *1 (-1095)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1096)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *1 (-1096))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-379)) (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096))))) (((*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 - (-584 - (-3 (|:| -3544 (-1091)) - (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) - (-5 *1 (-1095))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095))))) + (-585 + (-3 (|:| -3545 (-1092)) + (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) + (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096))))) (((*1 *2 *1) (-12 (-5 *2 - (-584 - (-584 - (-3 (|:| -3544 (-1091)) - (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))) - (-5 *1 (-1095))))) -(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095))))) -(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095))))) + (-585 + (-585 + (-3 (|:| -3545 (-1092)) + (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))))) + (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1096))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1096))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))) - (-5 *1 (-1095))))) -(((*1 *1) (-5 *1 (-1094)))) -(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) - ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) -(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094))))) -(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + (-12 (-5 *2 (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| (-379))))) + (-5 *1 (-1096))))) +(((*1 *1) (-5 *1 (-1095)))) +(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) + ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095))))) +(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095))))) +(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1095)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) + (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) (-5 *2 (-1186)) - (-5 *1 (-1094)))) + (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3913 #1="void"))) (-5 *2 (-1187)) + (-5 *1 (-1095)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) - (-5 *2 (-1186)) (-5 *1 (-1094)))) + (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) + (-5 *2 (-1187)) (-5 *1 (-1095)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) - (-5 *2 (-1186)) (-5 *1 (-1094))))) -(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) - ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) + (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) + (-5 *2 (-1187)) (-5 *1 (-1095))))) +(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 "void"))) - (-5 *1 (-1094))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) - ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-380 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423)))) - ((*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) ((*1 *1 *1) (-5 *1 (-1091)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + (-12 (-5 *3 (-1092)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 "void"))) + (-5 *1 (-1095))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4)) (-5 *1 (-1093 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-832)) (-5 *2 (-1181 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-963))))) +(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-1015)))) + ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-380 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-424)))) + ((*1 *2 *1) (-12 (-4 *1 (-749 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-776)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-990 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1031)))) ((*1 *1 *1) (-5 *1 (-1092)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1092))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) - (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) - (|:| |args| (-584 (-773))))) - (-5 *1 (-1091))))) + (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) + (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) + (|:| |args| (-585 (-774))))) + (-5 *1 (-1092))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) - (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) - (|:| |args| (-584 (-773))))) - (-5 *1 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))) -(((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1074)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) - ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091))))) -(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1091))))) + (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) + (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) + (|:| |args| (-585 (-774))))) + (-5 *1 (-1092)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-1092))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092))))) +(((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-1075)))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1075)))) + ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1075)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092))))) +(((*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1092))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) - (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-774) (-774) (-774))) (-5 *4 (-486)) (-5 *2 (-774)) + (-5 *1 (-593 *5 *6 *7)) (-4 *5 (-1015)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-774)) (-5 *1 (-765 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962))))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1087 *3)) (-4 *3 (-963))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) - (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) - (-5 *1 (-530 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) - (-4 *3 (-862 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1) (-5 *1 (-773))) + (-12 (-5 *5 (-1003 *3)) (-4 *3 (-863 *7 *6 *4)) (-4 *6 (-719)) (-4 *4 (-758)) + (-4 *7 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) + (-5 *1 (-531 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-497)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) (-5 *1 (-531 *5 *4 *6 *3)) + (-4 *3 (-863 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1) (-5 *1 (-774))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-1085 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))) - (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)))) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117))) + (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1085 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) - (-5 *2 (-350 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5)))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) + (-5 *2 (-350 (-859 *5))) (-5 *1 (-1086 *5)) (-5 *3 (-859 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) - (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1085 *5)) - (-5 *3 (-350 (-858 *5))))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) + (-5 *2 (-3 (-350 (-859 *5)) (-265 *5))) (-5 *1 (-1086 *5)) + (-5 *3 (-350 (-859 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) - (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1085 *5)))) + (-12 (-5 *4 (-1006 (-859 *5))) (-5 *3 (-859 *5)) + (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 *3)) (-5 *1 (-1086 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) - (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5))) - (-5 *1 (-1085 *5))))) + (-12 (-5 *4 (-1006 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) + (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-3 *3 (-265 *5))) + (-5 *1 (-1086 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) - (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) + (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-803 *4 *5)) (-4 *5 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1083))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4)))) - (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) + (-12 (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) + (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) - (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379)))) + (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 #1="void"))) + (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-85)) (-5 *1 (-379)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *3 (-584 (-1091))) + (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 #1#))) (-5 *3 (-585 (-1092))) (-5 *4 (-85)) (-5 *1 (-379)))) - ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-538 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-1015)) (-14 *4 - (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) - (-2 (|:| -2401 *2) (|:| -2402 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) + (-2 (|:| -2402 *2) (|:| -2403 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-751)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014)) - (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| *4)))) (-4 *4 (-1015)) + (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34))) - (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) - (-4 *3 (-13 (-1014) (-34))))) + (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1015) (-34))) + (-5 *2 (-585 (-1056 *3 *5))) (-5 *1 (-1056 *3 *5)) + (-4 *3 (-13 (-1015) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5)))) - (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) - (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) + (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1602 *5)))) + (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) + (-5 *2 (-585 (-1056 *4 *5))) (-5 *1 (-1056 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1602 *4))) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34))))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)) - (-4 *2 (-13 (-1014) (-34))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)) + (-4 *2 (-13 (-1015) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)))) + (-12 (-5 *4 (-585 (-1056 *2 *3))) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) - (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) + (-12 (-5 *4 (-585 (-1057 *2 *3))) (-5 *1 (-1057 *2 *3)) + (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) - (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) - (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) + (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) + (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) + (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) + (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) + (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) + (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831)))) + (-12 (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *2 (-696)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) - (-5 *1 (-1080 *4 *5)) (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) + (-5 *1 (-1081 *4 *5)) (-14 *4 (-832))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))))) + (-12 (-5 *2 (-856 *4)) (-4 *4 (-963)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-856 *5)) (-5 *3 (-696)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831)))) + (-12 (-5 *2 (-696)) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) - (-5 *1 (-1080 *4 *5)) (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) + (-5 *1 (-1081 *4 *5)) (-14 *4 (-832))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-85)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-145)) (-5 *1 (-1081 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) + (-12 (-5 *2 (-856 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263)))) + (-12 (-5 *2 (-145)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-263)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-585 (-856 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963))))) (((*1 *1 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-393)))) ((*1 *1 *1) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) - (-4 *4 (-1156 (-350 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) + (-4 *4 (-1157 (-350 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *3 (-392)))) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *3 (-393)))) ((*1 *1 *1) - (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392)))) + (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3))))) + (-12 (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-1080 *3 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3)) - (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-871 *3)) (-5 *1 (-1080 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-433))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-434))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-433))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-434))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-433))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-434))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-433))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-434))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-433))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-434))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-433))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-434))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1 *1) (-5 *1 (-330))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1144 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1145 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-350 (-485)))) - (-5 *2 (-2 (|:| -3492 (-1070 *4)) (|:| -3493 (-1070 *4)))) - (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4))))) + (-12 (-4 *4 (-38 (-350 (-486)))) + (-5 *2 (-2 (|:| -3493 (-1071 *4)) (|:| -3494 (-1071 *4)))) + (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-350 (-485)))) - (-5 *2 (-2 (|:| -3640 (-1070 *4)) (|:| -3636 (-1070 *4)))) - (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4))))) + (-12 (-4 *4 (-38 (-350 (-486)))) + (-5 *2 (-2 (|:| -3641 (-1071 *4)) (|:| -3637 (-1071 *4)))) + (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) - (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))))) + (-12 (-5 *3 (-1 *4 (-486))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-312)) + (-4 *4 (-963)) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485))) - (-5 *1 (-1076 *4))))) + (-12 (-5 *2 (-1071 *4)) (-4 *4 (-38 *3)) (-4 *4 (-963)) (-5 *3 (-350 (-486))) + (-5 *1 (-1077 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) - (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))))) + (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) + (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) - (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962))))) + (-12 (-5 *4 (-1 (-1071 *3))) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) + (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) - (-4 *4 (-962))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) + (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) + (-4 *4 (-963))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1157 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) - (-5 *1 (-1076 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-486))) (-4 *4 (-963)) + (-5 *1 (-1077 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) - (-5 *3 (-485))))) + (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) + (-5 *3 (-486))))) (((*1 *2 *3) - (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) - (-5 *3 (-485))))) + (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) + (-5 *3 (-486))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312)) - (-14 *4 (-907 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-832)) (-4 *3 (-312)) + (-14 *4 (-908 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) - ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) - ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664))) + ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *1) (|partial| -4 *1 (-661))) ((*1 *1 *1) (|partial| -4 *1 (-665))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) - (-4 *4 (-984 *5 *6 *7 *3)))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-701 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) - (-4 *2 (-1156 *3)))) + (|partial| -12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) + (-4 *2 (-1157 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) + (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) + (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) - (-4 *2 (-496)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-496))) + (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) + (-4 *2 (-497)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-497))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)) (-4 *2 (-496)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-695))) + (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) + (-4 *4 (-324 *2)) (-4 *2 (-497)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-696))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) + (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) - (-5 *1 (-883 *3 *4)))) + (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) + (-5 *1 (-884 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) - (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) + (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) + (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-497)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) + (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)) - (-5 *1 (-1070 *4))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-4 *4 (-1131)) (-5 *2 (-85)) + (-5 *1 (-1071 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695)))) - (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130))))) -(((*1 *1) (-5 *1 (-515))) - ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696)))) + (-5 *1 (-1071 *4)) (-4 *4 (-1131)) (-5 *3 (-696))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1071 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1131))))) +(((*1 *1) (-5 *1 (-516))) + ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-770)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014)) - (-4 *4 (-1130))))) + (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1071 *4)) (-4 *4 (-1015)) + (-4 *4 (-1131))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) + (-12 (-5 *3 (-696)) (-5 *2 (-1181 (-585 (-486)))) (-5 *1 (-421)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) - (-4 *2 (-1173 *4)))) + (-12 (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-477 *4 *2)) + (-4 *2 (-1174 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1156 *4)) - (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) + (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) (-4 *5 (-1157 *4)) + (-4 *6 (-663 *4 *5)) (-5 *1 (-481 *4 *5 *6 *2)) (-4 *2 (-1174 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) - (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) + (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) + (-5 *1 (-482 *4 *2)) (-4 *2 (-1174 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) - (-5 *1 (-1069 *4))))) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) + (-5 *1 (-1070 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) + (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) + (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) + (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) - (-4 *2 (-1173 *3)))) + (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) + (-4 *2 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) + (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) + (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) + (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) - (-4 *2 (-1173 *3)))) + (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) + (-4 *2 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) + (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) + (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) + (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) - (-4 *2 (-1173 *3)))) + (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) + (-4 *2 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464)))) - ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 (-1050))) (-5 *1 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-465)))) + ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1069))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1051))) (-5 *1 (-1069))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) - ((*1 *1) (-4 *1 (-1067)))) -(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) + ((*1 *1) (-4 *1 (-1068)))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3))))) + (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1064 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) - (-4 *3 (-978 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-585 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) + (-4 *3 (-979 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-978 *3 *4 *5)))) + (-12 (-4 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) - (-4 *3 (-978 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-585 (-1062 *5 *6 *7 *3))) (-5 *1 (-1062 *5 *6 *7 *3)) + (-4 *3 (-979 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) - (-5 *1 (-1061 *5 *6 *7 *8))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) + (-5 *1 (-1062 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-978 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) - (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-942 *5 *6 *7 *8))))) + (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-978 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8))))) - (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) - (-5 *1 (-982 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) - (-5 *1 (-1060 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1062 *5 *6 *7 *8))))) + (-5 *1 (-1062 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *4 (-696)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) + (-5 *1 (-983 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *4 (-696)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) + (-5 *1 (-1061 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-584 *11)) - (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) - (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) - (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) - (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) - (-5 *1 (-982 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-585 *11)) + (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1602 *11)))))) + (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1602 *11)))) + (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) + (-4 *11 (-985 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) + (-5 *1 (-983 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-584 *11)) - (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) - (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) - (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) - (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) - (-5 *1 (-1060 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-585 *11)) + (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1602 *11)))))) + (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1602 *11)))) + (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) + (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) + (-5 *1 (-1061 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 - (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2338 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3091 (-350 *6)) (|:| |special| (-350 *6)))) - (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3092 (-350 *6)) (|:| |special| (-350 *6)))) + (-5 *1 (-668 *5 *6)) (-5 *3 (-350 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-809 *3 *4)) + (-4 *3 (-1157 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-808 *3 *5)) - (-4 *3 (-1156 *5)))) + (|partial| -12 (-5 *4 (-696)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-809 *3 *5)) + (-4 *3 (-1157 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) - (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) + (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) + (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-983 *7 *8 *9 *3 *4)) (-4 *4 (-985 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) - (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) + (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) + (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-1061 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) + (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))))) + (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *1 *1) (-4 *1 (-1059)))) + ((*1 *1 *1) (-4 *1 (-1060)))) +(((*1 *1 *1) (-4 *1 (-1060)))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1060)))) +(((*1 *1 *1) (-4 *1 (-1060)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-486)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1131)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) - (-5 *1 (-586 *5 *2)))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) + (-5 *1 (-587 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1015)) (-4 *5 (-1131)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-587 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) - (-5 *1 (-586 *5 *2)))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) + (-5 *1 (-587 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) - (-4 *6 (-1130)) (-5 *1 (-586 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) + (-4 *6 (-1131)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) - (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-695))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485)))))) -(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1015)) + (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-696))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-1148 (-486)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-696)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)))) + (-12 (-5 *2 (-486)) (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-485)))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-486)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) - ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-486)))) + ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-469)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) - (-5 *1 (-94 *3)) (-4 *3 (-757)))) - ((*1 *2 *2) - (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) - (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-520 (-350 (-858 *3)))) - (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3091 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1059))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) + (-5 *1 (-94 *3)) (-4 *3 (-758)))) + ((*1 *2 *2) + (-12 (-5 *2 (-521 *4)) (-4 *4 (-13 (-29 *3) (-1117))) + (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-523 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-521 (-350 (-859 *3)))) + (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-527 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3092 *3) (|:| |special| *3))) (-5 *1 (-668 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-585 *1)) (-4 *1 (-1060)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-585 *1)) (-4 *1 (-1060))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) + (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) ((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3)) + (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962))))) + ((*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-14 *2 (-696)) (-4 *3 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-695))))) + (-12 (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-696))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34)))))) + (|partial| -12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34)))))) + (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34)))))) + (-12 (-5 *2 (-585 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) - (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34)))))) + (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) (-5 *1 (-1057 *3 *4)) + (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))) - (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5))))) + (-12 (-5 *3 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34))) + (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1057 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) - (-5 *1 (-1056 *5 *6))))) + (-12 (-5 *3 (-1056 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) + (-5 *1 (-1057 *5 *6))))) (((*1 *1 *2 *1) - (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) + (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) - (-4 *3 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) + (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))) + (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) - (-4 *3 (-1014)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) + (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))) + (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) - (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) - (-5 *1 (-1056 *4 *5)))) + (-12 (-5 *2 (-585 (-1056 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) + (-5 *1 (-1057 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))) + (-12 (-5 *2 (-585 (-1056 *3 *4))) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) + (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-903)))) - ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1130)))) + (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-769)))) + ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-904)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1131)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-13 (-1014) (-34)))))) + (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) - ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-484))) - ((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) + ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) ((*1 *1 *1) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34)))))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34)))))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))) - (-4 *2 (-13 (-1014) (-34)))))) + (-12 (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1015) (-34))) + (-4 *2 (-13 (-1015) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) - (-4 *4 (-13 (-1014) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) - (-4 *3 (-13 (-1014) (-34)))))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) - (-5 *1 (-1055 *5 *6))))) + (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) + (-5 *1 (-1056 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) - (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34)))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) + (-5 *1 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1055)))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1 *1) (-4 *1 (-1055)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-696)) (-5 *1 (-180)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-696)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1054)))) + ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1055)))) (((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) - ((*1 *1 *1 *1) (-4 *1 (-1054)))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) - ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-715))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051))))) -(((*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) - ((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) + ((*1 *1 *1 *1) (-4 *1 (-1055)))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) + ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-716))) + ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) + ((*1 *1 *1) (-4 *1 (-1055)))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) + ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963))))) (((*1 *2) - (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) - (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) + (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962)) - (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) + (-12 (-5 *3 (-585 (-856 *4))) (-4 *1 (-1050 *4)) (-4 *4 (-963)) + (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) + (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) + (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) + (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) + (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-856 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) - (-4 *1 (-1049 *4)))) + (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *4 (-963)) + (-4 *1 (-1050 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) + (-12 (-5 *2 (-585 (-585 (-856 *3)))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) + (-4 *4 (-963)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) + (-4 *4 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) - (-4 *1 (-1049 *5)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) + (-4 *1 (-1050 *5)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) - (-4 *1 (-1049 *5)) (-4 *5 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))) + (-12 (-5 *2 (-585 (-585 (-856 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) + (-4 *1 (-1050 *5)) (-4 *5 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695)))))))) + (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-696)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) - (-5 *2 (-584 (-584 (-584 (-855 *3)))))))) + (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) + (-5 *2 (-585 (-585 (-585 (-856 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145)))))) + (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-145))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-145)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) + (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 - (-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) - (|:| |constructs| (-695))))))) + (-2 (|:| -3853 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) + (|:| |constructs| (-696))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485))))) - (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) + (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) - (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) + (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4))))) ((*1 *2 *2) - (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) - (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3)))))) + (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) + (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) - (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) + (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4))))) ((*1 *2 *2) - (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) - (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3)))))) + (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) + (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4)) - (-5 *1 (-384 *4 *2)))) + (-12 (-5 *3 (-1181 *4)) (-4 *4 (-963)) (-4 *2 (-1157 *4)) + (-5 *1 (-385 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-350 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) - (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5))))) + (-12 (-5 *2 (-350 (-1087 (-265 *5)))) (-5 *3 (-1181 (-265 *5))) + (-5 *4 (-486)) (-4 *5 (-497)) (-5 *1 (-1046 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-350 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3))))) + (-12 (-5 *2 (-350 (-1087 (-265 *3)))) (-4 *3 (-497)) (-5 *1 (-1046 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) + (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) - (-5 *1 (-1044 *5)))) + (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) + (-5 *1 (-1045 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) - (-5 *1 (-1044 *5))))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) + (-5 *1 (-1045 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-584 (-265 *5))) (-5 *1 (-1044 *5)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-585 (-265 *5))) (-5 *1 (-1045 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5)))) - (-5 *1 (-1044 *5))))) + (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-265 *5)))) + (-5 *1 (-1045 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1045 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) + (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) - (-5 *1 (-1044 *5)))) + (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) + (-5 *1 (-1045 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) + (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) - (-5 *1 (-1044 *5)))) + (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) + (-5 *1 (-1045 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) + (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1091))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) - (-5 *1 (-1044 *5)))) + (-12 (-5 *3 (-585 (-249 (-350 (-859 *5))))) (-5 *4 (-585 (-1092))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) + (-5 *1 (-1045 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4))))) + (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 - (-2 (|:| |solns| (-584 *5)) - (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5))))) + (-2 (|:| |solns| (-585 *5)) + (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1044 *3 *5)) (-4 *3 (-1157 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1036 *4))) - (-4 *2 (-13 (-324 *4) (-1036 *4))) (-5 *1 (-610 *4 *5 *2 *3)) - (-4 *3 (-628 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1037 *4))) + (-4 *2 (-13 (-324 *4) (-1037 *4))) (-5 *1 (-611 *4 *5 *2 *3)) + (-4 *3 (-629 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312)) - (-5 *1 (-611 *4)))) + (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-632 *4)) (-4 *4 (-312)) + (-5 *1 (-612 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) - (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) + (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) + (-5 *1 (-736 *2 *3)) (-4 *3 (-602 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) - (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757)) - (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7)) - (-5 *1 (-1041 *5 *6 *7))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1071 *7))) (-4 *6 (-758)) + (-4 *7 (-863 *5 (-471 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1071 *7) *7)) + (-5 *1 (-1042 *5 *6 *7))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) - (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-1040 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))) + (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) - (-4 *3 (-628 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) + (-4 *3 (-629 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) ((*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) + (-12 (-4 *2 (-963)) (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) + (-12 (-5 *2 (-585 *1)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-632 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6)) + (-12 (-5 *2 (-585 *4)) (-4 *4 (-963)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) + (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-962))))) + (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-963))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4)))) + (-12 (-5 *3 (-632 *2)) (-4 *4 (-1157 *2)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-5 *1 (-440 *2 *4 *5)) (-4 *5 (-353 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-962))))) + (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-963))))) (((*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) - (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) + (-5 *1 (-462 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) - (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) + (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963)))) ((*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) - (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) + (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962))))) + (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) - (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) + (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963)))) ((*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) - (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) + (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962))))) + (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) - ((*1 *1 *1 *1) (-5 *1 (-1034)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-623)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-884)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-986)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-623)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1029))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) - (-5 *2 (-485)) (-5 *1 (-1028 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-382)))) + ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-751)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1097))) (-5 *3 (-1097)) (-5 *1 (-1030)))) + ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-987)))) + ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-624)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) + (-5 *2 (-486)) (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) - (-5 *2 (-485)) (-5 *1 (-1028 *4 *5))))) + (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) + (-5 *2 (-486)) (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) - (-5 *1 (-1028 *4 *5))))) + (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) + (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) - (-5 *1 (-1028 *4 *5))))) + (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) + (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 *4)) - (-5 *1 (-1028 *4 *5))))) + (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 *4)) + (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) - (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4))))) + (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) + (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) - (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) + (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) + (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1024 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1023))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-486)) (-5 *1 (-1023)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) - (-5 *1 (-1022))))) + (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-585 (-486))) (-5 *4 (-486)) + (-5 *1 (-1023))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) - (-5 *1 (-1022))))) + (-12 (-5 *2 (-585 (-486))) (-5 *3 (-585 (-832))) (-5 *4 (-85)) + (-5 *1 (-1023))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022))))) + (-12 (-5 *2 (-632 (-486))) (-5 *3 (-585 (-486))) (-5 *1 (-1023))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) - (-5 *1 (-1022))))) + (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-486))) (-5 *2 (-632 (-486))) + (-5 *1 (-1023))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022))))) + (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-1023))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022))))) + (-12 (-5 *2 (-585 (-486))) (-5 *3 (-632 (-486))) (-5 *1 (-1023))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022))))) + (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-1023))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) - (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) - (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) - (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) - (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) - (-4 *7 (-718)) (-4 *4 (-757)) - (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) - (-5 *1 (-1020 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *5 (-85)) + (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) + (-4 *7 (-719)) (-4 *4 (-758)) + (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1602 *9)))) + (-5 *1 (-1021 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) - (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *9 (-978 *6 *7 *8)) - (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) - (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *9 (-979 *6 *7 *8)) + (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *4) (|:| |ineq| (-585 *9)))) + (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *9 (-978 *6 *7 *8)) - (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) - (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) - (-4 *4 (-984 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *9 (-979 *6 *7 *8)) + (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *4) (|:| |ineq| (-585 *9)))) + (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) + (-4 *4 (-985 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) - (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) + (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) + (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 - (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) - (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) + (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *10) (|:| |ineq| (-585 *9))))) + (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) - (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) + (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) + (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 - (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) - (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))) + (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1602 *10) (|:| |ineq| (-585 *9))))) + (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) - (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1602 *7)))) + (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) - (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1602 *7)))) + (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1602 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-902 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-1019 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-902 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-903 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-1019 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1020 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) - (-4 *3 (-984 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) - (-4 *3 (-984 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) + (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-902 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-1019 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1187)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1187)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-984 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987)))) + (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-988)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-507 *3)) (-4 *3 (-952 (-486))))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) - (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) + (-12 (-5 *2 (-585 (-2 (|:| -3863 (-1092)) (|:| |entry| *4)))) + (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) ((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *7 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-1018 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) + (-12 (-4 *1 (-1018 *3 *2 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347)))) + (-12 (-4 *1 (-1018 *3 *4 *2 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-832)) (-4 *1 (-347)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-347)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *2 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *2)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) (((*1 *1 *1) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))) + (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) + (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015))))) (((*1 *1 *1) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))) + (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) + (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-614)))) + (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-615)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832))))) (((*1 *2) - (-12 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-1181 (-1016 *3 *4))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-818 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-832)) (-5 *2 (-85)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-832)) (-5 *2 (-696)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1074))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) - ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) - ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1035))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1075))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) + ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) + ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-5 *2 (-585 (-445 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) - (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) + (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014)) - (-5 *1 (-510 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-618)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-979)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1009))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903)))) + (-12 (-5 *2 (-585 (-552 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1015)) + (-5 *1 (-511 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-619)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-980)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1010))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1008 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1131)) (-5 *2 (-486))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-904)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4)) - (-4 *3 (-1007 *4)))) + (-12 (-5 *2 (-1092)) (-4 *4 (-1131)) (-5 *1 (-973 *3 *4)) + (-4 *3 (-1008 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1004))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-1092)) (-5 *3 (-1003 *4)) (-4 *4 (-1131)) (-5 *1 (-1006 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1181 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1181 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) - (-5 *2 (-1180 *3)))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) + (-5 *2 (-1181 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-1181 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *1) - (-12 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-1181 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312)) - (-5 *2 (-1180 *5)) (-5 *1 (-999 *5))))) + (-12 (-5 *4 (-585 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-312)) + (-5 *2 (-1181 *5)) (-5 *1 (-1000 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-1180 (-631 *4))))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-1181 (-632 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-631 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) - (-5 *2 (-1180 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5)) - (-5 *4 (-631 (-350 (-858 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-858 *5)))) - (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-631 *4))) - (-5 *1 (-999 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998))))) -(((*1 *1) (-5 *1 (-998)))) -(((*1 *1) (-5 *1 (-998)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 (-632 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) + (-5 *2 (-1181 (-632 (-350 (-859 *5))))) (-5 *1 (-1000 *5)) + (-5 *4 (-632 (-350 (-859 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) (-5 *2 (-1181 (-632 (-859 *5)))) + (-5 *1 (-1000 *5)) (-5 *4 (-632 (-859 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-5 *2 (-1181 (-632 *4))) + (-5 *1 (-1000 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-149))) (-5 *1 (-999))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-149)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-999))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-999))))) +(((*1 *1) (-5 *1 (-999)))) +(((*1 *1) (-5 *1 (-999)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2))))) -(((*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105))))) -(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-105))))) -(((*1 *1) (-5 *1 (-995)))) + (-12 (-5 *3 (-1 (-486) *2 *2)) (-4 *2 (-105)) (-5 *1 (-998 *2))))) +(((*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-996)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) - (-4 *3 (-1021 *5 *6 *7 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) + (-4 *3 (-1022 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) - (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) - (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) + (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) - (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))))) + (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092)))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) - (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5))))) + (-12 (-5 *2 (-585 (-989 *3 *4 *5))) (-4 *3 (-1015)) + (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-991 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-5 *2 (-585 (-989 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) + (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) + (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-5 *1 (-989 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1130)) - (-5 *1 (-802 *4 *5)))) + (-12 (-5 *2 (-802 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1015)) (-4 *5 (-1131)) + (-5 *1 (-803 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014)) - (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))) + (-12 (-5 *2 (-802 *4)) (-5 *3 (-585 (-1 (-85) *5))) (-4 *4 (-1015)) + (-4 *5 (-1131)) (-5 *1 (-803 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-85) (-584 *6))) - (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6)))) + (-12 (-5 *2 (-802 *5)) (-5 *3 (-585 (-1092))) (-5 *4 (-1 (-85) (-585 *6))) + (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) - (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) + (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1131)) + (-5 *2 (-265 (-486))) (-5 *1 (-850 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) - (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) + (-12 (-5 *3 (-1092)) (-5 *4 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) + (-5 *2 (-265 (-486))) (-5 *1 (-850 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1014)) - (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1131)) (-4 *4 (-1015)) + (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1014)) - (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) (-4 *4 (-1015)) + (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-85) (-584 *6))) - (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) - (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-884)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-908)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-986))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1 (-85) (-585 *6))) + (-4 *6 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 *2))) + (-5 *2 (-802 *3)) (-5 *1 (-989 *3 *4 *5)) + (-4 *5 (-13 (-364 *4) (-798 *3) (-555 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-5 *2 (-585 (-1092))) (-5 *1 (-989 *3 *4 *5)) + (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-263)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-909)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-950)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-987))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) - (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) - (-4 *7 (-718)) (-4 *4 (-757)) - (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) - (-5 *1 (-985 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1602 *9)))) (-5 *5 (-85)) + (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) + (-4 *7 (-719)) (-4 *4 (-758)) + (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1602 *9)))) + (-5 *1 (-986 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) - (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1602 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-3 (-85) (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) - (-4 *1 (-984 *4 *5 *6 *3))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *1)))) + (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-497)) (-4 *2 (-963)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) - (-4 *1 (-984 *4 *5 *6 *3))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *1)))) + (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) - (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) + (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) + (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85)))) + (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) + (-12 (-4 *3 (-952 (-486))) (-4 *3 (-497)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1087 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) - ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) - (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1)) - (-4 *1 (-981 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-254)))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) + ((*1 *2) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1157 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-585 *1)) + (-4 *1 (-982 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1087 *2)) (-5 *4 (-1092)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-497)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) + (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-4 *1 (-927)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773)) - (-4 *1 (-926)))) + (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-5 *4 (-774)) + (-4 *1 (-927)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312))) - (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4))))) + (|partial| -12 (-5 *3 (-832)) (-4 *4 (-13 (-757) (-312))) + (-4 *1 (-982 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3)) - (-4 *3 (-13 (-756) (-312) (-934))))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-939 *3)) + (-4 *3 (-13 (-757) (-312) (-935))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-979))))) + (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-980))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-979 *3 *4 *2)) (-4 *2 (-758)))) ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) - ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618)))) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-172)))) + ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-619)))) ((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) ((*1 *2 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1091))))) - ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1092))))) + ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) ((*1 *2 *1) - (-12 (-14 *3 (-584 (-1091))) (-4 *5 (-196 (-3959 *3) (-695))) + (-12 (-14 *3 (-585 (-1092))) (-4 *5 (-196 (-3960 *3) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) - (-2 (|:| -2401 *4) (|:| -2402 *5)))) - (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) - (-4 *7 (-862 *2 *5 (-774 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) - ((*1 *2 *1) - (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) - ((*1 *2 *1) - (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) + (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) + (-2 (|:| -2402 *4) (|:| -2403 *5)))) + (-4 *2 (-146)) (-5 *1 (-402 *3 *2 *4 *5 *6 *7)) (-4 *4 (-758)) + (-4 *7 (-863 *2 *5 (-775 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *3 (-761)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) + ((*1 *2 *1) + (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *3 (-665)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) + ((*1 *2 *1) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-718)) (-4 *4 (-758)) (-4 *2 (-963)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-385 *4 *3)) (-4 *3 (-1157 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1))) - (-4 *1 (-978 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -2905 *1))) + (-4 *1 (-979 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1))) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -2905 *1))) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3956 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3)) - (|:| -2904 (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-962)))) + (-2 (|:| -3957 *3) (|:| |gap| (-696)) (|:| -1974 (-706 *3)) + (|:| -2905 (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-963)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-978 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-979 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3957 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-979 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3483 (-695)))) - (-5 *1 (-705 *3)) (-4 *3 (-962)))) + (-5 *2 (-2 (|:| |polnum| (-706 *3)) (|:| |polden| *3) (|:| -3484 (-696)))) + (-5 *1 (-706 *3)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3483 (-695)))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) - (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) - (-14 *7 (-831)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3484 (-696)))) + (-4 *1 (-979 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) + (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) + (-14 *7 (-832)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-858 *3)) - (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485)))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485))))) - (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) + (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) + (|partial| -12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-858 *3)) - (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485)))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485))))) - (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) + (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) - (-4 *5 (-554 (-1091)))) - (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) + (-4 *5 (-555 (-1092)))) + (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) - (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) - (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) + (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) + (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) + (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1))) (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef2| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) + (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef2| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3146 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3147 *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *3 (-496))))) + (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *3 (-497))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *3 (-496))))) + (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *3 (-497))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-496))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) - ((*1 *1 *1 *1) (-4 *1 (-392))) - ((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-695))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-497))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) + ((*1 *1 *1 *1) (-4 *1 (-393))) + ((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-696))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) - (-4 *2 (-862 *5 *3 *4)))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) + (-4 *2 (-863 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) - (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-831))) + (-12 (-5 *3 (-585 (-1087 *7))) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) + (-5 *2 (-1087 *7)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) + (-12 (-4 *3 (-393)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-392))))) -(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-976))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-393))))) +(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-977)))) + ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-977))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695)))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-696)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) - ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) + (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) + ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) ((*1 *2) - (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) + (-12 (-5 *2 (-696)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) - (-4 *3 (-662 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-696)) (-5 *1 (-662 *3 *4 *5)) + (-4 *3 (-663 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4)) + (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-497)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) - (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) + (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) + (-5 *4 (-350 (-486))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) - (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) + (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) + (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) - (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) + (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) + (-5 *4 (-350 (-486))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) - (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) + (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) + (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3)) - (-4 *3 (-1156 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-757) (-312))) (-5 *2 (-85)) (-5 *1 (-976 *4 *3)) + (-4 *3 (-1157 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-585 (-552 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-552 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1156 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1157 (-142 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) + (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) ((*1 *2 *1) - (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5)) - (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2))))) + (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-356 *3 *2 *4 *5)) + (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-952 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) - (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1180 *5)))) + (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) + (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1181 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) - (-4 *3 (-1156 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) + (-12 (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) + (-4 *3 (-1157 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-436)))) (-5 *1 (-436)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552 (-436))) (-5 *1 (-436)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) + (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-585 (-552 (-436)))) (-5 *1 (-436)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) + (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-552 (-436))) (-5 *1 (-436)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4)) - (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) - ((*1 *1 *1) (-4 *1 (-974)))) -(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) - ((*1 *1 *1) (-4 *1 (-974)))) -(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) - ((*1 *1 *1) (-4 *1 (-974)))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-393)) (-4 *5 (-663 *4 *2)) (-4 *2 (-1157 *4)) + (-5 *1 (-700 *4 *2 *5 *3)) (-4 *3 (-1157 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485)))) + ((*1 *1 *1) (-4 *1 (-975)))) (((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485))))) -(((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))) - ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) - ((*1 *1 *1) (-4 *1 (-974)))) -(((*1 *1 *1) (-4 *1 (-974)))) + ((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-486))))) +(((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428)))) + ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *1 *1) (-4 *1 (-975)))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484)))) - ((*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-484 *3)) (-4 *3 (-485)))) + ((*1 *2) (-12 (-4 *1 (-689)) (-5 *2 (-696)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-721 *3 *4)) (-4 *3 (-722 *4)))) ((*1 *2) - (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))) + (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) - ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-926 *3)) (-4 *3 (-927)))) + ((*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-696)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-974 *3)) (-4 *3 (-975))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-972)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) - (-14 *4 (-695))))) + (-12 (-5 *2 (-632 *5)) (-4 *5 (-963)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-696)) + (-14 *4 (-696))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) - (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) + (-12 (-5 *2 (-696)) (-5 *3 (-1 *4 (-486) (-486))) (-4 *4 (-963)) + (-4 *1 (-629 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-774)))) ((*1 *2 *1) - (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) + (-12 (-5 *2 (-1058 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-963)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-485)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-485)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-485)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-485)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-486)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-695)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-696))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-695)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-696))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) + (-4 *5 (-324 *2)) (-4 *2 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-696)) (-4 *2 (-1015)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1131)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-963))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) + (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-963)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) + (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-963)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) + (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) - (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) + (-12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) + (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) ((*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) + (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258))))) (((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) + (-12 (-5 *2 (-696)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) + (-12 (-4 *4 (-146)) (-5 *2 (-832)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-832)))) ((*1 *2) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-831)))) + (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-832)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) - (-4 *4 (-13 (-324 *5) (-1036 *5))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) - (-4 *3 (-628 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) + (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-696)) (-5 *1 (-611 *5 *6 *4 *3)) + (-4 *3 (-629 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-695)) - (-5 *1 (-611 *5)))) + (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-696)) + (-5 *1 (-612 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696))))) (((*1 *2 *3) - (-12 (-4 *6 (-1036 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *6 (-1037 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-585 *6)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *9 (-1036 *7)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6)) - (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) - (-4 *10 (-628 *7 *8 *9)))) + (-12 (-4 *9 (-1037 *7)) (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-4 *7 (-906 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-585 *6)) + (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) + (-4 *10 (-629 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-585 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-585 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-585 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) - (-5 *1 (-834 *4 *5)))) + (-12 (-5 *2 (-1150 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1092)) (-4 *5 (-312)) + (-5 *1 (-835 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5)) - (-14 *4 (-1091)))) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-312)) (-5 *2 (-1087 *5)) (-5 *1 (-835 *4 *5)) + (-14 *4 (-1092)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6))) - (-5 *1 (-963 *5 *6)) (-14 *5 (-1091))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-696)) (-4 *6 (-312)) (-5 *2 (-350 (-859 *6))) + (-5 *1 (-964 *5 *6)) (-14 *5 (-1092))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) - (-5 *3 (-485))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) - ((*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) -(((*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4)))) - (-5 *1 (-956 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)) + (-5 *3 (-486))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1011 *4)) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) + ((*1 *2 *3) (-12 (-5 *3 (-1003 (-486))) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) +(((*1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-859 *4)))) + (-5 *1 (-957 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955))))) (((*1 *1 *2) - (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) + (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-330)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1086 (-350 (-1086 *2)))) (-5 *4 (-551 *2)) - (-4 *2 (-13 (-364 *5) (-27) (-1116))) - (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) + (-12 (-5 *3 (-1087 (-350 (-1087 *2)))) (-5 *4 (-552 *2)) + (-4 *2 (-13 (-364 *5) (-27) (-1117))) + (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *1 (-500 *5 *2 *6)) (-4 *6 (-1015)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *3 (-757)))) + (-12 (-5 *2 (-1087 *1)) (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *3 (-758)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) - (-4 *3 (-757)))) + (-12 (-5 *2 (-1087 *4)) (-4 *4 (-963)) (-4 *1 (-863 *4 *5 *3)) (-4 *5 (-719)) + (-4 *3 (-758)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) + (-12 (-5 *3 (-350 (-1087 *2))) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *2 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) - (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) + (-5 *1 (-864 *5 *4 *6 *7 *2)) (-4 *7 (-863 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-1086 (-350 (-858 *5))))) (-5 *4 (-1091)) - (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496))))) + (-12 (-5 *3 (-350 (-1087 (-350 (-859 *5))))) (-5 *4 (-1092)) + (-5 *2 (-350 (-859 *5))) (-5 *1 (-954 *5)) (-4 *5 (-497))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) - (-5 *2 (-350 (-1086 *1))))) + (-12 (-5 *3 (-552 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) (-4 *4 (-497)) + (-5 *2 (-350 (-1087 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-1086 (-350 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) - (-4 *7 (-1014)))) + (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-1087 (-350 (-1087 *3)))) (-5 *1 (-500 *6 *3 *7)) (-5 *5 (-1087 *3)) + (-4 *7 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-962)) - (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))) + (-12 (-5 *4 (-1178 *5)) (-14 *5 (-1092)) (-4 *6 (-963)) + (-5 *2 (-1150 *5 (-859 *6))) (-5 *1 (-861 *5 *6)) (-5 *3 (-859 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-1086 *3)))) + (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-1087 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1)) - (-4 *1 (-862 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-1087 *1)) + (-4 *1 (-863 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) - (-5 *2 (-350 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *5 *4)) + (-5 *2 (-350 (-1087 *3))) (-5 *1 (-864 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1086 *3)) + (-12 (-5 *2 (-1087 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) - (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) - (-5 *1 (-863 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) + (-4 *7 (-863 *6 *5 *4)) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) + (-5 *1 (-864 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-350 (-1086 (-350 (-858 *5))))) - (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5)))))) + (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-350 (-1087 (-350 (-859 *5))))) + (-5 *1 (-954 *5)) (-5 *3 (-350 (-859 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *2 (-757)))) + (|partial| -12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *2 (-758)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) - (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-963)) (-4 *6 (-863 *5 *4 *2)) + (-4 *2 (-758)) (-5 *1 (-864 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *6)) (-15 -3000 (*6 $)) (-15 -2999 (*6 $))))))) + (-10 -8 (-15 -3949 ($ *6)) (-15 -3001 (*6 $)) (-15 -3000 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) - (-5 *1 (-953 *4))))) + (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-1092)) + (-5 *1 (-954 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091))))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-963)) (-5 *2 (-585 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-1092))))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-585 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-585 *5)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) - (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) + (-5 *2 (-585 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091))) - (-5 *1 (-953 *4))))) + (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-1092))) + (-5 *1 (-954 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) - (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6))))) + (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) + (-4 *6 (-13 (-497) (-952 *5))) (-4 *5 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *6)))))) (-5 *1 (-953 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1116))) - (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-1086 (-350 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) - (-4 *7 (-1014)))) - ((*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) - ((*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) + (-12 (-5 *4 (-552 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1117))) + (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-1087 (-350 (-1087 *6)))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-1087 *6)) + (-4 *7 (-1015)))) + ((*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) + ((*1 *2 *1) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) - (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718)) - (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5))) - (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) + (|partial| -12 (-5 *4 (-1087 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-696))) + (-5 *8 (-585 *11)) (-4 *10 (-758)) (-4 *11 (-258)) (-4 *9 (-719)) + (-4 *5 (-863 *11 *9 *10)) (-5 *2 (-585 (-1087 *5))) + (-5 *1 (-683 *9 *10 *11 *5)) (-5 *3 (-1087 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312)) - (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2))))) + (-12 (-4 *2 (-863 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-312)) + (-4 *4 (-719)) (-4 *5 (-758)) (-14 *6 (-585 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) - (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-832)) (-5 *1 (-947 *2)) + (-4 *2 (-13 (-1015) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) - (-4 *2 (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)))))))) + (-12 (-5 *3 (-832)) (-5 *1 (-946 *2)) + (-4 *2 (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) - (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962))))) + (-12 (-5 *3 (-585 (-1181 *5))) (-5 *4 (-486)) (-5 *2 (-1181 *5)) + (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320)) - (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) - (-5 *3 (-584 (-631 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-486)) (-4 *6 (-312)) (-4 *6 (-320)) + (-4 *6 (-963)) (-5 *2 (-585 (-585 (-632 *6)))) (-5 *1 (-945 *6)) + (-5 *3 (-585 (-632 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962)) - (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) + (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-963)) + (-5 *2 (-585 (-585 (-632 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-585 (-632 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))) + (-12 (-5 *4 (-832)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962)) - (-5 *2 (-85)) (-5 *1 (-944 *5)))) + (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-85)) (-5 *1 (-945 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85)) - (-5 *1 (-944 *4))))) + (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-85)) + (-5 *1 (-945 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6)) - (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962)))) + (-12 (-5 *3 (-585 (-632 *6))) (-5 *4 (-85)) (-5 *5 (-486)) (-5 *2 (-632 *6)) + (-5 *1 (-945 *6)) (-4 *6 (-312)) (-4 *6 (-963)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) - (-4 *4 (-312)) (-4 *4 (-962)))) + (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-945 *4)) + (-4 *4 (-312)) (-4 *4 (-963)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) - (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962))))) + (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-5 *2 (-632 *5)) + (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) - (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5))))) + (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-258)) + (-4 *5 (-963)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962)) - (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5))))) + (-12 (-5 *3 (-585 (-632 *5))) (-4 *5 (-258)) (-4 *5 (-963)) + (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1181 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) - (-5 *1 (-944 *4))))) + (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-963)) + (-5 *1 (-945 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) - (-5 *1 (-944 *4))))) + (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-963)) (-5 *2 (-632 *4)) + (-5 *1 (-945 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) - (-4 *5 (-962)))) + (-12 (-5 *3 (-815 (-486))) (-5 *4 (-486)) (-5 *2 (-632 *4)) (-5 *1 (-944 *5)) + (-4 *5 (-963)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) - (-4 *4 (-962)))) + (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-944 *4)) + (-4 *4 (-963)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) - (-5 *1 (-943 *5)) (-4 *5 (-962)))) + (-12 (-5 *3 (-585 (-815 (-486)))) (-5 *4 (-486)) (-5 *2 (-585 (-632 *4))) + (-5 *1 (-944 *5)) (-4 *5 (-963)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) - (-5 *1 (-943 *4)) (-4 *4 (-962))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) + (-12 (-5 *3 (-585 (-585 (-486)))) (-5 *2 (-585 (-632 (-486)))) + (-5 *1 (-944 *4)) (-4 *4 (-963))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))) + (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) - (-5 *1 (-943 *4))))) + (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (-4 *4 (-963)) + (-5 *1 (-944 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) - (-4 *4 (-962))))) + (-12 (-5 *3 (-696)) (-5 *2 (-632 (-859 *4))) (-5 *1 (-944 *4)) + (-4 *4 (-963))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*"))) - (-4 *4 (-962)) (-5 *1 (-943 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (|has| *4 (-6 (-4000 "*"))) + (-4 *4 (-963)) (-5 *1 (-944 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*"))) - (-4 *4 (-962)) (-5 *1 (-943 *4))))) + (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (|has| *4 (-6 (-4000 "*"))) + (-4 *4 (-963)) (-5 *1 (-944 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) - (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942))))) + (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) + (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485))))) - (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942))))) + (|partial| -12 (-5 *3 (-632 (-350 (-859 (-486))))) + (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485)))) - (-5 *1 (-942))))) + (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-265 (-486)))) + (-5 *1 (-943))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) - (-5 *1 (-942)) (-5 *3 (-265 (-485)))))) + (-12 (-5 *4 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) + (-5 *1 (-943)) (-5 *3 (-265 (-486)))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-350 (-858 (-485))))) + (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 - (-584 - (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) - (|:| |radvect| (-584 (-631 (-265 (-485)))))))) - (-5 *1 (-942))))) + (-585 + (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) + (|:| |radvect| (-585 (-632 (-265 (-486)))))))) + (-5 *1 (-943))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1130))))) -(((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3268 *3) (|:| -2515 (-584 *5)))) - (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-941 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-940 *3 *2)) (-4 *2 (-602 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3269 *3) (|:| -2516 (-585 *5)))) + (-5 *1 (-940 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-602 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773)) - (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934)))))) + (-12 (-5 *2 (-976 (-939 *4) (-1087 (-939 *4)))) (-5 *3 (-774)) + (-5 *1 (-939 *4)) (-4 *4 (-13 (-757) (-312) (-935)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3)) - (-4 *3 (-13 (-756) (-312) (-934)))))) + (|partial| -12 (-5 *2 (-976 (-939 *3) (-1087 (-939 *3)))) (-5 *1 (-939 *3)) + (-4 *3 (-13 (-757) (-312) (-935)))))) (((*1 *2 *3) - (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) + (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) - (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) + (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) + (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-350 (-485))))) + (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-350 (-486))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5)))) - (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) - (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) + (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) + (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) + (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) + (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) + (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))) - (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) + (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) + (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))) + (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *4) (|:| -3139 *4)))) - (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) + (-12 (-5 *4 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *4) (|:| -3140 *4)))) + (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5)))) - (-5 *1 (-936 *3)) (-4 *3 (-1156 *5)) - (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5)))))) + (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) + (-5 *1 (-937 *3)) (-4 *3 (-1157 *5)) + (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) - (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485)))))) + (-12 (-5 *3 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) + (-5 *2 (-585 (-350 (-486)))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) - (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485)))))) + (-12 (-5 *3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) + (-5 *2 (-350 (-486))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) - (-5 *2 (-1 *6)) (-5 *1 (-931 *6))))) + (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-486))) (-5 *5 (-486)) (-4 *6 (-1015)) + (-5 *2 (-1 *6)) (-5 *1 (-932 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3404 *4) (|:| -1523 (-485))))) (-4 *4 (-1014)) - (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) + (-12 (-5 *3 (-585 (-2 (|:| -3405 *4) (|:| -1524 (-486))))) (-4 *4 (-1015)) + (-5 *2 (-1 *4)) (-5 *1 (-932 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) - (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) + (-5 *2 (-585 (-350 *5))) (-5 *1 (-931 *4 *5)) (-5 *3 (-350 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) - (|:| |c2| (-350 *6)) (|:| -3095 *6))) - (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) + (|:| |c2| (-350 *6)) (|:| -3096 *6))) + (-5 *1 (-931 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) - (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) + (-4 *6 (-13 (-312) (-120) (-952 *4))) (-5 *4 (-486)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) - (|:| -3268 + (|:| -3269 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-929 *6 *3))))) + (-5 *1 (-930 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) - (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) + (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3095 *6))) - (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3096 *6))) + (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1091)) + (|partial| -12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-584 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1116) (-27) (-364 *8))) - (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) - (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4))))) + *4 (-585 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1117) (-27) (-364 *8))) + (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) + (-5 *2 (-585 *4)) (-5 *1 (-929 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1091)) + (-12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-584 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1116) (-27) (-364 *8))) - (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85)))) - (-5 *1 (-927 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) - ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) - ((*1 *1 *1) (-4 *1 (-926)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485))))) + *4 (-585 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1117) (-27) (-364 *8))) + (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85)))) + (-5 *1 (-928 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) + ((*1 *1 *1) (-4 *1 (-917))) ((*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-927)))) + ((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-927)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-832)))) + ((*1 *1 *1) (-4 *1 (-927)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-927)) (-5 *2 (-774))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-486))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85))))) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85))))) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-1036 *3)) (-4 *1 (-924 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130))))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-1037 *3)) (-4 *1 (-925 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) - (-5 *2 (-350 (-485))))) + (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) + (-5 *2 (-350 (-486))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) - (-4 *3 (-496)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) + (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) + (-4 *3 (-497)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) - (-5 *2 (-350 (-485))))) + (|partial| -12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) + (-5 *2 (-350 (-486))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) - (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) + (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) - (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) + (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) - (-5 *2 (-350 (-485))))) + (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) + (-5 *2 (-350 (-486))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) + (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) - ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) + (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) + ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) + (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) + (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-923 *3)) (-4 *3 (-952 (-350 (-486))))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) - ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) + ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) ((*1 *2 *1) - (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) + (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) - ((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) - ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))) + (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) + ((*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-921))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) + ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) + (-12 (-5 *3 (-350 (-486))) (-5 *4 (-486)) (-5 *2 (-51)) (-5 *1 (-920))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-496)) - (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *5) (|:| |radicand| (-584 *5)))) - (-5 *1 (-271 *5)) (-5 *4 (-695)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3))))) + (-12 (-5 *3 (-348 *5)) (-4 *5 (-497)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *5) (|:| |radicand| (-585 *5)))) + (-5 *1 (-271 *5)) (-5 *4 (-696)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-486))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-915 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) - ((*1 *1 *1 *1) (-4 *1 (-413))) - ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) + ((*1 *1 *1 *1) (-4 *1 (-414))) + ((*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-795)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)) - (-5 *1 (-907 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1058 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)) + (-5 *1 (-908 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) - (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) + (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) + (-12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) (-4 *1 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) + ((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-664) *3)))) + (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-560 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-665) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-664) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-146)) (-4 *2 (-656 *3)) (-5 *1 (-596 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-665) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) +(((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) - (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) + (-12 (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-258)) + (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) + (-12 (-4 *3 (-497)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) (-4 *1 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) + ((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) - (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) + (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) - (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) - ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) - ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) + (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) +(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-963)))) + ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) +(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-497)))) + ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) ((*1 *1) (-4 *1 (-320))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) - ((*1 *1 *1) (-4 *1 (-484))) ((*1 *1) (-4 *1 (-484))) - ((*1 *1 *1) (-5 *1 (-695))) - ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) + ((*1 *1 *1) (-4 *1 (-485))) ((*1 *1) (-4 *1 (-485))) + ((*1 *1 *1) (-5 *1 (-696))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) - ((*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496))))) + (-12 (-5 *3 (-486)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) + ((*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-485)) (-4 *2 (-497))))) (((*1 *2 *2) (-12 (-5 *2 - (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485))))) - (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4))))) + (-901 (-350 (-486)) (-775 *3) (-197 *4 (-696)) (-206 *3 (-350 (-486))))) + (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-902 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) - (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-863 *4 *6 *5)) (-4 *4 (-393)) (-4 *5 (-758)) + (-4 *6 (-719)) (-5 *1 (-901 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))) + (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-585 *6)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) - (-4 *4 (-757)) (-4 *5 (-718))))) + (-12 (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-393)) + (-4 *4 (-758)) (-4 *5 (-719))))) (((*1 *1 *1) - (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *4 *3))))) + (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5)) - (-4 *4 (-299)) (-4 *5 (-662 *2 *3))))) + (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-900 *4 *2 *3 *5)) + (-4 *4 (-299)) (-4 *5 (-663 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) - (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) - (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) + (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) + (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) + (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) - (-15 -3833 ((-3 $ #1="failed") (-1091)))))) - (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) + (-15 -3834 ((-3 $ #1="failed") (-1092)))))) + (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *6)) + (-12 (-5 *3 (-585 *6)) (-4 *6 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) - (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) - (-4 *2 (-862 (-858 *4) *5 *6))))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) + (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) + (-4 *2 (-863 (-859 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) - (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) - (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) + (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) + (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) + (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) - (-15 -3833 ((-3 $ #1="failed") (-1091)))))) - (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) + (-15 -3834 ((-3 $ #1="failed") (-1092)))))) + (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *6)) + (-12 (-5 *3 (-585 *6)) (-4 *6 - (-13 (-757) - (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) - (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) - (-4 *2 (-862 (-858 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) + (-13 (-758) + (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) + (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) + (-4 *2 (-863 (-859 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784)))) - ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) - ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) - ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) + (|partial| -12 (-5 *3 (-696)) (-4 *1 (-898 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-785)))) + ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) + ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-312)) - (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5)) - (-5 *3 (-631 *5)) (-5 *4 (-1180 *5))))) + (-5 *2 (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-893 *5)) + (-5 *3 (-632 *5)) (-5 *4 (-1181 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-5 *1 (-892 *5))))) + (-12 (-5 *2 (-632 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-5 *1 (-893 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) - (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) - (-5 *1 (-892 *6)) (-5 *3 (-631 *6))))) + (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) + (-5 *1 (-893 *6)) (-5 *3 (-632 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) - (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) + (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) + (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *1 (-891 *5 *6 *7 *8))))) + (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *1 (-892 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) - (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9))))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) + (-4 *8 (-758)) (-5 *1 (-892 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3325 (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (|partial| -12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-417 *4 *5 *6 *7)) (|:| -3326 (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) - (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) - (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) + (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) + (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) - (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) - (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) + (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) + (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) - (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) - (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) + (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *5 *6 *7 *8))))) + (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-979 *5 *6 *7)) + (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) - (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) + (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) + (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *5 (-978 *3 *4 *2))))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *5 (-979 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *5 (-978 *3 *4 *2))))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *5 (-979 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *5 (-978 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *5 (-979 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3132 *1) (|:| |upper| *1))) - (-4 *1 (-890 *4 *5 *3 *6))))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3133 *1) (|:| |upper| *1))) + (-4 *1 (-891 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) + (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) + (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))))) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))))) -(((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) - ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) - ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) - ((*1 *2 *1) - (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695))) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497))))) +(((*1 *2 *1) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-585 (-585 (-856 (-179))))))) + ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-585 (-585 (-856 (-179)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) + ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) + ((*1 *2 *1) + (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3960 *3) (-696))) (-14 *7 - (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) - (-2 (|:| -2401 *5) (|:| -2402 *6)))) - (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) - (-4 *8 (-862 *4 *6 (-774 *3))))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) + (-2 (|:| -2402 *5) (|:| -2403 *6)))) + (-5 *2 (-652 *5 *6 *7)) (-5 *1 (-402 *3 *4 *5 *6 *7 *8)) (-4 *5 (-758)) + (-4 *8 (-863 *4 *6 (-775 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) + (-12 (-4 *2 (-665)) (-4 *2 (-758)) (-5 *1 (-676 *3 *2)) (-4 *3 (-963)))) ((*1 *1 *1) - (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) - (-4 *2 (-312)) (-14 *5 (-907 *4 *2)))) + (-12 (-5 *3 (-585 (-832))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) + (-4 *2 (-312)) (-14 *5 (-908 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3959 *4) (-695))) + (-12 (-5 *3 (-652 *5 *6 *7)) (-4 *5 (-758)) (-4 *6 (-196 (-3960 *4) (-696))) (-14 *7 - (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) - (-2 (|:| -2401 *5) (|:| -2402 *6)))) - (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-862 *2 *6 (-774 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) + (-2 (|:| -2402 *5) (|:| -2403 *6)))) + (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-5 *1 (-402 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-863 *2 *6 (-775 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) + (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3)) (-4 *2 (-963)) (-4 *3 (-665)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) - (-4 *4 (-962)) (-4 *5 (-757)))) + (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) + (-4 *4 (-963)) (-4 *5 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) - (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) + (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *2 (-757)))) + (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *2 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) - (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-888 *4 *5 *6)) + (-4 *4 (-963)) (-4 *5 (-718)) (-4 *6 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-718)) (-4 *2 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) - ((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-4 *1 (-780 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) + ((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-4 *1 (-781 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) -(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885))))) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1071 (-886))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-832) (-832)))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-886))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *4 (-497)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))) + (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))) + (-12 (-5 *4 (-696)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2))))) + (-12 (-5 *3 (-696)) (-4 *2 (-497)) (-5 *1 (-884 *2 *4)) (-4 *4 (-1157 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-258)))) + (-12 (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (|partial| -12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2904 (-695)))) (-5 *1 (-695)))) + (-12 (-5 *2 (-2 (|:| -1974 (-696)) (|:| -2905 (-696)))) (-5 *1 (-696)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *4 (-496)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-393)) (-4 *4 (-497)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *4 (-496)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2878 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-393)) (-4 *4 (-497)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2879 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-497)) (-4 *2 (-393)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-585 (-696))) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3146 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3147 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3146 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3147 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3146 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3147 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-496)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) - (-4 *3 (-1156 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-497)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) + (-4 *3 (-1157 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-496)) + (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5))))) + (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-496)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) - (-4 *3 (-1156 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-497)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) + (-4 *3 (-1157 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-496)) + (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5))))) + (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3758 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3759 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-496)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-497)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *1) - (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988))) - (-2562 (|has| *1 (-6 -3980))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) - ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760))) - ((*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) + (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) + (-2563 (|has| *1 (-6 -3981))))) + ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) + ((*1 *1) (-4 *1 (-754))) ((*1 *1 *1 *1) (-4 *1 (-761))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) -(((*1 *1) (-4 *1 (-881)))) -(((*1 *1) (-4 *1 (-881)))) -(((*1 *1 *1 *1) (-4 *1 (-881)))) -(((*1 *1 *1 *1) (-4 *1 (-881)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-578 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) - (-4 *3 (-1014)) (-4 *5 (-609 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1014))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-773)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484))))) -(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484))))) -(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) +(((*1 *1) (-4 *1 (-882)))) +(((*1 *1) (-4 *1 (-882)))) +(((*1 *1 *1 *1) (-4 *1 (-882)))) +(((*1 *1 *1 *1) (-4 *1 (-882)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-579 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *4)) (-5 *1 (-797 *3 *4 *5)) + (-4 *3 (-1015)) (-4 *5 (-610 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 *4)) (-4 *4 (-1015)) (-5 *2 (-1011 *4)) (-5 *1 (-880 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-698))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-698)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-878))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-877 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *3 *2)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-774)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-876))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-875 *3)) (-4 *3 (-485))))) +(((*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485))))) +(((*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485))))) (((*1 *1) (-4 *1 (-299))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120))) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-497) (-120))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5))) - (|:| |prim| (-1086 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1087 *5))) + (|:| |prim| (-1087 *5)))) (-5 *1 (-375 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-496) (-120))) + (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) - (|:| |prim| (-1086 *3)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1087 *3)) (|:| |pol2| (-1087 *3)) + (|:| |prim| (-1087 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) + (-12 (-5 *3 (-859 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) - (-5 *1 (-873 *5)))) + (-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 *5)))) + (-5 *1 (-874 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *5))) - (|:| |prim| (-1086 *5)))) - (-5 *1 (-873 *5)))) + (-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 *5))) + (|:| |prim| (-1087 *5)))) + (-5 *1 (-874 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091)) + (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-5 *5 (-1092)) (-4 *6 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *6))) - (|:| |prim| (-1086 *6)))) - (-5 *1 (-873 *6))))) + (-2 (|:| -3957 (-585 (-486))) (|:| |poly| (-585 (-1087 *6))) + (|:| |prim| (-1087 *6)))) + (-5 *1 (-874 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-1092)) (-5 *1 (-521 *2)) (-4 *2 (-952 *3)) (-4 *2 (-312)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) - (-4 *2 (-13 (-364 *4) (-916) (-1116))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-570 *4 *2)) + (-4 *2 (-13 (-364 *4) (-917) (-1117))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) - (-5 *1 (-569 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) - (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) - (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| (-584 *3)))) - (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) + (-5 *1 (-570 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-873)) (-5 *2 (-1092)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-873))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-832)) (-4 *5 (-497)) (-5 *2 (-632 *5)) + (-5 *1 (-870 *5 *3)) (-4 *3 (-602 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-867))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *3 (-863 *7 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *3) (|:| |radicand| (-585 *3)))) + (-5 *1 (-866 *5 *6 *7 *3 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) - (-10 -8 (-15 -3948 ($ *3)) (-15 -3000 (*3 $)) (-15 -2999 (*3 $)))))))) + (-10 -8 (-15 -3949 ($ *3)) (-15 -3001 (*3 $)) (-15 -3000 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) - (-4 *8 (-862 *7 *5 *6)) - (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *3))) - (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) + (-12 (-4 *7 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) + (-4 *8 (-863 *7 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *3) (|:| |radicand| *3))) + (-5 *1 (-866 *5 *6 *7 *8 *3)) (-5 *4 (-696)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $)))))))) + (-10 -8 (-15 -3949 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) - (-4 *8 (-862 *7 *5 *6)) - (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *9) (|:| |radicand| *9))) - (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) + (-12 (-5 *3 (-350 (-486))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) + (-4 *8 (-863 *7 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *9) (|:| |radicand| *9))) + (-5 *1 (-866 *5 *6 *7 *8 *9)) (-5 *4 (-696)) (-4 *9 (-13 (-312) - (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $)))))))) + (-10 -8 (-15 -3949 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) - (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *8) (|:| |radicand| *8))) - (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) + (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-497)) (-4 *7 (-863 *3 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *8) (|:| |radicand| *8))) + (-5 *1 (-866 *5 *6 *3 *7 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-963)) (-4 *3 (-1015)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-802 *3)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485)))) - (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-486)))) + (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014)) - (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) + (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-963)) (-4 *4 (-1015)) + (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014)) - (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-963)) (-4 *4 (-1015)) + (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) - (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) + (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695)))) - (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-696)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695)))))) + (|partial| -12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-696)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485)))) - (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-486)))) + (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) + (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4)))) + (-12 (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-335 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) - (-4 *4 (-664)))) + (-12 (-5 *2 (-585 (-676 *3 *4))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) + (-4 *4 (-665)))) ((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 (-695))))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 (-696))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-695))))) + (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-696))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-695)))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-695))))) + (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-696))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)) (-4 *2 (-393)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485))) - (-5 *1 (-426 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1157 (-486))) (-5 *2 (-585 (-486))) + (-5 *1 (-427 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *3 (-392))))) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *3 (-393))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312)) - (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-486)) (-4 *5 (-757)) (-4 *5 (-312)) + (-5 *2 (-696)) (-5 *1 (-858 *5 *6)) (-4 *6 (-1157 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695)) - (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-757)) (-4 *4 (-312)) (-5 *2 (-696)) + (-5 *1 (-858 *4 *5)) (-4 *5 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *2 (-312)) (-4 *2 (-757)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) - (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1157 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) - (-4 *3 (-1156 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) - (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) - (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) - (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) - (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) - (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) - (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) - ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) -(((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) - ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) - ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) + (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1157 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) + (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) + (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-422 *4 *5)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) + (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) + (-5 *2 (-422 *4 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) + ((*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) +(((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) +(((*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-486)) (-5 *1 (-855))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) + ((*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) +(((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-165)) (-5 *3 (-486)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486)))) + ((*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) - (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) - (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) - (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-802 *6))) + (-5 *5 (-1 (-800 *6 *8) *8 (-802 *6) (-800 *6 *8))) (-4 *6 (-1015)) + (-4 *8 (-13 (-963) (-555 (-802 *6)) (-952 *7))) (-5 *2 (-800 *6 *8)) + (-4 *7 (-963)) (-5 *1 (-854 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6)) - (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) + (-12 (-5 *2 (-800 *5 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *3 (-139 *6)) + (-4 (-859 *6) (-798 *5)) (-4 *6 (-13 (-798 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) - (-4 *4 (-1014)))) + (-12 (-5 *2 (-800 *4 *1)) (-5 *3 (-802 *4)) (-4 *1 (-798 *4)) + (-4 *4 (-1015)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) - (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) + (-12 (-5 *2 (-800 *5 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) + (-4 *6 (-13 (-1015) (-952 *3))) (-4 *3 (-798 *5)) (-5 *1 (-844 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) - (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) - (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))) + (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) + (-4 *3 (-13 (-364 *6) (-555 *4) (-798 *5) (-952 (-552 $)))) + (-5 *4 (-802 *5)) (-4 *6 (-13 (-497) (-798 *5))) (-5 *1 (-845 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) - (-5 *1 (-845 *3)))) + (-12 (-5 *2 (-800 (-486) *3)) (-5 *4 (-802 (-486))) (-4 *3 (-485)) + (-5 *1 (-846 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) - (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) - (-5 *1 (-846 *5 *6)))) + (-12 (-5 *2 (-800 *5 *6)) (-5 *3 (-552 *6)) (-4 *5 (-1015)) + (-4 *6 (-13 (-1015) (-952 (-552 $)) (-555 *4) (-798 *5))) (-5 *4 (-802 *5)) + (-5 *1 (-847 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) - (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))) + (-12 (-5 *2 (-797 *5 *6 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) + (-4 *6 (-798 *5)) (-4 *3 (-610 *6)) (-5 *1 (-848 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) - (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) - (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) - (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-800 *6 *3) *8 (-802 *6) (-800 *6 *3))) (-4 *8 (-758)) + (-5 *2 (-800 *6 *3)) (-5 *4 (-802 *6)) (-4 *6 (-1015)) + (-4 *3 (-13 (-863 *9 *7 *8) (-555 *4))) (-4 *7 (-719)) + (-4 *9 (-13 (-963) (-798 *6))) (-5 *1 (-849 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) - (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) - (-5 *1 (-848 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) + (-4 *3 (-13 (-863 *8 *6 *7) (-555 *4))) (-5 *4 (-802 *5)) (-4 *7 (-798 *5)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-13 (-963) (-798 *5))) + (-5 *1 (-849 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) - (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) - (-5 *1 (-851 *5 *6 *3)))) + (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-906 *6)) + (-4 *6 (-13 (-497) (-798 *5) (-555 *4))) (-5 *4 (-802 *5)) + (-5 *1 (-852 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5)) - (-4 *5 (-1014)) (-5 *1 (-852 *5)))) + (-12 (-5 *2 (-800 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-802 *5)) + (-4 *5 (-1015)) (-5 *1 (-853 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) - (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) - (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) - (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4)) - (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) - ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) - ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) + (-12 (-5 *4 (-585 (-802 *7))) (-5 *5 (-1 *9 (-585 *9))) + (-5 *6 (-1 (-800 *7 *9) *9 (-802 *7) (-800 *7 *9))) (-4 *7 (-1015)) + (-4 *9 (-13 (-963) (-555 (-802 *7)) (-952 *8))) (-5 *2 (-800 *7 *9)) + (-5 *3 (-585 *9)) (-4 *8 (-963)) (-5 *1 (-854 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1015) (-952 *5))) (-4 *5 (-798 *4)) + (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-844 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) + ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) + ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1092)) (-5 *4 (-448)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4))))) + (-12 (-5 *3 (-448)) (-4 *4 (-1015)) (-5 *1 (-843 *4 *2)) (-4 *2 (-364 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179)))) - (-5 *1 (-840))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-1003 (-179)))) + (-5 *1 (-841))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) - (-5 *1 (-839)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-840)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) - (-5 *1 (-839))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-840))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) - (-4 *3 (-554 (-474))))) + (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) + (-4 *3 (-555 (-475))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) - (-4 *3 (-554 (-474))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) + (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) + (-4 *3 (-555 (-475))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) - ((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) - (-4 *3 (-554 (-474))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474)))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) - ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) - ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) - ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) - (-5 *1 (-836 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) - (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) - (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4))))) + (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) + (-4 *3 (-555 (-475))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1092)) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) + ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) + ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) + ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) + (-5 *1 (-837 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) + (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) + (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *2)) (-4 *2 (-863 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) - (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12))) - (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) - (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1091)))) - (-4 *11 (-718)) - (-5 *2 - (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) - (|:| |wcond| (-584 (-858 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) + (-5 *4 (-632 *12)) (-5 *5 (-585 (-350 (-859 *9)))) (-5 *6 (-585 (-585 *12))) + (-5 *7 (-696)) (-5 *8 (-486)) (-4 *9 (-13 (-258) (-120))) + (-4 *12 (-863 *9 *11 *10)) (-4 *10 (-13 (-758) (-555 (-1092)))) + (-4 *11 (-719)) + (-5 *2 + (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) + (|:| |wcond| (-585 (-859 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *9)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *9))))))))) - (-5 *1 (-836 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *9)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *9))))))))) + (-5 *1 (-837 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) - (-4 *7 (-718)) - (-5 *2 - (-584 - (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) - (|:| |cols| (-584 (-485)))))) - (-5 *1 (-836 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) - (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8))))) + (-12 (-5 *2 (-632 *7)) (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-696)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) + (-4 *7 (-719)) + (-5 *2 + (-585 + (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) + (|:| |cols| (-585 (-486)))))) + (-5 *1 (-837 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) + (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) - (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719)) (-5 *2 (-585 (-585 (-486)))) (-5 *1 (-837 *4 *5 *6 *7)) + (-5 *3 (-486)) (-4 *7 (-863 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) - (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) - (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-863 *3 *5 *4)) + (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) + (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-584 - (-2 (|:| -3110 (-695)) + (-585 + (-2 (|:| -3111 (-696)) (|:| |eqns| - (-584 - (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) - (|:| |cols| (-584 (-485)))))) - (|:| |fgb| (-584 *7))))) - (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) - (-5 *1 (-836 *4 *5 *6 *7))))) + (-585 + (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) + (|:| |cols| (-585 (-486)))))) + (|:| |fgb| (-585 *7))))) + (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) + (-5 *1 (-837 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-584 - (-2 (|:| -3110 (-695)) + (-585 + (-2 (|:| -3111 (-696)) (|:| |eqns| - (-584 - (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) - (|:| |cols| (-584 (-485)))))) - (|:| |fgb| (-584 *7))))) - (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) - (-5 *1 (-836 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) - (-4 *3 (-862 *4 *6 *5))))) + (-585 + (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) + (|:| |cols| (-585 (-486)))))) + (|:| |fgb| (-585 *7))))) + (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) + (-5 *1 (-837 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719)) (-5 *2 (-585 *3)) (-5 *1 (-837 *4 *5 *6 *3)) + (-4 *3 (-863 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4)))) - (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718)) - (-5 *2 - (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) - (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) + (-2 (|:| |mat| (-632 (-350 (-859 *4)))) (|:| |vec| (-585 (-350 (-859 *4)))) + (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719)) + (-5 *2 + (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) + (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) - (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5)) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) - (-5 *1 (-836 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) + (-5 *3 (-585 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-863 *4 *6 *5)) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) + (-5 *1 (-837 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) + (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 - (-584 - (-2 (|:| -3110 (-695)) + (-585 + (-2 (|:| -3111 (-696)) (|:| |eqns| - (-584 - (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) - (|:| |cols| (-584 (-485)))))) - (|:| |fgb| (-584 *8))))) - (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695))))) + (-585 + (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) + (|:| |cols| (-585 (-486)))))) + (|:| |fgb| (-585 *8))))) + (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-696))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) - (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5)) - (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) - (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) - (-4 *7 (-862 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) - (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) - (-4 *3 (-862 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) - (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) - (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719)) (-4 *7 (-863 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) + (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-863 *4 *6 *5)) + (-5 *1 (-837 *4 *5 *6 *2)) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) + (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)) + (-4 *7 (-863 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) + (-4 *6 (-719)) (-5 *2 (-350 (-859 *4))) (-5 *1 (-837 *4 *5 *6 *3)) + (-4 *3 (-863 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) + (-5 *2 (-632 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) + (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695)) - (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9)) - (-4 *9 (-13 (-757) (-554 (-1091)))) (-4 *10 (-718)) + (-12 (-5 *3 (-632 *11)) (-5 *4 (-585 (-350 (-859 *8)))) (-5 *5 (-696)) + (-5 *6 (-1075)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-863 *8 *10 *9)) + (-4 *9 (-13 (-758) (-555 (-1092)))) (-4 *10 (-719)) (-5 *2 (-2 (|:| |rgl| - (-584 - (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) - (|:| |wcond| (-584 (-858 *8))) + (-585 + (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) + (|:| |wcond| (-585 (-859 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *8)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *8)))))))))) - (|:| |rgsz| (-485)))) - (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485))))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *8)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *8)))))))))) + (|:| |rgsz| (-486)))) + (-5 *1 (-837 *8 *9 *10 *11)) (-5 *7 (-486))))) (((*1 *2 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) + (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) - (|:| |wcond| (-584 (-858 *4))) + (-585 + (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) + (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) - (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) + (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) - (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6)) - (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) - (-5 *1 (-836 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) - (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) + (-5 *4 (-1075)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-863 *5 *7 *6)) + (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-486)) + (-5 *1 (-837 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) + (-5 *2 + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) - (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) + (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) - (-4 *7 (-718)) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-585 (-1092))) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) + (-4 *7 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) - (-5 *1 (-836 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) + (-5 *1 (-837 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) + (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) - (|:| |wcond| (-584 (-858 *4))) + (-585 + (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) + (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) - (-5 *1 (-836 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) + (-5 *1 (-837 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) - (-4 *8 (-718)) + (-12 (-5 *3 (-632 *9)) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) + (-4 *8 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) - (|:| |wcond| (-584 (-858 *6))) + (-585 + (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) + (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) - (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) + (-5 *1 (-837 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) - (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) + (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) - (|:| |wcond| (-584 (-858 *6))) + (-585 + (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) + (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) - (-5 *1 (-836 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) + (-5 *1 (-837 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) - (-4 *7 (-718)) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-832)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) + (-4 *7 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) - (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) - (-5 *1 (-836 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) + (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) + (-5 *1 (-837 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074)) - (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) - (-5 *1 (-836 *6 *7 *8 *9)))) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1075)) + (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) + (-5 *1 (-837 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074)) - (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) - (-5 *1 (-836 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) - (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-1075)) + (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) + (-5 *1 (-837 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-1075)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) + (-4 *7 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074)) - (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) - (-5 *1 (-836 *7 *8 *9 *10)))) + (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 *10)) (-5 *5 (-832)) (-5 *6 (-1075)) + (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) + (-5 *1 (-837 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074)) - (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) - (-5 *1 (-836 *7 *8 *9 *10)))) + (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) (-5 *6 (-1075)) + (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) + (-5 *1 (-837 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) - (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9))))) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-832)) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) + (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) - (-5 *1 (-835 *4 *2))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-4 *2 (-1157 *4)) + (-5 *1 (-836 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3956 (-584 *1)) (|:| -2410 *1))) - (-5 *3 (-584 *1))))) + (-12 (-4 *1 (-834)) (-5 *2 (-2 (|:| -3957 (-585 *1)) (|:| -2411 *1))) + (-5 *3 (-585 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1))))) + (-12 (-4 *1 (-834)) (-5 *2 (-634 (-585 *1))) (-5 *3 (-585 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) - (-5 *1 (-830 *4))))) + (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) + (-5 *1 (-831 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) - (-5 *1 (-830 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) + (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) + (-5 *1 (-831 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) - (-4 *2 (-862 *5 *3 *4)))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) + (-4 *2 (-863 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-827 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-51)) (-5 *1 (-827 *5)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-51)) (-5 *1 (-828 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6)) - (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) -(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) + (-12 (-5 *4 (-348 (-859 *6))) (-5 *5 (-1092)) (-5 *3 (-859 *6)) + (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) (((*1 *2 *2) - (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *1 (-825 *3 *2)) - (-4 *2 (-1156 (-350 *3)))))) + (-12 (-4 *3 (-1157 (-350 (-486)))) (-5 *1 (-826 *3 *2)) + (-4 *2 (-1157 (-350 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) - (-4 *3 (-1156 (-350 *4)))))) + (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) + (-4 *3 (-1157 (-350 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) - (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) - (-4 *5 (-1156 (-350 *4)))))) + (-12 (-5 *3 (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))))) + (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *5)) + (-4 *5 (-1157 (-350 *4)))))) (((*1 *2 *3) - (-12 (-4 *3 (-1156 (-350 (-485)))) - (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) - (-4 *4 (-1156 (-350 *3))))) + (-12 (-4 *3 (-1157 (-350 (-486)))) + (-5 *2 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486)))) (-5 *1 (-826 *3 *4)) + (-4 *4 (-1157 (-350 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) - (-4 *3 (-1156 (-350 *4)))))) + (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) + (-4 *3 (-1157 (-350 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-350 *3))) (-5 *2 (-831)) - (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4)))))) + (-12 (-5 *3 (-486)) (-4 *4 (-1157 (-350 *3))) (-5 *2 (-832)) + (-5 *1 (-826 *4 *5)) (-4 *5 (-1157 (-350 *4)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) - (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-496) (-951 (-485)))) - (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *8))) - (-5 *1 (-823 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) - (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) - (-4 *6 (-291 (-350 (-485)) *4 *5)) - (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) - (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) - (-5 *1 (-823 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) - (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85)) - (-5 *1 (-824 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-392)))) + (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-497) (-952 (-486)))) + (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *8))) + (-5 *1 (-824 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) + (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) + (-4 *6 (-291 (-350 (-486)) *4 *5)) + (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *6))) (-5 *1 (-825 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) + (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) + (-5 *1 (-824 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) + (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-825 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-393)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-822))))) -(((*1 *2 *3) - (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) - (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) - ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) - (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) - ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1))))) + (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-823)) (-5 *1 (-398 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-823))))) +(((*1 *2 *3) + (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) + (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015)))) + ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) + (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015)))) + ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) - (-4 *4 (-484)) (-5 *1 (-122 *4 *5)))) + (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-139 *4)) + (-4 *4 (-485)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) + (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485))) - (-5 *1 (-509)))) + (|partial| -12 (-5 *2 (-585 (-1087 (-486)))) (-5 *3 (-1087 (-486))) + (-5 *1 (-510)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822))))) + (|partial| -12 (-5 *2 (-585 (-1087 *1))) (-5 *3 (-1087 *1)) (-4 *1 (-823))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) + (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-299)) (-5 *2 (-1181 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) - (-5 *2 (-1180 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)))) + (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-823)) + (-5 *2 (-1181 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)))) ((*1 *1 *1) (-4 *1 (-299))) - ((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822))))) + ((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-823))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8)) - (-5 *4 (-1086 *8)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-758)) (-4 *5 (-823)) (-4 *6 (-719)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-348 (-1087 *8))) (-5 *1 (-820 *5 *6 *7 *8)) + (-5 *4 (-1087 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) - (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5))))) + (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) + (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5))))) (((*1 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) - (-4 *5 (-862 *2 *3 *4)))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-398 *3 *4 *2 *5)) + (-4 *5 (-863 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-820 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-823)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) - (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) + (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) - (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5))))) + (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) + (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) - (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) + (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) - (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5))))) + (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) + (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) - (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *1 (-819 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) + (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *1 (-820 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) - (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5))))) + (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) + (-4 *5 (-1157 *4)) (-4 *4 (-823)) (-5 *1 (-821 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) - (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) - (-5 *1 (-819 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-484))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) + (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) + (-4 *7 (-863 *5 *6 *4)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *4 (-758)) + (-5 *1 (-820 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *6)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) ((*1 *1) (-4 *1 (-485))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-585 (-696)))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) - (-5 *3 (-584 *4)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-585 *4))) (-5 *1 (-818 *4)) + (-5 *3 (-585 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) - (-5 *3 (-1010 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) + (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-1011 *4))) (-5 *1 (-818 *4)) + (-5 *3 (-1011 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-1011 (-1011 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) - (-5 *1 (-817 *4))))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) + (-5 *1 (-818 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) - (-5 *1 (-817 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) + (-5 *1 (-818 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-831)) - (-4 *2 (-13 (-962) (-10 -7 (-6 (-3999 "*"))))) (-5 *1 (-815 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) - (-5 *1 (-814 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) + (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-817 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-4 *1 (-817 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1058 *4 *2)) (-14 *4 (-832)) + (-4 *2 (-13 (-963) (-10 -7 (-6 (-4000 "*"))))) (-5 *1 (-816 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) + (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1011 *3)) (-5 *1 (-815 *3)) (-4 *3 (-320)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) - ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) + ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) - (-4 *4 (-1014)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) + (-4 *4 (-1015)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-5 *1 (-809 *2 *4)) (-4 *2 (-1157 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3))))) -(((*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664))) - ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) - ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) - (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) - (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1091))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1091))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) - (-4 *5 (-1130))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-809 *2 *3)) (-4 *2 (-1157 *3))))) +(((*1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-661))) ((*1 *1) (-4 *1 (-665))) + ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) + (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))) + (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-616 *3))) (-5 *1 (-805 *3)) (-4 *3 (-758))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1092))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1131)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1092))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-805 *3)) (-4 *3 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-585 *5)) (-5 *1 (-803 *4 *5)) + (-4 *5 (-1131))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-803 *4 *3)) (-4 *3 (-1131))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) - (-5 *1 (-799 *4 *5)) (-4 *5 (-1014)))) + (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) + (-5 *1 (-800 *4 *5)) (-4 *5 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) - (-4 *3 (-1130)))) + (-12 (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-803 *5 *3)) + (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130)) - (-5 *2 (-85)) (-5 *1 (-802 *5 *6))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1131)) + (-5 *2 (-85)) (-5 *1 (-803 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))) + ((*1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 (-801 *3))))) - (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 (-802 *3))))) + (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) - (-4 *4 (-1014))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-802 *4))) (-5 *1 (-802 *4)) + (-4 *4 (-1015))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-802 *3)) (|:| |den| (-802 *3)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-1092)) (-5 *3 (-85)) (-5 *1 (-802 *4)) (-4 *4 (-1015))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-51)) (-5 *1 (-802 *4)) (-4 *4 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51)))) - (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) - (-4 *5 (-609 *4)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) + (-4 *5 (-610 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-85)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *1) - (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) - (-4 *4 (-609 *3)))) - ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) + (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) + (-4 *4 (-610 *3)))) + ((*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) - (-5 *1 (-799 *4 *2))))) + (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) + (-5 *1 (-800 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) - (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-5 *2 (-797 *5 *6 (-585 *6))) + (-5 *1 (-799 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4)) - (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 *3))) (-5 *1 (-799 *5 *3 *4)) + (-4 *3 (-952 (-1092))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) - (-4 *3 (-962)) (-2562 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5)) - (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 (-859 *3)))) (-5 *1 (-799 *5 *3 *4)) + (-4 *3 (-963)) (-2563 (-4 *3 (-952 (-1092)))) (-4 *3 (-798 *5)) + (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) - (-2562 (-4 *3 (-951 (-1091)))) (-2562 (-4 *3 (-962))) (-4 *3 (-797 *5)) - (-4 *4 (-554 (-801 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) + (-12 (-4 *5 (-1015)) (-5 *2 (-800 *5 *3)) (-5 *1 (-799 *5 *3 *4)) + (-2563 (-4 *3 (-952 (-1092)))) (-2563 (-4 *3 (-963))) (-4 *3 (-798 *5)) + (-4 *4 (-555 (-802 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) + (-12 (-5 *3 (-1092)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) - (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-798 *5)) + (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) - (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5)))))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-798 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) + (-5 *1 (-799 *5 *6 *4)) (-4 *4 (-555 (-802 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6))))) + (-12 (-5 *2 (-800 *4 *5)) (-5 *3 (-800 *4 *6)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-610 *5)) (-5 *1 (-797 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) - (-4 *3 (-1014)) (-4 *5 (-609 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485))))) + (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *5)) (-5 *1 (-797 *3 *4 *5)) + (-4 *3 (-1015)) (-4 *5 (-610 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-486))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) + (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) ((*1 *2 *3) - (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))) + (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794))))) + (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *3 (-585 (-486))) (-5 *1 (-795))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)))) - ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) + (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 (-585 (-832)))) (-5 *1 (-795))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-789 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-791 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-794 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-792))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)) (-5 *3 (-1075)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-90 *3)) (-14 *3 (-486)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347)))) + ((*1 *2 *3) (-12 (-5 *2 (-148 (-486))) (-5 *1 (-691 *3)) (-4 *3 (-347)))) ((*1 *2 *1) - (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485)))) + (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-782 *3)) (-14 *3 (-486)))) ((*1 *2 *1) - (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4)) - (-4 *4 (-780 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) - ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485)))))) + (-12 (-14 *3 (-486)) (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-783 *3 *4)) + (-4 *4 (-781 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) + ((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) + ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-1071 (-486)))))) (((*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) + ((*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))) -(((*1 *1 *1) (-4 *1 (-780 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4))))) + ((*1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486))))) +(((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486))))) +(((*1 *1 *1) (-4 *1 (-781 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *3 (-486)) (-4 *1 (-781 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6)) - (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) + (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-350 *6)) + (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) - (-5 *1 (-778 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) + (-5 *1 (-779 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) - (-5 *1 (-778 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) + (-5 *1 (-779 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6)) - (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773))))) -(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) - ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695)))) - ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) - ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) - ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) + (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-148 *6)) + (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-382))) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) + ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-696)))) + ((*1 *2 *3) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) + (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) + ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-774))))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) ((*1 *1 *1) (-4 *1 (-254))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) - (-5 *1 (-740 *3)) (-4 *3 (-757)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-772)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1186)) (-5 *1 (-769))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-741 *3)) (|:| |rm| (-741 *3)))) + (-5 *1 (-741 *3)) (-4 *3 (-758)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-696))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-696))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-515)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-490))) (-5 *3 (-490))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-1140))) (-5 *3 (-1140))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *3 (-102)) (-5 *2 (-696))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1187)) (-5 *1 (-770))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485)))) + (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) - (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) + (-5 *1 (-692 *3 *4)) (-4 *3 (-647 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-592 *5)) (-4 *5 (-963)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-763 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) - (-4 *3 (-762 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-764 *2 *3)) + (-4 *3 (-763 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) - (-4 *2 (-762 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-764 *5 *2)) + (-4 *2 (-763 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) - (-4 *1 (-762 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) + (-4 *1 (-763 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) - (-4 *1 (-762 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) + (-4 *1 (-763 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *1) - (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988))) - (-2562 (|has| *1 (-6 -3980))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753))) - ((*1 *1 *1 *1) (-4 *1 (-760)))) + (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) + (-2563 (|has| *1 (-6 -3981))))) + ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-758)))) ((*1 *1) (-4 *1 (-754))) + ((*1 *1 *1 *1) (-4 *1 (-761)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) - (-14 *4 (-695))))) + (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) + (-14 *4 (-696))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) - (-14 *4 (-695))))) + (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) + (-14 *4 (-696))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) - (-14 *4 (-695))))) -(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) - ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014))))) -(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) - ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014))))) + (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) + (-14 *4 (-696))))) +(((*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) + ((*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015))))) +(((*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) + ((*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-442))) (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) - ((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) - (-4 *3 (-628 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-167 (-443))) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) + ((*1 *2 *3) + (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) + (-4 *3 (-629 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) + (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) - ((*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))) + (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) + ((*1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963))))) (((*1 *2 *2) - (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))) + (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) - (-4 *2 (-1014)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-585 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1015)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) - (-4 *4 (-1014)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1015)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) - (-5 *1 (-652 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) + (-5 *1 (-653 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) - (-5 *1 (-652 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) + (-5 *1 (-653 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-86)) (-4 *4 (-963)) (-5 *1 (-653 *4 *2)) (-4 *2 (-592 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-747 *2)) (-4 *2 (-963))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) - (-4 *4 (-591 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962))))) -(((*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473)))) - ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757))))) + (-12 (-5 *3 (-310 (-86))) (-4 *2 (-963)) (-5 *1 (-653 *2 *4)) + (-4 *4 (-592 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-747 *2)) (-4 *2 (-963))))) +(((*1 *2) (-12 (-5 *2 (-745 (-486))) (-5 *1 (-474)))) + ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-743 *2 *3)) (-4 *2 (-647 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-743 *2 *3)) (-4 *3 (-963))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-741 *3)) (-4 *3 (-758))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) - (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4))))) + (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-1181 *4)) + (-5 *1 (-736 *4 *3)) (-4 *3 (-602 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) - (-4 *5 (-601 *4)))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)) (-5 *1 (-736 *4 *5)) + (-4 *5 (-602 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5)) - (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-632 *5)) + (-5 *1 (-736 *5 *6)) (-4 *6 (-602 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) - (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) + (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *7)) + (-12 (-5 *3 (-632 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6)) - (-4 *6 (-312)) (-4 *7 (-601 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2014 (-585 *6))) *7 *6)) + (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1180 *6) "failed")) - (|:| -2013 (-584 (-1180 *6))))) - (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6))))) + (-2 (|:| |particular| (-3 (-1181 *6) "failed")) + (|:| -2014 (-585 (-1181 *6))))) + (-5 *1 (-735 *6 *7)) (-5 *4 (-1181 *6))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 - (-2 (|:| A (-631 *5)) + (-2 (|:| A (-632 *5)) (|:| |eqs| - (-584 - (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3268 *6) + (-585 + (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5)) (|:| -3269 *6) (|:| |rh| *5)))))) - (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) - (-4 *6 (-601 *5)))) + (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) + (-4 *6 (-602 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-601 *5)) - (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) - (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5))))) + (-12 (-4 *5 (-312)) (-4 *6 (-602 *5)) + (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) + (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) + (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) + (-12 (-5 *3 (-599 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) + (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) + (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) + (-12 (-5 *3 (-600 *7 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) - (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 *3)))) - (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *6 (-1156 *5)) - (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 (-599 *6 (-350 *6)))))) - (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6)))))) + (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-600 *5 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) + (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 *3)))) + (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *6 (-1157 *5)) + (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 (-600 *6 (-350 *6)))))) + (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-348 *7) *7)) - (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485))))) - (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3268 *3)))) - (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3268 (-599 *6 (-350 *6)))))) - (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) - (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) - (-5 *1 (-731 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) - (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) - (-5 *1 (-731 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) - (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6)))))) + (-12 (-5 *4 (-1 (-585 *7) *7 (-1087 *7))) (-5 *5 (-1 (-348 *7) *7)) + (-4 *7 (-1157 *6)) (-4 *6 (-13 (-312) (-120) (-952 (-350 (-486))))) + (-5 *2 (-585 (-2 (|:| |frac| (-350 *7)) (|:| -3269 *3)))) + (-5 *1 (-731 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-350 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-585 (-2 (|:| |frac| (-350 *6)) (|:| -3269 (-600 *6 (-350 *6)))))) + (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-4 *7 (-1157 *5)) (-4 *4 (-663 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) + (-5 *1 (-733 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-600 *2 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-732 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-350 *6))) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) + (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) + (-5 *1 (-732 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-350 *6))) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) + (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1156 *4)) - (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3))))) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-1157 *4)) + (-5 *1 (-731 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-350 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) - (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) - (-4 *6 (-601 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) - (-5 *2 (-584 (-2 (|:| -3954 *5) (|:| -3268 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) - (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) - (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3268 *5)))) - (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) - (-4 *5 (-601 (-350 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) - (-4 *5 (-601 (-350 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3)) - (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2)) - (-4 *3 (-601 (-350 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) - (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) - (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) - (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) - (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) - (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) - (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) - (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) - (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1156 *5)) - (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) - (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) - (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) - (-4 *6 (-601 (-350 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) - (-5 *1 (-728 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1116) (-872)))))) + (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) + (-4 *5 (-1157 *4)) (-5 *1 (-731 *4 *5 *2 *6)) (-4 *2 (-602 *5)) + (-4 *6 (-602 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) + (-5 *2 (-585 (-2 (|:| -3955 *5) (|:| -3269 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) + (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) + (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -3269 *5)))) + (-5 *1 (-731 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1157 *4)) (-5 *1 (-731 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) + (-4 *5 (-602 (-350 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) + (-4 *5 (-602 (-350 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *5 *3)) + (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-602 *2)) + (-4 *3 (-602 (-350 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) + (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) + (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) + (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *3 *6)) + (-4 *3 (-602 *4)) (-4 *6 (-602 (-350 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) + (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *6 *3)) + (-4 *6 (-602 *5)) (-4 *3 (-602 (-350 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) + (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *6 *3)) + (-4 *6 (-602 *4)) (-4 *3 (-602 (-350 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1157 *5)) + (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) + (-4 *3 (-602 *2)) (-4 *6 (-602 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-350 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-730 *5 *2 *3 *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) + (-4 *6 (-602 (-350 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-291 *5 *6 *7)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-729 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-728 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1117) (-873)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872)))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) - (-4 *4 (-13 (-29 *6) (-1116) (-872))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) - (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) + (-12 (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) + (-4 *4 (-13 (-29 *6) (-1117) (-873))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) + (-5 *1 (-726 *6 *4 *3)) (-4 *3 (-602 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-146)) (-5 *1 (-724 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) (((*1 *1 *1) (-4 *1 (-201))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) + (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) - ((*1 *1 *1) (-4 *1 (-413))) - ((*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131))))) + ((*1 *1 *1) (-4 *1 (-414))) + ((*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) - ((*1 *1 *1 *1) (-4 *1 (-718)))) + ((*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) + ((*1 *1 *1 *1) (-4 *1 (-719)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) + (-2 (|:| -3405 *4) (|:| -1598 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-485))))) + (-5 *1 (-713)) (-5 *5 (-486))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) - (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) + (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) + (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-485)) - (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) - (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) - (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) + (-12 (-5 *4 (-486)) + (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330)))) + (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) + (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-485)) - (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) - (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) - (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) + (-12 (-5 *4 (-486)) + (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1477 (-330)))) + (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) + (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) - (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) + (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) + (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) - (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) + (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) + (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) - (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710))))) + (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) + (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) - (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) + (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) - (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) + (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) - (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) + (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) - (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) - (-5 *1 (-709 *5))))) + (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) + (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) + (-5 *1 (-710 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) - (-5 *2 (-330)) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) + (-5 *2 (-330)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) - (-5 *2 (-330)) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) + (-5 *2 (-330)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) - (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) + (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) - (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) + (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) - (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) + (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) + (-12 (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-330))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) - (-4 *3 (-554 (-330))))) + (-12 (-5 *4 (-832)) (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) + (-4 *3 (-555 (-330))))) ((*1 *2 *3) - (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-142 *5)) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) - (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) + (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) - (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) + (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) + (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) + (-12 (-5 *4 (-832)) (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) - (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-330)) + (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) - (-5 *2 (-330)) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) + (-5 *2 (-330)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) - (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) (-5 *2 (-330)) + (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) - (-5 *2 (-330)) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 *2)) + (-5 *2 (-330)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) - (-5 *2 (-330)) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 *2)) + (-5 *2 (-330)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) - (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) + (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) + (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) + (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) - (-4 *3 (-962))))) + (-12 (-5 *2 (-585 (-706 *3))) (-5 *1 (-706 *3)) (-4 *3 (-497)) + (-4 *3 (-963))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))) + (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) - (-4 *3 (-496)) (-4 *3 (-962))))) + (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) + (-4 *3 (-497)) (-4 *3 (-963))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) - (-4 *3 (-496)) (-4 *3 (-962))))) + (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) + (-4 *3 (-497)) (-4 *3 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-350 (-485)))) + (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 - (-584 - (-2 (|:| |outval| *4) (|:| |outmult| (-485)) - (|:| |outvect| (-584 (-631 *4)))))) - (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756)))))) + (-585 + (-2 (|:| |outval| *4) (|:| |outmult| (-486)) + (|:| |outvect| (-585 (-632 *4)))))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) - (-4 *4 (-13 (-312) (-756)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) + (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-704 *4)) + (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) - (-4 *3 (-662 *4 *2)))) + (-12 (-4 *4 (-146)) (-4 *2 (-1157 *4)) (-5 *1 (-151 *4 *2 *3)) + (-4 *3 (-663 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5)) - (-5 *1 (-248 *5)) (-4 *5 (-392)))) + (-12 (-5 *3 (-632 (-350 (-859 *5)))) (-5 *4 (-1092)) (-5 *2 (-859 *5)) + (-5 *1 (-248 *5)) (-4 *5 (-393)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4)) - (-4 *4 (-392)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) + (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-5 *2 (-859 *4)) (-5 *1 (-248 *4)) + (-4 *4 (-393)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485))))) - (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) + (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-859 (-142 (-350 (-486))))) + (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1091)) - (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5)) - (-4 *5 (-13 (-312) (-756))))) + (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *4 (-1092)) + (-5 *2 (-859 (-142 (-350 (-486))))) (-5 *1 (-690 *5)) + (-4 *5 (-13 (-312) (-757))))) ((*1 *2 *3) - (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485)))) - (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) + (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-859 (-350 (-486)))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1091)) - (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756)))))) + (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *4 (-1092)) + (-5 *2 (-859 (-350 (-486)))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-312) (-757)))))) (((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695))) - (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-585 (-696))) + (-5 *1 (-703 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258)) - (-4 *10 (-862 *9 *7 *8)) + (-12 (-4 *6 (-1157 *9)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-258)) + (-4 *10 (-863 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-584 (-1086 *10))) - (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) - (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6)) - (-5 *5 (-584 *10))))) + (-2 (|:| |deter| (-585 (-1087 *10))) + (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) + (-5 *1 (-703 *6 *7 *8 *9 *10)) (-5 *3 (-1087 *10)) (-5 *4 (-585 *6)) + (-5 *5 (-585 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3)) - (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831))))) + (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-585 *3)) + (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-832))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1602 *4)))) + (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5)) - (-4 *5 (-984 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1075)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *4 (-979 *6 *7 *8)) (-5 *2 (-1187)) (-5 *1 (-701 *6 *7 *8 *4 *5)) + (-4 *5 (-985 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3))))) + (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) ((*1 *1 *1) (-5 *1 (-330))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) + (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1602 *4)))) + (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) - (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) - ((*1 *1 *1 *1) (-4 *1 (-484))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-142 (-350 (-485))))) - (-5 *2 - (-584 - (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) - (|:| |outvect| (-584 (-631 (-142 *4))))))) - (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-686)))) -(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-686)))) -(((*1 *1 *1 *1) (-4 *1 (-686)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *2 (-979 *4 *5 *6)) + (-5 *1 (-701 *4 *5 *6 *2 *3)) (-4 *3 (-985 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-696))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-432)) (-5 *4 (-867)) (-5 *2 (-634 (-473))) (-5 *1 (-473)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-867)) (-4 *3 (-1015)) (-5 *2 (-634 *1)) (-4 *1 (-693 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-142 (-350 (-486))))) + (-5 *2 + (-585 + (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-486)) + (|:| |outvect| (-585 (-632 (-142 *4))))))) + (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-687)))) +(((*1 *1 *1 *1) (-4 *1 (-414))) ((*1 *1 *1 *1) (-4 *1 (-687)))) +(((*1 *1 *1 *1) (-4 *1 (-687)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-685 *3)) (-4 *3 (-146))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-5 *2 (-1087 *6)) (-5 *3 (-486)) (-4 *6 (-258)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) - (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695))))) + (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-4 *7 (-758)) + (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-4 *8 (-258)) (-5 *2 (-585 (-696))) + (-5 *1 (-683 *6 *7 *8 *9)) (-5 *5 (-696))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6)) - (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258))))) + (-12 (-5 *3 (-486)) (-5 *4 (-348 *2)) (-4 *2 (-863 *7 *5 *6)) + (-5 *1 (-683 *5 *6 *7 *2)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-258))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) - (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) + (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) + (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 - (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8)) - (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 *8)) (|:| -2402 (-485))))) + (-2 (|:| |upol| (-1087 *8)) (|:| |Lval| (-585 *8)) + (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 *8)) (|:| -2403 (-486))))) (|:| |ctpol| *8))) - (-5 *1 (-682 *6 *7 *8 *9))))) + (-5 *1 (-683 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) - (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) + (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) + (-4 *6 (-719)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 *9)) (|:| -2402 (-485))))))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9))))) + (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 *9)) (|:| -2403 (-486))))))) + (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258)) - (-4 *9 (-862 *8 *6 *7)) - (-5 *2 (-2 (|:| -2005 (-1086 *9)) (|:| |polval| (-1086 *8)))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8))))) + (-12 (-5 *5 (-486)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-258)) + (-4 *9 (-863 *8 *6 *7)) + (-5 *2 (-2 (|:| -2006 (-1087 *9)) (|:| |polval| (-1087 *8)))) + (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9)) (-5 *4 (-1087 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) + (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) + (-5 *1 (-683 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485))))) - (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) - (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) + (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) + (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) - ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014))))) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) + (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-680 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-679))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-677 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) + ((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))) + (-12 (-5 *2 (-696)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) - (-5 *3 (-350 (-858 *6))) (-4 *5 (-718)) - (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))))))) + (-12 (-4 *6 (-497)) (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) + (-5 *3 (-350 (-859 *6))) (-4 *5 (-719)) + (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496)) - (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) - (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))))))) + (-12 (-5 *3 (-1087 (-859 *6))) (-4 *6 (-497)) + (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) + (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) - (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) - (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496))))) + (-12 (-5 *3 (-1087 *2)) (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) + (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) + (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497))))) (((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) - (-4 *6 (-496)) (-5 *2 (-2 (|:| -2485 (-858 *6)) (|:| -2059 (-858 *6)))) - (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5))))) + (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) + (-4 *6 (-497)) (-5 *2 (-2 (|:| -2486 (-859 *6)) (|:| -2060 (-859 *6)))) + (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-350 (-859 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) - (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) + (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) - (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))) + (-12 (-5 *3 (-585 *9)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) + (-4 *8 (-963)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) - (-5 *1 (-667 *5 *2)) (-4 *5 (-312))))) + (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) + (-5 *1 (-668 *5 *2)) (-4 *5 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3091 (-348 *3)) (|:| |special| (-348 *3)))) - (-5 *1 (-667 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3092 (-348 *3)) (|:| |special| (-348 *3)))) + (-5 *1 (-668 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-72))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-666 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1092))))) ((*1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-696)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1092))))) ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) - ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) - ((*1 *1 *1) (|partial| -4 *1 (-660)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) - ((*1 *1 *1) (|partial| -4 *1 (-660)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))) + ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-663 *2 *3)) (-4 *3 (-1157 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-4 *1 (-663 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) + ((*1 *1 *1) (|partial| -4 *1 (-661)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) + ((*1 *1 *1) (|partial| -4 *1 (-661)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1091)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) + (-12 (-5 *2 (-1162 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1092)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) ((*1 *2 *1) - (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) + (-12 (-4 *2 (-1015)) (-5 *1 (-652 *3 *2 *4)) (-4 *3 (-758)) (-14 *4 - (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2)) - (-2 (|:| -2401 *3) (|:| -2402 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320)))) - ((*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72)))) + (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *2)) + (-2 (|:| -2402 *3) (|:| -2403 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-320)))) + ((*1 *2 *1) (-12 (-4 *2 (-761)) (-5 *1 (-455 *3 *2)) (-4 *3 (-72)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) ((*1 *2 *1) - (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) + (-12 (-4 *2 (-758)) (-5 *1 (-652 *2 *3 *4)) (-4 *3 (-1015)) (-14 *4 - (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) - (-2 (|:| -2401 *2) (|:| -2402 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3))))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) + (-2 (|:| -2402 *2) (|:| -2403 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1157 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1156 *3))))) + (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1157 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1157 *3))))) (((*1 *2) - (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1157 *3))))) (((*1 *2) - (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1156 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1157 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))) + (-12 (-4 *2 (-299)) (-4 *2 (-963)) (-5 *1 (-651 *2 *3)) (-4 *3 (-1157 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13)) - (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) - (-5 *7 (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *13))))) - (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757)) - (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) - (-5 *1 (-645 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-585 (-1087 *13))) (-5 *3 (-1087 *13)) + (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) + (-5 *7 (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *13))))) + (-5 *8 (-585 (-696))) (-5 *9 (-1181 (-585 (-1087 *10)))) (-4 *12 (-758)) + (-4 *10 (-258)) (-4 *13 (-863 *10 *11 *12)) (-4 *11 (-719)) + (-5 *1 (-646 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9)) - (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258)) - (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12))) - (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12))))) + (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1087 *9))) (-5 *6 (-585 *9)) + (-5 *7 (-585 *12)) (-5 *8 (-585 (-696))) (-4 *11 (-758)) (-4 *9 (-258)) + (-4 *12 (-863 *9 *10 *11)) (-4 *10 (-719)) (-5 *2 (-585 (-1087 *12))) + (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1087 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11)) - (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) - (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-258)) - (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-585 (-1087 *11))) (-5 *3 (-1087 *11)) + (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-696))) + (-5 *7 (-1181 (-585 (-1087 *8)))) (-4 *10 (-758)) (-4 *8 (-258)) + (-4 *11 (-863 *8 *9 *10)) (-4 *9 (-719)) (-5 *1 (-646 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) - (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) + (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) + (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) - (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) + (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) + (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) - (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) + (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) + (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) - (-4 *3 (-1130)) (-4 *4 (-1130))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) + (-4 *3 (-1131)) (-4 *4 (-1131))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1092)) (-5 *1 (-475)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) + (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) + (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3)) - (-4 *3 (-554 (-474)))))) + (-12 (-5 *4 (-585 (-1092))) (-5 *2 (-1092)) (-5 *1 (-643 *3)) + (-4 *3 (-555 (-475)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) - (-4 *3 (-554 (-474))))) + (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-642 *3)) + (-4 *3 (-555 (-475))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) - (-4 *3 (-554 (-474)))))) + (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-642 *3)) + (-4 *3 (-555 (-475)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) - (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))) + (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) + (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131))))) (((*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-630 *3 *4 *5 *6)) - (-4 *6 (-628 *3 *4 *5)))) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-631 *3 *4 *5 *6)) + (-4 *6 (-629 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-639 *3)) + (-12 (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-640 *3)) (-4 *3 (-258))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) - (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637))))) + (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *1 (-638))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) - (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637))))) + (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) - (-5 *1 (-637))))) + (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) + (-5 *1 (-638))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) - (-5 *1 (-637)))) + (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) + (-5 *1 (-638)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) - (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) + (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) - (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637))))) + (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1 (-856 (-179)) (-179) (-179))) + (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *1 (-638))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) + (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))) + (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *5)))) (-4 *5 (-1156 *4)) - (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) + (-12 (-5 *3 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *5)))) (-4 *5 (-1157 *4)) + (-4 *4 (-299)) (-5 *2 (-585 *5)) (-5 *1 (-170 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-2 (|:| -3734 *5) (|:| -3950 (-485))))) (-5 *4 (-485)) - (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5))))) + (-12 (-5 *3 (-585 (-2 (|:| -3735 *5) (|:| -3951 (-486))))) (-5 *4 (-486)) + (-4 *5 (-1157 *4)) (-5 *2 (-585 *5)) (-5 *1 (-637 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -3950 *4)))) - (-5 *1 (-636 *3)) (-4 *3 (-1156 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) - ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014))))) + (-12 (-5 *4 (-486)) (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -3951 *4)))) + (-5 *1 (-637 *3)) (-4 *3 (-1157 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) + ((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014)) - (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1731 (-695)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) -(((*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) + (-12 (-4 *1 (-636 *3)) (-4 *3 (-1015)) + (-5 *2 (-585 (-2 (|:| |entry| *3) (|:| -1732 (-696)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) +(((*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) + (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) - (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6))))) + (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) + (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) - (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6))))) + (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) + (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6))))) + (-12 (-5 *3 (-486)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1015))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1015)) (-4 *4 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-625 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-626 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) - (-5 *1 (-625 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5)) + (-5 *1 (-626 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) - (-4 *3 (-1014))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1015)) + (-4 *3 (-1015))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) - (-5 *1 (-620 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) - (-5 *1 (-624 *5)) (-4 *5 (-1014))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623))))) + (-12 (-5 *3 (-1 *2 (-696) *2)) (-5 *4 (-696)) (-4 *2 (-1015)) + (-5 *1 (-621 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-696) *3)) (-4 *3 (-1015)) (-5 *1 (-625 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1015)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-486)) (-5 *2 (-585 *5)) + (-5 *1 (-625 *5)) (-4 *5 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1132))) (-5 *3 (-1132)) (-5 *1 (-624))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *2 (-1015)) (-5 *1 (-623 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) -(((*1 *2 *3) - (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) +(((*1 *2 *3) + (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-85)) (-5 *1 (-616 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3))))) + (|partial| -12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) - (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) + (-5 *2 (-58 (-585 (-616 *5)))) (-5 *1 (-616 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) - (-5 *1 (-615 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-585 (-616 *5))) + (-5 *1 (-616 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-5 *2 - (-2 (|:| |particular| (-3 (-1180 (-350 *8)) "failed")) - (|:| -2013 (-584 (-1180 (-350 *8)))))) - (-5 *1 (-612 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1181 (-350 *8)) "failed")) + (|:| -2014 (-585 (-1181 (-350 *8)))))) + (-5 *1 (-613 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1036 *5))) - (-4 *4 (-13 (-324 *5) (-1036 *5))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) - (-4 *3 (-628 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) + (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-85)) (-5 *1 (-611 *5 *6 *4 *3)) + (-4 *3 (-629 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) - (-5 *1 (-611 *5))))) + (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-85)) + (-5 *1 (-612 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822)) - (-5 *1 (-606 *4))))) -(((*1 *1 *1) (-4 *1 (-605)))) -(((*1 *1 *1 *1) (-4 *1 (-605)))) -(((*1 *1 *1 *1) (-4 *1 (-605)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) + (|partial| -12 (-5 *2 (-585 (-1087 *4))) (-5 *3 (-1087 *4)) (-4 *4 (-823)) + (-5 *1 (-607 *4))))) +(((*1 *1 *1) (-4 *1 (-606)))) +(((*1 *1 *1 *1) (-4 *1 (-606)))) +(((*1 *1 *1 *1) (-4 *1 (-606)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) - (-4 *2 (-601 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) + (-4 *2 (-602 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312)))) + (-12 (-5 *2 (-696)) (-4 *1 (-602 *3)) (-4 *3 (-963)) (-4 *3 (-312)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2)) - (-4 *2 (-601 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) + (-12 (-5 *3 (-696)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-604 *5 *2)) + (-4 *2 (-602 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) - (-4 *2 (-601 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) + (-4 *2 (-602 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) - (-5 *3 (-598 (-350 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) - (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) + (-5 *3 (-599 (-350 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-595 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 *4)))) + (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) (-4 *3 (-1014)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-4 *3 (-1015)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) + (-12 (-5 *3 (-486)) (-4 *1 (-336 *4)) (-4 *4 (-1015)) (-5 *2 (-696)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) + (-12 (-5 *3 (-486)) (-4 *2 (-23)) (-5 *1 (-593 *4 *2 *5)) (-4 *4 (-1015)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) + (-12 (-5 *3 (-486)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-486)) (-4 *2 (-1015)) (-5 *1 (-593 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)))) - ((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)))) + ((*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)))) ((*1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1 (-486) (-486))) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1 (-696) (-696))) (-4 *1 (-336 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) - (-4 *3 (-1014))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)) + (-4 *3 (-1015))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-310 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-593 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014))))) -(((*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1015))))) +(((*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-585 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4)) - (-14 *4 (-584 (-1091)))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-583 *3 *4)) + (-14 *4 (-585 (-1092)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) - (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4)))))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) + (-5 *2 (-2 (|:| |mat| (-632 *4)) (|:| |vec| (-1181 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4))))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5)))))) + (-12 (-5 *3 (-632 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-582 *5)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4))))) + (-12 (-5 *3 (-632 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) - (-14 *4 (-584 (-1091)))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) + (-14 *4 (-585 (-1092)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) - (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4)))) + (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) + (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 (-1181 *5)) (-5 *1 (-580 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) - (-2562 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-350 *5))) - (-5 *1 (-579 *5 *4))))) + (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) + (-2563 (-4 *5 (-312))) (-4 *5 (-497)) (-5 *2 (-1181 (-350 *5))) + (-5 *1 (-580 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) - (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5))))) + (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) + (-4 *4 (-497)) (-5 *2 (-1181 *4)) (-5 *1 (-580 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) - (-5 *2 (-85)) (-5 *1 (-579 *4 *5))))) + (-12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-497)) + (-5 *2 (-85)) (-5 *1 (-580 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-249 (-752 *3))) (-4 *3 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-3 (-751 *3) - (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-751 *3) #1#))) + (-3 (-752 *3) + (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-752 *3) #1#))) "failed")) - (-5 *1 (-576 *5 *3)))) + (-5 *1 (-577 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) - (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) - (-5 *1 (-576 *6 *3)))) + (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1075)) + (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-752 *3)) + (-5 *1 (-577 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392)) + (-12 (-5 *4 (-249 (-752 (-859 *5)))) (-4 *5 (-393)) (-5 *2 - (-3 (-751 (-350 (-858 *5))) - (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #2#))) + (-3 (-752 (-350 (-859 *5))) + (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-752 (-350 (-859 *5))) #2#))) #3="failed")) - (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) + (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) + (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) (-5 *2 - (-3 (-751 *3) - (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#)) - (|:| |rightHandLimit| (-3 (-751 *3) #2#))) + (-3 (-752 *3) + (-2 (|:| |leftHandLimit| (-3 (-752 *3) #2#)) + (|:| |rightHandLimit| (-3 (-752 *3) #2#))) #3#)) - (-5 *1 (-577 *5)))) + (-5 *1 (-578 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1074)) - (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) - (-5 *1 (-577 *6))))) + (|partial| -12 (-5 *4 (-249 (-350 (-859 *6)))) (-5 *5 (-1075)) + (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-752 *3)) + (-5 *1 (-578 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-249 (-744 *3))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) - (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) + (|partial| -12 (-5 *4 (-249 (-745 *3))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-745 *3)) + (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392)) - (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) + (-12 (-5 *4 (-249 (-745 (-859 *5)))) (-4 *5 (-393)) + (-5 *2 (-745 (-350 (-859 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) - (-5 *2 (-744 *3)) (-5 *1 (-577 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572))))) -(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1) (-5 *1 (-572)))) + (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) + (-5 *2 (-745 *3)) (-5 *1 (-578 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-573))))) +(((*1 *1 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1) (-5 *1 (-573)))) (((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) - (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) + (-5 *2 (-422 *4 *5)) (-5 *1 (-572 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1091))) - (-4 *5 (-392)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-585 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-585 (-1092))) + (-4 *5 (-393)) (-5 *1 (-572 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1091))) - (-4 *5 (-392)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-775 *4)) (-14 *4 (-585 (-1092))) + (-4 *5 (-393)) (-5 *1 (-572 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392)) - (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-206 *5 *6))) (-4 *6 (-393)) + (-5 *2 (-206 *5 *6)) (-14 *5 (-585 (-1092))) (-5 *1 (-572 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) + (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1091))) - (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6))))) + (-12 (-5 *4 (-585 (-422 *5 *6))) (-5 *3 (-422 *5 *6)) (-14 *5 (-585 (-1092))) + (-4 *6 (-393)) (-5 *2 (-1181 *6)) (-5 *1 (-572 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1091))) (-4 *4 (-392)) - (-5 *1 (-571 *3 *4))))) + (-12 (-5 *2 (-585 (-422 *3 *4))) (-14 *3 (-585 (-1092))) (-4 *4 (-393)) + (-5 *1 (-572 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) - (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) + (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) + (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) - (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392))))) + (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) + (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) - (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) + (-5 *2 (-585 (-206 *4 *5))) (-5 *1 (-572 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-584 (-1091))) (-4 *5 (-392)) - (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485))))) - (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5)))))) + (-12 (-14 *4 (-585 (-1092))) (-4 *5 (-393)) + (-5 *2 (-2 (|:| |glbase| (-585 (-206 *4 *5))) (|:| |glval| (-585 (-486))))) + (-5 *1 (-572 *4 *5)) (-5 *3 (-585 (-206 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) - (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485))))) - (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) + (-5 *2 (-2 (|:| |gblist| (-585 (-206 *4 *5))) (|:| |gvlist| (-585 (-486))))) + (-5 *1 (-572 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-364 *3) (-916) (-1116))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-364 *3) (-917) (-1117))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) - (-4 *5 (-13 (-364 *4) (-916))))) + (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) + (-4 *5 (-13 (-364 *4) (-917))))) ((*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))) ((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) - (-4 *5 (-13 (-364 *4) (-916) (-1116)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-570 *4 *5)) + (-4 *5 (-13 (-364 *4) (-917) (-1117)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-584 (-1091))) - (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) - (-5 *1 (-568 *5 *6))))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) + (-14 *6 (-585 (-1092))) + (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) + (-5 *1 (-569 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) + (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) - (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4))))) + (-12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) + (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-584 (-1091))))) + (|partial| -12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) - (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4))))) + (|partial| -12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) + (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85)) - (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1091))))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-85)) + (-5 *1 (-309 *4 *5)) (-14 *5 (-585 (-1092))))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) - (-14 *5 (-584 (-1091))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))))) + (-12 (-5 *3 (-585 (-705 *4 (-775 *5)))) (-4 *4 (-393)) + (-14 *5 (-585 (-1092))) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) - (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485))))) - (-14 *6 (-831))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-608 *4 *5))) + (-5 *1 (-568 *4 *5 *6)) (-4 *5 (-13 (-146) (-656 (-350 (-486))))) + (-14 *6 (-832))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) - (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) + (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))) + (-12 (-5 *2 (-585 (-249 *4))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1783 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485))))))) - (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258)) - (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) + (|:| -1784 (-585 (-2 (|:| |irr| *10) (|:| -2397 (-486))))))) + (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-758)) (-4 *3 (-258)) + (-4 *10 (-863 *3 *9 *8)) (-4 *9 (-719)) (-5 *2 - (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) - (|:| |corrfact| (-584 (-1086 *3))))) - (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3)))))) + (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) + (|:| |corrfact| (-585 (-1087 *3))))) + (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-585 (-1087 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757)) - (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) - (-4 *8 (-862 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) - (-4 *2 (-1021 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2))))) + (-12 (-5 *4 (-696)) (-5 *5 (-585 *3)) (-4 *3 (-258)) (-4 *6 (-758)) + (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-566 *6 *7 *3 *8)) + (-4 *8 (-863 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-985 *3 *4 *5 *6)) + (-4 *2 (-1022 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-29 *4)))))) -(((*1 *1) (-5 *1 (-557)))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1117) (-873) (-29 *4)))))) +(((*1 *1) (-5 *1 (-558)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) - (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-350 *5))) (-5 *1 (-555 *4 *5)) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) + (-4 *5 (-1157 *4)) (-5 *2 (-1087 (-350 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-350 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) - (-5 *2 (-1086 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) - (-5 *1 (-552 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) - ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) + (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) + (-5 *2 (-1087 (-350 *6))) (-5 *1 (-556 *5 *6)) (-5 *3 (-350 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-552 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) + (-5 *1 (-553 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-552 *4)) (-5 *1 (-553 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) - (-5 *1 (-551 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-86)) (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-1015)) + (-5 *1 (-552 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85))))) + (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3))))) + (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-585 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-546)))) + (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) (((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546)))) (((*1 *1) (-5 *1 (-546)))) (((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-544)))) (((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540))))) +(((*1 *2 *1) (-12 (-5 *2 (-871 (-158 (-112)))) (-5 *1 (-282)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *4))))) + (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-585 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85))))) + (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *3))))) + (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) (-5 *2 (-585 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014)) - (-4 *3 (-1130)) (-5 *2 (-85))))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-540 *4 *3)) (-4 *4 (-1015)) + (-4 *3 (-1131)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757))))) + (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1015)) (-4 *2 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757))))) + (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1015)) (-4 *2 (-758))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1036 *2)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) - (-4 *2 (-1130))))) + (-12 (-4 *1 (-1037 *2)) (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) + (-4 *2 (-1131))))) (((*1 *2 *1 *3 *3) - (-12 (-4 *1 (-1036 *4)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) - (-5 *2 (-1186))))) + (-12 (-4 *1 (-1037 *4)) (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1131)) + (-5 *2 (-1187))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091))) - (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1116))) (-4 *5 (-496)) - (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1116)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) - (-4 *5 (-13 (-364 *4) (-916) (-1116))) - (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) - (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1116)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) - (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) - (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-533)))) -(((*1 *1) (-5 *1 (-533)))) -(((*1 *1) (-5 *1 (-533)))) -(((*1 *1) (-5 *1 (-533)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533))))) + (-12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-585 (-1092))) + (-4 *2 (-13 (-364 (-142 *5)) (-917) (-1117))) (-4 *5 (-497)) + (-5 *1 (-537 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-917) (-1117)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-497)) (-5 *2 (-142 *5)) (-5 *1 (-537 *4 *5 *3)) + (-4 *5 (-13 (-364 *4) (-917) (-1117))) + (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) + (-5 *1 (-537 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-917) (-1117)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) + (-5 *1 (-537 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) + (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) (-5 *1 (-537 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-534)))) +(((*1 *1) (-5 *1 (-534)))) +(((*1 *1) (-5 *1 (-534)))) +(((*1 *1) (-5 *1 (-534)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-534))) (-5 *1 (-534))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-940 (-751 (-485)))) - (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) - (-5 *1 (-531 *4))))) + (-12 (-5 *2 (-941 (-752 (-486)))) + (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *4)))) (-4 *4 (-963)) + (-5 *1 (-532 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-941 (-752 (-486)))) (-5 *1 (-532 *3)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) - (-4 *3 (-962))))) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-5 *1 (-532 *3)) + (-4 *3 (-963))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) - (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-350 (-485))) - (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6))))) + (-12 (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *6)))) + (-5 *4 (-941 (-752 (-486)))) (-5 *5 (-1092)) (-5 *7 (-350 (-486))) + (-4 *6 (-963)) (-5 *2 (-774)) (-5 *1 (-532 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-962))))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-532 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-529 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) - (-5 *1 (-527)))) + (-12 (-5 *3 (-585 (-832))) (-5 *4 (-815 (-486))) (-5 *2 (-632 (-486))) + (-5 *1 (-528)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) + (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) - (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527))))) + (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-815 (-486)))) + (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-696)) (-5 *1 (-528))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1117) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5)) - (-5 *1 (-526 *5))))) + (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *5)) + (-5 *1 (-527 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) - (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))))) + (-12 (-5 *3 (-521 *2)) (-4 *2 (-13 (-29 *4) (-1117))) (-5 *1 (-523 *4 *2)) + (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))))) ((*1 *2 *3) - (-12 (-5 *3 (-520 (-350 (-858 *4)))) - (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4)) - (-5 *1 (-526 *4))))) + (-12 (-5 *3 (-521 (-350 (-859 *4)))) + (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *4)) + (-5 *1 (-527 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-526 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *1 (-525 *2)) (-4 *2 (-485))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) + (|partial| -12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2696 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3)) - (-4 *3 (-484))))) + (-12 (-5 *2 (-2 (|:| -2697 *3) (|:| -2403 (-696)))) (-5 *1 (-525 *3)) + (-4 *3 (-485))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) + (-12 (-5 *4 (-696)) (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-584 - (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *2)) - (|:| |logand| (-1086 *2))))) - (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) - (-5 *1 (-520 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312))))) + (-585 + (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *2)) + (|:| |logand| (-1087 *2))))) + (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) + (-5 *1 (-521 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312))))) (((*1 *2 *1) (-12 (-5 *2 - (-584 - (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *3)) - (|:| |logand| (-1086 *3))))) - (-5 *1 (-520 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-520 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516))))) -(((*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86)))) - ((*1 *1) (-5 *1 (-515)))) -(((*1 *1) (-5 *1 (-515)))) -(((*1 *1) (-5 *1 (-515)))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514))))) + (-585 + (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *3)) + (|:| |logand| (-1087 *3))))) + (-5 *1 (-521 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-521 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-521 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-520))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-517))))) +(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-517))))) +(((*1 *2 *3) (-12 (-5 *3 (-432)) (-5 *2 (-634 (-517))) (-5 *1 (-517))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-475) (-585 (-475))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-475) (-585 (-475)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-516)))) +(((*1 *1) (-5 *1 (-516)))) +(((*1 *1) (-5 *1 (-516)))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-515)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-515))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1091)) - (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) - (-4 *2 (-13 (-1116) (-872) (-1054) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1092)) + (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-513 *4 *2)) + (-4 *2 (-13 (-1117) (-873) (-1055) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-512 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6)) + (-2 (|:| |ir| (-521 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) - (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6))))) + (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-563 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))) (-485) *4)) - (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5))))) + (|partial| -12 (-5 *2 (-564 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85))) (-486) *4)) + (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *1 (-512 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-312)) (-5 *1 (-512 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1156 *6)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-350 *7))) (-4 *7 (-1157 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-511 *6 *7))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-512 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6)))) - (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -2138 (-350 *6)) (|:| |coeff| (-350 *6)))) + (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3139 *7) (|:| |sol?| (-85))) (-485) *7)) - (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3140 *7) (|:| |sol?| (-85))) (-486) *7)) + (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-511 *7 *8))))) + (-5 *1 (-512 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-511 *7 *8))))) + (-5 *1 (-512 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) - (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) + (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) - (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) - (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) + (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) + (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) - (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) - (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) + (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) + (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6)) - (-4 *6 (-312)) (-4 *7 (-1156 *6)) - (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) "failed") (-486) *6 *6)) + (-4 *6 (-312)) (-4 *7 (-1157 *6)) + (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) + (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) - (-4 *6 (-312)) (-4 *7 (-1156 *6)) - (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) + (-4 *6 (-312)) (-4 *7 (-1157 *6)) + (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) + (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1156 *6)) - (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1157 *6)) + (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) + (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) + (-12 (-5 *5 (-1 (-521 *3) *3 (-1092))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) - (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7)) - (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) - (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) - (-5 *1 (-510 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1092))) + (-4 *3 (-239)) (-4 *3 (-571)) (-4 *3 (-952 *4)) (-4 *3 (-364 *7)) + (-5 *4 (-1092)) (-4 *7 (-555 (-802 (-486)))) (-4 *7 (-393)) + (-4 *7 (-798 (-486))) (-4 *7 (-1015)) (-5 *2 (-521 *3)) + (-5 *1 (-511 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) + (-12 (-5 *3 (-1092)) (-4 *4 (-393)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) (-4 *2 (-364 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) - (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-1092)) (-4 *6 (-364 *5)) (-4 *5 (-1015)) + (-5 *2 (-585 (-552 *6))) (-5 *1 (-511 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6)) - (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6))))) + (-12 (-5 *3 (-585 (-552 *6))) (-5 *4 (-1092)) (-5 *2 (-552 *6)) + (-4 *6 (-364 *5)) (-4 *5 (-1015)) (-5 *1 (-511 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) - (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4))))) + (-12 (-5 *3 (-585 (-552 *5))) (-4 *4 (-1015)) (-5 *2 (-552 *5)) + (-5 *1 (-511 *4 *5)) (-4 *5 (-364 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-364 *4)) - (-4 *4 (-1014)) (-5 *1 (-510 *4 *5))))) + (-12 (-5 *2 (-585 (-552 *5))) (-5 *3 (-1092)) (-4 *5 (-364 *4)) + (-4 *4 (-1015)) (-5 *1 (-511 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) - (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5))))) - (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5)))))) + (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) + (-5 *2 (-2 (|:| -2138 (-350 (-859 *5))) (|:| |coeff| (-350 (-859 *5))))) + (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 (-350 (-858 *6)))) - (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120))) + (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 (-350 (-859 *6)))) + (-5 *3 (-350 (-859 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-507 *6))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-508 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) - (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4))))) + (|partial| -12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) + (-4 *4 (-13 (-497) (-952 (-486)) (-120))) (-5 *1 (-508 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) - (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5)))))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) + (-5 *2 (-521 (-350 (-859 *5)))) (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))) + (|partial| -12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-312) (-120) (-951 (-485)))) + (|partial| -12 (-5 *4 (-585 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-505 *5 *6))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-506 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) - (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5)))) - (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) + (-5 *2 (-2 (|:| -2138 (-350 *5)) (|:| |coeff| (-350 *5)))) + (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) - (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4))))) + (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) + (-4 *3 (-13 (-312) (-120) (-952 (-486)))) (-5 *1 (-506 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) - (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) - (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) + (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) + (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) + (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054)) - (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-554 (-801 (-485)))) - (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) - (-5 *1 (-504 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) - (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) - (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) - (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) + (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-752 *2)) (-4 *2 (-1055)) + (-4 *2 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-555 (-802 (-486)))) + (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) + (-5 *1 (-505 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) + (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) + (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) + (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-505 *5 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) - (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) - (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))) + (-12 (-5 *5 (-552 *4)) (-5 *6 (-1092)) (-4 *4 (-13 (-364 *7) (-27) (-1117))) + (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-504 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) - (-4 *2 (-13 (-364 *5) (-27) (-1116))) - (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014))))) + (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) + (-4 *2 (-13 (-364 *5) (-27) (-1117))) + (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *1 (-504 *5 *2 *6)) (-4 *6 (-1015))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) + (-4 *3 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-504 *6 *3 *7)) (-4 *7 (-1015))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) - (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) - (-4 *6 (-1014))))) + (|partial| -12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) + (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-504 *5 *3 *6)) + (-4 *6 (-1015))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) - (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) - (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014))))) + (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) + (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) + (-5 *1 (-504 *5 *3 *6)) (-4 *6 (-1015))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) - (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3))) - (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) + (-4 *7 (-1157 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) + (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6)) + (-2 (|:| |answer| (-350 *6)) (|:| -2137 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) - (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) -(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) + (-5 *1 (-503 *5 *6)) (-5 *3 (-350 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-696)) (-5 *1 (-501))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-501)) (-5 *3 (-486))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258)) + (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *8)) + (-12 (-5 *3 (-585 *8)) (-5 *4 - (-584 - (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-631 *7))))) - (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) - (-5 *2 - (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) - (-5 *1 (-438 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) + (-585 + (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-632 *7))))) + (-5 *5 (-696)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-299)) + (-5 *2 + (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) + (-5 *1 (-439 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4)) - (-4 *4 (-13 (-364 *7) (-27) (-1116))) - (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) - (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) + (-12 (-5 *5 (-552 *4)) (-5 *6 (-1087 *4)) + (-4 *4 (-13 (-364 *7) (-27) (-1117))) + (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1086 *4))) - (-4 *4 (-13 (-364 *7) (-27) (-1116))) - (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) - (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))) + (-12 (-5 *5 (-552 *4)) (-5 *6 (-350 (-1087 *4))) + (-4 *4 (-13 (-364 *7) (-27) (-1117))) + (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) + (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-551 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1091))) (-5 *5 (-1086 *2)) - (-4 *2 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) + (|partial| -12 (-5 *3 (-552 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1092))) (-5 *5 (-1087 *2)) + (-4 *2 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) - (-5 *5 (-350 (-1086 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014))))) + (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1092))) + (-5 *5 (-350 (-1087 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3)) - (-4 *3 (-13 (-364 *7) (-27) (-1116))) - (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1087 *3)) + (-4 *3 (-13 (-364 *7) (-27) (-1117))) + (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1086 *3))) - (-4 *3 (-13 (-364 *7) (-27) (-1116))) - (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-350 (-1087 *3))) + (-4 *3 (-13 (-364 *7) (-27) (-1117))) + (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) - (-4 *7 (-1014)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) + (-4 *3 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) + (-4 *7 (-1015)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) - (-4 *3 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) - (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) - (-4 *7 (-1014))))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) + (-4 *3 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) + (-4 *7 (-1015))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) - (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) + (-12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) + (-4 *3 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) + (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) - (-4 *3 (-13 (-364 *6) (-27) (-1116))) - (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) - (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))) + (-12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) + (-4 *3 (-13 (-364 *6) (-27) (-1117))) + (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) + (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-499 *2)) (-4 *2 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 *7))) - (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) + (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-585 (-552 *3))) (-5 *5 (-552 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 *7))) + (-4 *7 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-521 *3)) (-5 *1 (-498 *5 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1091)) - (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) + (|partial| -12 (-5 *3 (-1092)) + (-4 *4 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-498 *4 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 *6))) - (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) + (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 *6))) + (-4 *6 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-497 *6 *3))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-498 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1091)) - (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) - (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1776 *1) (|:| -3984 *1) (|:| |associate| *1))) - (-4 *1 (-496))))) -(((*1 *1 *1) (-4 *1 (-496)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) + (|partial| -12 (-5 *4 (-1092)) + (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *5 *3)) + (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1777 *1) (|:| -3985 *1) (|:| |associate| *1))) + (-4 *1 (-497))))) +(((*1 *1 *1) (-4 *1 (-497)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))))) - ((*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))) -(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))) + (-12 (-5 *2 (-350 (-486))) (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))))) + ((*1 *1 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117)))))) +(((*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) + (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-494))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) - (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)))) - (-4 *7 (-1156 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) + (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-497) (-952 (-486)))) + (-4 *7 (-1157 (-350 *6))) (-5 *1 (-493 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) - (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) - (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) + (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) + (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) - (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) - (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) + (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) + (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) - (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) - (-5 *1 (-491 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) -(((*1 *1 *1 *1) (-4 *1 (-484)))) + (-12 (-5 *4 (-552 *3)) (-5 *5 (-1 (-1087 *3) (-1087 *3))) + (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-497)) (-5 *2 (-521 *3)) + (-5 *1 (-492 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) +(((*1 *1 *1 *1) (-4 *1 (-485)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-485) #1="failed") *5)) (-4 *5 (-962)) - (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-486) #1="failed") *5)) (-4 *5 (-963)) + (-5 *2 (-486)) (-5 *1 (-483 *5 *3)) (-4 *3 (-1157 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) - (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-486) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-486)) + (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) - (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-486) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-486)) + (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-396 *3 *2)) (-4 *2 (-1157 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-401 *3 *2)) (-4 *2 (-1157 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) - (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3))))) + (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-696))) + (-5 *1 (-479 *3 *2 *4 *5)) (-4 *2 (-1157 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-312)) - (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) - (-4 *7 (-13 (-312) (-756)))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1092))) (-4 *6 (-312)) + (-5 *2 (-585 (-249 (-859 *6)))) (-5 *1 (-478 *5 *6 *7)) (-4 *5 (-393)) + (-4 *7 (-13 (-312) (-757)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392)) - (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) - (-4 *5 (-13 (-312) (-756)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) - (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) - (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) - ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-474))))) -(((*1 *1 *1) (-5 *1 (-474)))) -(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474))))) + (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-4 *6 (-393)) + (-5 *2 (-585 (-585 *7))) (-5 *1 (-478 *6 *7 *5)) (-4 *7 (-312)) + (-4 *5 (-13 (-312) (-757)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) + (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-859 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) + (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-475)))) + ((*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *1 (-476 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1092)) (-5 *2 (-475)) (-5 *1 (-476 *4)) (-4 *4 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-475))) (-5 *1 (-475))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-475))))) +(((*1 *1 *1) (-5 *1 (-475)))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-475))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-475))) (-5 *2 (-1092)) (-5 *1 (-475))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-585 (-475))) (-5 *1 (-475))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1086 *6)) (-1086 *6))) + (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-348 (-1087 *6)) (-1087 *6))) (-4 *6 (-312)) (-5 *2 - (-584 - (-2 (|:| |outval| *7) (|:| |outmult| (-485)) - (|:| |outvect| (-584 (-631 *7)))))) - (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756)))))) + (-585 + (-2 (|:| |outval| *7) (|:| |outmult| (-486)) + (|:| |outvect| (-585 (-632 *7)))))) + (-5 *1 (-472 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-757)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6)) - (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))) + (-12 (-5 *3 (-1087 *5)) (-4 *5 (-312)) (-5 *2 (-585 *6)) + (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) - (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756)))))) + (-12 (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *2 (-1087 *4)) + (-5 *1 (-472 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-757)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-469)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-469))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-469))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) + (-12 (-5 *3 (-832)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1087 *1)) (-4 *1 (-280 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3)))) + (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1157 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4))))) + (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4))))) (((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299))))) (((*1 *2 *2) - (-12 (-5 *2 (-1180 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496)) + (-12 (-5 *2 (-1181 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) - ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) + (-12 (-5 *3 (-832)) (-4 *4 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *4)))) + ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *3)))) ((*1 *2) - (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) + (-12 (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) (-4 *1 (-353 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) - (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) + (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) + (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-361 *3)))) + ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-361 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) + (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-468 *4)) (-4 *4 (-299))))) (((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) + (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831)))) + (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-468 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-832)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4))))) + (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-832)) (-5 *1 (-468 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1035)) (-4 *4 (-299)) (-5 *1 (-468 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-468 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299)) - (-5 *1 (-467 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) - (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101)))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489)))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1139)))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486)))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136)))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487)))))) -(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1137)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463))))) + (-12 (-5 *2 (-1181 *5)) (-5 *3 (-696)) (-5 *4 (-1035)) (-4 *5 (-299)) + (-5 *1 (-468 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-696)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) + (-4 *4 (-299)) (-5 *2 (-1187)) (-5 *1 (-468 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-490)))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1140)))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-487)))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1137)))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-488)))))) +(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1138)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-467)) (-5 *3 (-102)) (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-465))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464))))) (((*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))) -(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) + (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460))))) +(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-278 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-459 *3 *4)) (-14 *4 (-486))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-696)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-486)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) ((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760))))) + (-12 (-5 *2 (-85)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-455 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761))))) (((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) - (-5 *1 (-451 *4 *5)) (-4 *5 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760))))) -(((*1 *1) (-5 *1 (-447)))) + (-5 *1 (-452 *4 *5)) (-4 *5 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761))))) +(((*1 *1) (-5 *1 (-448)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) + (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) + (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) - (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) - (-5 *1 (-445 *4 *5))))) + (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) + (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) + (-5 *1 (-446 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-584 (-1091))) (-14 *5 (-695)) + (-12 (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 - (-584 - (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))) - (-5 *1 (-445 *4 *5)) + (-585 + (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486)))))) + (-5 *1 (-446 *4 *5)) (-5 *3 - (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))))) + (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485))))) - (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4))))) + (-445 (-350 (-486)) (-197 *4 (-696)) (-775 *3) (-206 *3 (-350 (-486))))) + (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-446 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) - (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))) + (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) + (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) - (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))) + (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) + (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) - (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) - (-4 *2 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) + (-4 *2 (-863 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 - (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) - (|:| |genIdeal| (-444 *4 *5 *6 *7)))) - (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) + (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) + (|:| |genIdeal| (-445 *4 *5 *6 *7)))) + (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) - (|:| |genIdeal| (-444 *3 *4 *5 *6)))) - (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *6 (-862 *3 *4 *5))))) + (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) + (|:| |genIdeal| (-445 *3 *4 *5 *6)))) + (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) + (-4 *6 (-863 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))) - (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) + (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))) + (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) - (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-5 *1 (-445 *4 *5 *6 *2)) (-4 *2 (-863 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) - (-4 *2 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) + (-4 *2 (-863 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091))) - (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-249 (-858 *4))))) - (-5 *1 (-444 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *6 (-555 (-1092))) + (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *2 (-1082 (-585 (-859 *4)) (-585 (-249 (-859 *4))))) + (-5 *1 (-445 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) - (-15 -1964 (*2 $))))))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) + (-15 -1965 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) - (-15 -1964 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442))))) + (-13 (-758) + (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) + (-15 -1965 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5)) - (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1157 *5)) + (-5 *2 (-1087 (-1087 *7))) (-5 *1 (-442 *5 *6 *4 *7)) (-4 *4 (-1157 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8))) - (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6)) - (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1087 *8))) + (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *6)) + (-5 *1 (-442 *5 *6 *7 *8)) (-4 *7 (-1157 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) - (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) - (-4 *6 (-1156 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1087 *7)) + (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) + (-4 *6 (-1157 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) - (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1087 *7)) (-4 *5 (-963)) (-4 *7 (-963)) + (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5)) - (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1157 *5)) + (-5 *2 (-1087 *7)) (-5 *1 (-442 *5 *4 *6 *7)) (-4 *6 (-1157 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) - (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) + (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) - (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-696)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) + (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-631 *2)) (-5 *4 (-485)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2)) - (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) + (-12 (-5 *3 (-632 *2)) (-5 *4 (-486)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) + (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2)) - (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) + (-12 (-5 *3 (-632 *2)) (-5 *4 (-696)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) + (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) + (-12 (-5 *4 (-696)) (-4 *5 (-299)) (-4 *6 (-1157 *5)) (-5 *2 - (-584 - (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-631 *6))))) - (-5 *1 (-438 *5 *6 *7)) + (-585 + (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-632 *6))))) + (-5 *1 (-439 *5 *6 *7)) (-5 *3 - (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) - (-4 *7 (-1156 *6))))) + (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) + (-4 *7 (-1157 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-584 + (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-485))))) - (-5 *1 (-348 *3)) (-4 *3 (-496)))) + (|:| |xpnt| (-486))))) + (-5 *1 (-348 *3)) (-4 *3 (-497)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) - (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-431))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) - (-4 *4 (-1156 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485)))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423))))) + (-12 (-5 *4 (-696)) (-4 *3 (-299)) (-4 *5 (-1157 *3)) + (-5 *2 (-585 (-1087 *3))) (-5 *1 (-439 *3 *5 *6)) (-4 *6 (-1157 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-436))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-432))))) +(((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-486))) (-5 *2 (-486)) (-5 *1 (-427 *4)) + (-4 *4 (-1157 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-425 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-787))) (-5 *1 (-424))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-448))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-787))) (-5 *1 (-424))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1091))) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-486))) (-5 *1 (-206 *3 *4)) (-14 *3 (-585 (-1092))) + (-4 *4 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5)) - (-4 *4 (-962)) (-4 *5 (-196 (-3959 *3) (-695))))) + (-12 (-5 *2 (-585 (-486))) (-14 *3 (-585 (-1092))) (-5 *1 (-395 *3 *4 *5)) + (-4 *4 (-963)) (-4 *5 (-196 (-3960 *3) (-696))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1091))) - (-4 *4 (-962))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) - (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485))))) - (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392))))) + (-12 (-5 *2 (-585 (-486))) (-5 *1 (-422 *3 *4)) (-14 *3 (-585 (-1092))) + (-4 *4 (-963))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-421))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-421))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) + (-5 *2 (-2 (|:| |dpolys| (-585 (-206 *5 *6))) (|:| |coords| (-585 (-486))))) + (-5 *1 (-412 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) - (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) - (-4 *6 (-392))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) - (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) - (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392))))) -(((*1 *1) (-5 *1 (-408)))) + (|partial| -12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-585 (-775 *4))) + (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-412 *4 *5 *6)) + (-4 *6 (-393))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) + (-5 *2 (-585 (-585 (-206 *5 *6)))) (-5 *1 (-412 *5 *6 *7)) + (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393))))) +(((*1 *1) (-5 *1 (-409)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) - (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408)))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) + (-5 *4 (-585 (-832))) (-5 *5 (-585 (-221))) (-5 *1 (-409)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) - (-5 *4 (-584 (-831))) (-5 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) - ((*1 *1 *1) (-5 *1 (-408)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) + (-5 *4 (-585 (-832))) (-5 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) + ((*1 *1 *1) (-5 *1 (-409)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408))))) + (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) - (-5 *1 (-408)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) + (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1187)) + (-5 *1 (-409)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) - (-5 *2 (-1186)) (-5 *1 (-408))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408))))) + (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-785)) (-5 *5 (-832)) + (-5 *2 (-1187)) (-5 *1 (-409))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) - (-5 *1 (-408))))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) + (-5 *1 (-409))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) - (-5 *1 (-408))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-179))) + (-5 *1 (-409))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) -(((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) +(((*1 *2 *3) + (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 (-486)))) (-5 *1 (-407))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406))))) + (-12 (-5 *2 (-1181 (-1181 (-486)))) (-5 *3 (-832)) (-5 *1 (-407))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) - (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-758)) (-4 *5 (-719)) (-4 *6 (-497)) + (-4 *7 (-863 *6 *5 *3)) (-5 *1 (-403 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-951 (-350 (-485))) (-312) - (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) + (-13 (-952 (-350 (-486))) (-312) + (-10 -8 (-15 -3949 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) + (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2)) - (-2 (|:| -2401 *5) (|:| -2402 *2)))) - (-4 *2 (-196 (-3959 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3)))))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *2)) + (-2 (|:| -2402 *5) (|:| -2403 *2)))) + (-4 *2 (-196 (-3960 *3) (-696))) (-5 *1 (-402 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-758)) (-4 *7 (-863 *4 *2 (-775 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695))) + (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3960 *3) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) - (-2 (|:| -2401 *2) (|:| -2402 *5)))) - (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-862 *4 *5 (-774 *3)))))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) + (-2 (|:| -2402 *2) (|:| -2403 *5)))) + (-4 *2 (-758)) (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-863 *4 *5 (-775 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-584 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3959 *5) (-695))) + (-12 (-14 *5 (-585 (-1092))) (-4 *2 (-146)) (-4 *4 (-196 (-3960 *5) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4)) - (-2 (|:| -2401 *3) (|:| -2402 *4)))) - (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) - (-4 *7 (-862 *2 *4 (-774 *5)))))) + (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *4)) + (-2 (|:| -2402 *3) (|:| -2403 *4)))) + (-5 *1 (-402 *5 *2 *3 *4 *6 *7)) (-4 *3 (-758)) + (-4 *7 (-863 *2 *4 (-775 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3959 *4) (-695))) + (-12 (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-4 *3 (-196 (-3960 *4) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3)) - (-2 (|:| -2401 *5) (|:| -2402 *3)))) - (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) - (-4 *7 (-862 *2 *3 (-774 *4)))))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *3)) + (-2 (|:| -2402 *5) (|:| -2403 *3)))) + (-5 *1 (-402 *4 *2 *5 *3 *6 *7)) (-4 *5 (-758)) + (-4 *7 (-863 *2 *3 (-775 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) - (-5 *1 (-400 *4 *3))))) + (-12 (-5 *2 (-585 *3)) (-5 *5 (-832)) (-4 *3 (-1157 *4)) (-4 *4 (-258)) + (-5 *1 (-401 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) - (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) - (-5 *4 (-584 *3))))) + (-12 (-5 *6 (-832)) (-4 *5 (-258)) (-4 *3 (-1157 *5)) + (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-401 *5 *3)) + (-5 *4 (-585 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) - (-5 *1 (-395 *3 *5))))) + (-12 (-5 *4 (-585 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-258)) (-5 *2 (-85)) + (-5 *1 (-396 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3)) - (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4))))) + (|partial| -12 (-5 *5 (-1181 (-585 *3))) (-4 *4 (-258)) (-5 *2 (-585 *3)) + (-5 *1 (-396 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) - (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6))))) + (|partial| -12 (-5 *3 (-696)) (-4 *4 (-258)) (-4 *6 (-1157 *4)) + (-5 *2 (-1181 (-585 *6))) (-5 *1 (-396 *4 *6)) (-5 *5 (-585 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-695)) - (-5 *1 (-395 *5 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-258)) (-5 *2 (-696)) + (-5 *1 (-396 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-393 *3 *4 *5 *6)) - (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) - (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) - (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))) + (-2 (|:| |particular| (-394 *3 *4 *5 *6)) + (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) + (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) + (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-393 *3 *4 *5 *6)) - (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) - (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) - (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))) + (-2 (|:| |particular| (-394 *3 *4 *5 *6)) + (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) + (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) + (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) - (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) - (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) + (-12 (-5 *2 (-1181 (-1092))) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) + (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) + (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) - (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) - (-14 *7 (-1180 (-631 *4))))) + (-12 (-5 *2 (-1092)) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) + (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 *2)) + (-14 *7 (-1181 (-632 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3))))) + (-12 (-5 *2 (-1181 (-394 *3 *4 *5 *6))) (-5 *1 (-394 *3 *4 *5 *6)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) + (-12 (-5 *2 (-1181 (-1092))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1180 (-631 *3))))) + (-12 (-5 *2 (-1092)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-832)) (-14 *5 (-585 *2)) (-14 *6 (-1181 (-632 *3))))) ((*1 *1) - (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) - (-14 *4 (-584 (-1091))) (-14 *5 (-1180 (-631 *2)))))) + (-12 (-5 *1 (-394 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-832)) + (-14 *4 (-585 (-1092))) (-14 *5 (-1181 (-632 *2)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1086 (-858 *3))))) + (-5 *2 (-1087 (-859 *3))))) ((*1 *2) - (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) + (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) + (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1086 (-858 *3))))) + (-5 *2 (-1087 (-859 *3))))) ((*1 *2) - (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) + (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) + (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2) - (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3)))))) + (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-584 (-858 *4))))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-585 (-859 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-585 (-859 *3))))) ((*1 *2) - (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) - (-14 *6 (-1180 (-631 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) - (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831)) - (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) - ((*1 *1 *1 *1) (-4 *1 (-392)))) -(((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) - (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-5 *2 (-585 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) + (-14 *6 (-1181 (-632 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *2 (-585 (-859 *4))) + (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-497)) (-4 *4 (-146)) (-14 *5 (-832)) + (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) + ((*1 *1 *1 *1) (-4 *1 (-393)))) +(((*1 *2 *3) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)) + (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695)) - (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-696)) (|:| -2006 *4))) (-5 *5 (-696)) + (-4 *4 (-863 *6 *7 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-390 *6 *7 *8 *4))))) + (-5 *1 (-391 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) - (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7))))) + (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) + (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) + (-12 (-5 *3 (-486)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-485)) + (-12 (-5 *2 (-486)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) - (-5 *1 (-390 *5 *6 *7 *4))))) + (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) + (-5 *1 (-391 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-485)) + (-12 (-5 *2 (-486)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) - (-5 *1 (-390 *5 *6 *7 *4))))) + (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) + (-5 *1 (-391 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) - (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) + (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) - (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-486)) + (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) + (-585 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) - (-5 *1 (-390 *3 *4 *5 *6))))) + (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) + (-5 *1 (-391 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) - (-4 *4 (-392)) (-4 *6 (-757))))) + (-4 *5 (-719)) (-4 *2 (-863 *4 *5 *6)) (-5 *1 (-391 *4 *5 *6 *2)) + (-4 *4 (-393)) (-4 *6 (-758))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695)) - (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *1 (-390 *5 *6 *7 *3))))) + (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 *3)))) (-5 *4 (-696)) + (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *1 (-391 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) - (-4 *2 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *2)) + (-4 *2 (-863 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) - (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-390 *5 *6 *7 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) + (-4 *7 (-758)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-391 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) + (-585 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) - (-5 *1 (-390 *4 *3 *5 *6))))) + (-4 *3 (-719)) (-4 *6 (-863 *4 *3 *5)) (-4 *4 (-393)) (-4 *5 (-758)) + (-5 *1 (-391 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) + (-585 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) - (-5 *1 (-390 *3 *4 *5 *6))))) + (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) + (-5 *1 (-391 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) + (-585 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) - (-5 *1 (-390 *4 *5 *6 *3))))) + (-4 *5 (-719)) (-4 *3 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) + (-5 *1 (-391 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5))))) + (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5))))) + (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) - (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7))))) + (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) + (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-486)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) - (-5 *3 (-584 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) + (-5 *3 (-585 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) - (-5 *3 (-584 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) + (-5 *3 (-585 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) - (-5 *3 (-584 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) + (-5 *3 (-585 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) - (-5 *3 (-584 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) + (-5 *3 (-585 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) - (-5 *3 (-584 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) + (-5 *3 (-585 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) - (-5 *3 (-584 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) + (-5 *3 (-585 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-389 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-387)) (-5 *3 (-486))))) (((*1 *2 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))) + (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))) + (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))) -(((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963))))) +(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-386 *3)) (-4 *3 (-963))))) +(((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963))))) +(((*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-696)) (-5 *4 (-486)) (-5 *1 (-386 *2)) (-4 *2 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962)) - (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6))))) + (-12 (-5 *3 (-832)) (-5 *4 (-348 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-963)) + (-5 *2 (-585 *6)) (-5 *1 (-385 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) + (|partial| -12 (-5 *3 (-832)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) - (-4 *2 (-1156 (-485))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-696)) (-5 *1 (-383 *2)) + (-4 *2 (-1157 (-486))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) - (-4 *2 (-1156 (-485))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *1 (-383 *2)) + (-4 *2 (-1157 (-486))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) - (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) + (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) - (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) + (-5 *6 (-85)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2)) - (-4 *5 (-962))))) + (-12 (-5 *3 (-832)) (-5 *4 (-348 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-385 *5 *2)) + (-4 *5 (-963))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485))))) - (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) + (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3951 (-486))))) + (-4 *4 (-1157 (-486))) (-5 *2 (-677 (-696))) (-5 *1 (-383 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962)) - (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3))))) + (-12 (-5 *3 (-348 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-963)) + (-5 *2 (-677 (-696))) (-5 *1 (-385 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) + (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) + (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) - (-4 *3 (-1156 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1116) (-239))))) + (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *5 *3 *6)) + (-4 *3 (-1157 *5)) (-4 *6 (-13 (-347) (-952 *5) (-312) (-1117) (-239))))) ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) - (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) + (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) + (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) - (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) + (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) + (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) + (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) - (-4 *3 (-1156 *5))))) + (-12 (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) + (-4 *3 (-1157 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) - (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) + (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) + (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) - (-5 *2 - (-2 (|:| |contp| (-485)) - (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) - (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2580 (-485)) (|:| -1783 (-584 *3)))) (-5 *1 (-382 *3)) - (-4 *3 (-1156 (-485)))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485))))) - (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1011 (-696))) (-5 *6 (-696)) + (-5 *2 + (-2 (|:| |contp| (-486)) + (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) + (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2581 (-486)) (|:| -1784 (-585 *3)))) (-5 *1 (-383 *3)) + (-4 *3 (-1157 (-486)))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3951 (-486))))) + (-4 *4 (-1157 (-486))) (-5 *2 (-696)) (-5 *1 (-383 *4))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-584 + (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-485))))) - (-4 *2 (-496)) (-5 *1 (-348 *2)))) + (|:| |xpnt| (-486))))) + (-4 *2 (-497)) (-5 *1 (-348 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-485)) - (|:| -1783 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485))))))) - (-4 *4 (-1156 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4))))) + (-2 (|:| |contp| (-486)) + (|:| -1784 (-585 (-2 (|:| |irr| *4) (|:| -2397 (-486))))))) + (-4 *4 (-1157 (-486))) (-5 *2 (-348 *4)) (-5 *1 (-383 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 "void"))) (-5 *1 (-379))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379))))) + (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3913 "void"))) (-5 *1 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-859 (-486)))) (-5 *1 (-379))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) (((*1 *1) (-5 *1 (-379)))) (((*1 *1) (-5 *1 (-379)))) @@ -11595,327 +11595,327 @@ (((*1 *1) (-5 *1 (-379)))) (((*1 *1) (-5 *1 (-379)))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485)))) - (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-48)))) (-5 *1 (-378 *4 *5 *3)) - (-4 *3 (-1156 *5))))) + (|partial| -12 (-4 *5 (-952 (-48))) (-4 *4 (-13 (-497) (-952 (-486)))) + (-4 *5 (-364 *4)) (-5 *2 (-348 (-1087 (-48)))) (-5 *1 (-378 *4 *5 *3)) + (-4 *3 (-1157 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 - (-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) - (|:| -2641 (-85)))) - (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5))))) + (-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) + (|:| -2642 (-85)))) + (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) - (-5 *2 (-348 (-1086 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3)) - (-4 *3 (-1156 *5))))) + (|partial| -12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) + (-5 *2 (-348 (-1087 (-350 (-486))))) (-5 *1 (-378 *4 *5 *3)) + (-4 *3 (-1157 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) - (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5))))) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) + (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2) - (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-376 *3 *4)) + (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *2 (-1187)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485))) + (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) - (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-376 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) + (-12 (-5 *4 (-552 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-497) (-952 (-486)))) + (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-376 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) - (-4 *2 (-13 (-757) (-21)))))) + (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) + (-4 *2 (-13 (-758) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) - (-4 *2 (-13 (-757) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695))))) -(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320))))) -(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-364 *3))) - (-14 *4 (-1091)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-4 *2 (-13 (-27) (-1116) (-364 *3) (-10 -8 (-15 -3948 ($ *4))))) - (-4 *4 (-756)) + (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) + (-4 *2 (-13 (-758) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1015)) (-5 *2 (-696))))) +(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-320))))) +(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1015))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1117) (-364 *3))) + (-14 *4 (-1092)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-4 *2 (-13 (-27) (-1117) (-364 *3) (-10 -8 (-15 -3949 ($ *4))))) + (-4 *4 (-757)) (-4 *5 - (-13 (-1159 *2 *4) (-312) (-1116) - (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) - (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1091))))) + (-13 (-1160 *2 *4) (-312) (-1117) + (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) + (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1092))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7))))) - (-4 *7 (-756)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3949 ($ *7))))) + (-4 *7 (-757)) (-4 *8 - (-13 (-1159 *3 *7) (-312) (-1116) - (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) + (-13 (-1160 *3 *7) (-312) (-1117) + (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) - (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) - (-14 *10 (-1091))))) + (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) + (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) + (-14 *10 (-1092))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7))))) - (-4 *7 (-756)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3949 ($ *7))))) + (-4 *7 (-757)) (-4 *8 - (-13 (-1159 *3 *7) (-312) (-1116) - (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) + (-13 (-1160 *3 *7) (-312) (-1117) + (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) - (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) - (-14 *10 (-1091))))) + (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) + (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) + (-14 *10 (-1092))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) - (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) - (-14 *6 (-1091)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014))))) + (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) + (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) + (-14 *6 (-1092)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)))) + (-12 (-5 *2 (-1092)) (-5 *3 (-585 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) - (-5 *2 (-2 (|:| -3956 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) + (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) + (-5 *2 (-2 (|:| -3957 (-486)) (|:| |var| (-552 *1)))) (-4 *1 (-364 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-497)) (-5 *1 (-362 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) + (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) - (-4 *1 (-322 *4 *5)) (-4 *5 (-1156 *4)))) + (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) + (-4 *1 (-322 *4 *5)) (-4 *5 (-1157 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) - (-4 *4 (-1156 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) + (-4 *4 (-1157 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) +(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258)) - (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-353 *4 *5)) - (-14 *7 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-258)) + (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-353 *4 *5)) + (-14 *7 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3)) - (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1181 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-906 *3)) + (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) - (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3)))))) + (-12 (-4 *2 (-258)) (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) + (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5)) - (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2)) - (-4 *7 (-1156 *6))))) + (-12 (-5 *3 (-696)) (-5 *4 (-1181 *2)) (-4 *5 (-258)) (-4 *6 (-906 *5)) + (-4 *2 (-13 (-353 *6 *7) (-952 *6))) (-5 *1 (-356 *5 *6 *7 *2)) + (-4 *7 (-1157 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)) + (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) - (-5 *2 (-631 *3))))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) + (-5 *2 (-632 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) - (-5 *2 (-631 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) + (-5 *2 (-632 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-485))))) (-5 *1 (-310 *3)) - (-4 *3 (-1014)))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 (-486))))) (-5 *1 (-310 *3)) + (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) - (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-695))))))) + (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) + (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3946 (-696))))))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3)) - (-4 *3 (-496))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496))))) + (-12 (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -2403 (-486))))) (-5 *1 (-348 *3)) + (-4 *3 (-497))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-348 *4)) (-4 *4 (-496))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) + (-12 (-5 *3 (-486)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-348 *4)) (-4 *4 (-497))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-485)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-348 *2)) (-4 *2 (-496))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221)))) - ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496))))) -(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496))))) -(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831))))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695)))) + (-12 (-5 *3 (-486)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-348 *2)) (-4 *2 (-497))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-221)))) + ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497))))) +(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497))))) +(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-696)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-696))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-696)))) ((*1 *1 *1) (-4 *1 (-345)))) (((*1 *1 *2) - (-12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) + (-12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1156 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) + (-12 (-4 *2 (-1157 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) (((*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) - (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4)))) - (-5 *1 (-342 *3 *4)) (-4 *4 (-1156 *3))))) + (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) + (-5 *1 (-342 *3 *4)) (-4 *4 (-1157 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) + (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) + (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339))))) +(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075))))) +(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075))))) (((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) (((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) (((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1091))) - (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312))))) + (-12 (-5 *3 (-585 (-350 (-859 (-486))))) (-5 *4 (-585 (-1092))) + (-5 *2 (-585 (-585 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-757) (-312))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-756) (-312)))))) + (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-332 *4)) + (-4 *4 (-13 (-757) (-312)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) + (-12 (-5 *3 (-350 (-859 (-142 (-486))))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1091))) - (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5)) - (-4 *5 (-13 (-312) (-756)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) - (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485))))))) - (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-858 (-142 (-485))))) - (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485)))))) - (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-756)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330))))) + (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) (-5 *4 (-585 (-1092))) + (-5 *2 (-585 (-585 (-142 *5)))) (-5 *1 (-331 *5)) + (-4 *5 (-13 (-312) (-757)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) + (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-249 (-350 (-859 (-142 (-486))))))) + (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-350 (-859 (-142 (-486))))) + (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-350 (-859 (-142 (-486)))))) + (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-486)) (-5 *1 (-330))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330))))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330))) ((*1 *1) (-5 *1 (-330)))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330))) ((*1 *1) (-5 *1 (-330)))) (((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) + ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) + ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) + ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-1036 *4)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) + (-4 *2 (-13 (-324 *4) (-1037 *4)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-1036 *4)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) + (-4 *2 (-13 (-324 *4) (-1037 *4)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-1036 *4)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) + (-4 *2 (-13 (-324 *4) (-1037 *4)))))) (((*1 *1 *2) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146))))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-85)))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-758)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131))))) (((*1 *1 *1) - (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) + (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) - (-4 *3 (-1130))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) + (-4 *3 (-1131))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-696)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695))))) -(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-696))))) +(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-316 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3))))) (((*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) @@ -11960,1175 +11960,1175 @@ (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-315 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-585 (-1181 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) - (-5 *2 (-584 (-1180 *3)))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) + (-5 *2 (-585 (-1181 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) - ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) + (-12 (-5 *3 (-1075)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1015)) (-4 *4 (-1015)))) + ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) + (-12 (-5 *2 (-1075)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *1 *1) (-4 *1 (-147))) - ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) + ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) + (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-1075))))) +(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) + (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) - (-10 -7 (-15 -3948 (*2 *4)) (-15 -2011 ((-831) *2)) - (-15 -2013 ((-1180 *2) (-831))) (-15 -3930 (*2 *2))))) + (-10 -7 (-15 -3949 (*2 *4)) (-15 -2012 ((-832) *2)) + (-15 -2014 ((-1181 *2) (-832))) (-15 -3931 (*2 *2))))) (-5 *1 (-306 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-305 *4)) - (-5 *3 (-1086 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (-12 (-4 *4 (-299)) (-5 *2 (-871 (-1087 *4))) (-5 *1 (-305 *4)) + (-5 *3 (-1087 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) (((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) + (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) (((*1 *2) - (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 (-818 *3)) (|:| -2401 (-1034)))))) - (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) + (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 (-819 *3)) (|:| -2402 (-1035)))))) + (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))) - (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) + (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) + (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))) - (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) + (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) + (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) (((*1 *2) - (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831)))) + (-12 (-5 *2 (-632 (-819 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-632 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))))) + (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035))))))))) ((*1 *2) - (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) + (-12 (-5 *2 (-632 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) - (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4)))) + (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) + (-4 *4 (-299)) (-5 *2 (-696)) (-5 *1 (-296 *4)))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) + (-12 (-5 *2 (-696)) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-696)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))))) + (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035))))))))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) + (-12 (-5 *2 (-696)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) (((*1 *2) (-12 (-4 *1 (-299)) - (-5 *2 (-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695)))))) + (-5 *2 (-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-486)) (-5 *2 (-1104 (-832) (-696)))))) (((*1 *1) (-4 *1 (-299)))) (((*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) + (-12 (-5 *3 (-832)) (-5 *2 - (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))) + (-3 (-1087 *4) (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035))))))) (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-831)) - (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) + (|partial| -12 (-5 *3 (-832)) + (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) - (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4))))) + (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) + (-4 *4 (-299)) (-5 *2 (-632 *4)) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) - (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) + (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) + (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034))) + (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-871 (-1035))) (-5 *1 (-296 *4))))) (((*1 *2) - (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831)))) + (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-293 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-1086 *3)))) + (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-1087 *3)))) ((*1 *2) - (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-832))))) (((*1 *2) - (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) - (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) + (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696))))) (((*1 *2) - (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) + (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-350 *5))) + (-12 (-4 *3 (-1136)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) - (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) + (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) - (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) + (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) - (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) + (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) - (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) + (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) - (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) + (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) - (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))) + (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) + (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) - (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))) + (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) + (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) - (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))) + (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) + (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) - (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) + (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) - (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) + (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3)))))) + (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) - (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) - (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) + (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) + (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) + (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) - (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) + (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) + (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) - (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) + (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) - (-4 *6 (-1156 (-350 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1136)) + (-4 *6 (-1157 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) - (-4 *7 (-1156 (-350 *6))) (-5 *2 (-584 (-858 *5))) + (-12 (-5 *3 (-1092)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) + (-4 *7 (-1157 (-350 *6))) (-5 *2 (-585 (-859 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) - (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *4 (-312)) - (-5 *2 (-584 (-858 *4)))))) + (-12 (-5 *3 (-1092)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) + (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *4 (-312)) + (-5 *2 (-585 (-859 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) - (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6)) + (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) + (-5 *2 (-585 (-585 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-585 (-585 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) + (-12 (-4 *4 (-312)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) - (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) + (-12 (-5 *3 (-486)) (-4 *2 (-312)) (-4 *4 (-1157 *2)) + (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) + (-12 (-4 *2 (-312)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) + (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) + (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) - (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) + (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) - (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) + (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) - (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) + (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-1097) (-696)))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-871 (-696))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-758))))) (((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1086 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) + (-12 (-5 *2 (-1087 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3))))) (((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) - (-5 *2 (-1086 *3)))) + (-5 *2 (-1087 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) + (-12 (-5 *2 (-696)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *3 (-146))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104))))) + (-12 (-5 *3 (-486)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1015)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717))))) + (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)) (-4 *3 (-718))))) (((*1 *2 *3) - (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) - (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5))))) + (-12 (-5 *3 (-486)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-963)) + (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-863 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1087 *7)) (-5 *3 (-486)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *6 (-963)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-5 *3 (-1087 *6)) (-4 *6 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-1087 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-963)) (-5 *2 (-1087 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) - (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8)) + (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-758)) + (-4 *8 (-963)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-1087 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1091)) (-14 *5 *3)))) + (-12 (-5 *2 (-350 (-486))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1092)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) - (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) - (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-486)) (-5 *7 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) - (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-179)) (-5 *7 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) - (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839))) + (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-179)) (-5 *7 (-486)) (-5 *8 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) - (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) + (-4 *5 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6)) - (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-585 *7)) (-4 *7 (-364 *6)) + (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) + (-12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8)) - (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) + (-12 (-5 *3 (-585 (-249 *8))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *8)) + (-5 *6 (-585 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) + (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8))) - (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-86))) (-5 *6 (-585 (-249 *8))) + (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) - (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) + (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) - (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) - (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7)) - (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-585 *3)) (-4 *3 (-364 *7)) + (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-486)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695))))) +(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-696))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-258))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-258))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1131)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-585 (-552 *1))) (-5 *3 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254))))) (((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-552 *1)) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-585 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) - (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-552 *5)) (-4 *5 (-364 *4)) (-4 *4 (-952 (-486))) (-4 *4 (-497)) + (-5 *2 (-1087 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1086 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) + (-12 (-5 *3 (-552 *1)) (-4 *1 (-963)) (-4 *1 (-254)) (-5 *2 (-1087 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))) + (-12 (-5 *4 (-585 (-1075))) (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252))))) (((*1 *2 *2) - (-12 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) - (-4 *2 (-1156 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130))))) + (-12 (-4 *3 (-963)) (-4 *4 (-1157 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1157 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) - (-4 *3 (-1130))))) + (-12 (-5 *2 (-585 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-497)) + (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) + (-12 (-4 *4 (-393)) (-5 *2 - (-584 - (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) - (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4))))))) + (-585 + (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) + (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4))))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) + (-12 (-4 *4 (-393)) (-5 *2 - (-584 - (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) - (|:| |geneigvec| (-584 (-631 (-350 (-858 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4))))))) + (-585 + (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) + (|:| |geneigvec| (-585 (-632 (-350 (-859 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695)) - (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6)) - (-5 *4 (-631 (-350 (-858 *6)))))) + (-12 (-5 *3 (-3 (-350 (-859 *6)) (-1082 (-1092) (-859 *6)))) (-5 *5 (-696)) + (-4 *6 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *6))))) (-5 *1 (-248 *6)) + (-5 *4 (-632 (-350 (-859 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) - (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) - (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-631 (-350 (-858 *5))))))) + (-2 (|:| |eigval| (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) + (|:| |eigmult| (-696)) (|:| |eigvec| (-585 *4)))) + (-4 *5 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-632 (-350 (-859 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392)) - (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-631 (-350 (-858 *5))))))) + (-12 (-5 *3 (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) (-4 *5 (-393)) + (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-632 (-350 (-859 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392)) - (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))) + (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-4 *4 (-393)) + (-5 *2 (-585 (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4))))) (-5 *1 (-248 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-999))) (-5 *1 (-247))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-1017))) (-5 *1 (-247))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-247))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-585 (-878))) (-5 *1 (-247))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-247))))) (((*1 *1) (-5 *1 (-247)))) (((*1 *1) (-5 *1 (-247)))) (((*1 *1) (-5 *1 (-247)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) + (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1036 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) - (-4 *2 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-240 *4 *5)) - (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))) + (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) + (-4 *2 (-1131))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-312)) (-5 *2 (-585 (-1071 *4))) (-5 *1 (-240 *4 *5)) + (-5 *3 (-1071 *4)) (-4 *5 (-1174 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) - (-4 *3 (-1014)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))) + (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235))))) + (-12 (-5 *2 (-524)) (-5 *3 (-534)) (-5 *4 (-247)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-524)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-534)) (-5 *1 (-235))))) (((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1017)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) + (-12 (-5 *3 (-350 (-486))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))) - (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2))))) + (-12 (-5 *3 (-552 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))) + (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091)) - (-4 *2 (-13 (-27) (-1116) (-364 *5))) - (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2))))) + (|partial| -12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-1092)) + (-4 *2 (-13 (-27) (-1117) (-364 *5))) + (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1116) (-364 *3))))) + (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1117) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) + (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) - (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-585 (-552 *3))) (|:| |vals| (-585 *3)))) + (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) - (-4 *3 (-13 (-364 *4) (-916)))))) + (-12 (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) + (-4 *3 (-13 (-364 *4) (-917)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) - (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2))))) + (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-364 *4) (-917))) (-4 *4 (-497)) (-5 *1 (-230 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) + (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))) + (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229))))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229))))) -(((*1 *2 *1) - (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) - (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) - (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) + (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-229))))) +(((*1 *2 *1) + (-12 (-4 *3 (-190)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) + (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) + (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-228 *2)) (-4 *2 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-51)) (-5 *1 (-221)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) - (-4 *2 (-1130))))) + (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *1 (-223 *2)) + (-4 *2 (-1131))))) (((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) (((*1 *1) (-5 *1 (-117))) - ((*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) + ((*1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-221)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) (((*1 *2 *3) - (-12 (-5 *3 (-837)) + (-12 (-5 *3 (-838)) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) + (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) - (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-5 *1 (-126)) (-5 *3 (-585 (-856 (-179)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) - (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 (-179))))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) +(((*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) +(((*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-350 (-486))))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221))))) + (-12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-85)) (-5 *1 (-221))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) + (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-554 (-474)) (-1014))))) + (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-555 (-475)) (-1015))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-789 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330))) - (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-789 *5)) (-5 *4 (-1006 (-330))) + (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) - (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) + (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) + (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-554 (-474)) (-1014))))) + (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1185)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-555 (-475)) (-1015))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) - (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) + (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) - (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) + (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1185)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-221))) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183)) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-1092)) (-5 *5 (-585 (-221))) + (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-758) (-952 (-486)))) (-5 *2 (-1184)) (-5 *1 (-217 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) + (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *2 (-1184)) (-5 *1 (-220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) + (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1185)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1184)) + (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-220))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) - (-5 *2 (-1184)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) + (-5 *2 (-1185)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) - (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) + (-5 *5 (-85)) (-5 *2 (-1185)) (-5 *1 (-218))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) + (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) - (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) + (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) + (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) + (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-554 (-474)) (-1014))))) + (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-555 (-475)) (-1015))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) + (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) - (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) + (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) + (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) - (-5 *2 (-1048 (-179))) (-5 *1 (-216))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) - ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4))))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) + (-5 *2 (-1049 (-179))) (-5 *1 (-216))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-214 *3)))) + ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 (-696)))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) + (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-719)) (-4 *2 (-228 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) - (-4 *4 (-228 *3)) (-4 *5 (-718))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) + (-4 *4 (-228 *3)) (-4 *5 (-719))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) - (-4 *4 (-228 *3)) (-4 *5 (-718))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) + (-4 *4 (-228 *3)) (-4 *5 (-719))))) (((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207))))) (((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) (((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-207))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-695)) - (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485)))))) + (|partial| -12 (-5 *2 (-696)) + (-4 *3 (-13 (-665) (-320) (-10 -7 (-15 ** (*3 *3 (-486)))))) (-5 *1 (-204 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199))))) -(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-249 (-858 (-485)))) - (-5 *2 - (-2 (|:| |varOrder| (-584 (-1091))) - (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) - (|:| |hom| (-584 (-1180 (-695)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-203 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-486)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1187)) (-5 *1 (-199))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199))))) +(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1131)) (-4 *1 (-196 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-249 (-859 (-486)))) + (-5 *2 + (-2 (|:| |varOrder| (-585 (-1092))) + (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) + (|:| |hom| (-585 (-1181 (-696)))))) (-5 *1 (-194))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3)))) - ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014))))) -(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-193 *3)))) + ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1015))))) +(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1091)) - (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-859 *6)) (-5 *4 (-1092)) + (-5 *5 (-752 *7)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-4 *7 (-13 (-1117) (-29 *6))) (-5 *1 (-178 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6)) - (-4 *6 (-13 (-1116) (-29 *5))) - (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1087 *6)) (-5 *4 (-752 *6)) + (-4 *6 (-13 (-1117) (-29 *5))) + (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) - (-4 *4 (-13 (-1116) (-29 *6))) - (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4))))) + (|partial| -12 (-5 *2 (-752 *4)) (-5 *3 (-552 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1117) (-29 *6))) + (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) - (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) + (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1117) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) - (-14 *3 (-584 (-1091)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) + (-14 *3 (-585 (-1092)))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1091))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1092))))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1091)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1092)))))) (((*1 *1 *2) - (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) - (-14 *4 (-584 (-1091)))))) + (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) + (-14 *4 (-585 (-1092)))))) (((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) - (-14 *3 (-584 (-1091)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) + (-14 *3 (-585 (-1092)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1091)) (-5 *6 (-85)) - (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) - (-4 *3 (-13 (-1116) (-872) (-29 *7))) + (-12 (-5 *4 (-1092)) (-5 *6 (-85)) + (-4 *7 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-4 *3 (-13 (-1117) (-873) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171))))) + (-5 *1 (-173 *7 *3)) (-5 *5 (-752 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *3)))) - (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *3)))) + (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) - (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5))))) + (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) + (-5 *1 (-170 *5 *3)) (-4 *3 (-1157 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-350 *2))) - (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1157 (-350 *2))) + (-4 *2 (-1157 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) + (-12 (-5 *3 (-696)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-585 (-486))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-585 (-832))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) - (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-163 *4))))) + (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) + (-5 *2 (-1181 (-632 (-859 *4)))) (-5 *1 (-163 *4))))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85)))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775)))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-776)))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-157))) (-5 *1 (-157))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4))))) + (-12 (-4 *4 (-1131)) (-5 *2 (-696)) (-5 *1 (-156 *4 *3)) (-4 *3 (-618 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) + (|partial| -12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-756))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1783 (-348 *3)))) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1156 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-757))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1784 (-348 *3)))) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1157 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1156 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1157 (-142 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756))) - (-4 *3 (-1156 *2))))) + (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-757))) + (-4 *3 (-1157 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1156 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1157 (-142 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1156 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1157 (-142 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1156 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1157 (-142 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1156 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1157 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1156 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1157 (-142 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756))) - (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *5)))) - (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-757))) + (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1598 *5)))) + (-5 *1 (-155 *5 *3)) (-4 *3 (-1157 (-142 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-756))) - (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *4)))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-757))) + (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1598 *4)))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) - (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-756))))) + (-12 (-5 *2 (-585 (-142 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1157 (-142 (-486)))) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1116) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1117) (-917)))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-78))) (-5 *1 (-149))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-633 (-235))) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1051)) (-5 *3 (-247)) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1051)) (-5 *2 (-634 (-235))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-634 (-235)))) (-5 *1 (-141))))) (((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1116)) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-975)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134))))) -(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-485)) (-5 *1 (-132 *2))))) (((*1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) + ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-496))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-496))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-496))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-496))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-496))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-496))))) -(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-497))))) +(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))) (((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) - (|:| |yValues| (-1002 *4)))) - (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4))))))) + (-2 (|:| |brans| (-585 (-585 (-856 *4)))) (|:| |xValues| (-1003 *4)) + (|:| |yValues| (-1003 *4)))) + (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-837)) + (-12 (-5 *3 (-838)) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) + (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) - (-14 *5 (-907 *3 *4))))) + (-12 (-5 *2 (-832)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) + (-14 *5 (-908 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131))))) (((*1 *1 *1) - (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72))))) + (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) - (|:| |c2| (-350 *5)) (|:| |deg| (-695)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5)))))) + (|:| |c2| (-350 *5)) (|:| |deg| (-696)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) - (-4 *3 (-1156 (-350 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-350 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) - (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *6))) - (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) - (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) - (-5 *2 (-2 (|:| -3956 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) - (-4 *3 (-1156 (-350 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) - ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117))))) + (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1136)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1157 (-350 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-350 *6)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3957 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-696)) (-4 *7 (-1157 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) + (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-696)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) + (-5 *2 (-2 (|:| -3957 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1157 (-350 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-117))))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) @@ -13144,998 +13144,998 @@ (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-114))))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-751))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) - (-14 *4 (-695)) (-4 *5 (-146))))) + (-12 (-5 *2 (-585 (-486))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) + (-14 *4 (-696)) (-4 *5 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) - (-14 *4 (-695)) (-4 *5 (-146))))) + (-12 (-5 *2 (-585 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) + (-14 *4 (-696)) (-4 *5 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) - (-14 *4 (-695))))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107))))) + (-12 (-5 *2 (-585 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) + (-14 *4 (-696))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-107))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1186))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-696)) (-5 *2 (-1187))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1015))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) - ((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) - (-4 *3 (-1156 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014))))) -(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) + ((*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-952 (-350 *2)))) (-5 *2 (-486)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1157 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1015))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) + (-12 (-5 *2 (-86)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) - (-5 *1 (-87 *4)) (-4 *4 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-1 *4 (-585 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-878))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-3999 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) - (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) - (-4 *4 (-628 *2 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-698)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-698)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-79 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4000 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) + (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) + (-4 *4 (-629 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-3999 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) - (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) - (-4 *4 (-628 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4000 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) + (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) + (-4 *4 (-629 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) + (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-73 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1015))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1156 *4)))) + (-12 (-4 *4 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1157 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-392) (-120))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-62 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *5 (-496)) + (-12 (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 - (-2 (|:| |minor| (-584 (-831))) (|:| -3268 *3) - (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) + (-2 (|:| |minor| (-585 (-832))) (|:| -3269 *3) + (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-631 *4)) (-4 *5 (-601 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-632 *4)) (-4 *5 (-602 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-496)) - (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3))))) + (-12 (-4 *5 (-497)) + (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 (-585 (-832)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-58 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-324 *4)) + (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) + (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))) + (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) - (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-585 (-989 *4 *5 *2))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) + (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) - (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) - (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51))))) + (-12 (-5 *3 (-585 (-989 *5 *6 *2))) (-5 *4 (-832)) (-4 *5 (-1015)) + (-4 *6 (-13 (-963) (-798 *5) (-555 (-802 *5)))) + (-4 *2 (-13 (-364 *6) (-798 *5) (-555 (-802 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-698)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2) - (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)))) - (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)))) + (-4 *5 (-497)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *5 (-551 $)) $)) - (-15 -2999 ((-1040 *5 (-551 $)) $)) - (-15 -3948 ($ (-1040 *5 (-551 $)))))))))) + (-10 -8 (-15 -3001 ((-1041 *5 (-552 $)) $)) + (-15 -3000 ((-1041 *5 (-552 $)) $)) + (-15 -3949 ($ (-1041 *5 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) - (-15 -2999 ((-1040 *3 (-551 $)) $)) - (-15 -3948 ($ (-1040 *3 (-551 $)))))))))) + (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) + (-15 -3000 ((-1041 *3 (-552 $)) $)) + (-15 -3949 ($ (-1041 *3 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) - (-15 -2999 ((-1040 *3 (-551 $)) $)) - (-15 -3948 ($ (-1040 *3 (-551 $)))))))))) + (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) + (-15 -3000 ((-1041 *3 (-552 $)) $)) + (-15 -3949 ($ (-1041 *3 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) - (-15 -2999 ((-1040 *3 (-551 $)) $)) - (-15 -3948 ($ (-1040 *3 (-551 $)))))))))) + (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) + (-15 -3000 ((-1041 *3 (-552 $)) $)) + (-15 -3949 ($ (-1041 *3 (-552 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-497)) (-5 *2 (-1087 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) - (-15 -2999 ((-1040 *4 (-551 $)) $)) - (-15 -3948 ($ (-1040 *4 (-551 $)))))))))) + (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) + (-15 -3000 ((-1041 *4 (-552 $)) $)) + (-15 -3949 ($ (-1041 *4 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) - (-15 -2999 ((-1040 *3 (-551 $)) $)) - (-15 -3948 ($ (-1040 *3 (-551 $))))))))) + (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) + (-15 -3000 ((-1041 *3 (-552 $)) $)) + (-15 -3949 ($ (-1041 *3 (-552 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) - (-15 -2999 ((-1040 *3 (-551 $)) $)) - (-15 -3948 ($ (-1040 *3 (-551 $))))))))) + (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) + (-15 -3000 ((-1041 *3 (-552 $)) $)) + (-15 -3949 ($ (-1041 *3 (-552 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) - (-15 -2999 ((-1040 *4 (-551 $)) $)) - (-15 -3948 ($ (-1040 *4 (-551 $))))))) - (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) + (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) + (-15 -3000 ((-1041 *4 (-552 $)) $)) + (-15 -3949 ($ (-1041 *4 (-552 $))))))) + (-4 *4 (-497)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-551 *2))) + (-12 (-5 *3 (-585 (-552 *2))) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) - (-15 -2999 ((-1040 *4 (-551 $)) $)) - (-15 -3948 ($ (-1040 *4 (-551 $))))))) - (-4 *4 (-496)) (-5 *1 (-41 *4 *2))))) + (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) + (-15 -3000 ((-1041 *4 (-552 $)) $)) + (-15 -3949 ($ (-1041 *4 (-552 $))))))) + (-4 *4 (-497)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) - (-15 -2999 ((-1040 *3 (-551 $)) $)) - (-15 -3948 ($ (-1040 *3 (-551 $)))))))))) + (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) + (-15 -3000 ((-1041 *3 (-552 $)) $)) + (-15 -3949 ($ (-1041 *3 (-552 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-350 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))) + (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *2 (-1187)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1157 (-350 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-5 *2 (-633 (-2 (|:| -3862 *3) (|:| |entry| *4))))))) + (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-5 *2 (-634 (-2 (|:| -3863 *3) (|:| |entry| *4))))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) - (-4 *3 (-496))))) + (-12 (-5 *4 (-486)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-952 *4)) + (-4 *3 (-497))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773)) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-497)) (-5 *2 (-774)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1086 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) + (-12 (-5 *3 (-1087 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-350 (-485)))) + (-12 (-5 *2 (-859 (-486))) (-5 *3 (-1092)) (-5 *4 (-1003 (-350 (-486)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3))))) + (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -((-1215 . 630120) (-1216 . 629724) (-1217 . 629422) (-1218 . 629026) - (-1219 . 628905) (-1220 . 628803) (-1221 . 628690) (-1222 . 628574) - (-1223 . 628521) (-1224 . 628387) (-1225 . 628312) (-1226 . 628156) - (-1227 . 627928) (-1228 . 626964) (-1229 . 626717) (-1230 . 626433) - (-1231 . 626149) (-1232 . 625865) (-1233 . 625546) (-1234 . 625454) - (-1235 . 625362) (-1236 . 625270) (-1237 . 625178) (-1238 . 625086) - (-1239 . 624994) (-1240 . 624899) (-1241 . 624804) (-1242 . 624712) - (-1243 . 624620) (-1244 . 624528) (-1245 . 624436) (-1246 . 624344) - (-1247 . 624242) (-1248 . 624140) (-1249 . 624038) (-1250 . 623946) - (-1251 . 623895) (-1252 . 623843) (-1253 . 623773) (-1254 . 623353) - (-1255 . 623159) (-1256 . 623132) (-1257 . 623009) (-1258 . 622886) - (-1259 . 622742) (-1260 . 622572) (-1261 . 622448) (-1262 . 622209) - (-1263 . 622136) (-1264 . 621911) (-1265 . 621665) (-1266 . 621612) - (-1267 . 621434) (-1268 . 621265) (-1269 . 621189) (-1270 . 621116) - (-1271 . 620963) (-1272 . 620810) (-1273 . 620626) (-1274 . 620445) - (-1275 . 620390) (-1276 . 620335) (-1277 . 620262) (-1278 . 620186) - (-1279 . 620109) (-1280 . 620041) (-1281 . 619898) (-1282 . 619791) - (-1283 . 619723) (-1284 . 619653) (-1285 . 619583) (-1286 . 619533) - (-1287 . 619483) (-1288 . 619433) (-1289 . 619312) (-1290 . 618996) - (-1291 . 618927) (-1292 . 618848) (-1293 . 618729) (-1294 . 618652) - (-1295 . 618575) (-1296 . 618422) (-1297 . 618273) (-1298 . 618197) - (-1299 . 618140) (-1300 . 618068) (-1301 . 618005) (-1302 . 617942) - (-1303 . 617881) (-1304 . 617809) (-1305 . 617693) (-1306 . 617641) - (-1307 . 617586) (-1308 . 617534) (-1309 . 617482) (-1310 . 617454) - (-1311 . 617426) (-1312 . 617398) (-1313 . 617354) (-1314 . 617283) - (-1315 . 617232) (-1316 . 617184) (-1317 . 617133) (-1318 . 617081) - (-1319 . 616965) (-1320 . 616849) (-1321 . 616757) (-1322 . 616665) - (-1323 . 616542) (-1324 . 616476) (-1325 . 616410) (-1326 . 616351) - (-1327 . 616323) (-1328 . 616295) (-1329 . 616267) (-1330 . 616239) - (-1331 . 616129) (-1332 . 616078) (-1333 . 616027) (-1334 . 615976) - (-1335 . 615925) (-1336 . 615874) (-1337 . 615823) (-1338 . 615795) - (-1339 . 615767) (-1340 . 615739) (-1341 . 615711) (-1342 . 615683) - (-1343 . 615655) (-1344 . 615627) (-1345 . 615599) (-1346 . 615571) - (-1347 . 615468) (-1348 . 615416) (-1349 . 615250) (-1350 . 615066) - (-1351 . 614855) (-1352 . 614740) (-1353 . 614507) (-1354 . 614417) - (-1355 . 614324) (-1356 . 614209) (-1357 . 613811) (-1358 . 613593) - (-1359 . 613544) (-1360 . 613516) (-1361 . 613440) (-1362 . 613341) - (-1363 . 613242) (-1364 . 613143) (-1365 . 613044) (-1366 . 612945) - (-1367 . 612846) (-1368 . 612688) (-1369 . 612612) (-1370 . 612445) - (-1371 . 612387) (-1372 . 612329) (-1373 . 612020) (-1374 . 611766) - (-1375 . 611682) (-1376 . 611550) (-1377 . 611492) (-1378 . 611440) - (-1379 . 611358) (-1380 . 611283) (-1381 . 611212) (-1382 . 611158) - (-1383 . 611107) (-1384 . 611033) (-1385 . 610959) (-1386 . 610878) - (-1387 . 610797) (-1388 . 610742) (-1389 . 610668) (-1390 . 610594) - (-1391 . 610520) (-1392 . 610443) (-1393 . 610389) (-1394 . 610331) - (-1395 . 610232) (-1396 . 610133) (-1397 . 610034) (-1398 . 609935) - (-1399 . 609836) (-1400 . 609737) (-1401 . 609638) (-1402 . 609524) - (-1403 . 609410) (-1404 . 609296) (-1405 . 609182) (-1406 . 609068) - (-1407 . 608954) (-1408 . 608837) (-1409 . 608761) (-1410 . 608685) - (-1411 . 608298) (-1412 . 607953) (-1413 . 607851) (-1414 . 607590) - (-1415 . 607488) (-1416 . 607283) (-1417 . 607170) (-1418 . 607068) - (-1419 . 606911) (-1420 . 606822) (-1421 . 606728) (-1422 . 606648) - (-1423 . 606574) (-1424 . 606496) (-1425 . 606437) (-1426 . 606379) - (-1427 . 606277) (-7 . 606249) (-8 . 606221) (-9 . 606193) (-1431 . 606074) - (-1432 . 605992) (-1433 . 605910) (-1434 . 605828) (-1435 . 605746) - (-1436 . 605664) (-1437 . 605570) (-1438 . 605500) (-1439 . 605430) - (-1440 . 605339) (-1441 . 605245) (-1442 . 605163) (-1443 . 605081) - (-1444 . 604983) (-1445 . 604823) (-1446 . 604625) (-1447 . 604489) - (-1448 . 604389) (-1449 . 604289) (-1450 . 604196) (-1451 . 604137) - (-1452 . 603804) (-1453 . 603704) (-1454 . 603586) (-1455 . 603374) - (-1456 . 603195) (-1457 . 603037) (-1458 . 602834) (-1459 . 602416) - (-1460 . 602365) (-1461 . 602256) (-1462 . 602141) (-1463 . 602072) - (-1464 . 602003) (-1465 . 601934) (-1466 . 601868) (-1467 . 601743) - (-1468 . 601526) (-1469 . 601448) (-1470 . 601398) (-1471 . 601327) - (-1472 . 601184) (-1473 . 601043) (-1474 . 600965) (-1475 . 600887) - (-1476 . 600831) (-1477 . 600775) (-1478 . 600702) (-1479 . 600562) - (-1480 . 600509) (-1481 . 600450) (-1482 . 600391) (-1483 . 600236) - (-1484 . 600184) (-1485 . 600067) (-1486 . 599950) (-1487 . 599833) - (-1488 . 599702) (-1489 . 599423) (-1490 . 599288) (-1491 . 599232) - (-1492 . 599176) (-1493 . 599117) (-1494 . 599058) (-1495 . 599002) - (-1496 . 598946) (-1497 . 598749) (-1498 . 596407) (-1499 . 596280) - (-1500 . 596135) (-1501 . 596007) (-1502 . 595955) (-1503 . 595903) - (-1504 . 595851) (-1505 . 591813) (-1506 . 591719) (-1507 . 591580) - (-1508 . 591371) (-1509 . 591269) (-1510 . 591167) (-1511 . 590252) - (-1512 . 590176) (-1513 . 590047) (-1514 . 589922) (-1515 . 589845) - (-1516 . 589768) (-1517 . 589641) (-1518 . 589514) (-1519 . 589348) - (-1520 . 589221) (-1521 . 589094) (-1522 . 588877) (-1523 . 588443) - (-1524 . 588079) (-1525 . 588027) (-1526 . 587968) (-1527 . 587880) - (-1528 . 587792) (-1529 . 587701) (-1530 . 587610) (-1531 . 587519) - (-1532 . 587428) (-1533 . 587337) (-1534 . 587246) (-1535 . 587155) - (-1536 . 587064) (-1537 . 586973) (-1538 . 586882) (-1539 . 586791) - (-1540 . 586700) (-1541 . 586609) (-1542 . 586518) (-1543 . 586427) - (-1544 . 586336) (-1545 . 586245) (-1546 . 586154) (-1547 . 586063) - (-1548 . 585972) (-1549 . 585881) (-1550 . 585790) (-1551 . 585699) - (-1552 . 585608) (-1553 . 585517) (-1554 . 585426) (-1555 . 585264) - (-1556 . 585156) (-1557 . 584913) (-1558 . 584626) (-1559 . 584431) - (-1560 . 584275) (-1561 . 584115) (-1562 . 584064) (-1563 . 584002) - (-1564 . 583951) (-1565 . 583888) (-1566 . 583835) (-1567 . 583783) - (-1568 . 583731) (-1569 . 583679) (-1570 . 583589) (-1571 . 583406) - (-1572 . 583252) (-1573 . 583172) (-1574 . 583092) (-1575 . 583012) - (-1576 . 582882) (-1577 . 582653) (-1578 . 582625) (-1579 . 582597) - (-1580 . 582569) (-1581 . 582489) (-1582 . 582412) (-1583 . 582335) - (-1584 . 582254) (-1585 . 582195) (-1586 . 582037) (-1587 . 581844) - (-1588 . 581359) (-1589 . 581117) (-1590 . 580855) (-1591 . 580754) - (-1592 . 580673) (-1593 . 580592) (-1594 . 580522) (-1595 . 580452) - (-1596 . 580294) (-1597 . 579990) (-1598 . 579762) (-1599 . 579640) - (-1600 . 579582) (-1601 . 579520) (-1602 . 579458) (-1603 . 579393) - (-1604 . 579331) (-1605 . 579052) (-1606 . 578984) (-1607 . 578774) - (-1608 . 578722) (-1609 . 578668) (-1610 . 578577) (-1611 . 578490) - (-1612 . 576743) (-1613 . 576664) (-1614 . 575919) (-1615 . 575802) - (-1616 . 575596) (-1617 . 575435) (-1618 . 575274) (-1619 . 575114) - (-1620 . 574976) (-1621 . 574882) (-1622 . 574784) (-1623 . 574690) - (-1624 . 574576) (-1625 . 574494) (-1626 . 574397) (-1627 . 574201) - (-1628 . 574110) (-1629 . 574016) (-1630 . 573949) (-1631 . 573880) - (-1632 . 573828) (-1633 . 573769) (-1634 . 573695) (-1635 . 573643) - (-1636 . 573486) (-1637 . 573329) (-1638 . 573177) (-1639 . 572419) - (-1640 . 572108) (-1641 . 571756) (-1642 . 571539) (-1643 . 571276) - (-1644 . 570901) (-1645 . 570717) (-1646 . 570583) (-1647 . 570417) - (-1648 . 570251) (-1649 . 570117) (-1650 . 569983) (-1651 . 569849) - (-1652 . 569715) (-1653 . 569584) (-1654 . 569453) (-1655 . 569322) - (-1656 . 568942) (-1657 . 568816) (-1658 . 568688) (-1659 . 568438) - (-1660 . 568315) (-1661 . 568065) (-1662 . 567942) (-1663 . 567692) - (-1664 . 567569) (-1665 . 567286) (-1666 . 567015) (-1667 . 566742) - (-1668 . 566444) (-1669 . 566342) (-1670 . 566197) (-1671 . 566056) - (-1672 . 565905) (-1673 . 565744) (-1674 . 565656) (-1675 . 565628) - (-1676 . 565546) (-1677 . 565449) (-1678 . 564981) (-1679 . 564630) - (-1680 . 564197) (-1681 . 564058) (-1682 . 563988) (-1683 . 563918) - (-1684 . 563848) (-1685 . 563757) (-1686 . 563666) (-1687 . 563575) - (-1688 . 563484) (-1689 . 563393) (-1690 . 563307) (-1691 . 563221) - (-1692 . 563135) (-1693 . 563049) (-1694 . 562963) (-1695 . 562889) - (-1696 . 562784) (-1697 . 562558) (-1698 . 562480) (-1699 . 562405) - (-1700 . 562312) (-1701 . 562208) (-1702 . 562112) (-1703 . 561943) - (-1704 . 561866) (-1705 . 561789) (-1706 . 561698) (-1707 . 561607) - (-1708 . 561407) (-1709 . 561254) (-1710 . 561101) (-1711 . 560948) - (-1712 . 560795) (-1713 . 560642) (-1714 . 560489) (-1715 . 560423) - (-1716 . 560270) (-1717 . 560117) (-1718 . 559964) (-1719 . 559811) - (-1720 . 559658) (-1721 . 559505) (-1722 . 559352) (-1723 . 559199) - (-1724 . 559125) (-1725 . 559051) (-1726 . 558996) (-1727 . 558941) - (-1728 . 558886) (-1729 . 558831) (-1730 . 558760) (-1731 . 558574) - (-1732 . 558477) (-1733 . 558380) (-1734 . 558182) (-1735 . 558084) - (-1736 . 557896) (-1737 . 557803) (-1738 . 557676) (-1739 . 557549) - (-1740 . 557422) (-1741 . 557354) (-1742 . 557238) (-1743 . 557122) - (-1744 . 557006) (-1745 . 556953) (-1746 . 556868) (-1747 . 556783) - (-1748 . 556475) (-1749 . 556420) (-1750 . 555768) (-1751 . 555453) - (-1752 . 555169) (-1753 . 555051) (-1754 . 554932) (-1755 . 554873) - (-1756 . 554814) (-1757 . 554763) (-1758 . 554712) (-1759 . 554661) - (-1760 . 554608) (-1761 . 554555) (-1762 . 554496) (-1763 . 554383) - (-1764 . 554270) (-1765 . 554103) (-1766 . 554011) (-1767 . 553898) - (-1768 . 553814) (-1769 . 553699) (-1770 . 553608) (-1771 . 553517) - (-1772 . 553396) (-1773 . 553209) (-1774 . 553157) (-1775 . 553102) - (-1776 . 552915) (-1777 . 552792) (-1778 . 552719) (-1779 . 552646) - (-1780 . 552526) (-1781 . 552453) (-1782 . 552380) (-1783 . 552040) - (-1784 . 551967) (-1785 . 551747) (-1786 . 551414) (-1787 . 551231) - (-1788 . 551088) (-1789 . 550728) (-1790 . 550560) (-1791 . 550392) - (-1792 . 550136) (-1793 . 549880) (-1794 . 549685) (-1795 . 549490) - (-1796 . 548896) (-1797 . 548820) (-1798 . 548681) (-1799 . 548274) - (-1800 . 548147) (-1801 . 547990) (-1802 . 547673) (-1803 . 547193) - (-1804 . 546713) (-1805 . 546211) (-1806 . 546143) (-1807 . 546072) - (-1808 . 546001) (-1809 . 545829) (-1810 . 545710) (-1811 . 545591) - (-1812 . 545515) (-1813 . 545439) (-1814 . 545166) (-1815 . 545052) - (-1816 . 545001) (-1817 . 544950) (-1818 . 544899) (-1819 . 544848) - (-1820 . 544797) (-1821 . 544656) (-1822 . 544483) (-1823 . 544252) - (-1824 . 544066) (-1825 . 544038) (-1826 . 544010) (-1827 . 543982) - (-1828 . 543954) (-1829 . 543926) (-1830 . 543898) (-1831 . 543870) - (-1832 . 543819) (-1833 . 543753) (-1834 . 543663) (-1835 . 543292) - (-1836 . 543141) (-1837 . 542990) (-1838 . 542785) (-1839 . 542663) - (-1840 . 542589) (-1841 . 542512) (-1842 . 542438) (-1843 . 542361) - (-1844 . 542284) (-1845 . 542210) (-1846 . 542133) (-1847 . 541900) - (-1848 . 541747) (-1849 . 541452) (-1850 . 541299) (-1851 . 540977) - (-1852 . 540839) (-1853 . 540701) (-1854 . 540621) (-1855 . 540541) - (-1856 . 540277) (-1857 . 539546) (-1858 . 539410) (-1859 . 539320) - (-1860 . 539185) (-1861 . 539118) (-1862 . 539050) (-1863 . 538963) - (-1864 . 538876) (-1865 . 538709) (-1866 . 538635) (-1867 . 538491) - (-1868 . 538031) (-1869 . 537652) (-1870 . 536890) (-1871 . 536746) - (-1872 . 536602) (-1873 . 536440) (-1874 . 536203) (-1875 . 536063) - (-1876 . 535917) (-1877 . 535678) (-1878 . 535442) (-1879 . 535203) - (-1880 . 535011) (-1881 . 534888) (-1882 . 534684) (-1883 . 534461) - (-1884 . 534222) (-1885 . 534081) (-1886 . 533943) (-1887 . 533804) - (-1888 . 533551) (-1889 . 533295) (-1890 . 533138) (-1891 . 532984) - (-1892 . 532744) (-1893 . 532459) (-1894 . 532321) (-1895 . 532234) - (-1896 . 531568) (-1897 . 531392) (-1898 . 531210) (-1899 . 531034) - (-1900 . 530852) (-1901 . 530673) (-1902 . 530494) (-1903 . 530307) - (-1904 . 529925) (-1905 . 529746) (-1906 . 529567) (-1907 . 529380) - (-1908 . 528998) (-1909 . 528005) (-1910 . 527621) (-1911 . 527237) - (-1912 . 527119) (-1913 . 526962) (-1914 . 526820) (-1915 . 526703) - (-1916 . 526521) (-1917 . 526397) (-1918 . 526108) (-1919 . 525819) - (-1920 . 525536) (-1921 . 525253) (-1922 . 524975) (-1923 . 524887) - (-1924 . 524802) (-1925 . 524705) (-1926 . 524608) (-1927 . 524388) - (-1928 . 524288) (-1929 . 524185) (-1930 . 524107) (-1931 . 523782) - (-1932 . 523490) (-1933 . 523417) (-1934 . 523032) (-1935 . 523004) - (-1936 . 522805) (-1937 . 522631) (-1938 . 522390) (-1939 . 522335) - (-1940 . 522260) (-1941 . 521892) (-1942 . 521777) (-1943 . 521700) - (-1944 . 521627) (-1945 . 521546) (-1946 . 521465) (-1947 . 521384) - (-1948 . 521283) (-1949 . 521224) (-1950 . 521171) (-1951 . 521117) - (-1952 . 520785) (-1953 . 520461) (-1954 . 520273) (-1955 . 520082) - (-1956 . 519918) (-1957 . 519583) (-1958 . 519416) (-1959 . 519175) - (-1960 . 518851) (-1961 . 518661) (-1962 . 518446) (-1963 . 518275) - (-1964 . 517853) (-1965 . 517626) (-1966 . 517355) (-1967 . 517218) - (-1968 . 517077) (-1969 . 516600) (-1970 . 516477) (-1971 . 516241) - (-1972 . 515987) (-1973 . 515737) (-1974 . 515444) (-1975 . 515304) - (-1976 . 515164) (-1977 . 515024) (-1978 . 514835) (-1979 . 514646) - (-1980 . 514471) (-1981 . 514197) (-1982 . 513762) (-1983 . 513734) - (-1984 . 513662) (-1985 . 513529) (-1986 . 513454) (-1987 . 513295) - (-1988 . 513132) (-1989 . 512971) (-1990 . 512804) (-1991 . 512751) - (-1992 . 512698) (-1993 . 512569) (-1994 . 512509) (-1995 . 512456) - (-1996 . 512386) (-1997 . 512326) (-1998 . 512267) (-1999 . 512207) - (-2000 . 512148) (-2001 . 512088) (-2002 . 512029) (-2003 . 511970) - (-2004 . 511828) (-2005 . 511733) (-2006 . 511642) (-2007 . 511526) - (-2008 . 511432) (-2009 . 511334) (-2010 . 511240) (-2011 . 511099) - (-2012 . 510837) (-2013 . 509981) (-2014 . 509825) (-2015 . 509456) - (-2016 . 509400) (-2017 . 509349) (-2018 . 509246) (-2019 . 509161) - (-2020 . 509073) (-2021 . 508927) (-2022 . 508778) (-2023 . 508488) - (-2024 . 508410) (-2025 . 508335) (-2026 . 508282) (-2027 . 508229) - (-2028 . 508198) (-2029 . 508135) (-2030 . 508017) (-2031 . 507928) - (-2032 . 507808) (-2033 . 507513) (-2034 . 507319) (-2035 . 507131) - (-2036 . 506986) (-2037 . 506841) (-2038 . 506555) (-2039 . 506113) - (-2040 . 506079) (-2041 . 506042) (-2042 . 506005) (-2043 . 505968) - (-2044 . 505931) (-2045 . 505900) (-2046 . 505869) (-2047 . 505838) - (-2048 . 505804) (-2049 . 505770) (-2050 . 505716) (-2051 . 505540) - (-2052 . 505306) (-2053 . 505072) (-2054 . 504843) (-2055 . 504791) - (-2056 . 504736) (-2057 . 504667) (-2058 . 504579) (-2059 . 504510) - (-2060 . 504438) (-2061 . 504208) (-2062 . 504157) (-2063 . 504103) - (-2064 . 504072) (-2065 . 503966) (-2066 . 503741) (-2067 . 503431) - (-2068 . 503257) (-2069 . 503075) (-2070 . 502804) (-2071 . 502731) - (-2072 . 502666) (-2073 . 502190) (-2074 . 501628) (-2075 . 500902) - (-2076 . 500341) (-2077 . 499713) (-2078 . 499134) (-2079 . 499060) - (-2080 . 499008) (-2081 . 498956) (-2082 . 498882) (-2083 . 498827) - (-2084 . 498775) (-2085 . 498723) (-2086 . 498671) (-2087 . 498601) - (-2088 . 498153) (-2089 . 497947) (-2090 . 497698) (-2091 . 497364) - (-2092 . 497110) (-2093 . 496808) (-2094 . 496605) (-2095 . 496316) - (-2096 . 495768) (-2097 . 495631) (-2098 . 495429) (-2099 . 495149) - (-2100 . 495064) (-2101 . 494731) (-2102 . 494590) (-2103 . 494299) - (-2104 . 494079) (-2105 . 493953) (-2106 . 493828) (-2107 . 493681) - (-2108 . 493537) (-2109 . 493421) (-2110 . 493290) (-2111 . 492918) - (-2112 . 492658) (-2113 . 492388) (-2114 . 492148) (-2115 . 491818) - (-2116 . 491478) (-2117 . 491070) (-2118 . 490652) (-2119 . 490455) - (-2120 . 490180) (-2121 . 490012) (-2122 . 489816) (-2123 . 489594) - (-2124 . 489439) (-2125 . 489254) (-2126 . 489151) (-2127 . 489123) - (-2128 . 489095) (-2129 . 488921) (-2130 . 488847) (-2131 . 488786) - (-2132 . 488733) (-2133 . 488664) (-2134 . 488595) (-2135 . 488476) - (-2136 . 488298) (-2137 . 488243) (-2138 . 487997) (-2139 . 487924) - (-2140 . 487854) (-2141 . 487784) (-2142 . 487695) (-2143 . 487505) - (-2144 . 487432) (-2145 . 487363) (-2146 . 487298) (-2147 . 487243) - (-2148 . 487152) (-2149 . 486861) (-2150 . 486535) (-2151 . 486461) - (-2152 . 486139) (-2153 . 485934) (-2154 . 485849) (-2155 . 485764) - (-2156 . 485679) (-2157 . 485594) (-2158 . 485509) (-2159 . 485424) - (-2160 . 485339) (-2161 . 485254) (-2162 . 485169) (-2163 . 485084) - (-2164 . 484999) (-2165 . 484914) (-2166 . 484829) (-2167 . 484744) - (-2168 . 484659) (-2169 . 484574) (-2170 . 484489) (-2171 . 484404) - (-2172 . 484319) (-2173 . 484234) (-2174 . 484149) (-2175 . 484064) - (-2176 . 483979) (-2177 . 483894) (-2178 . 483809) (-2179 . 483724) - (-2180 . 483622) (-2181 . 483534) (-2182 . 483326) (-2183 . 483268) - (-2184 . 483213) (-2185 . 483126) (-2186 . 483015) (-2187 . 482929) - (-2188 . 482783) (-2189 . 482721) (-2190 . 482693) (-2191 . 482665) - (-2192 . 482637) (-2193 . 482609) (-2194 . 482440) (-2195 . 482289) - (-2196 . 482138) (-2197 . 481966) (-2198 . 481758) (-2199 . 481637) - (-2200 . 481432) (-2201 . 481340) (-2202 . 481248) (-2203 . 481119) - (-2204 . 481024) (-2205 . 480930) (-2206 . 480835) (-2207 . 480711) - (-2208 . 480683) (-2209 . 480655) (-2210 . 480627) (-2211 . 480599) - (-2212 . 480571) (-2213 . 480543) (-2214 . 480515) (-2215 . 480487) - (-2216 . 480459) (-2217 . 480431) (-2218 . 480403) (-2219 . 480375) - (-2220 . 480347) (-2221 . 480319) (-2222 . 480291) (-2223 . 480263) - (-2224 . 480210) (-2225 . 480182) (-2226 . 480154) (-2227 . 480076) - (-2228 . 480023) (-2229 . 479970) (-2230 . 479917) (-2231 . 479839) - (-2232 . 479749) (-2233 . 479654) (-2234 . 479560) (-2235 . 479478) - (-2236 . 479172) (-2237 . 478976) (-2238 . 478881) (-2239 . 478773) - (-2240 . 478362) (-2241 . 478334) (-2242 . 478170) (-2243 . 478093) - (-2244 . 477906) (-2245 . 477727) (-2246 . 477303) (-2247 . 477151) - (-2248 . 476971) (-2249 . 476798) (-2250 . 476538) (-2251 . 476286) - (-2252 . 475475) (-2253 . 475308) (-2254 . 475090) (-2255 . 474266) - (-2256 . 474135) (-2257 . 474004) (-2258 . 473873) (-2259 . 473742) - (-2260 . 473611) (-2261 . 473480) (-2262 . 473285) (-2263 . 473091) - (-2264 . 472948) (-2265 . 472633) (-2266 . 472518) (-2267 . 472178) - (-2268 . 472018) (-2269 . 471879) (-2270 . 471740) (-2271 . 471611) - (-2272 . 471526) (-2273 . 471474) (-2274 . 470994) (-2275 . 469732) - (-2276 . 469605) (-2277 . 469463) (-2278 . 469127) (-2279 . 469022) - (-2280 . 468773) (-2281 . 468541) (-2282 . 468436) (-2283 . 468361) - (-2284 . 468286) (-2285 . 468211) (-2286 . 468152) (-2287 . 468082) - (-2288 . 468029) (-2289 . 467967) (-2290 . 467897) (-2291 . 467534) - (-2292 . 467247) (-2293 . 467137) (-2294 . 466950) (-2295 . 466857) - (-2296 . 466764) (-2297 . 466677) (-2298 . 466460) (-2299 . 466241) - (-2300 . 465823) (-2301 . 465551) (-2302 . 465408) (-2303 . 465315) - (-2304 . 465172) (-2305 . 465020) (-2306 . 464866) (-2307 . 464796) - (-2308 . 464589) (-2309 . 464412) (-2310 . 464203) (-2311 . 464026) - (-2312 . 463992) (-2313 . 463958) (-2314 . 463927) (-2315 . 463809) - (-2316 . 463514) (-2317 . 463236) (-2318 . 463115) (-2319 . 462988) - (-2320 . 462903) (-2321 . 462830) (-2322 . 462741) (-2323 . 462670) - (-2324 . 462614) (-2325 . 462558) (-2326 . 462502) (-2327 . 462432) - (-2328 . 462362) (-2329 . 462292) (-2330 . 462194) (-2331 . 462116) - (-2332 . 462038) (-2333 . 461895) (-2334 . 461816) (-2335 . 461744) - (-2336 . 461541) (-2337 . 461485) (-2338 . 461297) (-2339 . 461198) - (-2340 . 461080) (-2341 . 460959) (-2342 . 460816) (-2343 . 460673) - (-2344 . 460533) (-2345 . 460393) (-2346 . 460250) (-2347 . 460124) - (-2348 . 459995) (-2349 . 459872) (-2350 . 459749) (-2351 . 459644) - (-2352 . 459539) (-2353 . 459437) (-2354 . 459287) (-2355 . 459134) - (-2356 . 458981) (-2357 . 458837) (-2358 . 458683) (-2359 . 458607) - (-2360 . 458528) (-2361 . 458375) (-2362 . 458296) (-2363 . 458217) - (-2364 . 458138) (-2365 . 458036) (-2366 . 457977) (-2367 . 457915) - (-2368 . 457798) (-2369 . 457674) (-2370 . 457597) (-2371 . 457465) - (-2372 . 457159) (-2373 . 456976) (-2374 . 456431) (-2375 . 456211) - (-2376 . 456037) (-2377 . 455867) (-2378 . 455794) (-2379 . 455718) - (-2380 . 455639) (-2381 . 455342) (-2382 . 455180) (-2383 . 454946) - (-2384 . 454504) (-2385 . 454374) (-2386 . 454234) (-2387 . 453925) - (-2388 . 453623) (-2389 . 453307) (-2390 . 452901) (-2391 . 452833) - (-2392 . 452765) (-2393 . 452697) (-2394 . 452603) (-2395 . 452496) - (-2396 . 452389) (-2397 . 452288) (-2398 . 452187) (-2399 . 452086) - (-2400 . 452009) (-2401 . 451616) (-2402 . 451199) (-2403 . 450572) - (-2404 . 450508) (-2405 . 450389) (-2406 . 450270) (-2407 . 450162) - (-2408 . 450054) (-2409 . 449898) (-2410 . 449298) (-2411 . 449015) - (-2412 . 448936) (-2413 . 448882) (-2414 . 448714) (-2415 . 448592) - (-2416 . 448196) (-2417 . 447960) (-2418 . 447759) (-2419 . 447551) - (-2420 . 447358) (-2421 . 447091) (-2422 . 447017) (-2423 . 446838) - (-2424 . 446769) (-2425 . 446693) (-2426 . 446552) (-2427 . 446349) - (-2428 . 446205) (-2429 . 445955) (-2430 . 445647) (-2431 . 445291) - (-2432 . 445132) (-2433 . 444926) (-2434 . 444766) (-2435 . 444693) - (-2436 . 444659) (-2437 . 444594) (-2438 . 444557) (-2439 . 444420) - (-2440 . 444182) (-2441 . 444112) (-2442 . 443926) (-2443 . 443677) - (-2444 . 443521) (-2445 . 442998) (-2446 . 442801) (-2447 . 442589) - (-2448 . 442427) (-2449 . 442028) (-2450 . 441861) (-2451 . 440786) - (-2452 . 440663) (-2453 . 440446) (-2454 . 440316) (-2455 . 440186) - (-2456 . 440029) (-2457 . 439926) (-2458 . 439868) (-2459 . 439810) - (-2460 . 439704) (-2461 . 439598) (-2462 . 438682) (-2463 . 436555) - (-2464 . 435741) (-2465 . 433938) (-2466 . 433870) (-2467 . 433802) - (-2468 . 433734) (-2469 . 433666) (-2470 . 433598) (-2471 . 433520) - (-2472 . 433164) (-2473 . 432982) (-2474 . 432443) (-2475 . 432267) - (-2476 . 432046) (-2477 . 431825) (-2478 . 431604) (-2479 . 431386) - (-2480 . 431168) (-2481 . 430950) (-2482 . 430732) (-2483 . 430514) - (-2484 . 430296) (-2485 . 430195) (-2486 . 429462) (-2487 . 429407) - (-2488 . 429352) (-2489 . 429297) (-2490 . 429242) (-2491 . 429092) - (-2492 . 428844) (-2493 . 428683) (-2494 . 428503) (-2495 . 428216) - (-2496 . 427830) (-2497 . 426958) (-2498 . 426618) (-2499 . 426450) - (-2500 . 426228) (-2501 . 425978) (-2502 . 425630) (-2503 . 424620) - (-2504 . 424309) (-2505 . 424097) (-2506 . 423533) (-2507 . 423020) - (-2508 . 421264) (-2509 . 420792) (-2510 . 420193) (-2511 . 419943) - (-2512 . 419809) (-2513 . 419597) (-2514 . 419521) (-2515 . 419445) - (-2516 . 419338) (-2517 . 419156) (-2518 . 418991) (-2519 . 418813) - (-2520 . 418232) (-2521 . 418071) (-2522 . 417498) (-2523 . 417428) - (-2524 . 417353) (-2525 . 417281) (-2526 . 417143) (-2527 . 416956) - (-2528 . 416849) (-2529 . 416742) (-2530 . 416627) (-2531 . 416512) - (-2532 . 416397) (-2533 . 416119) (-2534 . 415969) (-2535 . 415826) - (-2536 . 415753) (-2537 . 415668) (-2538 . 415595) (-2539 . 415522) - (-2540 . 415449) (-2541 . 415306) (-2542 . 415156) (-2543 . 414982) - (-2544 . 414832) (-2545 . 414682) (-2546 . 414556) (-2547 . 414170) - (-2548 . 413886) (-2549 . 413602) (-2550 . 413193) (-2551 . 412909) - (-2552 . 412836) (-2553 . 412689) (-2554 . 412583) (-2555 . 412509) - (-2556 . 412439) (-2557 . 412360) (-2558 . 412283) (-2559 . 412206) - (-2560 . 412057) (-2561 . 411954) (-2562 . 411896) (-2563 . 411832) - (-2564 . 411768) (-2565 . 411671) (-2566 . 411574) (-2567 . 411414) - (-2568 . 411328) (-2569 . 411242) (-2570 . 411157) (-2571 . 411098) - (-2572 . 411039) (-2573 . 410980) (-2574 . 410921) (-2575 . 410751) - (-2576 . 410663) (-2577 . 410566) (-2578 . 410532) (-2579 . 410501) - (-2580 . 410417) (-2581 . 410361) (-2582 . 410299) (-2583 . 410265) - (-2584 . 410231) (-2585 . 410197) (-2586 . 410163) (-2587 . 410129) - (-2588 . 410095) (-2589 . 410061) (-2590 . 410027) (-2591 . 409993) - (-2592 . 409881) (-2593 . 409847) (-2594 . 409796) (-2595 . 409762) - (-2596 . 409665) (-2597 . 409603) (-2598 . 409512) (-2599 . 409421) - (-2600 . 409366) (-2601 . 409314) (-2602 . 409262) (-2603 . 409210) - (-2604 . 409158) (-2605 . 408735) (-2606 . 408569) (-2607 . 408516) - (-2608 . 408447) (-2609 . 408394) (-2610 . 408263) (-2611 . 408107) - (-2612 . 407586) (-2613 . 407445) (-2614 . 407411) (-2615 . 407356) - (-2616 . 406646) (-2617 . 406331) (-2618 . 405827) (-2619 . 405749) - (-2620 . 405697) (-2621 . 405645) (-2622 . 405461) (-2623 . 405409) - (-2624 . 405357) (-2625 . 405281) (-2626 . 405219) (-2627 . 405001) - (-2628 . 404934) (-2629 . 404840) (-2630 . 404746) (-2631 . 404563) - (-2632 . 404481) (-2633 . 404359) (-2634 . 404213) (-2635 . 403562) - (-2636 . 402860) (-2637 . 402756) (-2638 . 402655) (-2639 . 402554) - (-2640 . 402443) (-2641 . 402275) (-2642 . 402071) (-2643 . 401978) - (-2644 . 401901) (-2645 . 401845) (-2646 . 401775) (-2647 . 401655) - (-2648 . 401554) (-2649 . 401457) (-2650 . 401377) (-2651 . 401297) - (-2652 . 401220) (-2653 . 401150) (-2654 . 401080) (-2655 . 401010) - (-2656 . 400940) (-2657 . 400870) (-2658 . 400800) (-2659 . 400707) - (-2660 . 400579) (-2661 . 400337) (-2662 . 400167) (-2663 . 399798) - (-2664 . 399629) (-2665 . 399513) (-2666 . 399017) (-2667 . 398636) - (-2668 . 398390) (-2669 . 398298) (-2670 . 398201) (-2671 . 397539) - (-2672 . 397426) (-2673 . 397352) (-2674 . 397260) (-2675 . 397070) - (-2676 . 396880) (-2677 . 396809) (-2678 . 396738) (-2679 . 396657) - (-2680 . 396576) (-2681 . 396451) (-2682 . 396318) (-2683 . 396237) - (-2684 . 396163) (-2685 . 395998) (-2686 . 395841) (-2687 . 395613) - (-2688 . 395465) (-2689 . 395361) (-2690 . 395257) (-2691 . 395172) - (-2692 . 394804) (-2693 . 394723) (-2694 . 394636) (-2695 . 394555) - (-2696 . 394359) (-2697 . 394139) (-2698 . 393952) (-2699 . 393630) - (-2700 . 393337) (-2701 . 393044) (-2702 . 392734) (-2703 . 392417) - (-2704 . 392265) (-2705 . 392077) (-2706 . 391604) (-2707 . 391522) - (-2708 . 391306) (-2709 . 391090) (-2710 . 390831) (-2711 . 390410) - (-2712 . 389897) (-2713 . 389767) (-2714 . 389493) (-2715 . 389314) - (-2716 . 389199) (-2717 . 389095) (-2718 . 389040) (-2719 . 388963) - (-2720 . 388893) (-2721 . 388820) (-2722 . 388765) (-2723 . 388692) - (-2724 . 388637) (-2725 . 388282) (-2726 . 387874) (-2727 . 387721) - (-2728 . 387568) (-2729 . 387487) (-2730 . 387334) (-2731 . 387181) - (-2732 . 387046) (-2733 . 386911) (-2734 . 386776) (-2735 . 386641) - (-2736 . 386506) (-2737 . 386371) (-2738 . 386315) (-2739 . 386162) - (-2740 . 386051) (-2741 . 385940) (-2742 . 385855) (-2743 . 385745) - (-2744 . 385642) (-2745 . 381491) (-2746 . 381043) (-2747 . 380616) - (-2748 . 379999) (-2749 . 379398) (-2750 . 379180) (-2751 . 379002) - (-2752 . 378743) (-2753 . 378332) (-2754 . 378038) (-2755 . 377595) - (-2756 . 377417) (-2757 . 377024) (-2758 . 376631) (-2759 . 376446) - (-2760 . 376239) (-2761 . 376019) (-2762 . 375713) (-2763 . 375514) - (-2764 . 374885) (-2765 . 374728) (-2766 . 374339) (-2767 . 374288) - (-2768 . 374239) (-2769 . 374188) (-2770 . 374140) (-2771 . 374088) - (-2772 . 373942) (-2773 . 373890) (-2774 . 373744) (-2775 . 373692) - (-2776 . 373546) (-2777 . 373495) (-2778 . 373120) (-2779 . 373069) - (-2780 . 373020) (-2781 . 372969) (-2782 . 372921) (-2783 . 372869) - (-2784 . 372820) (-2785 . 372768) (-2786 . 372719) (-2787 . 372667) - (-2788 . 372618) (-2789 . 372552) (-2790 . 372434) (-2791 . 371272) - (-2792 . 370855) (-2793 . 370747) (-2794 . 370505) (-2795 . 370355) - (-2796 . 370205) (-2797 . 370044) (-2798 . 367837) (-2799 . 367576) - (-2800 . 367422) (-2801 . 367276) (-2802 . 367130) (-2803 . 366911) - (-2804 . 366779) (-2805 . 366704) (-2806 . 366629) (-2807 . 366494) - (-2808 . 366365) (-2809 . 366236) (-2810 . 366110) (-2811 . 365984) - (-2812 . 365858) (-2813 . 365732) (-2814 . 365629) (-2815 . 365529) - (-2816 . 365435) (-2817 . 365305) (-2818 . 365154) (-2819 . 364778) - (-2820 . 364664) (-2821 . 364423) (-2822 . 363965) (-2823 . 363655) - (-2824 . 363088) (-2825 . 362519) (-2826 . 361509) (-2827 . 360967) - (-2828 . 360654) (-2829 . 360316) (-2830 . 359985) (-2831 . 359665) - (-2832 . 359612) (-2833 . 359485) (-2834 . 358983) (-2835 . 357840) - (-2836 . 357785) (-2837 . 357730) (-2838 . 357654) (-2839 . 357535) - (-2840 . 357460) (-2841 . 357385) (-2842 . 357307) (-2843 . 357084) - (-2844 . 357025) (-2845 . 356966) (-2846 . 356863) (-2847 . 356760) - (-2848 . 356657) (-2849 . 356554) (-2850 . 356473) (-2851 . 356399) - (-2852 . 356184) (-2853 . 355950) (-2854 . 355916) (-2855 . 355882) - (-2856 . 355854) (-2857 . 355826) (-2858 . 355609) (-2859 . 355331) - (-2860 . 355181) (-2861 . 355051) (-2862 . 354921) (-2863 . 354821) - (-2864 . 354644) (-2865 . 354484) (-2866 . 354384) (-2867 . 354207) - (-2868 . 354047) (-2869 . 353888) (-2870 . 353749) (-2871 . 353599) - (-2872 . 353469) (-2873 . 353339) (-2874 . 353192) (-2875 . 353065) - (-2876 . 352962) (-2877 . 352855) (-2878 . 352758) (-2879 . 352593) - (-2880 . 352445) (-2881 . 352030) (-2882 . 351930) (-2883 . 351827) - (-2884 . 351739) (-2885 . 351659) (-2886 . 351509) (-2887 . 351379) - (-2888 . 351327) (-2889 . 351254) (-2890 . 351179) (-2891 . 351120) - (-2892 . 351008) (-2893 . 350696) (-2894 . 350519) (-2895 . 348921) - (-2896 . 348293) (-2897 . 348233) (-2898 . 348115) (-2899 . 347997) - (-2900 . 347853) (-2901 . 347701) (-2902 . 347542) (-2903 . 347383) - (-2904 . 347177) (-2905 . 346990) (-2906 . 346838) (-2907 . 346683) - (-2908 . 346528) (-2909 . 346376) (-2910 . 346239) (-2911 . 345816) - (-2912 . 345690) (-2913 . 345564) (-2914 . 345438) (-2915 . 345298) - (-2916 . 345157) (-2917 . 345016) (-2918 . 344872) (-2919 . 344124) - (-2920 . 343966) (-2921 . 343780) (-2922 . 343625) (-2923 . 343387) - (-2924 . 343142) (-2925 . 342897) (-2926 . 342687) (-2927 . 342550) - (-2928 . 342340) (-2929 . 342203) (-2930 . 341993) (-2931 . 341856) - (-2932 . 341646) (-2933 . 341343) (-2934 . 341199) (-2935 . 341058) - (-2936 . 340835) (-2937 . 340694) (-2938 . 340472) (-2939 . 340275) - (-2940 . 340119) (-2941 . 339792) (-2942 . 339633) (-2943 . 339474) - (-2944 . 339315) (-2945 . 339144) (-2946 . 338973) (-2947 . 338799) - (-2948 . 338447) (-2949 . 338324) (-2950 . 338162) (-2951 . 338089) - (-2952 . 338016) (-2953 . 337943) (-2954 . 337870) (-2955 . 337797) - (-2956 . 337724) (-2957 . 337601) (-2958 . 337428) (-2959 . 337305) - (-2960 . 337219) (-2961 . 337153) (-2962 . 337087) (-2963 . 337021) - (-2964 . 336955) (-2965 . 336889) (-2966 . 336823) (-2967 . 336757) - (-2968 . 336691) (-2969 . 336625) (-2970 . 336559) (-2971 . 336493) - (-2972 . 336427) (-2973 . 336361) (-2974 . 336295) (-2975 . 336229) - (-2976 . 336163) (-2977 . 336097) (-2978 . 336031) (-2979 . 335965) - (-2980 . 335899) (-2981 . 335833) (-2982 . 335767) (-2983 . 335701) - (-2984 . 335635) (-2985 . 335569) (-2986 . 335503) (-2987 . 334856) - (-2988 . 334209) (-2989 . 334081) (-2990 . 333958) (-2991 . 333835) - (-2992 . 333694) (-2993 . 333540) (-2994 . 333396) (-2995 . 333221) - (-2996 . 332611) (-2997 . 332487) (-2998 . 332363) (-2999 . 331685) - (-3000 . 330988) (-3001 . 330887) (-3002 . 330831) (-3003 . 330775) - (-3004 . 330719) (-3005 . 330663) (-3006 . 330604) (-3007 . 330540) - (-3008 . 330432) (-3009 . 330324) (-3010 . 330216) (-3011 . 329937) - (-3012 . 329863) (-3013 . 329637) (-3014 . 329556) (-3015 . 329478) - (-3016 . 329400) (-3017 . 329322) (-3018 . 329243) (-3019 . 329165) - (-3020 . 329072) (-3021 . 328973) (-3022 . 328905) (-3023 . 328856) - (-3024 . 328165) (-3025 . 327525) (-3026 . 326734) (-3027 . 326656) - (-3028 . 326558) (-3029 . 326469) (-3030 . 326380) (-3031 . 326306) - (-3032 . 326232) (-3033 . 326158) (-3034 . 326103) (-3035 . 326048) - (-3036 . 325982) (-3037 . 325916) (-3038 . 325854) (-3039 . 325579) - (-3040 . 325087) (-3041 . 324629) (-3042 . 324376) (-3043 . 324188) - (-3044 . 323847) (-3045 . 323551) (-3046 . 323383) (-3047 . 323252) - (-3048 . 323112) (-3049 . 322957) (-3050 . 322788) (-3051 . 321402) - (-3052 . 321269) (-3053 . 321128) (-3054 . 320899) (-3055 . 320840) - (-3056 . 320784) (-3057 . 320728) (-3058 . 320463) (-3059 . 320251) - (-3060 . 320112) (-3061 . 320005) (-3062 . 319888) (-3063 . 319822) - (-3064 . 319749) (-3065 . 319635) (-3066 . 319382) (-3067 . 319282) - (-3068 . 319088) (-3069 . 318780) (-3070 . 318314) (-3071 . 318209) - (-3072 . 318103) (-3073 . 317954) (-3074 . 317814) (-3075 . 317402) - (-3076 . 317158) (-3077 . 316500) (-3078 . 316347) (-3079 . 316233) - (-3080 . 316123) (-3081 . 315303) (-3082 . 315109) (-3083 . 314083) - (-3084 . 313635) (-3085 . 312246) (-3086 . 311395) (-3087 . 311346) - (-3088 . 311297) (-3089 . 311248) (-3090 . 311181) (-3091 . 311106) - (-3092 . 310916) (-3093 . 310844) (-3094 . 310769) (-3095 . 310697) - (-3096 . 310580) (-3097 . 310529) (-3098 . 310450) (-3099 . 310371) - (-3100 . 310292) (-3101 . 310241) (-3102 . 309997) (-3103 . 309695) - (-3104 . 309613) (-3105 . 309531) (-3106 . 309470) (-3107 . 309081) - (-3108 . 308215) (-3109 . 307642) (-3110 . 306425) (-3111 . 305618) - (-3112 . 305368) (-3113 . 305118) (-3114 . 304693) (-3115 . 304449) - (-3116 . 304205) (-3117 . 303961) (-3118 . 303717) (-3119 . 303473) - (-3120 . 303229) (-3121 . 302987) (-3122 . 302745) (-3123 . 302503) - (-3124 . 302261) (-3125 . 301683) (-3126 . 301567) (-3127 . 301513) - (-3128 . 300671) (-3129 . 300640) (-3130 . 300295) (-3131 . 300069) - (-3132 . 299970) (-3133 . 299871) (-3134 . 298105) (-3135 . 297993) - (-3136 . 296943) (-3137 . 296851) (-3138 . 295929) (-3139 . 295596) - (-3140 . 295263) (-3141 . 295160) (-3142 . 295049) (-3143 . 294938) - (-3144 . 294827) (-3145 . 294716) (-3146 . 293629) (-3147 . 293509) - (-3148 . 293374) (-3149 . 293242) (-3150 . 293110) (-3151 . 292816) - (-3152 . 292522) (-3153 . 292177) (-3154 . 291951) (-3155 . 291725) - (-3156 . 291614) (-3157 . 291503) (-3158 . 290041) (-3159 . 288337) - (-3160 . 288028) (-3161 . 287876) (-3162 . 287353) (-3163 . 287024) - (-3164 . 286831) (-3165 . 286638) (-3166 . 286445) (-3167 . 286252) - (-3168 . 286139) (-3169 . 286016) (-3170 . 285902) (-3171 . 285788) - (-3172 . 285695) (-3173 . 285602) (-3174 . 285492) (-3175 . 285291) - (-3176 . 284147) (-3177 . 284054) (-3178 . 283940) (-3179 . 283847) - (-3180 . 283600) (-3181 . 283489) (-3182 . 283275) (-3183 . 283157) - (-3184 . 282860) (-3185 . 282132) (-3186 . 281556) (-3187 . 281078) - (-3188 . 280834) (-3189 . 280590) (-3190 . 280247) (-3191 . 279641) - (-3192 . 279198) (-3193 . 279043) (-3194 . 278899) (-3195 . 278579) - (-3196 . 278424) (-3197 . 278284) (-3198 . 278144) (-3199 . 278004) - (-3200 . 277729) (-3201 . 277510) (-3202 . 276991) (-3203 . 276779) - (-3204 . 276567) (-3205 . 276187) (-3206 . 276013) (-3207 . 275804) - (-3208 . 275496) (-3209 . 275304) (-3210 . 275131) (-3211 . 273995) - (-3212 . 273630) (-3213 . 273430) (-3214 . 273230) (-3215 . 272394) - (-3216 . 272366) (-3217 . 272298) (-3218 . 272228) (-3219 . 272064) - (-3220 . 272036) (-3221 . 272008) (-3222 . 271954) (-3223 . 271804) - (-3224 . 271745) (-3225 . 271052) (-3226 . 269667) (-3227 . 269606) - (-3228 . 269282) (-3229 . 269210) (-3230 . 269153) (-3231 . 269096) - (-3232 . 269039) (-3233 . 268982) (-3234 . 268907) (-3235 . 268317) - (-3236 . 267957) (-3237 . 267883) (-3238 . 267823) (-3239 . 267705) - (-3240 . 266762) (-3241 . 266635) (-3242 . 266422) (-3243 . 266348) - (-3244 . 266294) (-3245 . 266240) (-3246 . 266131) (-3247 . 265848) - (-3248 . 265740) (-3249 . 265637) (-3250 . 265476) (-3251 . 265375) - (-3252 . 265277) (-3253 . 265139) (-3254 . 265001) (-3255 . 264863) - (-3256 . 264601) (-3257 . 264392) (-3258 . 264254) (-3259 . 263963) - (-3260 . 263811) (-3261 . 263536) (-3262 . 263316) (-3263 . 263164) - (-3264 . 263012) (-3265 . 262860) (-3266 . 262708) (-3267 . 262556) - (-3268 . 262349) (-3269 . 261962) (-3270 . 261631) (-3271 . 261292) - (-3272 . 260945) (-3273 . 260606) (-3274 . 260267) (-3275 . 259886) - (-3276 . 259505) (-3277 . 259124) (-3278 . 258759) (-3279 . 258041) - (-3280 . 257694) (-3281 . 257249) (-3282 . 256824) (-3283 . 256213) - (-3284 . 255621) (-3285 . 255234) (-3286 . 254903) (-3287 . 254516) - (-3288 . 254185) (-3289 . 253965) (-3290 . 253444) (-3291 . 253231) - (-3292 . 253018) (-3293 . 252805) (-3294 . 252627) (-3295 . 252414) - (-3296 . 252236) (-3297 . 251854) (-3298 . 251676) (-3299 . 251466) - (-3300 . 251376) (-3301 . 251286) (-3302 . 251195) (-3303 . 251083) - (-3304 . 250993) (-3305 . 250886) (-3306 . 250697) (-3307 . 250641) - (-3308 . 250560) (-3309 . 250479) (-3310 . 250398) (-3311 . 250321) - (-3312 . 250186) (-3313 . 250051) (-3314 . 249927) (-3315 . 249806) - (-3316 . 249688) (-3317 . 249552) (-3318 . 249419) (-3319 . 249300) - (-3320 . 249042) (-3321 . 248757) (-3322 . 248685) (-3323 . 248589) - (-3324 . 248448) (-3325 . 248391) (-3326 . 248334) (-3327 . 248274) - (-3328 . 248073) (-3329 . 247678) (-3330 . 247156) (-3331 . 246879) - (-3332 . 246459) (-3333 . 246347) (-3334 . 245909) (-3335 . 245679) - (-3336 . 245476) (-3337 . 245294) (-3338 . 245164) (-3339 . 244958) - (-3340 . 244751) (-3341 . 244561) (-3342 . 244014) (-3343 . 243758) - (-3344 . 243467) (-3345 . 243173) (-3346 . 242876) (-3347 . 242576) - (-3348 . 242446) (-3349 . 242313) (-3350 . 242177) (-3351 . 242038) - (-3352 . 240821) (-3353 . 240513) (-3354 . 240149) (-3355 . 240052) - (-3356 . 239812) (-3357 . 239537) (-3358 . 239262) (-3359 . 239003) - (-3360 . 238829) (-3361 . 238751) (-3362 . 238664) (-3363 . 238564) - (-3364 . 238470) (-3365 . 238389) (-3366 . 238319) (-3367 . 237528) - (-3368 . 237458) (-3369 . 237130) (-3370 . 237060) (-3371 . 236732) - (-3372 . 236662) (-3373 . 236217) (-3374 . 236147) (-3375 . 236043) - (-3376 . 235969) (-3377 . 235895) (-3378 . 235824) (-3379 . 235482) - (-3380 . 235354) (-3381 . 235277) (-3382 . 235046) (-3383 . 234903) - (-3384 . 234760) (-3385 . 234421) (-3386 . 234091) (-3387 . 233878) - (-3388 . 233623) (-3389 . 233273) (-3390 . 233048) (-3391 . 232823) - (-3392 . 232598) (-3393 . 232373) (-3394 . 232160) (-3395 . 231947) - (-3396 . 231797) (-3397 . 231616) (-3398 . 231511) (-3399 . 231389) - (-3400 . 231281) (-3401 . 231173) (-3402 . 230848) (-3403 . 230584) - (-3404 . 230273) (-3405 . 229971) (-3406 . 229662) (-3407 . 228943) - (-3408 . 228367) (-3409 . 228192) (-3410 . 228048) (-3411 . 227893) - (-3412 . 227770) (-3413 . 227665) (-3414 . 227550) (-3415 . 227455) - (-3416 . 226974) (-3417 . 226864) (-3418 . 226754) (-3419 . 226644) - (-3420 . 225572) (-3421 . 225065) (-3422 . 224998) (-3423 . 224925) - (-3424 . 224052) (-3425 . 223979) (-3426 . 223924) (-3427 . 223869) - (-3428 . 223837) (-3429 . 223751) (-3430 . 223719) (-3431 . 223633) - (-3432 . 223213) (-3433 . 222793) (-3434 . 222241) (-3435 . 221137) - (-3436 . 219427) (-3437 . 217877) (-3438 . 217085) (-3439 . 216585) - (-3440 . 216099) (-3441 . 215697) (-3442 . 215047) (-3443 . 214972) - (-3444 . 214881) (-3445 . 214810) (-3446 . 214739) (-3447 . 214683) - (-3448 . 214563) (-3449 . 214509) (-3450 . 214448) (-3451 . 214394) - (-3452 . 214291) (-3453 . 213851) (-3454 . 213411) (-3455 . 212971) - (-3456 . 212449) (-3457 . 212288) (-3458 . 212127) (-3459 . 211816) - (-3460 . 211730) (-3461 . 211640) (-3462 . 211282) (-3463 . 211165) - (-3464 . 211084) (-3465 . 210926) (-3466 . 210813) (-3467 . 210738) - (-3468 . 209892) (-3469 . 208710) (-3470 . 208611) (-3471 . 208512) - (-3472 . 208183) (-3473 . 208105) (-3474 . 208030) (-3475 . 207924) - (-3476 . 207768) (-3477 . 207661) (-3478 . 207526) (-3479 . 207391) - (-3480 . 207269) (-3481 . 207174) (-3482 . 207026) (-3483 . 206931) - (-3484 . 206776) (-3485 . 206621) (-3486 . 206069) (-3487 . 205517) - (-3488 . 204902) (-3489 . 204350) (-3490 . 203798) (-3491 . 203246) - (-3492 . 202693) (-3493 . 202140) (-3494 . 201587) (-3495 . 201034) - (-3496 . 200481) (-3497 . 199928) (-3498 . 199376) (-3499 . 198824) - (-3500 . 198272) (-3501 . 197720) (-3502 . 197168) (-3503 . 196616) - (-3504 . 196512) (-3505 . 195927) (-3506 . 195822) (-3507 . 195747) - (-3508 . 195605) (-3509 . 195513) (-3510 . 195422) (-3511 . 195330) - (-3512 . 195235) (-3513 . 195130) (-3514 . 195007) (-3515 . 194885) - (-3516 . 194521) (-3517 . 194399) (-3518 . 194301) (-3519 . 193940) - (-3520 . 193411) (-3521 . 193336) (-3522 . 193261) (-3523 . 193169) - (-3524 . 192988) (-3525 . 192893) (-3526 . 192818) (-3527 . 192727) - (-3528 . 192636) (-3529 . 192477) (-3530 . 191928) (-3531 . 191379) - (-3532 . 188672) (-3533 . 188500) (-3534 . 187090) (-3535 . 186530) - (-3536 . 186415) (-3537 . 186043) (-3538 . 185980) (-3539 . 185917) - (-3540 . 185854) (-3541 . 185576) (-3542 . 185309) (-3543 . 185257) - (-3544 . 184616) (-3545 . 184565) (-3546 . 184377) (-3547 . 184304) - (-3548 . 184224) (-3549 . 184111) (-3550 . 183921) (-3551 . 183557) - (-3552 . 183285) (-3553 . 183234) (-3554 . 183183) (-3555 . 183113) - (-3556 . 182994) (-3557 . 182965) (-3558 . 182861) (-3559 . 182739) - (-3560 . 182685) (-3561 . 182508) (-3562 . 182447) (-3563 . 182266) - (-3564 . 182205) (-3565 . 182133) (-3566 . 181658) (-3567 . 181284) - (-3568 . 177752) (-3569 . 177700) (-3570 . 177572) (-3571 . 177422) - (-3572 . 177370) (-3573 . 177229) (-3574 . 175171) (-3575 . 167564) - (-3576 . 167413) (-3577 . 167343) (-3578 . 167292) (-3579 . 167242) - (-3580 . 167191) (-3581 . 167140) (-3582 . 166944) (-3583 . 166802) - (-3584 . 166688) (-3585 . 166567) (-3586 . 166449) (-3587 . 166337) - (-3588 . 166219) (-3589 . 166114) (-3590 . 166033) (-3591 . 165929) - (-3592 . 164995) (-3593 . 164775) (-3594 . 164538) (-3595 . 164456) - (-3596 . 164112) (-3597 . 162973) (-3598 . 162899) (-3599 . 162804) - (-3600 . 162730) (-3601 . 162526) (-3602 . 162435) (-3603 . 162319) - (-3604 . 162206) (-3605 . 162115) (-3606 . 162024) (-3607 . 161935) - (-3608 . 161846) (-3609 . 161757) (-3610 . 161669) (-3611 . 161181) - (-3612 . 161117) (-3613 . 161053) (-3614 . 160989) (-3615 . 160928) - (-3616 . 160188) (-3617 . 160127) (-3618 . 160066) (-3619 . 159440) - (-3620 . 159388) (-3621 . 159260) (-3622 . 159196) (-3623 . 159142) - (-3624 . 159033) (-3625 . 157736) (-3626 . 157655) (-3627 . 157566) - (-3628 . 157508) (-3629 . 157368) (-3630 . 157283) (-3631 . 157209) - (-3632 . 157124) (-3633 . 157067) (-3634 . 156851) (-3635 . 156712) - (-3636 . 156105) (-3637 . 155551) (-3638 . 154997) (-3639 . 154443) - (-3640 . 153836) (-3641 . 153282) (-3642 . 152722) (-3643 . 152162) - (-3644 . 151900) (-3645 . 151461) (-3646 . 151128) (-3647 . 150789) - (-3648 . 150484) (-3649 . 150351) (-3650 . 150218) (-3651 . 149830) - (-3652 . 149737) (-3653 . 149644) (-3654 . 149551) (-3655 . 149458) - (-3656 . 149365) (-3657 . 149272) (-3658 . 149179) (-3659 . 149086) - (-3660 . 148993) (-3661 . 148900) (-3662 . 148807) (-3663 . 148714) - (-3664 . 148621) (-3665 . 148528) (-3666 . 148435) (-3667 . 148342) - (-3668 . 148249) (-3669 . 148156) (-3670 . 148063) (-3671 . 147970) - (-3672 . 147877) (-3673 . 147784) (-3674 . 147691) (-3675 . 147598) - (-3676 . 147505) (-3677 . 147320) (-3678 . 147010) (-3679 . 145382) - (-3680 . 145228) (-3681 . 145091) (-3682 . 144949) (-3683 . 144747) - (-3684 . 142820) (-3685 . 142693) (-3686 . 142569) (-3687 . 142442) - (-3688 . 142221) (-3689 . 142000) (-3690 . 141873) (-3691 . 141672) - (-3692 . 141496) (-3693 . 140979) (-3694 . 140462) (-3695 . 140185) - (-3696 . 139776) (-3697 . 139259) (-3698 . 139075) (-3699 . 138933) - (-3700 . 138438) (-3701 . 137807) (-3702 . 137751) (-3703 . 137657) - (-3704 . 137538) (-3705 . 137468) (-3706 . 137395) (-3707 . 137165) - (-3708 . 136546) (-3709 . 136116) (-3710 . 136034) (-3711 . 135892) - (-3712 . 135422) (-3713 . 135300) (-3714 . 135178) (-3715 . 135038) - (-3716 . 134851) (-3717 . 134735) (-3718 . 134455) (-3719 . 134387) - (-3720 . 134189) (-3721 . 134009) (-3722 . 133854) (-3723 . 133747) - (-3724 . 133696) (-3725 . 133319) (-3726 . 132791) (-3727 . 132569) - (-3728 . 132347) (-3729 . 132108) (-3730 . 132018) (-3731 . 130276) - (-3732 . 129694) (-3733 . 129616) (-3734 . 124156) (-3735 . 123366) - (-3736 . 122989) (-3737 . 122918) (-3738 . 122653) (-3739 . 122478) - (-3740 . 121993) (-3741 . 121571) (-3742 . 121131) (-3743 . 120268) - (-3744 . 120144) (-3745 . 120017) (-3746 . 119908) (-3747 . 119756) - (-3748 . 119642) (-3749 . 119503) (-3750 . 119422) (-3751 . 119341) - (-3752 . 119237) (-3753 . 118819) (-3754 . 118398) (-3755 . 118324) - (-3756 . 118061) (-3757 . 117797) (-3758 . 117418) (-3759 . 116719) - (-3760 . 115676) (-3761 . 115617) (-3762 . 115543) (-3763 . 115469) - (-3764 . 115347) (-3765 . 115097) (-3766 . 115011) (-3767 . 114936) - (-3768 . 114861) (-3769 . 114766) (-3770 . 110991) (-3771 . 109821) - (-3772 . 109161) (-3773 . 108977) (-3774 . 106772) (-3775 . 106447) - (-3776 . 105965) (-3777 . 105524) (-3778 . 105289) (-3779 . 105044) - (-3780 . 104954) (-3781 . 103519) (-3782 . 103441) (-3783 . 103336) - (-3784 . 101860) (-3785 . 101455) (-3786 . 101054) (-3787 . 100958) - (-3788 . 100879) (-3789 . 100724) (-3790 . 99606) (-3791 . 99527) - (-3792 . 99451) (-3793 . 99105) (-3794 . 99048) (-3795 . 98976) - (-3796 . 98919) (-3797 . 98862) (-3798 . 98732) (-3799 . 98530) - (-3800 . 98162) (-3801 . 97741) (-3802 . 93931) (-3803 . 93329) - (-3804 . 92862) (-3805 . 92649) (-3806 . 92436) (-3807 . 92270) - (-3808 . 92057) (-3809 . 91891) (-3810 . 91725) (-3811 . 91559) - (-3812 . 91393) (-3813 . 91123) (-3814 . 85709) (** . 82756) (-3816 . 82340) - (-3817 . 82099) (-3818 . 82043) (-3819 . 81551) (-3820 . 78743) - (-3821 . 78593) (-3822 . 78429) (-3823 . 78265) (-3824 . 78169) - (-3825 . 78051) (-3826 . 77927) (-3827 . 77784) (-3828 . 77613) - (-3829 . 77487) (-3830 . 77343) (-3831 . 77191) (-3832 . 77032) - (-3833 . 76519) (-3834 . 76430) (-3835 . 75765) (-3836 . 75573) - (-3837 . 75478) (-3838 . 75170) (-3839 . 73998) (-3840 . 73792) - (-3841 . 72617) (-3842 . 72542) (-3843 . 71361) (-3844 . 67859) - (-3845 . 67495) (-3846 . 67218) (-3847 . 67126) (-3848 . 67033) - (-3849 . 66756) (-3850 . 66663) (-3851 . 66570) (-3852 . 66477) - (-3853 . 66093) (-3854 . 66022) (-3855 . 65930) (-3856 . 65772) - (-3857 . 65418) (-3858 . 65260) (-3859 . 65152) (-3860 . 65123) - (-3861 . 65056) (-3862 . 64902) (-3863 . 64744) (-3864 . 64350) - (-3865 . 64275) (-3866 . 64169) (-3867 . 64097) (-3868 . 64019) - (-3869 . 63946) (-3870 . 63873) (-3871 . 63800) (-3872 . 63728) - (-3873 . 63656) (-3874 . 63583) (-3875 . 63342) (-3876 . 63002) - (-3877 . 62854) (-3878 . 62781) (-3879 . 62708) (-3880 . 62635) - (-3881 . 62381) (-3882 . 62237) (-3883 . 60901) (-3884 . 60707) - (-3885 . 60436) (-3886 . 60288) (-3887 . 60140) (-3888 . 59900) - (-3889 . 59706) (-3890 . 59438) (-3891 . 59242) (-3892 . 59213) - (-3893 . 59112) (-3894 . 59011) (-3895 . 58910) (-3896 . 58809) - (-3897 . 58708) (-3898 . 58607) (-3899 . 58506) (-3900 . 58405) - (-3901 . 58304) (-3902 . 58203) (-3903 . 58088) (-3904 . 57973) - (-3905 . 57922) (-3906 . 57805) (-3907 . 57747) (-3908 . 57646) - (-3909 . 57545) (-3910 . 57444) (-3911 . 57328) (-3912 . 57299) - (-3913 . 56568) (-3914 . 56443) (-3915 . 56318) (-3916 . 56178) - (-3917 . 56060) (-3918 . 55935) (-3919 . 55780) (-3920 . 54797) - (-3921 . 53938) (-3922 . 53884) (-3923 . 53830) (-3924 . 53622) - (-3925 . 53250) (-3926 . 52839) (-3927 . 52481) (-3928 . 52123) - (-3929 . 51971) (-3930 . 51669) (-3931 . 51513) (-3932 . 51187) - (-3933 . 51117) (-3934 . 51047) (-3935 . 50838) (-3936 . 50229) - (-3937 . 50025) (-3938 . 49652) (-3939 . 49143) (-3940 . 48878) - (-3941 . 48397) (-3942 . 47916) (-3943 . 47791) (-3944 . 46691) - (-3945 . 45615) (-3946 . 45042) (-3947 . 44824) (-3948 . 36498) - (-3949 . 36313) (-3950 . 34230) (-3951 . 32062) (-3952 . 31916) - (-3953 . 31738) (-3954 . 31331) (-3955 . 31036) (-3956 . 30688) - (-3957 . 30522) (-3958 . 30356) (-3959 . 29945) (-3960 . 16071) - (-3961 . 14964) (* . 10917) (-3963 . 10663) (-3964 . 10479) (-3965 . 9522) - (-3966 . 9469) (-3967 . 9409) (-3968 . 9140) (-3969 . 8513) (-3970 . 7240) - (-3971 . 5996) (-3972 . 5127) (-3973 . 3864) (-3974 . 420) (-3975 . 306) - (-3976 . 173) (-3977 . 30))
\ No newline at end of file +((-1216 . 630124) (-1217 . 629728) (-1218 . 629426) (-1219 . 629030) + (-1220 . 628909) (-1221 . 628807) (-1222 . 628694) (-1223 . 628578) + (-1224 . 628525) (-1225 . 628391) (-1226 . 628316) (-1227 . 628160) + (-1228 . 627932) (-1229 . 626968) (-1230 . 626721) (-1231 . 626437) + (-1232 . 626153) (-1233 . 625869) (-1234 . 625550) (-1235 . 625458) + (-1236 . 625366) (-1237 . 625274) (-1238 . 625182) (-1239 . 625090) + (-1240 . 624998) (-1241 . 624903) (-1242 . 624808) (-1243 . 624716) + (-1244 . 624624) (-1245 . 624532) (-1246 . 624440) (-1247 . 624348) + (-1248 . 624246) (-1249 . 624144) (-1250 . 624042) (-1251 . 623950) + (-1252 . 623899) (-1253 . 623847) (-1254 . 623777) (-1255 . 623357) + (-1256 . 623163) (-1257 . 623136) (-1258 . 623013) (-1259 . 622890) + (-1260 . 622746) (-1261 . 622576) (-1262 . 622452) (-1263 . 622213) + (-1264 . 622140) (-1265 . 621915) (-1266 . 621669) (-1267 . 621616) + (-1268 . 621438) (-1269 . 621269) (-1270 . 621193) (-1271 . 621120) + (-1272 . 620967) (-1273 . 620814) (-1274 . 620630) (-1275 . 620449) + (-1276 . 620394) (-1277 . 620339) (-1278 . 620266) (-1279 . 620190) + (-1280 . 620113) (-1281 . 620045) (-1282 . 619902) (-1283 . 619795) + (-1284 . 619727) (-1285 . 619657) (-1286 . 619587) (-1287 . 619537) + (-1288 . 619487) (-1289 . 619437) (-1290 . 619316) (-1291 . 619000) + (-1292 . 618931) (-1293 . 618852) (-1294 . 618733) (-1295 . 618656) + (-1296 . 618579) (-1297 . 618426) (-1298 . 618277) (-1299 . 618201) + (-1300 . 618144) (-1301 . 618072) (-1302 . 618009) (-1303 . 617946) + (-1304 . 617885) (-1305 . 617813) (-1306 . 617697) (-1307 . 617645) + (-1308 . 617590) (-1309 . 617538) (-1310 . 617486) (-1311 . 617458) + (-1312 . 617430) (-1313 . 617402) (-1314 . 617358) (-1315 . 617287) + (-1316 . 617236) (-1317 . 617188) (-1318 . 617137) (-1319 . 617085) + (-1320 . 616969) (-1321 . 616853) (-1322 . 616761) (-1323 . 616669) + (-1324 . 616546) (-1325 . 616480) (-1326 . 616414) (-1327 . 616355) + (-1328 . 616327) (-1329 . 616299) (-1330 . 616271) (-1331 . 616243) + (-1332 . 616133) (-1333 . 616082) (-1334 . 616031) (-1335 . 615980) + (-1336 . 615929) (-1337 . 615878) (-1338 . 615827) (-1339 . 615799) + (-1340 . 615771) (-1341 . 615743) (-1342 . 615715) (-1343 . 615687) + (-1344 . 615659) (-1345 . 615631) (-1346 . 615603) (-1347 . 615575) + (-1348 . 615472) (-1349 . 615420) (-1350 . 615254) (-1351 . 615070) + (-1352 . 614859) (-1353 . 614744) (-1354 . 614511) (-1355 . 614421) + (-1356 . 614328) (-1357 . 614213) (-1358 . 613815) (-1359 . 613597) + (-1360 . 613548) (-1361 . 613520) (-1362 . 613444) (-1363 . 613345) + (-1364 . 613246) (-1365 . 613147) (-1366 . 613048) (-1367 . 612949) + (-1368 . 612850) (-1369 . 612692) (-1370 . 612616) (-1371 . 612449) + (-1372 . 612391) (-1373 . 612333) (-1374 . 612024) (-1375 . 611770) + (-1376 . 611686) (-1377 . 611554) (-1378 . 611496) (-1379 . 611444) + (-1380 . 611362) (-1381 . 611287) (-1382 . 611216) (-1383 . 611162) + (-1384 . 611111) (-1385 . 611037) (-1386 . 610963) (-1387 . 610882) + (-1388 . 610801) (-1389 . 610746) (-1390 . 610672) (-1391 . 610598) + (-1392 . 610524) (-1393 . 610447) (-1394 . 610393) (-1395 . 610335) + (-1396 . 610236) (-1397 . 610137) (-1398 . 610038) (-1399 . 609939) + (-1400 . 609840) (-1401 . 609741) (-1402 . 609642) (-1403 . 609528) + (-1404 . 609414) (-1405 . 609300) (-1406 . 609186) (-1407 . 609072) + (-1408 . 608958) (-1409 . 608841) (-1410 . 608765) (-1411 . 608689) + (-1412 . 608302) (-1413 . 607957) (-1414 . 607855) (-1415 . 607594) + (-1416 . 607492) (-1417 . 607287) (-1418 . 607174) (-1419 . 607072) + (-1420 . 606915) (-1421 . 606826) (-1422 . 606732) (-1423 . 606652) + (-1424 . 606578) (-1425 . 606500) (-1426 . 606441) (-1427 . 606383) + (-1428 . 606281) (-7 . 606253) (-8 . 606225) (-9 . 606197) (-1432 . 606078) + (-1433 . 605996) (-1434 . 605914) (-1435 . 605832) (-1436 . 605750) + (-1437 . 605668) (-1438 . 605574) (-1439 . 605504) (-1440 . 605434) + (-1441 . 605343) (-1442 . 605249) (-1443 . 605167) (-1444 . 605085) + (-1445 . 604987) (-1446 . 604827) (-1447 . 604629) (-1448 . 604493) + (-1449 . 604393) (-1450 . 604293) (-1451 . 604200) (-1452 . 604141) + (-1453 . 603808) (-1454 . 603708) (-1455 . 603590) (-1456 . 603378) + (-1457 . 603199) (-1458 . 603041) (-1459 . 602838) (-1460 . 602420) + (-1461 . 602369) (-1462 . 602260) (-1463 . 602145) (-1464 . 602076) + (-1465 . 602007) (-1466 . 601938) (-1467 . 601872) (-1468 . 601747) + (-1469 . 601530) (-1470 . 601452) (-1471 . 601402) (-1472 . 601331) + (-1473 . 601188) (-1474 . 601047) (-1475 . 600969) (-1476 . 600891) + (-1477 . 600835) (-1478 . 600779) (-1479 . 600706) (-1480 . 600566) + (-1481 . 600513) (-1482 . 600454) (-1483 . 600395) (-1484 . 600240) + (-1485 . 600188) (-1486 . 600071) (-1487 . 599954) (-1488 . 599837) + (-1489 . 599706) (-1490 . 599427) (-1491 . 599292) (-1492 . 599236) + (-1493 . 599180) (-1494 . 599121) (-1495 . 599062) (-1496 . 599006) + (-1497 . 598950) (-1498 . 598753) (-1499 . 596411) (-1500 . 596284) + (-1501 . 596139) (-1502 . 596011) (-1503 . 595959) (-1504 . 595907) + (-1505 . 595855) (-1506 . 591817) (-1507 . 591723) (-1508 . 591584) + (-1509 . 591375) (-1510 . 591273) (-1511 . 591171) (-1512 . 590256) + (-1513 . 590180) (-1514 . 590051) (-1515 . 589926) (-1516 . 589849) + (-1517 . 589772) (-1518 . 589645) (-1519 . 589518) (-1520 . 589352) + (-1521 . 589225) (-1522 . 589098) (-1523 . 588881) (-1524 . 588447) + (-1525 . 588083) (-1526 . 588031) (-1527 . 587972) (-1528 . 587884) + (-1529 . 587796) (-1530 . 587705) (-1531 . 587614) (-1532 . 587523) + (-1533 . 587432) (-1534 . 587341) (-1535 . 587250) (-1536 . 587159) + (-1537 . 587068) (-1538 . 586977) (-1539 . 586886) (-1540 . 586795) + (-1541 . 586704) (-1542 . 586613) (-1543 . 586522) (-1544 . 586431) + (-1545 . 586340) (-1546 . 586249) (-1547 . 586158) (-1548 . 586067) + (-1549 . 585976) (-1550 . 585885) (-1551 . 585794) (-1552 . 585703) + (-1553 . 585612) (-1554 . 585521) (-1555 . 585430) (-1556 . 585268) + (-1557 . 585160) (-1558 . 584917) (-1559 . 584630) (-1560 . 584435) + (-1561 . 584279) (-1562 . 584119) (-1563 . 584068) (-1564 . 584006) + (-1565 . 583955) (-1566 . 583892) (-1567 . 583839) (-1568 . 583787) + (-1569 . 583735) (-1570 . 583683) (-1571 . 583593) (-1572 . 583410) + (-1573 . 583256) (-1574 . 583176) (-1575 . 583096) (-1576 . 583016) + (-1577 . 582886) (-1578 . 582657) (-1579 . 582629) (-1580 . 582601) + (-1581 . 582573) (-1582 . 582493) (-1583 . 582416) (-1584 . 582339) + (-1585 . 582258) (-1586 . 582199) (-1587 . 582041) (-1588 . 581848) + (-1589 . 581363) (-1590 . 581121) (-1591 . 580859) (-1592 . 580758) + (-1593 . 580677) (-1594 . 580596) (-1595 . 580526) (-1596 . 580456) + (-1597 . 580298) (-1598 . 579994) (-1599 . 579766) (-1600 . 579644) + (-1601 . 579586) (-1602 . 579524) (-1603 . 579462) (-1604 . 579397) + (-1605 . 579335) (-1606 . 579056) (-1607 . 578988) (-1608 . 578778) + (-1609 . 578726) (-1610 . 578672) (-1611 . 578581) (-1612 . 578494) + (-1613 . 576747) (-1614 . 576668) (-1615 . 575923) (-1616 . 575806) + (-1617 . 575600) (-1618 . 575439) (-1619 . 575278) (-1620 . 575118) + (-1621 . 574980) (-1622 . 574886) (-1623 . 574788) (-1624 . 574694) + (-1625 . 574580) (-1626 . 574498) (-1627 . 574401) (-1628 . 574205) + (-1629 . 574114) (-1630 . 574020) (-1631 . 573953) (-1632 . 573884) + (-1633 . 573832) (-1634 . 573773) (-1635 . 573699) (-1636 . 573647) + (-1637 . 573490) (-1638 . 573333) (-1639 . 573181) (-1640 . 572423) + (-1641 . 572112) (-1642 . 571760) (-1643 . 571543) (-1644 . 571280) + (-1645 . 570905) (-1646 . 570721) (-1647 . 570587) (-1648 . 570421) + (-1649 . 570255) (-1650 . 570121) (-1651 . 569987) (-1652 . 569853) + (-1653 . 569719) (-1654 . 569588) (-1655 . 569457) (-1656 . 569326) + (-1657 . 568946) (-1658 . 568820) (-1659 . 568692) (-1660 . 568442) + (-1661 . 568319) (-1662 . 568069) (-1663 . 567946) (-1664 . 567696) + (-1665 . 567573) (-1666 . 567290) (-1667 . 567019) (-1668 . 566746) + (-1669 . 566448) (-1670 . 566346) (-1671 . 566201) (-1672 . 566060) + (-1673 . 565909) (-1674 . 565748) (-1675 . 565660) (-1676 . 565632) + (-1677 . 565550) (-1678 . 565453) (-1679 . 564985) (-1680 . 564634) + (-1681 . 564201) (-1682 . 564062) (-1683 . 563992) (-1684 . 563922) + (-1685 . 563852) (-1686 . 563761) (-1687 . 563670) (-1688 . 563579) + (-1689 . 563488) (-1690 . 563397) (-1691 . 563311) (-1692 . 563225) + (-1693 . 563139) (-1694 . 563053) (-1695 . 562967) (-1696 . 562893) + (-1697 . 562788) (-1698 . 562562) (-1699 . 562484) (-1700 . 562409) + (-1701 . 562316) (-1702 . 562212) (-1703 . 562116) (-1704 . 561947) + (-1705 . 561870) (-1706 . 561793) (-1707 . 561702) (-1708 . 561611) + (-1709 . 561411) (-1710 . 561258) (-1711 . 561105) (-1712 . 560952) + (-1713 . 560799) (-1714 . 560646) (-1715 . 560493) (-1716 . 560427) + (-1717 . 560274) (-1718 . 560121) (-1719 . 559968) (-1720 . 559815) + (-1721 . 559662) (-1722 . 559509) (-1723 . 559356) (-1724 . 559203) + (-1725 . 559129) (-1726 . 559055) (-1727 . 559000) (-1728 . 558945) + (-1729 . 558890) (-1730 . 558835) (-1731 . 558764) (-1732 . 558578) + (-1733 . 558481) (-1734 . 558384) (-1735 . 558186) (-1736 . 558088) + (-1737 . 557900) (-1738 . 557807) (-1739 . 557680) (-1740 . 557553) + (-1741 . 557426) (-1742 . 557358) (-1743 . 557242) (-1744 . 557126) + (-1745 . 557010) (-1746 . 556957) (-1747 . 556872) (-1748 . 556787) + (-1749 . 556479) (-1750 . 556424) (-1751 . 555772) (-1752 . 555457) + (-1753 . 555173) (-1754 . 555055) (-1755 . 554936) (-1756 . 554877) + (-1757 . 554818) (-1758 . 554767) (-1759 . 554716) (-1760 . 554665) + (-1761 . 554612) (-1762 . 554559) (-1763 . 554500) (-1764 . 554387) + (-1765 . 554274) (-1766 . 554107) (-1767 . 554015) (-1768 . 553902) + (-1769 . 553818) (-1770 . 553703) (-1771 . 553612) (-1772 . 553521) + (-1773 . 553400) (-1774 . 553213) (-1775 . 553161) (-1776 . 553106) + (-1777 . 552919) (-1778 . 552796) (-1779 . 552723) (-1780 . 552650) + (-1781 . 552530) (-1782 . 552457) (-1783 . 552384) (-1784 . 552044) + (-1785 . 551971) (-1786 . 551751) (-1787 . 551418) (-1788 . 551235) + (-1789 . 551092) (-1790 . 550732) (-1791 . 550564) (-1792 . 550396) + (-1793 . 550140) (-1794 . 549884) (-1795 . 549689) (-1796 . 549494) + (-1797 . 548900) (-1798 . 548824) (-1799 . 548685) (-1800 . 548278) + (-1801 . 548151) (-1802 . 547994) (-1803 . 547677) (-1804 . 547197) + (-1805 . 546717) (-1806 . 546215) (-1807 . 546147) (-1808 . 546076) + (-1809 . 546005) (-1810 . 545833) (-1811 . 545714) (-1812 . 545595) + (-1813 . 545519) (-1814 . 545443) (-1815 . 545170) (-1816 . 545056) + (-1817 . 545005) (-1818 . 544954) (-1819 . 544903) (-1820 . 544852) + (-1821 . 544801) (-1822 . 544660) (-1823 . 544487) (-1824 . 544256) + (-1825 . 544070) (-1826 . 544042) (-1827 . 544014) (-1828 . 543986) + (-1829 . 543958) (-1830 . 543930) (-1831 . 543902) (-1832 . 543874) + (-1833 . 543823) (-1834 . 543757) (-1835 . 543667) (-1836 . 543296) + (-1837 . 543145) (-1838 . 542994) (-1839 . 542789) (-1840 . 542667) + (-1841 . 542593) (-1842 . 542516) (-1843 . 542442) (-1844 . 542365) + (-1845 . 542288) (-1846 . 542214) (-1847 . 542137) (-1848 . 541904) + (-1849 . 541751) (-1850 . 541456) (-1851 . 541303) (-1852 . 540981) + (-1853 . 540843) (-1854 . 540705) (-1855 . 540625) (-1856 . 540545) + (-1857 . 540281) (-1858 . 539550) (-1859 . 539414) (-1860 . 539324) + (-1861 . 539189) (-1862 . 539122) (-1863 . 539054) (-1864 . 538967) + (-1865 . 538880) (-1866 . 538713) (-1867 . 538639) (-1868 . 538495) + (-1869 . 538035) (-1870 . 537656) (-1871 . 536894) (-1872 . 536750) + (-1873 . 536606) (-1874 . 536444) (-1875 . 536207) (-1876 . 536067) + (-1877 . 535921) (-1878 . 535682) (-1879 . 535446) (-1880 . 535207) + (-1881 . 535015) (-1882 . 534892) (-1883 . 534688) (-1884 . 534465) + (-1885 . 534226) (-1886 . 534085) (-1887 . 533947) (-1888 . 533808) + (-1889 . 533555) (-1890 . 533299) (-1891 . 533142) (-1892 . 532988) + (-1893 . 532748) (-1894 . 532463) (-1895 . 532325) (-1896 . 532238) + (-1897 . 531572) (-1898 . 531396) (-1899 . 531214) (-1900 . 531038) + (-1901 . 530856) (-1902 . 530677) (-1903 . 530498) (-1904 . 530311) + (-1905 . 529929) (-1906 . 529750) (-1907 . 529571) (-1908 . 529384) + (-1909 . 529002) (-1910 . 528009) (-1911 . 527625) (-1912 . 527241) + (-1913 . 527123) (-1914 . 526966) (-1915 . 526824) (-1916 . 526707) + (-1917 . 526525) (-1918 . 526401) (-1919 . 526112) (-1920 . 525823) + (-1921 . 525540) (-1922 . 525257) (-1923 . 524979) (-1924 . 524891) + (-1925 . 524806) (-1926 . 524709) (-1927 . 524612) (-1928 . 524392) + (-1929 . 524292) (-1930 . 524189) (-1931 . 524111) (-1932 . 523786) + (-1933 . 523494) (-1934 . 523421) (-1935 . 523036) (-1936 . 523008) + (-1937 . 522809) (-1938 . 522635) (-1939 . 522394) (-1940 . 522339) + (-1941 . 522264) (-1942 . 521896) (-1943 . 521781) (-1944 . 521704) + (-1945 . 521631) (-1946 . 521550) (-1947 . 521469) (-1948 . 521388) + (-1949 . 521287) (-1950 . 521228) (-1951 . 521175) (-1952 . 521121) + (-1953 . 520789) (-1954 . 520465) (-1955 . 520277) (-1956 . 520086) + (-1957 . 519922) (-1958 . 519587) (-1959 . 519420) (-1960 . 519179) + (-1961 . 518855) (-1962 . 518665) (-1963 . 518450) (-1964 . 518279) + (-1965 . 517857) (-1966 . 517630) (-1967 . 517359) (-1968 . 517222) + (-1969 . 517081) (-1970 . 516604) (-1971 . 516481) (-1972 . 516245) + (-1973 . 515991) (-1974 . 515741) (-1975 . 515448) (-1976 . 515308) + (-1977 . 515168) (-1978 . 515028) (-1979 . 514839) (-1980 . 514650) + (-1981 . 514475) (-1982 . 514201) (-1983 . 513766) (-1984 . 513738) + (-1985 . 513666) (-1986 . 513533) (-1987 . 513458) (-1988 . 513299) + (-1989 . 513136) (-1990 . 512975) (-1991 . 512808) (-1992 . 512755) + (-1993 . 512702) (-1994 . 512573) (-1995 . 512513) (-1996 . 512460) + (-1997 . 512390) (-1998 . 512330) (-1999 . 512271) (-2000 . 512211) + (-2001 . 512152) (-2002 . 512092) (-2003 . 512033) (-2004 . 511974) + (-2005 . 511832) (-2006 . 511737) (-2007 . 511646) (-2008 . 511530) + (-2009 . 511436) (-2010 . 511338) (-2011 . 511244) (-2012 . 511103) + (-2013 . 510841) (-2014 . 509985) (-2015 . 509829) (-2016 . 509460) + (-2017 . 509404) (-2018 . 509353) (-2019 . 509250) (-2020 . 509165) + (-2021 . 509077) (-2022 . 508931) (-2023 . 508782) (-2024 . 508492) + (-2025 . 508414) (-2026 . 508339) (-2027 . 508286) (-2028 . 508233) + (-2029 . 508202) (-2030 . 508139) (-2031 . 508021) (-2032 . 507932) + (-2033 . 507812) (-2034 . 507517) (-2035 . 507323) (-2036 . 507135) + (-2037 . 506990) (-2038 . 506845) (-2039 . 506559) (-2040 . 506117) + (-2041 . 506083) (-2042 . 506046) (-2043 . 506009) (-2044 . 505972) + (-2045 . 505935) (-2046 . 505904) (-2047 . 505873) (-2048 . 505842) + (-2049 . 505808) (-2050 . 505774) (-2051 . 505720) (-2052 . 505544) + (-2053 . 505310) (-2054 . 505076) (-2055 . 504847) (-2056 . 504795) + (-2057 . 504740) (-2058 . 504671) (-2059 . 504583) (-2060 . 504514) + (-2061 . 504442) (-2062 . 504212) (-2063 . 504161) (-2064 . 504107) + (-2065 . 504076) (-2066 . 503970) (-2067 . 503745) (-2068 . 503435) + (-2069 . 503261) (-2070 . 503079) (-2071 . 502808) (-2072 . 502735) + (-2073 . 502670) (-2074 . 502194) (-2075 . 501632) (-2076 . 500906) + (-2077 . 500345) (-2078 . 499717) (-2079 . 499138) (-2080 . 499064) + (-2081 . 499012) (-2082 . 498960) (-2083 . 498886) (-2084 . 498831) + (-2085 . 498779) (-2086 . 498727) (-2087 . 498675) (-2088 . 498605) + (-2089 . 498157) (-2090 . 497951) (-2091 . 497702) (-2092 . 497368) + (-2093 . 497114) (-2094 . 496812) (-2095 . 496609) (-2096 . 496320) + (-2097 . 495772) (-2098 . 495635) (-2099 . 495433) (-2100 . 495153) + (-2101 . 495068) (-2102 . 494735) (-2103 . 494594) (-2104 . 494303) + (-2105 . 494083) (-2106 . 493957) (-2107 . 493832) (-2108 . 493685) + (-2109 . 493541) (-2110 . 493425) (-2111 . 493294) (-2112 . 492922) + (-2113 . 492662) (-2114 . 492392) (-2115 . 492152) (-2116 . 491822) + (-2117 . 491482) (-2118 . 491074) (-2119 . 490656) (-2120 . 490459) + (-2121 . 490184) (-2122 . 490016) (-2123 . 489820) (-2124 . 489598) + (-2125 . 489443) (-2126 . 489258) (-2127 . 489155) (-2128 . 489127) + (-2129 . 489099) (-2130 . 488925) (-2131 . 488851) (-2132 . 488790) + (-2133 . 488737) (-2134 . 488668) (-2135 . 488599) (-2136 . 488480) + (-2137 . 488302) (-2138 . 488247) (-2139 . 488001) (-2140 . 487928) + (-2141 . 487858) (-2142 . 487788) (-2143 . 487699) (-2144 . 487509) + (-2145 . 487436) (-2146 . 487367) (-2147 . 487302) (-2148 . 487247) + (-2149 . 487156) (-2150 . 486865) (-2151 . 486539) (-2152 . 486465) + (-2153 . 486143) (-2154 . 485938) (-2155 . 485853) (-2156 . 485768) + (-2157 . 485683) (-2158 . 485598) (-2159 . 485513) (-2160 . 485428) + (-2161 . 485343) (-2162 . 485258) (-2163 . 485173) (-2164 . 485088) + (-2165 . 485003) (-2166 . 484918) (-2167 . 484833) (-2168 . 484748) + (-2169 . 484663) (-2170 . 484578) (-2171 . 484493) (-2172 . 484408) + (-2173 . 484323) (-2174 . 484238) (-2175 . 484153) (-2176 . 484068) + (-2177 . 483983) (-2178 . 483898) (-2179 . 483813) (-2180 . 483728) + (-2181 . 483626) (-2182 . 483538) (-2183 . 483330) (-2184 . 483272) + (-2185 . 483217) (-2186 . 483130) (-2187 . 483019) (-2188 . 482933) + (-2189 . 482787) (-2190 . 482725) (-2191 . 482697) (-2192 . 482669) + (-2193 . 482641) (-2194 . 482613) (-2195 . 482444) (-2196 . 482293) + (-2197 . 482142) (-2198 . 481970) (-2199 . 481762) (-2200 . 481641) + (-2201 . 481436) (-2202 . 481344) (-2203 . 481252) (-2204 . 481123) + (-2205 . 481028) (-2206 . 480934) (-2207 . 480839) (-2208 . 480715) + (-2209 . 480687) (-2210 . 480659) (-2211 . 480631) (-2212 . 480603) + (-2213 . 480575) (-2214 . 480547) (-2215 . 480519) (-2216 . 480491) + (-2217 . 480463) (-2218 . 480435) (-2219 . 480407) (-2220 . 480379) + (-2221 . 480351) (-2222 . 480323) (-2223 . 480295) (-2224 . 480267) + (-2225 . 480214) (-2226 . 480186) (-2227 . 480158) (-2228 . 480080) + (-2229 . 480027) (-2230 . 479974) (-2231 . 479921) (-2232 . 479843) + (-2233 . 479753) (-2234 . 479658) (-2235 . 479564) (-2236 . 479482) + (-2237 . 479176) (-2238 . 478980) (-2239 . 478885) (-2240 . 478777) + (-2241 . 478366) (-2242 . 478338) (-2243 . 478174) (-2244 . 478097) + (-2245 . 477910) (-2246 . 477731) (-2247 . 477307) (-2248 . 477155) + (-2249 . 476975) (-2250 . 476802) (-2251 . 476542) (-2252 . 476290) + (-2253 . 475479) (-2254 . 475312) (-2255 . 475094) (-2256 . 474270) + (-2257 . 474139) (-2258 . 474008) (-2259 . 473877) (-2260 . 473746) + (-2261 . 473615) (-2262 . 473484) (-2263 . 473289) (-2264 . 473095) + (-2265 . 472952) (-2266 . 472637) (-2267 . 472522) (-2268 . 472182) + (-2269 . 472022) (-2270 . 471883) (-2271 . 471744) (-2272 . 471615) + (-2273 . 471530) (-2274 . 471478) (-2275 . 470998) (-2276 . 469736) + (-2277 . 469609) (-2278 . 469467) (-2279 . 469131) (-2280 . 469026) + (-2281 . 468777) (-2282 . 468545) (-2283 . 468440) (-2284 . 468365) + (-2285 . 468290) (-2286 . 468215) (-2287 . 468156) (-2288 . 468086) + (-2289 . 468033) (-2290 . 467971) (-2291 . 467901) (-2292 . 467538) + (-2293 . 467251) (-2294 . 467141) (-2295 . 466954) (-2296 . 466861) + (-2297 . 466768) (-2298 . 466681) (-2299 . 466464) (-2300 . 466245) + (-2301 . 465827) (-2302 . 465555) (-2303 . 465412) (-2304 . 465319) + (-2305 . 465176) (-2306 . 465024) (-2307 . 464870) (-2308 . 464800) + (-2309 . 464593) (-2310 . 464416) (-2311 . 464207) (-2312 . 464030) + (-2313 . 463996) (-2314 . 463962) (-2315 . 463931) (-2316 . 463813) + (-2317 . 463518) (-2318 . 463240) (-2319 . 463119) (-2320 . 462992) + (-2321 . 462907) (-2322 . 462834) (-2323 . 462745) (-2324 . 462674) + (-2325 . 462618) (-2326 . 462562) (-2327 . 462506) (-2328 . 462436) + (-2329 . 462366) (-2330 . 462296) (-2331 . 462198) (-2332 . 462120) + (-2333 . 462042) (-2334 . 461899) (-2335 . 461820) (-2336 . 461748) + (-2337 . 461545) (-2338 . 461489) (-2339 . 461301) (-2340 . 461202) + (-2341 . 461084) (-2342 . 460963) (-2343 . 460820) (-2344 . 460677) + (-2345 . 460537) (-2346 . 460397) (-2347 . 460254) (-2348 . 460128) + (-2349 . 459999) (-2350 . 459876) (-2351 . 459753) (-2352 . 459648) + (-2353 . 459543) (-2354 . 459441) (-2355 . 459291) (-2356 . 459138) + (-2357 . 458985) (-2358 . 458841) (-2359 . 458687) (-2360 . 458611) + (-2361 . 458532) (-2362 . 458379) (-2363 . 458300) (-2364 . 458221) + (-2365 . 458142) (-2366 . 458040) (-2367 . 457981) (-2368 . 457919) + (-2369 . 457802) (-2370 . 457678) (-2371 . 457601) (-2372 . 457469) + (-2373 . 457163) (-2374 . 456980) (-2375 . 456435) (-2376 . 456215) + (-2377 . 456041) (-2378 . 455871) (-2379 . 455798) (-2380 . 455722) + (-2381 . 455643) (-2382 . 455346) (-2383 . 455184) (-2384 . 454950) + (-2385 . 454508) (-2386 . 454378) (-2387 . 454238) (-2388 . 453929) + (-2389 . 453627) (-2390 . 453311) (-2391 . 452905) (-2392 . 452837) + (-2393 . 452769) (-2394 . 452701) (-2395 . 452607) (-2396 . 452500) + (-2397 . 452393) (-2398 . 452292) (-2399 . 452191) (-2400 . 452090) + (-2401 . 452013) (-2402 . 451620) (-2403 . 451203) (-2404 . 450576) + (-2405 . 450512) (-2406 . 450393) (-2407 . 450274) (-2408 . 450166) + (-2409 . 450058) (-2410 . 449902) (-2411 . 449302) (-2412 . 449019) + (-2413 . 448940) (-2414 . 448886) (-2415 . 448718) (-2416 . 448596) + (-2417 . 448200) (-2418 . 447964) (-2419 . 447763) (-2420 . 447555) + (-2421 . 447362) (-2422 . 447095) (-2423 . 447021) (-2424 . 446842) + (-2425 . 446773) (-2426 . 446697) (-2427 . 446556) (-2428 . 446353) + (-2429 . 446209) (-2430 . 445959) (-2431 . 445651) (-2432 . 445295) + (-2433 . 445136) (-2434 . 444930) (-2435 . 444770) (-2436 . 444697) + (-2437 . 444663) (-2438 . 444598) (-2439 . 444561) (-2440 . 444424) + (-2441 . 444186) (-2442 . 444116) (-2443 . 443930) (-2444 . 443681) + (-2445 . 443525) (-2446 . 443002) (-2447 . 442805) (-2448 . 442593) + (-2449 . 442431) (-2450 . 442032) (-2451 . 441865) (-2452 . 440790) + (-2453 . 440667) (-2454 . 440450) (-2455 . 440320) (-2456 . 440190) + (-2457 . 440033) (-2458 . 439930) (-2459 . 439872) (-2460 . 439814) + (-2461 . 439708) (-2462 . 439602) (-2463 . 438686) (-2464 . 436559) + (-2465 . 435745) (-2466 . 433942) (-2467 . 433874) (-2468 . 433806) + (-2469 . 433738) (-2470 . 433670) (-2471 . 433602) (-2472 . 433524) + (-2473 . 433168) (-2474 . 432986) (-2475 . 432447) (-2476 . 432271) + (-2477 . 432050) (-2478 . 431829) (-2479 . 431608) (-2480 . 431390) + (-2481 . 431172) (-2482 . 430954) (-2483 . 430736) (-2484 . 430518) + (-2485 . 430300) (-2486 . 430199) (-2487 . 429466) (-2488 . 429411) + (-2489 . 429356) (-2490 . 429301) (-2491 . 429246) (-2492 . 429096) + (-2493 . 428848) (-2494 . 428687) (-2495 . 428507) (-2496 . 428220) + (-2497 . 427834) (-2498 . 426962) (-2499 . 426622) (-2500 . 426454) + (-2501 . 426232) (-2502 . 425982) (-2503 . 425634) (-2504 . 424624) + (-2505 . 424313) (-2506 . 424101) (-2507 . 423537) (-2508 . 423024) + (-2509 . 421268) (-2510 . 420796) (-2511 . 420197) (-2512 . 419947) + (-2513 . 419813) (-2514 . 419601) (-2515 . 419525) (-2516 . 419449) + (-2517 . 419342) (-2518 . 419160) (-2519 . 418995) (-2520 . 418817) + (-2521 . 418236) (-2522 . 418075) (-2523 . 417502) (-2524 . 417432) + (-2525 . 417357) (-2526 . 417285) (-2527 . 417147) (-2528 . 416960) + (-2529 . 416853) (-2530 . 416746) (-2531 . 416631) (-2532 . 416516) + (-2533 . 416401) (-2534 . 416123) (-2535 . 415973) (-2536 . 415830) + (-2537 . 415757) (-2538 . 415672) (-2539 . 415599) (-2540 . 415526) + (-2541 . 415453) (-2542 . 415310) (-2543 . 415160) (-2544 . 414986) + (-2545 . 414836) (-2546 . 414686) (-2547 . 414560) (-2548 . 414174) + (-2549 . 413890) (-2550 . 413606) (-2551 . 413197) (-2552 . 412913) + (-2553 . 412840) (-2554 . 412693) (-2555 . 412587) (-2556 . 412513) + (-2557 . 412443) (-2558 . 412364) (-2559 . 412287) (-2560 . 412210) + (-2561 . 412061) (-2562 . 411958) (-2563 . 411900) (-2564 . 411836) + (-2565 . 411772) (-2566 . 411675) (-2567 . 411578) (-2568 . 411418) + (-2569 . 411332) (-2570 . 411246) (-2571 . 411161) (-2572 . 411102) + (-2573 . 411043) (-2574 . 410984) (-2575 . 410925) (-2576 . 410755) + (-2577 . 410667) (-2578 . 410570) (-2579 . 410536) (-2580 . 410505) + (-2581 . 410421) (-2582 . 410365) (-2583 . 410303) (-2584 . 410269) + (-2585 . 410235) (-2586 . 410201) (-2587 . 410167) (-2588 . 410133) + (-2589 . 410099) (-2590 . 410065) (-2591 . 410031) (-2592 . 409997) + (-2593 . 409885) (-2594 . 409851) (-2595 . 409800) (-2596 . 409766) + (-2597 . 409669) (-2598 . 409607) (-2599 . 409516) (-2600 . 409425) + (-2601 . 409370) (-2602 . 409318) (-2603 . 409266) (-2604 . 409214) + (-2605 . 409162) (-2606 . 408739) (-2607 . 408573) (-2608 . 408520) + (-2609 . 408451) (-2610 . 408398) (-2611 . 408267) (-2612 . 408111) + (-2613 . 407590) (-2614 . 407449) (-2615 . 407415) (-2616 . 407360) + (-2617 . 406650) (-2618 . 406335) (-2619 . 405831) (-2620 . 405753) + (-2621 . 405701) (-2622 . 405649) (-2623 . 405465) (-2624 . 405413) + (-2625 . 405361) (-2626 . 405285) (-2627 . 405223) (-2628 . 405005) + (-2629 . 404938) (-2630 . 404844) (-2631 . 404750) (-2632 . 404567) + (-2633 . 404485) (-2634 . 404363) (-2635 . 404217) (-2636 . 403566) + (-2637 . 402864) (-2638 . 402760) (-2639 . 402659) (-2640 . 402558) + (-2641 . 402447) (-2642 . 402279) (-2643 . 402075) (-2644 . 401982) + (-2645 . 401905) (-2646 . 401849) (-2647 . 401779) (-2648 . 401659) + (-2649 . 401558) (-2650 . 401461) (-2651 . 401381) (-2652 . 401301) + (-2653 . 401224) (-2654 . 401154) (-2655 . 401084) (-2656 . 401014) + (-2657 . 400944) (-2658 . 400874) (-2659 . 400804) (-2660 . 400711) + (-2661 . 400583) (-2662 . 400341) (-2663 . 400171) (-2664 . 399802) + (-2665 . 399633) (-2666 . 399517) (-2667 . 399021) (-2668 . 398640) + (-2669 . 398394) (-2670 . 398302) (-2671 . 398205) (-2672 . 397543) + (-2673 . 397430) (-2674 . 397356) (-2675 . 397264) (-2676 . 397074) + (-2677 . 396884) (-2678 . 396813) (-2679 . 396742) (-2680 . 396661) + (-2681 . 396580) (-2682 . 396455) (-2683 . 396322) (-2684 . 396241) + (-2685 . 396167) (-2686 . 396002) (-2687 . 395845) (-2688 . 395617) + (-2689 . 395469) (-2690 . 395365) (-2691 . 395261) (-2692 . 395176) + (-2693 . 394808) (-2694 . 394727) (-2695 . 394640) (-2696 . 394559) + (-2697 . 394363) (-2698 . 394143) (-2699 . 393956) (-2700 . 393634) + (-2701 . 393341) (-2702 . 393048) (-2703 . 392738) (-2704 . 392421) + (-2705 . 392269) (-2706 . 392081) (-2707 . 391608) (-2708 . 391526) + (-2709 . 391310) (-2710 . 391094) (-2711 . 390835) (-2712 . 390414) + (-2713 . 389901) (-2714 . 389771) (-2715 . 389497) (-2716 . 389318) + (-2717 . 389203) (-2718 . 389099) (-2719 . 389044) (-2720 . 388967) + (-2721 . 388897) (-2722 . 388824) (-2723 . 388769) (-2724 . 388696) + (-2725 . 388641) (-2726 . 388286) (-2727 . 387878) (-2728 . 387725) + (-2729 . 387572) (-2730 . 387491) (-2731 . 387338) (-2732 . 387185) + (-2733 . 387050) (-2734 . 386915) (-2735 . 386780) (-2736 . 386645) + (-2737 . 386510) (-2738 . 386375) (-2739 . 386319) (-2740 . 386166) + (-2741 . 386055) (-2742 . 385944) (-2743 . 385859) (-2744 . 385749) + (-2745 . 385646) (-2746 . 381495) (-2747 . 381047) (-2748 . 380620) + (-2749 . 380003) (-2750 . 379402) (-2751 . 379184) (-2752 . 379006) + (-2753 . 378747) (-2754 . 378336) (-2755 . 378042) (-2756 . 377599) + (-2757 . 377421) (-2758 . 377028) (-2759 . 376635) (-2760 . 376450) + (-2761 . 376243) (-2762 . 376023) (-2763 . 375717) (-2764 . 375518) + (-2765 . 374889) (-2766 . 374732) (-2767 . 374343) (-2768 . 374292) + (-2769 . 374243) (-2770 . 374192) (-2771 . 374144) (-2772 . 374092) + (-2773 . 373946) (-2774 . 373894) (-2775 . 373748) (-2776 . 373696) + (-2777 . 373550) (-2778 . 373499) (-2779 . 373124) (-2780 . 373073) + (-2781 . 373024) (-2782 . 372973) (-2783 . 372925) (-2784 . 372873) + (-2785 . 372824) (-2786 . 372772) (-2787 . 372723) (-2788 . 372671) + (-2789 . 372622) (-2790 . 372556) (-2791 . 372438) (-2792 . 371276) + (-2793 . 370859) (-2794 . 370751) (-2795 . 370509) (-2796 . 370359) + (-2797 . 370209) (-2798 . 370048) (-2799 . 367841) (-2800 . 367580) + (-2801 . 367426) (-2802 . 367280) (-2803 . 367134) (-2804 . 366915) + (-2805 . 366783) (-2806 . 366708) (-2807 . 366633) (-2808 . 366498) + (-2809 . 366369) (-2810 . 366240) (-2811 . 366114) (-2812 . 365988) + (-2813 . 365862) (-2814 . 365736) (-2815 . 365633) (-2816 . 365533) + (-2817 . 365439) (-2818 . 365309) (-2819 . 365158) (-2820 . 364782) + (-2821 . 364668) (-2822 . 364427) (-2823 . 363969) (-2824 . 363659) + (-2825 . 363092) (-2826 . 362523) (-2827 . 361513) (-2828 . 360971) + (-2829 . 360658) (-2830 . 360320) (-2831 . 359989) (-2832 . 359669) + (-2833 . 359616) (-2834 . 359489) (-2835 . 358987) (-2836 . 357844) + (-2837 . 357789) (-2838 . 357734) (-2839 . 357658) (-2840 . 357539) + (-2841 . 357464) (-2842 . 357389) (-2843 . 357311) (-2844 . 357088) + (-2845 . 357029) (-2846 . 356970) (-2847 . 356867) (-2848 . 356764) + (-2849 . 356661) (-2850 . 356558) (-2851 . 356477) (-2852 . 356403) + (-2853 . 356188) (-2854 . 355954) (-2855 . 355920) (-2856 . 355886) + (-2857 . 355858) (-2858 . 355830) (-2859 . 355613) (-2860 . 355335) + (-2861 . 355185) (-2862 . 355055) (-2863 . 354925) (-2864 . 354825) + (-2865 . 354648) (-2866 . 354488) (-2867 . 354388) (-2868 . 354211) + (-2869 . 354051) (-2870 . 353892) (-2871 . 353753) (-2872 . 353603) + (-2873 . 353473) (-2874 . 353343) (-2875 . 353196) (-2876 . 353069) + (-2877 . 352966) (-2878 . 352859) (-2879 . 352762) (-2880 . 352597) + (-2881 . 352449) (-2882 . 352034) (-2883 . 351934) (-2884 . 351831) + (-2885 . 351743) (-2886 . 351663) (-2887 . 351513) (-2888 . 351383) + (-2889 . 351331) (-2890 . 351258) (-2891 . 351183) (-2892 . 351124) + (-2893 . 351012) (-2894 . 350700) (-2895 . 350523) (-2896 . 348925) + (-2897 . 348297) (-2898 . 348237) (-2899 . 348119) (-2900 . 348001) + (-2901 . 347857) (-2902 . 347705) (-2903 . 347546) (-2904 . 347387) + (-2905 . 347181) (-2906 . 346994) (-2907 . 346842) (-2908 . 346687) + (-2909 . 346532) (-2910 . 346380) (-2911 . 346243) (-2912 . 345820) + (-2913 . 345694) (-2914 . 345568) (-2915 . 345442) (-2916 . 345302) + (-2917 . 345161) (-2918 . 345020) (-2919 . 344876) (-2920 . 344128) + (-2921 . 343970) (-2922 . 343784) (-2923 . 343629) (-2924 . 343391) + (-2925 . 343146) (-2926 . 342901) (-2927 . 342691) (-2928 . 342554) + (-2929 . 342344) (-2930 . 342207) (-2931 . 341997) (-2932 . 341860) + (-2933 . 341650) (-2934 . 341347) (-2935 . 341203) (-2936 . 341062) + (-2937 . 340839) (-2938 . 340698) (-2939 . 340476) (-2940 . 340279) + (-2941 . 340123) (-2942 . 339796) (-2943 . 339637) (-2944 . 339478) + (-2945 . 339319) (-2946 . 339148) (-2947 . 338977) (-2948 . 338803) + (-2949 . 338451) (-2950 . 338328) (-2951 . 338166) (-2952 . 338093) + (-2953 . 338020) (-2954 . 337947) (-2955 . 337874) (-2956 . 337801) + (-2957 . 337728) (-2958 . 337605) (-2959 . 337432) (-2960 . 337309) + (-2961 . 337223) (-2962 . 337157) (-2963 . 337091) (-2964 . 337025) + (-2965 . 336959) (-2966 . 336893) (-2967 . 336827) (-2968 . 336761) + (-2969 . 336695) (-2970 . 336629) (-2971 . 336563) (-2972 . 336497) + (-2973 . 336431) (-2974 . 336365) (-2975 . 336299) (-2976 . 336233) + (-2977 . 336167) (-2978 . 336101) (-2979 . 336035) (-2980 . 335969) + (-2981 . 335903) (-2982 . 335837) (-2983 . 335771) (-2984 . 335705) + (-2985 . 335639) (-2986 . 335573) (-2987 . 335507) (-2988 . 334860) + (-2989 . 334213) (-2990 . 334085) (-2991 . 333962) (-2992 . 333839) + (-2993 . 333698) (-2994 . 333544) (-2995 . 333400) (-2996 . 333225) + (-2997 . 332615) (-2998 . 332491) (-2999 . 332367) (-3000 . 331689) + (-3001 . 330992) (-3002 . 330891) (-3003 . 330835) (-3004 . 330779) + (-3005 . 330723) (-3006 . 330667) (-3007 . 330608) (-3008 . 330544) + (-3009 . 330436) (-3010 . 330328) (-3011 . 330220) (-3012 . 329941) + (-3013 . 329867) (-3014 . 329641) (-3015 . 329560) (-3016 . 329482) + (-3017 . 329404) (-3018 . 329326) (-3019 . 329247) (-3020 . 329169) + (-3021 . 329076) (-3022 . 328977) (-3023 . 328909) (-3024 . 328860) + (-3025 . 328169) (-3026 . 327529) (-3027 . 326738) (-3028 . 326660) + (-3029 . 326562) (-3030 . 326473) (-3031 . 326384) (-3032 . 326310) + (-3033 . 326236) (-3034 . 326162) (-3035 . 326107) (-3036 . 326052) + (-3037 . 325986) (-3038 . 325920) (-3039 . 325858) (-3040 . 325583) + (-3041 . 325091) (-3042 . 324633) (-3043 . 324380) (-3044 . 324192) + (-3045 . 323851) (-3046 . 323555) (-3047 . 323387) (-3048 . 323256) + (-3049 . 323116) (-3050 . 322961) (-3051 . 322792) (-3052 . 321406) + (-3053 . 321273) (-3054 . 321132) (-3055 . 320903) (-3056 . 320844) + (-3057 . 320788) (-3058 . 320732) (-3059 . 320467) (-3060 . 320255) + (-3061 . 320116) (-3062 . 320009) (-3063 . 319892) (-3064 . 319826) + (-3065 . 319753) (-3066 . 319639) (-3067 . 319386) (-3068 . 319286) + (-3069 . 319092) (-3070 . 318784) (-3071 . 318318) (-3072 . 318213) + (-3073 . 318107) (-3074 . 317958) (-3075 . 317818) (-3076 . 317406) + (-3077 . 317162) (-3078 . 316504) (-3079 . 316351) (-3080 . 316237) + (-3081 . 316127) (-3082 . 315307) (-3083 . 315113) (-3084 . 314087) + (-3085 . 313639) (-3086 . 312250) (-3087 . 311399) (-3088 . 311350) + (-3089 . 311301) (-3090 . 311252) (-3091 . 311185) (-3092 . 311110) + (-3093 . 310920) (-3094 . 310848) (-3095 . 310773) (-3096 . 310701) + (-3097 . 310584) (-3098 . 310533) (-3099 . 310454) (-3100 . 310375) + (-3101 . 310296) (-3102 . 310245) (-3103 . 310001) (-3104 . 309699) + (-3105 . 309617) (-3106 . 309535) (-3107 . 309474) (-3108 . 309085) + (-3109 . 308219) (-3110 . 307646) (-3111 . 306429) (-3112 . 305622) + (-3113 . 305372) (-3114 . 305122) (-3115 . 304697) (-3116 . 304453) + (-3117 . 304209) (-3118 . 303965) (-3119 . 303721) (-3120 . 303477) + (-3121 . 303233) (-3122 . 302991) (-3123 . 302749) (-3124 . 302507) + (-3125 . 302265) (-3126 . 301687) (-3127 . 301571) (-3128 . 301517) + (-3129 . 300675) (-3130 . 300644) (-3131 . 300299) (-3132 . 300073) + (-3133 . 299974) (-3134 . 299875) (-3135 . 298109) (-3136 . 297997) + (-3137 . 296947) (-3138 . 296855) (-3139 . 295933) (-3140 . 295600) + (-3141 . 295267) (-3142 . 295164) (-3143 . 295053) (-3144 . 294942) + (-3145 . 294831) (-3146 . 294720) (-3147 . 293633) (-3148 . 293513) + (-3149 . 293378) (-3150 . 293246) (-3151 . 293114) (-3152 . 292820) + (-3153 . 292526) (-3154 . 292181) (-3155 . 291955) (-3156 . 291729) + (-3157 . 291618) (-3158 . 291507) (-3159 . 290045) (-3160 . 288341) + (-3161 . 288032) (-3162 . 287880) (-3163 . 287357) (-3164 . 287028) + (-3165 . 286835) (-3166 . 286642) (-3167 . 286449) (-3168 . 286256) + (-3169 . 286143) (-3170 . 286020) (-3171 . 285906) (-3172 . 285792) + (-3173 . 285699) (-3174 . 285606) (-3175 . 285496) (-3176 . 285295) + (-3177 . 284151) (-3178 . 284058) (-3179 . 283944) (-3180 . 283851) + (-3181 . 283604) (-3182 . 283493) (-3183 . 283279) (-3184 . 283161) + (-3185 . 282864) (-3186 . 282136) (-3187 . 281560) (-3188 . 281082) + (-3189 . 280838) (-3190 . 280594) (-3191 . 280251) (-3192 . 279645) + (-3193 . 279202) (-3194 . 279047) (-3195 . 278903) (-3196 . 278583) + (-3197 . 278428) (-3198 . 278288) (-3199 . 278148) (-3200 . 278008) + (-3201 . 277733) (-3202 . 277514) (-3203 . 276995) (-3204 . 276783) + (-3205 . 276571) (-3206 . 276191) (-3207 . 276017) (-3208 . 275808) + (-3209 . 275500) (-3210 . 275308) (-3211 . 275135) (-3212 . 273999) + (-3213 . 273634) (-3214 . 273434) (-3215 . 273234) (-3216 . 272398) + (-3217 . 272370) (-3218 . 272302) (-3219 . 272232) (-3220 . 272068) + (-3221 . 272040) (-3222 . 272012) (-3223 . 271958) (-3224 . 271808) + (-3225 . 271749) (-3226 . 271053) (-3227 . 269667) (-3228 . 269606) + (-3229 . 269282) (-3230 . 269210) (-3231 . 269153) (-3232 . 269096) + (-3233 . 269039) (-3234 . 268982) (-3235 . 268907) (-3236 . 268317) + (-3237 . 267957) (-3238 . 267883) (-3239 . 267823) (-3240 . 267705) + (-3241 . 266762) (-3242 . 266635) (-3243 . 266422) (-3244 . 266348) + (-3245 . 266294) (-3246 . 266240) (-3247 . 266131) (-3248 . 265848) + (-3249 . 265740) (-3250 . 265637) (-3251 . 265476) (-3252 . 265375) + (-3253 . 265277) (-3254 . 265139) (-3255 . 265001) (-3256 . 264863) + (-3257 . 264601) (-3258 . 264392) (-3259 . 264254) (-3260 . 263963) + (-3261 . 263811) (-3262 . 263536) (-3263 . 263316) (-3264 . 263164) + (-3265 . 263012) (-3266 . 262860) (-3267 . 262708) (-3268 . 262556) + (-3269 . 262349) (-3270 . 261962) (-3271 . 261631) (-3272 . 261292) + (-3273 . 260945) (-3274 . 260606) (-3275 . 260267) (-3276 . 259886) + (-3277 . 259505) (-3278 . 259124) (-3279 . 258759) (-3280 . 258041) + (-3281 . 257694) (-3282 . 257249) (-3283 . 256824) (-3284 . 256213) + (-3285 . 255621) (-3286 . 255234) (-3287 . 254903) (-3288 . 254516) + (-3289 . 254185) (-3290 . 253965) (-3291 . 253444) (-3292 . 253231) + (-3293 . 253018) (-3294 . 252805) (-3295 . 252627) (-3296 . 252414) + (-3297 . 252236) (-3298 . 251854) (-3299 . 251676) (-3300 . 251466) + (-3301 . 251376) (-3302 . 251286) (-3303 . 251195) (-3304 . 251083) + (-3305 . 250993) (-3306 . 250886) (-3307 . 250697) (-3308 . 250641) + (-3309 . 250560) (-3310 . 250479) (-3311 . 250398) (-3312 . 250321) + (-3313 . 250186) (-3314 . 250051) (-3315 . 249927) (-3316 . 249806) + (-3317 . 249688) (-3318 . 249552) (-3319 . 249419) (-3320 . 249300) + (-3321 . 249042) (-3322 . 248757) (-3323 . 248685) (-3324 . 248589) + (-3325 . 248448) (-3326 . 248391) (-3327 . 248334) (-3328 . 248274) + (-3329 . 248073) (-3330 . 247678) (-3331 . 247156) (-3332 . 246879) + (-3333 . 246459) (-3334 . 246347) (-3335 . 245909) (-3336 . 245679) + (-3337 . 245476) (-3338 . 245294) (-3339 . 245164) (-3340 . 244958) + (-3341 . 244751) (-3342 . 244561) (-3343 . 244014) (-3344 . 243758) + (-3345 . 243467) (-3346 . 243173) (-3347 . 242876) (-3348 . 242576) + (-3349 . 242446) (-3350 . 242313) (-3351 . 242177) (-3352 . 242038) + (-3353 . 240821) (-3354 . 240513) (-3355 . 240149) (-3356 . 240052) + (-3357 . 239812) (-3358 . 239537) (-3359 . 239262) (-3360 . 239003) + (-3361 . 238829) (-3362 . 238751) (-3363 . 238664) (-3364 . 238564) + (-3365 . 238470) (-3366 . 238389) (-3367 . 238319) (-3368 . 237528) + (-3369 . 237458) (-3370 . 237130) (-3371 . 237060) (-3372 . 236732) + (-3373 . 236662) (-3374 . 236217) (-3375 . 236147) (-3376 . 236043) + (-3377 . 235969) (-3378 . 235895) (-3379 . 235824) (-3380 . 235482) + (-3381 . 235354) (-3382 . 235277) (-3383 . 235046) (-3384 . 234903) + (-3385 . 234760) (-3386 . 234421) (-3387 . 234091) (-3388 . 233878) + (-3389 . 233623) (-3390 . 233273) (-3391 . 233048) (-3392 . 232823) + (-3393 . 232598) (-3394 . 232373) (-3395 . 232160) (-3396 . 231947) + (-3397 . 231797) (-3398 . 231616) (-3399 . 231511) (-3400 . 231389) + (-3401 . 231281) (-3402 . 231173) (-3403 . 230848) (-3404 . 230584) + (-3405 . 230273) (-3406 . 229971) (-3407 . 229662) (-3408 . 228943) + (-3409 . 228367) (-3410 . 228192) (-3411 . 228048) (-3412 . 227893) + (-3413 . 227770) (-3414 . 227665) (-3415 . 227550) (-3416 . 227455) + (-3417 . 226974) (-3418 . 226864) (-3419 . 226754) (-3420 . 226644) + (-3421 . 225572) (-3422 . 225065) (-3423 . 224998) (-3424 . 224925) + (-3425 . 224052) (-3426 . 223979) (-3427 . 223924) (-3428 . 223869) + (-3429 . 223837) (-3430 . 223751) (-3431 . 223719) (-3432 . 223633) + (-3433 . 223213) (-3434 . 222793) (-3435 . 222241) (-3436 . 221137) + (-3437 . 219427) (-3438 . 217877) (-3439 . 217085) (-3440 . 216585) + (-3441 . 216099) (-3442 . 215697) (-3443 . 215047) (-3444 . 214972) + (-3445 . 214881) (-3446 . 214810) (-3447 . 214739) (-3448 . 214683) + (-3449 . 214563) (-3450 . 214509) (-3451 . 214448) (-3452 . 214394) + (-3453 . 214291) (-3454 . 213851) (-3455 . 213411) (-3456 . 212971) + (-3457 . 212449) (-3458 . 212288) (-3459 . 212127) (-3460 . 211816) + (-3461 . 211730) (-3462 . 211640) (-3463 . 211282) (-3464 . 211165) + (-3465 . 211084) (-3466 . 210926) (-3467 . 210813) (-3468 . 210738) + (-3469 . 209892) (-3470 . 208710) (-3471 . 208611) (-3472 . 208512) + (-3473 . 208183) (-3474 . 208105) (-3475 . 208030) (-3476 . 207924) + (-3477 . 207768) (-3478 . 207661) (-3479 . 207526) (-3480 . 207391) + (-3481 . 207269) (-3482 . 207174) (-3483 . 207026) (-3484 . 206931) + (-3485 . 206776) (-3486 . 206621) (-3487 . 206069) (-3488 . 205517) + (-3489 . 204902) (-3490 . 204350) (-3491 . 203798) (-3492 . 203246) + (-3493 . 202693) (-3494 . 202140) (-3495 . 201587) (-3496 . 201034) + (-3497 . 200481) (-3498 . 199928) (-3499 . 199376) (-3500 . 198824) + (-3501 . 198272) (-3502 . 197720) (-3503 . 197168) (-3504 . 196616) + (-3505 . 196512) (-3506 . 195927) (-3507 . 195822) (-3508 . 195747) + (-3509 . 195605) (-3510 . 195513) (-3511 . 195422) (-3512 . 195330) + (-3513 . 195235) (-3514 . 195130) (-3515 . 195007) (-3516 . 194885) + (-3517 . 194521) (-3518 . 194399) (-3519 . 194301) (-3520 . 193940) + (-3521 . 193411) (-3522 . 193336) (-3523 . 193261) (-3524 . 193169) + (-3525 . 192988) (-3526 . 192893) (-3527 . 192818) (-3528 . 192727) + (-3529 . 192636) (-3530 . 192477) (-3531 . 191928) (-3532 . 191379) + (-3533 . 188672) (-3534 . 188500) (-3535 . 187090) (-3536 . 186530) + (-3537 . 186415) (-3538 . 186043) (-3539 . 185980) (-3540 . 185917) + (-3541 . 185854) (-3542 . 185576) (-3543 . 185309) (-3544 . 185257) + (-3545 . 184616) (-3546 . 184565) (-3547 . 184377) (-3548 . 184304) + (-3549 . 184224) (-3550 . 184111) (-3551 . 183921) (-3552 . 183557) + (-3553 . 183285) (-3554 . 183234) (-3555 . 183183) (-3556 . 183113) + (-3557 . 182994) (-3558 . 182965) (-3559 . 182861) (-3560 . 182739) + (-3561 . 182685) (-3562 . 182508) (-3563 . 182447) (-3564 . 182266) + (-3565 . 182205) (-3566 . 182133) (-3567 . 181658) (-3568 . 181284) + (-3569 . 177752) (-3570 . 177700) (-3571 . 177572) (-3572 . 177422) + (-3573 . 177370) (-3574 . 177229) (-3575 . 175171) (-3576 . 167564) + (-3577 . 167413) (-3578 . 167343) (-3579 . 167292) (-3580 . 167242) + (-3581 . 167191) (-3582 . 167140) (-3583 . 166944) (-3584 . 166802) + (-3585 . 166688) (-3586 . 166567) (-3587 . 166449) (-3588 . 166337) + (-3589 . 166219) (-3590 . 166114) (-3591 . 166033) (-3592 . 165929) + (-3593 . 164995) (-3594 . 164775) (-3595 . 164538) (-3596 . 164456) + (-3597 . 164112) (-3598 . 162973) (-3599 . 162899) (-3600 . 162804) + (-3601 . 162730) (-3602 . 162526) (-3603 . 162435) (-3604 . 162319) + (-3605 . 162206) (-3606 . 162115) (-3607 . 162024) (-3608 . 161935) + (-3609 . 161846) (-3610 . 161757) (-3611 . 161669) (-3612 . 161181) + (-3613 . 161117) (-3614 . 161053) (-3615 . 160989) (-3616 . 160928) + (-3617 . 160188) (-3618 . 160127) (-3619 . 160066) (-3620 . 159440) + (-3621 . 159388) (-3622 . 159260) (-3623 . 159196) (-3624 . 159142) + (-3625 . 159033) (-3626 . 157736) (-3627 . 157655) (-3628 . 157566) + (-3629 . 157508) (-3630 . 157368) (-3631 . 157283) (-3632 . 157209) + (-3633 . 157124) (-3634 . 157067) (-3635 . 156851) (-3636 . 156712) + (-3637 . 156105) (-3638 . 155551) (-3639 . 154997) (-3640 . 154443) + (-3641 . 153836) (-3642 . 153282) (-3643 . 152722) (-3644 . 152162) + (-3645 . 151900) (-3646 . 151461) (-3647 . 151128) (-3648 . 150789) + (-3649 . 150484) (-3650 . 150351) (-3651 . 150218) (-3652 . 149830) + (-3653 . 149737) (-3654 . 149644) (-3655 . 149551) (-3656 . 149458) + (-3657 . 149365) (-3658 . 149272) (-3659 . 149179) (-3660 . 149086) + (-3661 . 148993) (-3662 . 148900) (-3663 . 148807) (-3664 . 148714) + (-3665 . 148621) (-3666 . 148528) (-3667 . 148435) (-3668 . 148342) + (-3669 . 148249) (-3670 . 148156) (-3671 . 148063) (-3672 . 147970) + (-3673 . 147877) (-3674 . 147784) (-3675 . 147691) (-3676 . 147598) + (-3677 . 147505) (-3678 . 147320) (-3679 . 147010) (-3680 . 145382) + (-3681 . 145228) (-3682 . 145091) (-3683 . 144949) (-3684 . 144747) + (-3685 . 142820) (-3686 . 142693) (-3687 . 142569) (-3688 . 142442) + (-3689 . 142221) (-3690 . 142000) (-3691 . 141873) (-3692 . 141672) + (-3693 . 141496) (-3694 . 140979) (-3695 . 140462) (-3696 . 140185) + (-3697 . 139776) (-3698 . 139259) (-3699 . 139075) (-3700 . 138933) + (-3701 . 138438) (-3702 . 137807) (-3703 . 137751) (-3704 . 137657) + (-3705 . 137538) (-3706 . 137468) (-3707 . 137395) (-3708 . 137165) + (-3709 . 136546) (-3710 . 136116) (-3711 . 136034) (-3712 . 135892) + (-3713 . 135422) (-3714 . 135300) (-3715 . 135178) (-3716 . 135038) + (-3717 . 134851) (-3718 . 134735) (-3719 . 134455) (-3720 . 134387) + (-3721 . 134189) (-3722 . 134009) (-3723 . 133854) (-3724 . 133747) + (-3725 . 133696) (-3726 . 133319) (-3727 . 132791) (-3728 . 132569) + (-3729 . 132347) (-3730 . 132108) (-3731 . 132018) (-3732 . 130276) + (-3733 . 129694) (-3734 . 129616) (-3735 . 124156) (-3736 . 123366) + (-3737 . 122989) (-3738 . 122918) (-3739 . 122653) (-3740 . 122478) + (-3741 . 121993) (-3742 . 121571) (-3743 . 121131) (-3744 . 120268) + (-3745 . 120144) (-3746 . 120017) (-3747 . 119908) (-3748 . 119756) + (-3749 . 119642) (-3750 . 119503) (-3751 . 119422) (-3752 . 119341) + (-3753 . 119237) (-3754 . 118819) (-3755 . 118398) (-3756 . 118324) + (-3757 . 118061) (-3758 . 117797) (-3759 . 117418) (-3760 . 116719) + (-3761 . 115676) (-3762 . 115617) (-3763 . 115543) (-3764 . 115469) + (-3765 . 115347) (-3766 . 115097) (-3767 . 115011) (-3768 . 114936) + (-3769 . 114861) (-3770 . 114766) (-3771 . 110991) (-3772 . 109821) + (-3773 . 109161) (-3774 . 108977) (-3775 . 106772) (-3776 . 106447) + (-3777 . 105965) (-3778 . 105524) (-3779 . 105289) (-3780 . 105044) + (-3781 . 104954) (-3782 . 103519) (-3783 . 103441) (-3784 . 103336) + (-3785 . 101860) (-3786 . 101455) (-3787 . 101054) (-3788 . 100958) + (-3789 . 100879) (-3790 . 100724) (-3791 . 99606) (-3792 . 99527) + (-3793 . 99451) (-3794 . 99105) (-3795 . 99048) (-3796 . 98976) + (-3797 . 98919) (-3798 . 98862) (-3799 . 98732) (-3800 . 98530) + (-3801 . 98162) (-3802 . 97741) (-3803 . 93931) (-3804 . 93329) + (-3805 . 92862) (-3806 . 92649) (-3807 . 92436) (-3808 . 92270) + (-3809 . 92057) (-3810 . 91891) (-3811 . 91725) (-3812 . 91559) + (-3813 . 91393) (-3814 . 91123) (-3815 . 85709) (** . 82756) (-3817 . 82340) + (-3818 . 82099) (-3819 . 82043) (-3820 . 81551) (-3821 . 78743) + (-3822 . 78593) (-3823 . 78429) (-3824 . 78265) (-3825 . 78169) + (-3826 . 78051) (-3827 . 77927) (-3828 . 77784) (-3829 . 77613) + (-3830 . 77487) (-3831 . 77343) (-3832 . 77191) (-3833 . 77032) + (-3834 . 76519) (-3835 . 76430) (-3836 . 75765) (-3837 . 75573) + (-3838 . 75478) (-3839 . 75170) (-3840 . 73998) (-3841 . 73792) + (-3842 . 72617) (-3843 . 72542) (-3844 . 71361) (-3845 . 67859) + (-3846 . 67495) (-3847 . 67218) (-3848 . 67126) (-3849 . 67033) + (-3850 . 66756) (-3851 . 66663) (-3852 . 66570) (-3853 . 66477) + (-3854 . 66093) (-3855 . 66022) (-3856 . 65930) (-3857 . 65772) + (-3858 . 65418) (-3859 . 65260) (-3860 . 65152) (-3861 . 65123) + (-3862 . 65056) (-3863 . 64902) (-3864 . 64744) (-3865 . 64350) + (-3866 . 64275) (-3867 . 64169) (-3868 . 64097) (-3869 . 64019) + (-3870 . 63946) (-3871 . 63873) (-3872 . 63800) (-3873 . 63728) + (-3874 . 63656) (-3875 . 63583) (-3876 . 63342) (-3877 . 63002) + (-3878 . 62854) (-3879 . 62781) (-3880 . 62708) (-3881 . 62635) + (-3882 . 62381) (-3883 . 62237) (-3884 . 60901) (-3885 . 60707) + (-3886 . 60436) (-3887 . 60288) (-3888 . 60140) (-3889 . 59900) + (-3890 . 59706) (-3891 . 59438) (-3892 . 59242) (-3893 . 59213) + (-3894 . 59112) (-3895 . 59011) (-3896 . 58910) (-3897 . 58809) + (-3898 . 58708) (-3899 . 58607) (-3900 . 58506) (-3901 . 58405) + (-3902 . 58304) (-3903 . 58203) (-3904 . 58088) (-3905 . 57973) + (-3906 . 57922) (-3907 . 57805) (-3908 . 57747) (-3909 . 57646) + (-3910 . 57545) (-3911 . 57444) (-3912 . 57328) (-3913 . 57299) + (-3914 . 56568) (-3915 . 56443) (-3916 . 56318) (-3917 . 56178) + (-3918 . 56060) (-3919 . 55935) (-3920 . 55780) (-3921 . 54797) + (-3922 . 53938) (-3923 . 53884) (-3924 . 53830) (-3925 . 53622) + (-3926 . 53250) (-3927 . 52839) (-3928 . 52481) (-3929 . 52123) + (-3930 . 51971) (-3931 . 51669) (-3932 . 51513) (-3933 . 51187) + (-3934 . 51117) (-3935 . 51047) (-3936 . 50838) (-3937 . 50229) + (-3938 . 50025) (-3939 . 49652) (-3940 . 49143) (-3941 . 48878) + (-3942 . 48397) (-3943 . 47916) (-3944 . 47791) (-3945 . 46691) + (-3946 . 45615) (-3947 . 45042) (-3948 . 44824) (-3949 . 36498) + (-3950 . 36313) (-3951 . 34230) (-3952 . 32062) (-3953 . 31916) + (-3954 . 31738) (-3955 . 31331) (-3956 . 31036) (-3957 . 30688) + (-3958 . 30522) (-3959 . 30356) (-3960 . 29945) (-3961 . 16071) + (-3962 . 14964) (* . 10917) (-3964 . 10663) (-3965 . 10479) (-3966 . 9522) + (-3967 . 9469) (-3968 . 9409) (-3969 . 9140) (-3970 . 8513) (-3971 . 7240) + (-3972 . 5996) (-3973 . 5127) (-3974 . 3864) (-3975 . 420) (-3976 . 306) + (-3977 . 173) (-3978 . 30))
\ No newline at end of file |