diff options
author | dos-reis <gdr@axiomatics.org> | 2011-03-10 18:14:47 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2011-03-10 18:14:47 +0000 |
commit | 3018eca8731c1ebfc07487d6ba305c82090b4dca (patch) | |
tree | 2977f65419c43b201a65e63a8bcf55dfaa443639 /src | |
parent | d39e317cd51e0f251d485df1948e2a85a4007048 (diff) | |
download | open-axiom-3018eca8731c1ebfc07487d6ba305c82090b4dca.tar.gz |
* algebra/catdef.spad.pamphlet (CharacteristicNonZero)
[charthRoot]: Now return Maybe %.
(PolynomialFactorizationExplicit) [charthRoot]: Likewise.
* algebra/ffcat.spad.pamphlet (FiniteAlgebraicExtensionField):
Propagate change.
* algebra/fraction.spad.pamphlet (Fraction) [charthRoot]: Likewise.
* algebra/poly.spad.pamphlet (UnivariatePolynomialSquareFree):
Likewise.
* algebra/polycat.spad.pamphlet (PolynomialCategory): Likewise.
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 12 | ||||
-rw-r--r-- | src/algebra/catdef.spad.pamphlet | 16 | ||||
-rw-r--r-- | src/algebra/ffcat.spad.pamphlet | 8 | ||||
-rw-r--r-- | src/algebra/fraction.spad.pamphlet | 10 | ||||
-rw-r--r-- | src/algebra/poly.spad.pamphlet | 4 | ||||
-rw-r--r-- | src/algebra/polycat.spad.pamphlet | 18 |
6 files changed, 41 insertions, 27 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index c29408c4..8379f759 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,17 @@ 2011-03-10 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/catdef.spad.pamphlet (CharacteristicNonZero) + [charthRoot]: Now return Maybe %. + (PolynomialFactorizationExplicit) [charthRoot]: Likewise. + * algebra/ffcat.spad.pamphlet (FiniteAlgebraicExtensionField): + Propagate change. + * algebra/fraction.spad.pamphlet (Fraction) [charthRoot]: Likewise. + * algebra/poly.spad.pamphlet (UnivariatePolynomialSquareFree): + Likewise. + * algebra/polycat.spad.pamphlet (PolynomialCategory): Likewise. + +2011-03-10 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/c-util.boot (equalFormTemplate): Tidy comparison of value argument to constructors. diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet index 694d169f..7dfc10fc 100644 --- a/src/algebra/catdef.spad.pamphlet +++ b/src/algebra/catdef.spad.pamphlet @@ -377,7 +377,7 @@ CancellationAbelianMonoid(): Category == AbelianMonoid with ++ Description: ++ Rings of Characteristic Non Zero CharacteristicNonZero():Category == Ring with - charthRoot: % -> Union(%,"failed") + charthRoot: % -> Maybe % ++ charthRoot(x) returns the pth root of x ++ where p is the characteristic of the ring. @@ -1706,9 +1706,9 @@ PolynomialFactorizationExplicit(): Category == Definition where ++ whose \spad{p}-th powers (p is the characteristic of the domain) ++ are a solution of the homogenous linear system represented ++ by m, or "failed" is there is no such vector. - charthRoot: % -> Union(%,"failed") - ++ charthRoot(r) returns the \spad{p}-th root of r, or "failed" - ++ if none exists in the domain. + charthRoot: % -> Maybe % + ++ charthRoot(r) returns the \spad{p}-th root of r, or + ++ \spad{nothing} if none exists in the domain. -- this is a special case of conditionP, but often the one we want add gcdPolynomial(f,g) == @@ -1725,11 +1725,13 @@ PolynomialFactorizationExplicit(): Category == Definition where -- to take p'th root of f, solve the system X-fY=0, -- so solution is [x,y] -- with x^p=X and y^p=Y, then (x/y)^p = f - zero? f => 0 + zero? f => just 0 m:Matrix % := matrix [[1,-f]] ans:= conditionP m - ans case "failed" => "failed" - (ans.1) exquo (ans.2) + ans case "failed" => nothing + r := (ans.1) exquo (ans.2) + r case "failed" => nothing + just r if % has Field then solveLinearPolynomialEquation(lf,g) == multiEuclidean(lf,g)$P diff --git a/src/algebra/ffcat.spad.pamphlet b/src/algebra/ffcat.spad.pamphlet index 78a1c6a3..621ea017 100644 --- a/src/algebra/ffcat.spad.pamphlet +++ b/src/algebra/ffcat.spad.pamphlet @@ -349,8 +349,8 @@ FiniteAlgebraicExtensionField(F : Field) : Category == _ v:=first nullSpace transpose matrix(l)$(Matrix F) +/[monomial(v.(i+1),i::NNI) for i in 0..(#v-1)] - charthRoot(x):Union($,"failed") == - (charthRoot(x)@$)::Union($,"failed") + charthRoot(x): Maybe % == + just(charthRoot(x)@%) -- norm(e) == norm(e,1) pretend F -- trace(e) == trace(e,1) pretend F minimalPolynomial(a,n) == @@ -597,8 +597,8 @@ FiniteFieldCategory() : Category ==_ empty? l or every?(zero?, first l) => "failed" map(charthRoot,first l) charthRoot(x:$):$ == x**(size()$% quo characteristic$%) - charthRoot(x:%):Union($,"failed") == - (charthRoot(x)@$)::Union($,"failed") + charthRoot(x:%): Maybe % == + just(charthRoot(x)@%) createPrimitiveElement() == sm1 : PositiveInteger := (size()$%-1) pretend PositiveInteger start : Integer := diff --git a/src/algebra/fraction.spad.pamphlet b/src/algebra/fraction.spad.pamphlet index 1e691362..a6295219 100644 --- a/src/algebra/fraction.spad.pamphlet +++ b/src/algebra/fraction.spad.pamphlet @@ -551,18 +551,18 @@ Fraction(S: IntegralDomain): QuotientFieldCategory S with if S has canonicalUnitNormal and S has GcdDomain then charthRoot x == n:= charthRoot x.num - n case "failed" => "failed" + n case nothing => nothing d:=charthRoot x.den - d case "failed" => "failed" - n/d + d case nothing => nothing + just(n/d) else charthRoot x == -- to find x = p-th root of n/d -- observe that xd is p-th root of n*d**(p-1) ans:=charthRoot(x.num * (x.den)**(characteristic$%-1)::NonNegativeInteger) - ans case "failed" => "failed" - ans / x.den + ans case nothing => nothing + just(ans / x.den) clear: List % -> List S clear l == d:="lcm"/[x.den for x in l] diff --git a/src/algebra/poly.spad.pamphlet b/src/algebra/poly.spad.pamphlet index e0688ad4..42c1eab2 100644 --- a/src/algebra/poly.spad.pamphlet +++ b/src/algebra/poly.spad.pamphlet @@ -881,7 +881,7 @@ UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T else if RC has CharacteristicNonZero then BumInSepFFE(ffe:FF) == np := multiplyExponents(ffe.fctr,characteristic$P:NonNegativeInteger) - (nthrp := charthRoot(np)) case "failed" => + (nthrp := charthRoot(np)) case nothing => ["nil", np, ffe.xpnt] ["sqfr", nthrp, characteristic$P*ffe.xpnt] @@ -1010,7 +1010,7 @@ PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where pthPower(f:P) : Factored P == proot : P := 0 isSq : Boolean := false - if (g:=charthRoot f) case "failed" then proot:=pPolRoot(f) + if (g:=charthRoot f) case nothing then proot:=pPolRoot(f) else proot := g :: P isSq := true diff --git a/src/algebra/polycat.spad.pamphlet b/src/algebra/polycat.spad.pamphlet index 499b3903..140fc069 100644 --- a/src/algebra/polycat.spad.pamphlet +++ b/src/algebra/polycat.spad.pamphlet @@ -520,36 +520,36 @@ PolynomialCategory(R:Ring, E:OrderedAbelianMonoidSup, VarSet:OrderedSet): for mons in monslist] if R has CharacteristicNonZero then - charthRootlv: (%,List VarSet,NonNegativeInteger) -> Union(%,"failed") + charthRootlv: (%,List VarSet,NonNegativeInteger) -> Maybe % charthRoot p == vars:= variables p empty? vars => ans := charthRoot ground p - ans case "failed" => "failed" - ans::R::% + ans case nothing => nothing + just(ans::R::%) ch:=characteristic$% charthRootlv(p,vars,ch) charthRootlv(p,vars,ch) == empty? vars => ans := charthRoot ground p - ans case "failed" => "failed" - ans::R::% + ans case nothing => nothing + just(ans::R::%) v:=first vars vars:=rest vars d:=degree(p,v) ans:% := 0 while (d>0) repeat (dd:=(d::Integer exquo ch::Integer)) case "failed" => - return "failed" + return nothing cp:=coefficient(p,v,d) p:=p-monomial(cp,v,d) ansx:=charthRootlv(cp,vars,ch) - ansx case "failed" => return "failed" + ansx case nothing => return nothing d:=degree(p,v) ans:=ans+monomial(ansx,v,dd::Integer::NonNegativeInteger) ansx:=charthRootlv(p,vars,ch) - ansx case "failed" => return "failed" - return ans+ansx + ansx case nothing => return nothing + return just(ans+ansx) monicDivide(p1,p2,mvar) == result:=monicDivide(univariate(p1,mvar),univariate(p2,mvar)) |